Izolacje.com.pl

Docieplanie budynków od wewnątrz – wymagania prawne i zalecenia do projektowania

Płyty termoizolacyjne do ocieplania od wewnątrz; fot. Ecovario

Płyty termoizolacyjne do ocieplania od wewnątrz; fot. Ecovario

Obowiązujące w Polsce wymagania prawne związane z docieplaniem budynków od wewnątrz obejmują zarówno przepisy podstawowe zdefiniowane w dokumentach unijnych, jak i wymagania szczegółowe, zawarte w dokumentach krajowych. A ich realizację umożliwiają dostępne na rynku rozwiązania technologiczno-materiałowe.

Zobacz także

dr hab. inż., prof. UWM Robert Wójcik Klasyfikacja metod docieplania od wewnątrz

Klasyfikacja metod docieplania od wewnątrz Klasyfikacja metod docieplania od wewnątrz

W podstawowym nurcie zainteresowań dociepleniami od wewnątrz pozostają głównie budynki zabytkowe, pełniące pierwotnie różne funkcje, w tym niemieszkalne, które nie mogą być docieplane od zewnątrz. Gruntownej...

W podstawowym nurcie zainteresowań dociepleniami od wewnątrz pozostają głównie budynki zabytkowe, pełniące pierwotnie różne funkcje, w tym niemieszkalne, które nie mogą być docieplane od zewnątrz. Gruntownej poprawy termoizolacyjności przegród zewnętrznych wymagają budynki przemysłowe, rolnicze, wojskowe, magazynowe, które obecnie przystosowuje się do funkcji mieszkalnych, biurowych, handlowych, o wysokich wymaganiach w zakresie komfortu cieplnego.

dr hab. inż., prof. nadzw. UTP Dariusz Bajno, mgr inż. Natalia Budnik Wybrane zagadnienia docieplania przegród zewnętrznych budynków od wewnątrz

Wybrane zagadnienia docieplania przegród zewnętrznych budynków od wewnątrz Wybrane zagadnienia docieplania przegród zewnętrznych budynków od wewnątrz

Niejednokrotnie w praktyce budowlanej zdarzają się przypadki braku możliwości poprawy parametrów termoizolacyjnych zewnętrznych przegród budowlanych, po ich zewnętrznych stronach. Wówczas do wyboru mogą...

Niejednokrotnie w praktyce budowlanej zdarzają się przypadki braku możliwości poprawy parametrów termoizolacyjnych zewnętrznych przegród budowlanych, po ich zewnętrznych stronach. Wówczas do wyboru mogą pozostać głównie dwa rozwiązania, tj. pozostawienie istniejącego stanu bez zmian lub też wprowadzenie materiałów termoizolacyjnych do wnętrza obiektów budowlanych [1].

TRUTEK FASTENERS POLSKA Wzmacnianie bydynków wielkopłytowych w systemie TRUTEK TCM

Wzmacnianie bydynków wielkopłytowych w systemie TRUTEK TCM Wzmacnianie bydynków wielkopłytowych w systemie TRUTEK TCM

TRUTEK FASTENERS POLSKA jest firmą specjalizującą się w produkcji najwyższej jakości systemów zamocowań przeznaczonych do budownictwa lądowego, drogowego i przemysłu. W ofercie firmy znajdują się wyroby...

TRUTEK FASTENERS POLSKA jest firmą specjalizującą się w produkcji najwyższej jakości systemów zamocowań przeznaczonych do budownictwa lądowego, drogowego i przemysłu. W ofercie firmy znajdują się wyroby tradycyjne – od wielu lat stosowane w budownictwie, a także nowatorskie, zaawansowane technologicznie rozwiązania gwarantujące najwyższy poziom bezpieczeństwa.

Wymagania prawne [1–3] z zakresu ochrony cieplnej budynków wpływają na sposób projektowania nowych budynków, a także na utrzymanie i eksploatację już istniejących.

W obiektach nowo projektowanych odpowiednią izolacyjność przegród budowlanych i wymagany współcześnie standard energetyczny [4–5] można osiągnąć dzięki zastosowaniu przez projektanta nowoczesnych technologii i materiałów. Natomiast w budynkach objętych ochroną konserwatorską ocieplenie wykonuje się od strony ich wewnętrznej [6]. Takie rozwiązanie wymusza zastosowanie bardziej zaawansowanych metod projektowych, uwzględniających charakter budynku i sposób jego eksploatacji [7–9].

Z punktu widzenia fizyki budowli umieszczanie materiału termoizolacyjnego od strony wewnętrznej nie jest jednak poprawne, chociażby ze względu na ryzyko wykraplania się dyfundującej pary wodnej. Współczesne rozwiązania materiałowe pozwalają jednak na skuteczną poprawę stanu termicznego przegród budowlanych dzięki izolacji wewnętrznej, pod warunkiem poprawnie przeprowadzonych obliczeń poprzedzonych szczegółowymi analizami stanu istniejącego, uwzględnienia rzeczywistego klimatu zewnętrznego oraz użytkowania pomieszczeń.

Uwarunkowania prawne

Wymagania podstawowe

Obecna polityka proekologiczna zmusza państwa unijne do podnoszenia standardu energetycznego budynków [4–5]. W oparciu o dyrektywę 2018/844/UE definiowane są wymagania dotyczące poprawy efektywności energetycznej oraz dekarbonizacji budynków, tj. eliminacji emisji CO2. Państwa członkowskie zostały zobligowane do opracowania długoterminowej strategii renowacji budynków mieszkalnych i niemieszkalnych, zarówno publicznych, jak i prywatnych.

Polityka prowadzone przez Unię Europejską nakłada w tym zakresie duże wymagania w stosunku do budynków, a zwłaszcza już istniejących (poprzednia dyrektywa 2010/31/EU stawiała wymagania przede wszystkim budynkom nowoprojektowanym). Już dziś wiemy, że będą one trudne do zrealizowania. Nie mamy bowiem wpływu na kształtowanie bryły i obudowy istniejących budynków oraz na dobór rozwiązań materiałowo-konstrukcyjnych. Jedyną możliwością podniesienia ich standardu energetycznego jest termoizolacja przegród oraz zmiana istniejącego źródła i nośnika energii lub dodatkowo wytwarzanie energii na własne potrzeby (OZE).

Przeczytaj więcej na temat termomodernizacji i dociepleniu elementów obudowy budynków »

Program podnoszenia jakości energetycznej budynków dotyczy również budynków zabytkowych. Ze względu jednak na unikatowy charakter takich obiektów dyrektywa 2018/844 [3] sugeruje stosowanie innowacyjnych rozwiązań służących poprawie charakterystyki energetycznej budynków i obiektów zabytkowych, jak również ich testowanie z jednoczesnym zachowaniem i ochroną dziedzictwa kulturowego.

Wyjątek stanowią kategorie tzw. budynków chronionych, stanowiących część wyznaczonego środowiska lub z powodu ich szczególnych wartości architektonicznych lub historycznych, jeśli zgodność z pewnymi minimalnymi wymaganiami w zakresie charakterystyki energetycznej zmieniłaby w sposób niedopuszczalny ich charakter lub wygląd. Dotyczy to użytkowanych miejsc kultu i przeznaczonych na działalność religijną.

Wymagania szczegółowe

Zgodnie z ustawą Prawo budowlane art. 5.1. [1], czynności związane z projektowaniem i budowaniem należy prowadzić, zapewniając „spełnienie podstawowych wymagań dotyczących obiektów budowlanych”, do których zalicza się m.in. „oszczędności energii i izolacyjności cieplnej”, jak również „ochronę obiektów wpisanych do rejestru zabytków oraz obiektów objętych ochroną konserwatorską” (art. 5.1. ust. 7 [1]).

Termomodernizacja budynków zabytkowych wpisuje się w wymaganie podstawowe: oszczędność energii i izolacyjność cieplną. Zgodnie z ustawą o wspieraniu termomodernizacji [6, 10], obejmuje ona między innymi takie działania, jak:

  • ocieplenie przegród zewnętrznych,
  • wymianę stolarki,
  • modernizację systemu grzewczego i wentylacyjnego.

W przypadku robót budowlanych polegających na dociepleniu budynku, obejmujących ponad 25% powierzchni jego przegród zewnętrznych, należy spełnić wymagania minimalne, dotyczące energooszczędności i ochrony cieplnej, przewidziane w przepisach techniczno-budowlanych [2] dla przebudowy budynku – art. 5. 2b [1].

Szeroko rozumiane roboty budowlane, zdefiniowane w art. 29 Prawa budowlanego [1], w które wpisuje się m.in. termomodernizacja budynków wpisanych do rejestru zabytków do wysokości 25 m, wymaga pozwolenia na budowę. Na obszarze wpisanym do rejestru zabytków – wymagają one dokonania zgłoszenia, o którym mowa w art. 30 ust. 1 [10] – przy czym do wniosku o pozwolenie na budowę oraz do zgłoszenia należy dołączyć pozwolenie właściwego wojewódzkiego konserwatora zabytków, wydane na podstawie przepisów o ochronie zabytków i opiece nad zabytkami.

Wymagania podstawowe, ogólnikowo zdefiniowane w art. 5.1. Prawa budowlanego, dotyczące efektywności energetycznej i związane z szeroko rozumianą termomodernizacją, dokładnie zdefiniowano w rozporządzeniu w sprawie warunków technicznych (Dział X, ­§ 328–329 oraz w załączniku 2 do rozporządzenia [2]).

Zgodnie z § 328 Warunków Technicznych [2]:

„budynek i jego instalacje (…) powinny być zaprojektowane i wykonane w sposób zapewniający spełnienie następujących wymagań minimalnych:
1) wartość wskaźnika rocznego zapotrzebowania na nieodnawialną energię pierwotną EP [kWh/(m2·rok)],
2) przegrody oraz wyposażenie techniczne budynku odpowiadają przynajmniej wymaganiom izolacyjności cieplnej określonym w załączniku nr 2 do rozporządzenia” (TABELA 1 i TABELA 2).

tab1 docieplanie budynkow

TABELA 1. Cząstkowe wartości wskaźnika EP na potrzeby ogrzewania, wentylacji oraz przygotowania ciepłej wody użytkowej [2]

tab2 docieplanie budynkow

TABELA 2. Wymagania minimalnej izolacyjności cieplnej dla ścian zewnętrznych [2]
1) od 1 stycznia 2019 r. – w przypadku budynków zajmowanych przez władze publiczne oraz będących ich własnością

W budynku, który podlega przebudowie, wymagane jest, aby przegrody spełniały wymagania minimalnej izolacyjności cieplnej, określonej w załączniku do rozporządzenia [2].

Wymagania zawarte w § 328 Warunków Technicznych nie muszą zostać spełnione w sytuacji, gdy rozwiązanie zagraża poprawnemu funkcjonowaniu układu ściennego oraz nie jest zgodne z założeniami ochrony konserwatorskiej, czyli „powoduje uszczerbek dla wartości zabytków” – art. 4 [6].

Wymagania, które należy uznać jednak za obligatoryjne – i zdaniem autorów najważniejsze – dotyczą eliminowania kondesacji pary wodnej na powierzchni przegrody i w jej warstwach:

„1. Na wewnętrznej powierzchni nieprzezroczystej przegrody zewnętrznej nie może występować kondensacja pary wodnej umożliwiająca rozwój grzybów pleśniowych.

2. We wnętrzu przegrody, o której mowa w ust. 1, nie może występować narastające w kolejnych latach zawilgocenie spowodowane kondensacją pary wodnej.

3. Warunki określone w ust. 1 i 2 uważa się za spełnione, jeśli przegrody odpowiadają wymaganiom określonym w pkt 2.2.4 załącznika nr 2 do rozporządzenia” (§ 321).

Diagnostyka cieplno-wilgotnościowa

Powodzenie zabiegów remontowych i modernizacyjnych, przeprowadzanych w budynkach zabytkowych lub znajdujących się w strefie ochrony konserwatora zabytków, zależy od wielu czynników.

W typowym projekcie remontu obiektów zabytkowych obejmującego elewację, wyszczególnia się uszkodzone elementy konstrukcji stropu i/lub dachu oraz załącza:

  • inwentaryzację obiektu i dokumentację cyfrową elewacji budynku,
  • projekt kolorystyki i remontu elewacji wraz z wymianą stolarki okienno-drzwiowej,
  • projekt wymiany pokrycia dachowego,
  • projekt konstrukcji zawierającą opinię techniczną o stanie elewacji i konstrukcji dachu z możliwością remontu wraz z niezbędnymi rozwiązaniami, wynikających z technologii remontu elewacji,
  • ekspertyzę mikologiczną, gdy widoczne jest zawilgocenie lub wymaga jej konserwator zabytków,
  • badania stratygraficzne, wymagane przez konserwatora zabytków,
  • projekt architektoniczny detalu reklam dla kamienicy, wymagany przez konserwatora, jeśli inwestor ją przewiduje,
  • badanie zasolenia murów,
  • badanie zawilgocenia, zwłaszcza podziemnej części budynku, których konsekwencją jest zapis o konieczności ich osuszenia i wykonania nowej izolacji pionowej,
  • wycenę przedmiaru robót i kosztorys inwestorski.

W budynkach z zabytkowymi elewacjami, dla których projektuje się zmianę sposobu użytkowania po wykonanym remoncie, czasem inwestor, lub w nielicznych przypadkach architekt, decyduje się na poprawę izolacyjności cieplnej ścian zewnętrznych przez docieplenia ich od strony wewnętrznej.

Docieplenie budynku wielorodzinnego – studium przypadku »

Zdaniem autorów wszystkie działania projektowe związane z wymianą materiałów budowlanych (np. belek stropowych drewnianych na stalowe), a także zmianą budowy przegrody zewnętrznej (np. przez dołożenie warstwy termoizolacyjnej) czy zmianą sposobu użytkowania powinny zostać uzasadnione. Ponadto należy wykazać, iż projektowane zmiany nie doprowadzą w przyszłości do niekorzystnych efektów wilgotnościowych w nieremontowanej części zabytkowego obiektu. Przy czym w budynkach historycznych niekorzystne zmiany dotyczą przede wszystkim wilgotności większości materiałów wbudowanych.

Wytyczne projektowe w dociepleniach od wewnątrz

Zalecane metody obliczeń dopasowane są do typowej budowy przegrody i ściśle nie precyzują warunków prowadzenia obliczeń, służących ocenie cieplno-wilgotnościowej przegrody przy nietypowym rozwiązaniu projektowym, jakim jest jej docieplenie od strony wewnętrznej.

Autorzy proponują następującą metodykę oceny możliwości docieplenia do strony wewnętrznej ze względu na możliwość zawilgocenia i zagrzybienia budowli:

  • rozpoznanie budowy materiałowej przegrody przez wykonanie odkrywek i pomiar grubości istniejących warstw,
  • pomiar wilgotności powierzchniowej metodami nieinwazyjnymi, a przy murach ceramicznych grubości powyżej 51 cm, badania wilgotności masowej przez pobieranie próbek z odkrywki,
  • oznaczenie chłonności kapilarnej muru,
  • ustalenie rodzaju materiału warstw ściany i dopasowanie właściwości fizycznych przy wykorzystaniu dostępnych danych,
  • inwentaryzacja miejsc wrażliwych – liniowych mostków cieplnych,
  • wybór materiału i technologii docieplenia,
  • zalecane jest wykonanie obliczeń zmian wilgotności murów w programach do symulacji w modelu 2D, prowadzonych z uwzględnieniem rzeczywistych parametrów klimatu lokalnego i środowiska wewnętrznego (wilgotność względna, temperatura),
    –    obliczenie temperatury na styku warstw: ściana istniejąca–materiał izolacji cieplnej, przy uwzględnieniu dwuwymiarowego przepływu ciepła,
    –    dla ścian wzniesionych z cegły ceramicznej bez rozróżniania rodzaju muru ceglanego oraz ścian betonowych zaleca się dobór grubości materiału do izolacji cieplnej tak, aby po dociepleniu całkowita wartość oporu cieplnego znajdowała się w przedziale 0,5–3,0 (m2·K)/W,
    –    dla nowo projektowanych warstw dociepleniowych w zależności od wilgotności pomieszczeń: sd > 1500 m, dla pomieszczeń o podwyższonej wilgotności RH > 0,65; sd < 0,5 m dla pomieszczeń o wilgotności RH < 0,65 [7–9],
  • we wszystkich sytuacjach należy wykonać obliczenia cieplne spodziewanego rozkładu pola temperatury w modelach 2D w miejscach szczególnych (naroża, połączenie stropu ze ścianą zewnętrzną itp.) w celu obliczenia wskaźnika ƒRsi; obliczony wskaźnik powinien spełniać warunek zawarty w [2], to jest  ƒRsi > 0,72,
  • w ścianach o niejednorodnej budowie, w tym np. o zmiennej grubości czy tzw. murów pruskich, oraz przy dociepleniu ścian tylko na jednej kondygnacji, gdy istnieje ryzyko pogorszenia warunków cieplno-wilgotnościowych w sąsiadujących pomieszczeniach niezbędne jest wykonanie modelu 3D,
  • analizy cieplne i cieplno-wilgotnościowe powinny obejmować nie tylko pomieszczenie docieplane od strony wewnętrznej, ale też bezpośrednio z nim sąsiadujące.
rys1 docieplanie budynkow

RYS. 1. Model połączenia ścian o różnej grubości i budowie ze stropem międzykondygnacyjnym; rys.: B. Orlik-Kożdoń, T. Steidl

Przypadek szczególny docieplenia od wewnątrz

Jako przypadek szczególny docieplenia od wewnątrz rozpatrzono połączenie ściany zewnętrznej kondygnacji nadziemnej z cegły ceramicznej pełnej o gr. 38 cm ze ścianą kondygnacji wyższej z muru pruskiego o gr. 25, docieplonej od strony wewnętrznej i typowego stropu belkowego ze ślepym pułapem.

Uproszczony model połączenia ścian i stropu międzykondygnacyjnego pokazano na RYS. 1 RYS. 2.

rys2 docieplanie budynkow

RYS. 2. Model obliczeniowy. Widoczne elementy wewnątrz ściany (mur pruski) oraz belki stropu międzykondygnacyjnego; rys.: B. Orlik-Kożdoń, T. Steidl

W obliczeniach przyjęto typowe właściwości cieplne materiałów:

  • mur ceglany λx,y,z = 0,77 W/(m·K),
  • drewno (deski, belki) λx,y = 0,18 W/(m·K), λz = 0,23 W/(m·K),
  • polepa λx,y,z = 0,60 W/(m·K),
  • tynki wapienno-cementowe λx,y,z = 1,00 W/(m·K),
  • materiał do izolacji wewnętrznej λx,y,z = 0,045 W/(m·K).

Jako warunki brzegowe przyjęto temperatury krytyczne jak dla III strefy klimatycznej: –20°C i +20°C wewnątrz mieszkania.

Obliczenia cieplne rozkładu pola temperatury wykonano w programie do inżynierskich obliczeń cieplnych Psi-therm 3D. Analizowano temperatury naroży, górnego i dolnego przy ścianach nieocieplonych i ścianach ocieplonych mieszkania górnego. Wyniki przedstawiono w formie graficznej (RYS. 3, RYS. 4, RYS. 5, RYS. 6).

rys3 docieplanie budynkow

RYS. 3. Naroże dolne – ściany powyżej nieocieplone; temperatura tND1 w narożu płaskim 2D tND1 = 6,93°C, temperatura w narożu 3D tNG2 = 5,70°C; rys.: B. Orlik-Kożdoń, T. Steidl

rys4 docieplanie budynkow

RYS. 4. Naroże dolne – ściany powyżej stropu ocieplone; temperatura tND1 w narożu płaskim 2D tND1 = 6,92°C, temperatura w narożu 3D tNG2 = 4,63°C; rys.: B. Orlik-Kożdoń, T. Steidl

rys5 docieplanie budynkow

RYS. 5. Naroże górne – ściany powyżej stropu nieocieplone; temperatura tND1 w narożu płaskim 2D tND1 = 4,63°C, temperatura w narożu 3D tNG2 = –0,06°C; rys.: B. Orlik-Kożdoń, T. Steidl

rys6 docieplanie budynkow

RYS. 6. Naroże górne – ściany powyżej stropu ocieplone; temperatura tND1 w narożu płaskim 2D tNG1 = 14,07°C, temperatura w narożu 3D tNG2 = 6,24°C; rys.: B. Orlik-Kożdoń, T. Steidl

Podsumowanie efektów docieplenia ścian mieszkania górnego:

  • w części, w której ocieplono ściany (mieszkanie górne), temperatura powierzchni przegrody i temperatura w narożu płaskim 2D oraz w narożu przestrzennym 3D, znacząco się poprawiły. Docieplenie zmniejszyło straty ciepła i koszty ogrzewania,
  • natomiast w mieszkaniu poniżej znacząco obniżyła się temperatura naroża przestrzennego 3D, pozostałe temperatury praktycznie bez zmian. Działanie „sąsiedzkie” spowoduje przyśpieszoną kondensację powierzchniową w tym miejscu i znaczący wzrost prawdopodobieństwa zagrzybienia naroża dolnego w stosunku do stanu przed dociepleniem. Nieznacznie zwiększą się też koszty ogrzewania pomieszczenia.

Klasyfikacja metod dociepleniowych

Stosując rozwiązania dociepleń ścian od strony wewnętrznej, mamy w teorii do wyboru trzy główne koncepcje rozwiązań (RYS. 7-9):

rys7 9 docieplanie budynkow

RYS. 7–9. Wybrane metody ocieplania od wewnątrz dla ściany z muru pruskiego: metoda aktywna kapilarnie (7), metoda z limitowanym oporem cieplnym (8) oraz metoda z barierą paroszczelną (9). Objaśnienia: 1 – letni strumień dyfuzji pary wodnej, 2 – zimowy strumień dyfuzji pary wodnej, 3 – strumień ukośnego deszczu; rys.: [12]

  • ocieplenie od wewnątrz zapobiegające wystąpieniu kondensacji – norma DIN 4108-3 [11] zaleca, aby wartość dyfuzyjnie równoważnej grubości warstwy powietrza sd izolacji termicznej lub zastosowanej paroizolacji przekraczała 1500 m,
  • ocieplenie od wewnątrz minimalizujące wystąpienie kondensacji – norma DIN 4108-3 [11] dopuszcza stosowanie materiałów stanowiących opór dyfuzyjny, dla których dyfuzyjnie równoważna grubość warstwy powietrza sd zawiera się między 0,5 a 1500 m. Tak duże zróżnicowanie wielkości sd wpływa niejednoznacznie na oceny poprawności realizowanych ociepleń,
  • ocieplenie od wewnątrz dopuszczające wystąpienie kondensacji z udowodnieniem, że powstający w niekorzystnym okresie kondensat odparuje w ciągu roku obliczeniowego – norma DIN 4108-3 [11] dopuszcza stosowanie materiałów stanowiących opór dyfuzyjny, dla których dyfuzyjnie równoważna grubość warstwy powietrza sd jest mniejsza od 0,5 m. Wykorzystywane w tego typu rozwiązaniach materiały termoizolacyjne są aktywne kapilarnie i umożliwiają kumulowanie powstałego kondensatu w strukturze materiałowej, nie powodując pogorszenia ich właściwości fizycznych.

Systemy z paroizolacją od strony wnętrza sprawdzają się najlepiej w obiektach o wysokiej wilgotności. W związku z całkowitym uniemożliwieniem dyfuzji pary wodnej przez powierzchnię, należy zapewnić najwyższą efektywność instalacji wentylacyjnej.

W 2009 r. pojawił się dokument WTA-Merkblatt 6-4 2009-05 [13], w którym przedstawiono wybrane zagadnienia dotyczące projektowania izolacji cieplnej od wewnątrz. Tego typu rozwiązania prowadzą do wychłodzenia części konstrukcyjnej ściany, a tym samym redukują możliwość osuszania istniejącej konstrukcji.

Jak docieplić przegrody zewnętrzne i wewnętrze? »

Ocieplenie od wewnątrz ogranicza możliwości akumulacyjne ściany, powoduje szybszy spadek temperatury, a tym samym bardzo wysokie ryzyko kondensacji w warstwie granicznej między istniejącą konstrukcją a nowo zabudowaną izolacją. Obydwa efekty mogą prowadzić do zwiększonej penetracji wilgoci.

Przedstawiona procedura pozwala w sposób uproszczony (graficzny) oszacować poprawność doboru rozwiązania materiałowego, w kontekście wodochłonności istniejącej przegrody i jej warstwy zewnętrznej. Pierwszym elementem jest określenie wpływu deszczu na powłokę zewnętrzną muru, tj. określenie jej wodochłonności wyrażonej Ww [kg/m2h0,5]. Jeżeli występuje wystarczająca ochrona przed deszczem zgodna z normą DIN 4108-3) [11], zwykle to wystarczy. Jeżeli warunek ten nie jest spełniony, korzysta się z diagramu (RYS. 10).

rys10 docieplanie budynkow

RYS. 10. Minimalne wymagania w zakresie warstwy dociepleniowej w zależności od oporu cieplnego docieplenia dla podłoży charakteryzujących się różną aktywnością kapilarną; rys.: [13]

Jeżeli wartości graniczne i warunki brzegowe dla oporu dyfuzyjnego pary wodnej sd, poprawa izolacji termicznej R i kapilarność/chłonność podłoża Ww są zachowane, woda kondensacyjna nie wytrąca się przy warstwie granicznej między starą powierzchnią ściany a tylną stroną wewnętrznej izolacji. Sytuacje, które można wykryć za pomocą tej uproszczonej metody, są zatem praktycznie pozbawione kondensacji, ponieważ do tej pory woda jest głównie związana w materiale budowlanym. Jednocześnie oznacza to, że konstrukcje, w których może wystąpić kondensacja, nie mogą być wykrywane przez uproszczoną weryfikację. Wymagane są wtedy nowoczesne metody numeryczne.

Schemat można jednak stosować tylko wtedy, gdy:

  • działająca ochrona przeciwdeszczowa fasady jest sprawna,
  • istniejąca ściana zewnętrzna ma opór cieplny co najmniej R ≥ 0,39 (m2·K)/W,
  • przeważa normalny klimat w pomieszczeniu,\
  • średnia roczna temperatura przekracza 7°C, a poprawa oporu R nie powinna przekraczać 2,5 lub 2,0 (m2·K)/W.

Jeżeli jedno z tych wymagań nie zostanie spełnione, niezbędne są dokładne analizy i obliczenia.

Podsumowanie

Technologia ocieplenia budynków zabytkowych od strony wewnętrznej pozwala zachować ich dotychczasowe walory i równocześnie podnieść standard energetyczny. Przedstawione w artykule wytyczne projektowe stanowią jedynie niewielki fragment kompleksowej diagnostyki i renowacji tego rodzaju budynków.

W tego typu działaniach prawem nadrzędnym powinien być zapis art. 2.1. ustawy Prawo budowlane, który stanowi, że przepisy w nim zawarte „nie naruszają przepisów odrębnych, a w szczególności (…) o ochronie zabytków i opiece nad zabytkami – w odniesieniu do obiektów i obszarów wpisanych do rejestru zabytków oraz obiektów i obszarów objętych ochroną konserwatorską na podstawie miejscowego planu zagospodarowania przestrzennego”.

Prace w budynku zabytkowym powinny być więc prowadzone z poszanowaniem zasady Primum non nocere, tj. po pierwsze nie szkodzić. Oznacza to, że należy je realizować zgodnie z zapisami obecnego prawa, zachowując dotychczasowe walory historycznych budynków jako całości.

Literatura

1. Ustawa z dnia 7 lipca 1994 r. – Prawo budowlane (DzU z 1994, Nr 89, poz. 414, z późniejszymi zmianami).
2. Rozporządzenie Ministra Infrastruktury z 12 kwietnia 2002 r w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie (DzU Nr 75, poz. 690 z późniejszymi zmianami, tekst ujednolicony: DzU z 2017 r. poz. 2285).
3. B. Orlik-Kożdoń, „Termomodernizacja budynków zabytkowych cz. 1 Uwarunkowania prawne”, „Builder” 11/2019.
4. Dyrektywa Parlamentu Europejskiego i Rady UE, 844 z dnia 30 maja 2018 r. zmieniająca dyrektywę 2010/31/UE w sprawie charakterystyki energetycznej budynków i dyrektywę 2012/27/UE w sprawie efektywności energetycznej.
5. Dyrektywa Parlamentu Europejskiego i Rady UE, z dnia 25 października 2012 r. w sprawie efektywności energetycznej, zmiany dyrektyw 2009/125/WE i 2010/30/UE oraz uchylenia dyrektyw 2004/8/WE i 2006/32/WE.
6. Ustawa o wspieraniu termomodernizacji i remontów z dnia 21 listopada 2008 r. (DzU Nr 223, poz. 1459, z późn. zmianami).
7. B. Orlik-Kożdoń, T. Steidl, A. Szymanowska-Gwiżdż, „Remont ścian w konstrukcji muru pruskiego budynków zabytkowych z dociepleniem od strony wewnętrznej”, „Materiały Budowlane”, 5/2000.
8. B. Orlik-Kożdoń, T. Steidl, „Impact of internal insulation on the hygrothermal performance of brick wall”, „J. Build. Phys”, vol. 41 iss. 2/2017, s. 120–134.
9. B. Orlik-Kożdoń, „Interior insulation of masonry walls – selected problems in the design”, „Energies”, vol. 12 iss. 20/2019.
10. Ustawa o zmianie ustawy o wspieraniu termomodernizacji i remontów oraz niektórych innych ustaw z dnia 6 grudnia 2018 r. (DzU 2019, Nr 1, poz. 51).
11. DIN 4108-3, „Klimabedingter Feuchteschutz; Anforderungen, Berechnungsverfahren Und Hinweise Für Planung Und Ausführung Enthält Randbedingungen Und Rechenvorschriften Für Das Glaser-Verfahren”.
12. R. Wójcik, „Docieplanie budynków od wewnątrz”, Grupa MEDIUM, Warszawa 2017.
13. Innendämmung nach WTA I Planungsleitfaden, Referat 6 Bauphysik und Bauchemie, Wissenschaftlich-Technische Arbeitsgemeinschaft für Bauwerkserhaltung und Denkmalpflege e.V., Fraunhofer IRB Verlag, Stuttgart 2009.

Galeria zdjęć

Tytuł
przejdź do galerii

Komentarze

Powiązane

mgr inż. Bartosz Witkowski, prof. dr hab. inż. Krzysztof Schabowicz Izolacje a współczesna prefabrykacja w budynkach kubaturowych

Izolacje a współczesna prefabrykacja w budynkach kubaturowych Izolacje a współczesna prefabrykacja w budynkach kubaturowych

Prefabrykacja, w szczególności ta stosowana w budownictwie mieszkaniowym, znana jest w Polsce już od początku lat 50. ubiegłego wieku, kiedy to po drugiej wojnie światowej rozpoczęła się odbudowa miast...

Prefabrykacja, w szczególności ta stosowana w budownictwie mieszkaniowym, znana jest w Polsce już od początku lat 50. ubiegłego wieku, kiedy to po drugiej wojnie światowej rozpoczęła się odbudowa miast i znacząco wzrósł popyt na nowe mieszkania. To, co w świadomości może najbardziej być kojarzone z prefabrykacją zastosowaną w budynkach to tzw. wielka płyta, czyli połączenie żelbetowych ścian konstrukcyjnych ze ścianami osłonowymi z gazobetonu.

dr inż. Marcin Górski, dr inż. Bernard Kotala, mgr inż. Rafał Białozor Rodzaje i właściwości zbrojeń niemetalicznych

Rodzaje i właściwości zbrojeń niemetalicznych Rodzaje i właściwości zbrojeń niemetalicznych

Kompozyty włókniste, również w Polsce nazywane z angielskiego FRP (Fibre Reinforced Polymers), śmiało wkroczyły w świat konstrukcji budowlanych na początku lat 90. ubiegłego wieku, głównie w krajach Europy...

Kompozyty włókniste, również w Polsce nazywane z angielskiego FRP (Fibre Reinforced Polymers), śmiało wkroczyły w świat konstrukcji budowlanych na początku lat 90. ubiegłego wieku, głównie w krajach Europy Zachodniej, a także w Japonii, Stanach Zjednoczonych i Kanadzie. Pojawiły się niemal równocześnie dwie grupy produktów – materiały do wzmocnień konstrukcji oraz pręty do zbrojenia betonu.

Monika Hyjek Pożar ściany z barierami ogniowymi

Pożar ściany z barierami ogniowymi Pożar ściany z barierami ogniowymi

Od lat 80. XX wieku ilość materiałów ociepleniowych na ścianach zewnętrznych budynku stale rośnie. Grubość izolacji w jednej z popularniejszych w Europie metod ocieplania (ETICS) przez ten okres zwiększyła...

Od lat 80. XX wieku ilość materiałów ociepleniowych na ścianach zewnętrznych budynku stale rośnie. Grubość izolacji w jednej z popularniejszych w Europie metod ocieplania (ETICS) przez ten okres zwiększyła się 3–4-krotnie. W przypadku stosowania palnych izolacji cieplnych jest to równoznaczne ze wzrostem zagrożenia pożarowego.

mgr inż. Bartłomiej Monczyński Tynki stosowane na zawilgoconych przegrodach – tynki regulujące zawilgocenie

Tynki stosowane na zawilgoconych przegrodach – tynki regulujące zawilgocenie Tynki stosowane na zawilgoconych przegrodach – tynki regulujące zawilgocenie

Jednym z ostatnich, ale zazwyczaj nieodzownym elementem prac renowacyjnych w uszkodzonych przez wilgoć i sole obiektach budowlanych jest wykonanie nowych tynków wewnętrznych i/lub zewnętrznych.

Jednym z ostatnich, ale zazwyczaj nieodzownym elementem prac renowacyjnych w uszkodzonych przez wilgoć i sole obiektach budowlanych jest wykonanie nowych tynków wewnętrznych i/lub zewnętrznych.

Röben Polska Sp. z o.o. i Wspólnicy Sp. K. Ekoceramika na dachy i elewacje

Ekoceramika na dachy i elewacje Ekoceramika na dachy i elewacje

Wyjątkowo trwała, a na dodatek bezpieczna dla środowiska i naszego zdrowia. Znamy ją od tysięcy lat, należy do najbardziej ekologicznych materiałów budowlanych – po prostu ceramika!

Wyjątkowo trwała, a na dodatek bezpieczna dla środowiska i naszego zdrowia. Znamy ją od tysięcy lat, należy do najbardziej ekologicznych materiałów budowlanych – po prostu ceramika!

Nicola Hariasz Ściany podwyższające komfort akustyczny w pomieszczeniu

Ściany podwyższające komfort akustyczny w pomieszczeniu Ściany podwyższające komfort akustyczny w pomieszczeniu

Hałas jest powszechnym problemem obniżającym komfort życia nie tylko w domu, ale także w pracy. O tym, czy może być niebezpieczny, decyduje nie tylko jego natężenie, ale również czas jego trwania. Szkodliwe...

Hałas jest powszechnym problemem obniżającym komfort życia nie tylko w domu, ale także w pracy. O tym, czy może być niebezpieczny, decyduje nie tylko jego natężenie, ale również czas jego trwania. Szkodliwe dla zdrowia mogą być nawet gwar i szum towarzyszące nam na co dzień w biurze czy w centrum handlowym.

dr inż. Paweł Krause, dr inż. Rosita Norvaišienė Rozkład temperatury systemu ETICS z zastosowaniem styropianu i wełny – badania laboratoryjne

Rozkład temperatury systemu ETICS z zastosowaniem styropianu i wełny – badania laboratoryjne Rozkład temperatury systemu ETICS z zastosowaniem styropianu i wełny – badania laboratoryjne

Ochrona cieplna ścian zewnętrznych jest nie tylko jednym z podstawowych zagadnień związanych z oszczędnością energii, ale wiąże się również z komfortem użytkowania pomieszczeń przeznaczonych na pobyt ludzi....

Ochrona cieplna ścian zewnętrznych jest nie tylko jednym z podstawowych zagadnień związanych z oszczędnością energii, ale wiąże się również z komfortem użytkowania pomieszczeń przeznaczonych na pobyt ludzi. Zapewnienie odpowiedniego komfortu cieplnego pomieszczeń, nieposiadających w większości przypadków instalacji chłodzenia, dotyczy całego roku, a nie tylko okresu ogrzewczego.

mgr Kamil Kiejna Bezpieczeństwo pożarowe w aspekcie stosowania tzw. barier ogniowych w ociepleniach ze styropianu – artykuł polemiczny

Bezpieczeństwo pożarowe w aspekcie stosowania tzw. barier ogniowych w ociepleniach ze styropianu – artykuł polemiczny Bezpieczeństwo pożarowe w aspekcie stosowania tzw. barier ogniowych w ociepleniach ze styropianu – artykuł polemiczny

Niniejszy artykuł jest polemiką do tekstu M. Hyjek „Pożar ściany z barierami ogniowymi”, opublikowanego w styczniowym numerze „IZOLACJI” (nr 1/2021), który w ocenie Polskiego Stowarzyszenia Producentów...

Niniejszy artykuł jest polemiką do tekstu M. Hyjek „Pożar ściany z barierami ogniowymi”, opublikowanego w styczniowym numerze „IZOLACJI” (nr 1/2021), który w ocenie Polskiego Stowarzyszenia Producentów Styropianu, wskutek tendencyjnego i wybiórczego przedstawienia wyników badań przeprowadzonych przez Łukasiewicz – Instytut Ceramiki i Materiałów Budowlanych (ICiMB), może wprowadzać w błąd co do rzeczywistego poziomu bezpieczeństwa pożarowego systemów ETICS z płytami styropianowymi oraz rzekomych korzyści...

dr inż. Marcin Górski, dr inż. Bernard Kotala, mgr inż. Rafał Białozor Zbrojenia niemetaliczne – zbrojenia tekstylne i pręty kompozytowe

Zbrojenia niemetaliczne – zbrojenia tekstylne i pręty kompozytowe Zbrojenia niemetaliczne – zbrojenia tekstylne i pręty kompozytowe

Zbrojenie niemetaliczne jest odporne na korozję, nie ulega degradacji pod wpływem czynników atmosferycznych. Wykazuje także odporność na chlorki, kwasy, agresję chemiczną środowiska.

Zbrojenie niemetaliczne jest odporne na korozję, nie ulega degradacji pod wpływem czynników atmosferycznych. Wykazuje także odporność na chlorki, kwasy, agresję chemiczną środowiska.

mgr inż. Bartłomiej Monczyński Redukcja zasolenia przegród budowlanych za pomocą kompresów

Redukcja zasolenia przegród budowlanych za pomocą kompresów Redukcja zasolenia przegród budowlanych za pomocą kompresów

Jednym z najbardziej niekorzystnych zjawisk związanych z obecnością soli i wilgoci w układzie porów materiałów budowlanych jest krystalizacja soli [1–2] (FOT. 1).

Jednym z najbardziej niekorzystnych zjawisk związanych z obecnością soli i wilgoci w układzie porów materiałów budowlanych jest krystalizacja soli [1–2] (FOT. 1).

dr inż. Krzysztof Pawłowski, prof. uczelni Termomodernizacja budynków – ocieplenie i docieplenie elementów obudowy budynków

Termomodernizacja budynków – ocieplenie i docieplenie elementów obudowy budynków Termomodernizacja budynków – ocieplenie i docieplenie elementów obudowy budynków

Termomodernizacja dotyczy dostosowania budynku do nowych wymagań ochrony cieplnej i oszczędności energii. Ponadto stanowi zbiór zabiegów mających na celu wyeliminowanie lub znaczne ograniczenie strat ciepła...

Termomodernizacja dotyczy dostosowania budynku do nowych wymagań ochrony cieplnej i oszczędności energii. Ponadto stanowi zbiór zabiegów mających na celu wyeliminowanie lub znaczne ograniczenie strat ciepła w istniejącym budynku. Jest jednym z elementów modernizacji budynku, który przynosi korzyści finansowe i pokrycie kosztów innych działań.

dr inż. Artur Miszczuk Ocieplenie podłóg na gruncie i stropów nad nieogrzewanymi piwnicami

Ocieplenie podłóg na gruncie i stropów nad nieogrzewanymi piwnicami Ocieplenie podłóg na gruncie i stropów nad nieogrzewanymi piwnicami

Od 1 stycznia 2021 r. obowiązują zaostrzone Warunki Techniczne (WT 2021) dla nowo budowanych obiektów, a także budynków zaprojektowanych według wcześniej obowiązującego standardu WT 2017 – zgodnie z wymaganiami...

Od 1 stycznia 2021 r. obowiązują zaostrzone Warunki Techniczne (WT 2021) dla nowo budowanych obiektów, a także budynków zaprojektowanych według wcześniej obowiązującego standardu WT 2017 – zgodnie z wymaganiami proekologicznej polityki UE. Graniczne wartości współczynnika przenikania ciepła dla podłóg na gruncie i stropów nad pomieszczeniami nieogrzewanymi nie zostały jednak (w WT 2021) zmienione.

dr inż. arch. Karolina Kurtz-Orecka Ściany zewnętrzne według zaostrzonych wymagań izolacyjności termicznej

Ściany zewnętrzne według zaostrzonych wymagań izolacyjności termicznej Ściany zewnętrzne według zaostrzonych wymagań izolacyjności termicznej

Początek roku 2021 w branży budowlanej przyniósł kolejne zaostrzenie przepisów techniczno-budowlanych, ostatnie z planowanych, które wynikało z implementacji zapisów dyrektywy unijnej w sprawie charakterystyki...

Początek roku 2021 w branży budowlanej przyniósł kolejne zaostrzenie przepisów techniczno-budowlanych, ostatnie z planowanych, które wynikało z implementacji zapisów dyrektywy unijnej w sprawie charakterystyki energetycznej budynków [1, 2], potocznie zwanej dyrektywą EPBD.

dr inż. Adam Ujma Ściany zewnętrzne z elewacjami wentylowanymi i ich izolacyjność cieplna

Ściany zewnętrzne z elewacjami wentylowanymi i ich izolacyjność cieplna Ściany zewnętrzne z elewacjami wentylowanymi i ich izolacyjność cieplna

Ściany zewnętrzne z elewacjami wykonanymi w formie konstrukcji z warstwami wentylowanymi coraz częściej znajdują zastosowanie w nowych budynków, ale również z powodzeniem mogą być wykorzystane przy modernizacji...

Ściany zewnętrzne z elewacjami wykonanymi w formie konstrukcji z warstwami wentylowanymi coraz częściej znajdują zastosowanie w nowych budynków, ale również z powodzeniem mogą być wykorzystane przy modernizacji istniejących obiektów. Dają one szerokie możliwości dowolnego kształtowania materiałowego elewacji, z wykorzystaniem elementów metalowych, z tworzywa sztucznego, szkła, kamienia naturalnego, drewna i innych. Pewną niedogodnością tego rozwiązania jest konieczność uwzględnienia w obliczeniach...

mgr inż. arch. Tomasz Rybarczyk Ściany jednowarstwowe według WT 2021

Ściany jednowarstwowe według WT 2021 Ściany jednowarstwowe według WT 2021

Elementom zewnętrznym budynków, a więc również ścianom, stawiane są coraz wyższe wymagania, m.in. pod względem izolacyjności cieplnej. Zmiany obowiązujące od 1 stycznia 2021 roku dotyczą wymagań w zakresie...

Elementom zewnętrznym budynków, a więc również ścianom, stawiane są coraz wyższe wymagania, m.in. pod względem izolacyjności cieplnej. Zmiany obowiązujące od 1 stycznia 2021 roku dotyczą wymagań w zakresie izolacyjności cieplnej, a wynikające z rozporządzenia w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie powodują, że odtąd trzeba budować budynki ze ścianami o wyższej termoizolacyjności niż budowano dotychczas.

Festool Polska Sp. z o. o. Pilarka do materiałów izolacyjnych

Pilarka do materiałów izolacyjnych Pilarka do materiałów izolacyjnych

Czy pilarka może być precyzyjna, szybka, lekka i jednocześnie wielozadaniowa? Właśnie takie cechy posiada pilarka do materiałów izolacyjnych ISC 240.

Czy pilarka może być precyzyjna, szybka, lekka i jednocześnie wielozadaniowa? Właśnie takie cechy posiada pilarka do materiałów izolacyjnych ISC 240.

dr inż. Szymon Świerczyna Wprowadzenie do projektowania lekkich kratownic stalowych z kształtowników giętych

Wprowadzenie do projektowania lekkich kratownic stalowych z kształtowników giętych Wprowadzenie do projektowania lekkich kratownic stalowych z kształtowników giętych

W nowoczesnym budownictwie stalowym poszukuje się rozwiązań pozwalających na projektowanie konstrukcji lekkich, łatwych w wytwarzaniu, transporcie i montażu. Kryteria te mogą spełniać lekkie konstrukcje...

W nowoczesnym budownictwie stalowym poszukuje się rozwiązań pozwalających na projektowanie konstrukcji lekkich, łatwych w wytwarzaniu, transporcie i montażu. Kryteria te mogą spełniać lekkie konstrukcje stalowe z kształtowników giętych. Ich korzystne parametry geometryczne sprawiają, że mogą być interesującą alternatywą dla znacznie cięższych kształtowników walcowanych na gorąco [1].

dr inż. Andrzej Konarzewski Kompleksowe określanie trwałości eksploatacyjnej płyt warstwowych

Kompleksowe określanie trwałości eksploatacyjnej płyt warstwowych Kompleksowe określanie trwałości eksploatacyjnej płyt warstwowych

Testami wykorzystywanymi do kompleksowego badania trwałości płyt warstwowych w obustronnej okładzinie stalowej z rdzeniem izolacyjnym ze sztywnej pianki poliuretanowej PUR/PIR, tzw. paneli, może być test...

Testami wykorzystywanymi do kompleksowego badania trwałości płyt warstwowych w obustronnej okładzinie stalowej z rdzeniem izolacyjnym ze sztywnej pianki poliuretanowej PUR/PIR, tzw. paneli, może być test DUR 2 oraz test autoklawu.

dr inż. Krzysztof Pawłowski, prof. uczelni Systemy ociepleń ścian zewnętrznych w świetle wymagań obowiązujących od 1 stycznia 2021 r.

Systemy ociepleń ścian zewnętrznych w świetle wymagań obowiązujących od 1 stycznia 2021 r. Systemy ociepleń ścian zewnętrznych w świetle wymagań obowiązujących od 1 stycznia 2021 r.

Termomodernizacja istniejących budynków dotyczy ich dostosowania do nowych wymagań (obowiązujących od 1 stycznia 2021 r.) w zakresie oszczędności energii i ochrony cieplno-wilgotnościowej. Ponadto stanowi...

Termomodernizacja istniejących budynków dotyczy ich dostosowania do nowych wymagań (obowiązujących od 1 stycznia 2021 r.) w zakresie oszczędności energii i ochrony cieplno-wilgotnościowej. Ponadto stanowi zbiór zabiegów mających na celu wyeliminowanie lub znaczne ograniczenie strat ciepła w istniejącym budynku. Jest jednym z elementów modernizacji budynku, który przynosi korzyści finansowe na pokrycie kosztów innych działań.

mgr inż. Waldemar Bogusz Wtórne ocieplenia budynków z wielkiej płyty – wymagania i zagrożenia

Wtórne ocieplenia budynków z wielkiej płyty – wymagania i zagrożenia Wtórne ocieplenia budynków z wielkiej płyty – wymagania i zagrożenia

Zgodnie z prawem budowlanym [1] docieplenie bloku z płyt prefabrykowanych wysokości do 25 m można zrealizować bez projektu budowlanego, stosując uproszczoną procedurę zgłoszenia bez uzyskiwania pozwolenia...

Zgodnie z prawem budowlanym [1] docieplenie bloku z płyt prefabrykowanych wysokości do 25 m można zrealizować bez projektu budowlanego, stosując uproszczoną procedurę zgłoszenia bez uzyskiwania pozwolenia na budowę. Takich robót dla budynków wysokości do 12 m nawet nie potrzeba zgłaszać.

Recticel Insulation Płyty termoizolacyjne EUROTHANE G – efektywne docieplenie budynku od wewnątrz

Płyty termoizolacyjne EUROTHANE G – efektywne docieplenie budynku od wewnątrz Płyty termoizolacyjne EUROTHANE G – efektywne docieplenie budynku od wewnątrz

Termomodernizacja jest jednym z podstawowych zadań podejmowanych w ramach modernizacji budynków. W odniesieniu do ścian docieplenie wykonuje się od zewnątrz, zgodnie z podstawowymi zasadami fizyki budowli....

Termomodernizacja jest jednym z podstawowych zadań podejmowanych w ramach modernizacji budynków. W odniesieniu do ścian docieplenie wykonuje się od zewnątrz, zgodnie z podstawowymi zasadami fizyki budowli. Czasami jednak nie ma możliwości wykonania docieplenia na fasadach, np. na budynkach zabytkowych, obiektach z utrudnionym dostępem do elewacji czy na budynkach usytuowanych w granicy. W wielu takich przypadkach jest jednak możliwe wykonanie docieplenia ścian od wewnątrz.

Jarosław Guzal Kingspan na rynku nowoczesnych fasad

Kingspan na rynku nowoczesnych fasad Kingspan na rynku nowoczesnych fasad

Michał Pieczyski, Dyrektor Zarządzający Kingspan Fasady, o kierunku rozwoju rozwiązań fasadowych oraz specyfice rynku fasadowego w Polsce.

Michał Pieczyski, Dyrektor Zarządzający Kingspan Fasady, o kierunku rozwoju rozwiązań fasadowych oraz specyfice rynku fasadowego w Polsce.

Józef Macech Ściany wewnętrzne w budownictwie mieszkaniowym – rodzaje i wymagania na podstawie rozwiązań z wykorzystaniem elementów murowych

Ściany wewnętrzne w budownictwie mieszkaniowym – rodzaje i wymagania na podstawie rozwiązań z wykorzystaniem elementów murowych Ściany wewnętrzne w budownictwie mieszkaniowym – rodzaje i wymagania na podstawie rozwiązań z wykorzystaniem elementów murowych

Ściany wewnętrzne są przegrodami, których podstawowym zadaniem jest podział przestrzeni wewnątrz budynku.

Ściany wewnętrzne są przegrodami, których podstawowym zadaniem jest podział przestrzeni wewnątrz budynku.

mgr inż. arch. Tomasz Rybarczyk Zaprawy murarskie – rodzaje, porównanie, zastosowanie

Zaprawy murarskie – rodzaje, porównanie, zastosowanie Zaprawy murarskie – rodzaje, porównanie, zastosowanie

Przed rozpoczęciem robót murarskich nie tylko należy skompletować materiały murowe, ale również dobrać do nich odpowiednią zaprawę murarską i inne akcesoria, które będą potrzebne w trakcie murowania ścian.

Przed rozpoczęciem robót murarskich nie tylko należy skompletować materiały murowe, ale również dobrać do nich odpowiednią zaprawę murarską i inne akcesoria, które będą potrzebne w trakcie murowania ścian.

Najnowsze produkty i technologie

Fabryka Styropianu ARBET Wielka płyta – czy ocieplanie jej to ważne zagadnienie?

Wielka płyta – czy ocieplanie jej to ważne zagadnienie? Wielka płyta – czy ocieplanie jej to ważne zagadnienie?

Domy z wielkiej płyty wyróżniają się w krajobrazie Polski. Najczęściej budowano z nich wieżowce, mające około 10 pięter. Przez wiele lat w kontekście ich użytkowania mówiono o aspekcie estetycznym. Dziś...

Domy z wielkiej płyty wyróżniają się w krajobrazie Polski. Najczęściej budowano z nich wieżowce, mające około 10 pięter. Przez wiele lat w kontekście ich użytkowania mówiono o aspekcie estetycznym. Dziś jednak porusza się ważne kwestie dotyczące kwestii użytkowych, w tym – ich odpowiedniej izolacji.

KOESTER Polska Sp. z o.o. Köster – Specjaliści od hydroizolacji

Köster – Specjaliści od hydroizolacji Köster – Specjaliści od hydroizolacji

KÖSTER BAUCHEMIE AG specjalizuje się w produkcji i dystrybucji materiałów do hydroizolacji i ochrony budowli oraz systemów uszczelnień, a ich produkty chronią budowle na całym świecie. Zarówno podczas...

KÖSTER BAUCHEMIE AG specjalizuje się w produkcji i dystrybucji materiałów do hydroizolacji i ochrony budowli oraz systemów uszczelnień, a ich produkty chronią budowle na całym świecie. Zarówno podczas renowacji budynków historycznych, jak i w trakcie budowy nowych obiektów – proponuje skuteczne rozwiązanie każdego problemu związanego ze szkodliwym oddziaływaniem wody i wilgoci.

TRUTEK FASTENERS POLSKA Wzmacnianie bydynków wielkopłytowych w systemie TRUTEK TCM

Wzmacnianie bydynków wielkopłytowych w systemie TRUTEK TCM Wzmacnianie bydynków wielkopłytowych w systemie TRUTEK TCM

TRUTEK FASTENERS POLSKA jest firmą specjalizującą się w produkcji najwyższej jakości systemów zamocowań przeznaczonych do budownictwa lądowego, drogowego i przemysłu. W ofercie firmy znajdują się wyroby...

TRUTEK FASTENERS POLSKA jest firmą specjalizującą się w produkcji najwyższej jakości systemów zamocowań przeznaczonych do budownictwa lądowego, drogowego i przemysłu. W ofercie firmy znajdują się wyroby tradycyjne – od wielu lat stosowane w budownictwie, a także nowatorskie, zaawansowane technologicznie rozwiązania gwarantujące najwyższy poziom bezpieczeństwa.

TRUTEK FASTENERS POLSKA Innowacyjna technologia mocowania izolacji termicznej budynku

Innowacyjna technologia mocowania izolacji termicznej budynku Innowacyjna technologia mocowania izolacji termicznej budynku

Łączniki do mocowania izolacji termicznej obiektu to bardzo ważny element zapewniający bezpieczeństwo i stabilność warstwy docieplenia.

Łączniki do mocowania izolacji termicznej obiektu to bardzo ważny element zapewniający bezpieczeństwo i stabilność warstwy docieplenia.

GERARD AHI Roofing Kft. Oddział w Polsce Sp. z o.o. | RTG Roof Tile Group Dach marzeń: stylowy, nowoczesny i wyjątkowo odporny

Dach marzeń: stylowy, nowoczesny i wyjątkowo odporny Dach marzeń: stylowy, nowoczesny i wyjątkowo odporny

Czy chciałbyś mieć elegancki, nowoczesny dach, o niepowtarzalnym antracytowym kolorze, który zapewni Twojemu domowi najlepszą ochronę?

Czy chciałbyś mieć elegancki, nowoczesny dach, o niepowtarzalnym antracytowym kolorze, który zapewni Twojemu domowi najlepszą ochronę?

Tremco CPG Poland Sp. z o.o. Flowcrete – bezspoinowe posadzki żywiczne w przemyśle

Flowcrete – bezspoinowe posadzki żywiczne w przemyśle Flowcrete  – bezspoinowe posadzki żywiczne w przemyśle

Bezspoinowe posadzki żywiczne są często nazywane posadzkami przemysłowymi. Ze względu na ich właściwości, m.in. trwałość, wytrzymałość mechaniczną, w tym odporność na ścieranie, szczelność i nienasiąkliwość...

Bezspoinowe posadzki żywiczne są często nazywane posadzkami przemysłowymi. Ze względu na ich właściwości, m.in. trwałość, wytrzymałość mechaniczną, w tym odporność na ścieranie, szczelność i nienasiąkliwość oraz łatwość utrzymania w czystości, rozwiązania posadzkowe na bazie żywic syntetycznych są powszechnie stosowane w zakładach produkcyjnych z różnych branż.

Blachy Pruszyński, mgr inż. Piotr Olgierd Korycki Zagadnienia akustyki w obiektach przemysłowych z lekką obudową

Zagadnienia akustyki w obiektach przemysłowych z lekką obudową Zagadnienia akustyki w obiektach przemysłowych z lekką obudową

Obecnie trudno sobie wyobrazić budownictwo, a zwłaszcza halowe, użyteczności publicznej, przemysłowe i specjalne bez obudowy, jaką stanowią ściany osłonowe czy przekrycia dachowe. Wykonuje się je z lekkiej...

Obecnie trudno sobie wyobrazić budownictwo, a zwłaszcza halowe, użyteczności publicznej, przemysłowe i specjalne bez obudowy, jaką stanowią ściany osłonowe czy przekrycia dachowe. Wykonuje się je z lekkiej obudowy, takiej jak: płyty warstwowe, systemy oparte na bazie kaset stalowych wzdłużnych, warstwowe przekrycia dachowe z elementem nośnym w postaci blach trapezowych. Wymienione rozwiązania mają szereg zalet, m.in. małą masę jednostkową, możliwość montażu niezależnie od warunków atmosferycznych,...

MIWO – Stowarzyszenie Producentów Wełny Mineralnej: Szklanej i Skalnej Warunki Techniczne wymagają głębokich zmian

Warunki Techniczne wymagają głębokich zmian Warunki Techniczne wymagają głębokich zmian

Przepisy rozporządzenia Ministra Infrastruktury z dnia 12 kwietnia 2002 r. w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie (z późniejszymi zmianami) – zwanego Warunkami...

Przepisy rozporządzenia Ministra Infrastruktury z dnia 12 kwietnia 2002 r. w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie (z późniejszymi zmianami) – zwanego Warunkami Technicznymi lub w skrócie WT – stosuje się przy projektowaniu, budowie i przebudowie oraz zmianie sposobu użytkowania wszystkich rodzajów budynków oraz budowli nadziemnych i podziemnych, spełniających funkcje użytkowe budynków. Ten akt prawny jest aktem wykonawczym do Ustawy Prawo budowlane i określa...

Seban Nowoczesne membrany hydroizolacyjne – rozwiązania na dachy płaskie i zielone

Nowoczesne membrany hydroizolacyjne – rozwiązania na dachy płaskie i zielone Nowoczesne membrany hydroizolacyjne – rozwiązania na dachy płaskie i zielone

Współczesne budownictwo kładzie coraz większy nacisk na energooszczędność i poprawę efektywności energetycznej obiektów. Aby zmniejszyć zapotrzebowanie budynków na energię, projektanci, architekci i inwestorzy...

Współczesne budownictwo kładzie coraz większy nacisk na energooszczędność i poprawę efektywności energetycznej obiektów. Aby zmniejszyć zapotrzebowanie budynków na energię, projektanci, architekci i inwestorzy chętniej stosują technologie korzystające z energii odnawialnej.

Copyright © 2004-2019 Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Spółka komandytowa, nr KRS: 0000537655. Wszelkie prawa, w tym Autora, Wydawcy i Producenta bazy danych zastrzeżone. Jakiekolwiek dalsze rozpowszechnianie artykułów zabronione. Korzystanie z serwisu i zamieszczonych w nim utworów i danych wyłącznie na zasadach określonych w Zasadach korzystania z serwisu.
Portal Budowlany - Izolacje.com.pl

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim urządzeniu końcowym. W każdym momencie możesz dokonać zmiany ustawień przeglądarki dotyczących cookies. Nim Państwo zaczną korzystać z naszego serwisu prosimy o zapoznanie się z naszą polityką prywatności oraz Informacją o Cookies. Więcej szczegółów w naszej Polityce Prywatności oraz Informacji o Cookies. Administratorem Państwa danych osobowych jest Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Sp.K., nr KRS: 0000537655, z siedzibą w 04-112 Warszawa, ul. Karczewska 18, tel. +48 22 810-21-24, właściciel strony www.izolacje.com.pl. Twoje Dane Osobowe będą chronione zgodnie z wytycznymi polityki prywatności www.izolacje.com.pl oraz zgodnie z Rozporządzeniem Parlamentu Europejskiego i Rady (UE) 2016/679 z dnia 27 kwietnia 2016r i z Ustawą o ochronie danych osobowych Dz.U. 2018 poz. 1000 z dnia 10 maja 2018r.