Izolacje.com.pl

Termomodernizacja budynków – ocieplenie i docieplenie elementów obudowy budynków

fot. J. Guzal

fot. J. Guzal

Termomodernizacja dotyczy dostosowania budynku do nowych wymagań ochrony cieplnej i oszczędności energii. Ponadto stanowi zbiór zabiegów mających na celu wyeliminowanie lub znaczne ograniczenie strat ciepła w istniejącym budynku. Jest jednym z elementów modernizacji budynku, który przynosi korzyści finansowe i pokrycie kosztów innych działań.

Działania energooszczędne stosowane w budynkach istniejących można podzielić na trzy podstawowe grupy. Pierwsza to technologie związane z redukcją strat ciepła przez przegrody (wymagania cieplne według rozporządzenia [1] – TABELA 1), a w szczególności:
−  ocieplanie przegród zewnętrznych (podłogi na gruncie, stropy, dach, ściany),
−  dobór stolarki okiennej i drzwiowej z uwzględnieniem wymagań cieplnych według rozporządzenia [1].

tab1 termomodernizacja budynkow

TABELA 1. Wartości maksymalne współczynników przenikania ciepła Uc [W/(m2·K)] dla ścian, podłóg na gruncie, stropów, dachów i stropodachów [1]
Pomieszczenie ogrzewane – pomieszczenie, w którym na skutek działania systemu ogrzewania lub w wyniku bilansu strat i zysków ciepła utrzymywana jest temperatura wewnętrzna, której wartość określona w §134 ust. 2 rozporządzenia [1]
ti – temperatura obliczeniowa ogrzewanego pomieszczenia zgodnie z §134 ust. 2 rozporządzenia [1]
1) od 1.01.2019 r. – w przypadku budynków zajmowanych przez władze publiczne oraz będących ich własnością
2) według rozporządzenia WT 2008

TABELI 2 zestawiono wartości maksymalne współczynników przenikania ciepła okien, drzwi balkonowych i drzwi zewnętrznych, zgodnie z załącznikiem 2 do rozporządzenia [1].

tab2 termomodernizacja budynkow 1

TABELA 2. Wartości maksymalne współczynników przenikania ciepła U [W/(m2·K)] dla okien, drzwi balkonowych i drzwi zewnętrznych [1]
Pomieszczenie ogrzewane – pomieszczenie, w którym na skutek działania systemu ogrzewania lub w wyniku bilansu strat i zysków ciepła utrzymywana jest temperatura wewnętrzna, której wartość określona w §134 ust. 2 rozporządzenia [1]
ti – temperatura obliczeniowa ogrzewanego pomieszczenia zgodnie z §134 ust. 2 rozporządzenia [1]
1) od 1.01.2019 r. – w przypadku budynków zajmowanych przez władze publiczne oraz będących ich własnością
2) według rozporządzenia WT 2008
ti – temperatura obliczeniowa ogrzewanego pomieszczenia zgodnie z §134 ust. 2 rozporządzenia [1]
1) od 1.01.2019 r. – w przypadku budynków zajmowanych przez władze publiczne oraz będących ich własnością
2) według rozporządzenia WT 2008

Według rozporządzenia [1] dopuszcza się dla budynku produkcyjnego, magazynowego i gospodarczego większe wartości współczynnika U niż UC(max) oraz U(max) określone w TABELI 1 i TABELI 2, jeśli uzasadnia to rachunek efektywności ekonomicznej inwestycji, obejmujący koszt budowy i eksploatacji budynku. Ponadto w budynku mieszkalnym, zamieszkania zbiorowego, użyteczności publicznej, produkcyjnym, magazynowym i gospodarczym podłoga na gruncie w ogrzewanym pomieszczeniu powinna mieć izolację cieplną obwodową z materiału izolacyjnego w postaci warstwy o oporze cieplnym co najmniej 2,0 (m2·K)/W, przy czym opór cieplny warstw podłogowych oblicza się zgodnie z normami PN-EN ISO 6946:2008 [2] oraz PN-EN ISO 13370:2008 [3].

Druga grupa dotyczy redukcji strat oraz poprawy sprawności systemu instalacyjnego, m.in.:
−  wymiany lub modernizacji grzejników,
−  wymiany lub modernizacji systemu grzewczego (zastosowanie ogrzewania podłogowego, powietrznego itp.),
−  instalacji termostatów,
−  montażu nowoczesnych regulatorów pogodowych bądź pokojowych,
−  izolacji przewodów c.w.u. i c.o.,
−  wymiany lub modernizacji systemu wytwarzania ciepłej wody,
−  wymiany lub modernizacji systemu wentylacji (zastosowanie wentylacji mechanicznej z odzyskiem, czyli rekuperatora).

Ostatnią grupę stanowią prace projektowo-wykonawcze lub modernizacyjne skupiające się na źródle ciepła, do których mogą należeć:
−  zaprojektowanie i zainstalowanie lub wymiana źródła ciepła (zamiana kotła na nowy cechujący się lepszą sprawnością, bądź zamiana źródła lokalnego na miejską sieć ciepłowniczą),
−  zmiana nośnika energii (zamiana kotła na inny, który wytwarza energię spalając paliwo innego rodzaju; wyjątkiem jest zamiana paliwa w tym samym kotle, który jest przystosowany do spalania kilku rodzajów surowców),
−  zastosowanie technologii wykorzystującej odnawialne źródła energii (OZE) na potrzeby grzewcze (np. pompy ciepła, biopaliwa, kolektory słoneczne),
−  zastosowanie kogeneracji (produkcja jednoczesnego prądu oraz ciepła – dotyczy współdzielni), zastosowanie automatyki sterującej źródłem.

W artykule przedstawiono analizę parametrów fizykalnych (cieplno-wilgotnościowych) elementów obudowy budynków istniejących przed i po ociepleniu z uwzględnieniem wymagań cieplnych od 1 stycznia 2021 r.

Docieplenie elementów obudowy budynków jako podstawowy element termomodernizacji

Aby ilość energii cieplnej potrzebnej do użytkowania budynku zgodnie z jego przeznaczeniem można było utrzymać na racjonalnie niskim poziomie, przewidziano dwie metody, pozwalające spełnić wymaganie w nowo projektowanych budynkach:

  • pierwsza polega na takim zaprojektowaniu przegród w budynku, aby wartości współczynników przenikania ciepła U/Uc [W/(m2·K)] przegród zewnętrznych, okien, drzwi oraz technika instalacyjna odpowiadały wymaganiom izolacyjności cieplnej; kryterium w zakresie ochrony cieplnej: UcUc(max),
  • druga to zaprojektowanie budynku pod kątem zapotrzebowania na nieodnawialną energię pierwotną na jednostkę powierzchni pomieszczeń o regulowanej temperaturze powietrza w budynku, lokalu mieszkalnym lub części budynku stanowiącej samodzielną całość techniczno-użytkową – EP [kWh/(m2·rok)]; kryterium w zakresie oszczędności energii: EP  ≤  EP(max).

Według wprowadzonych zmian w rozporządzeniu [1] wymagania dla nowo projektowanych budynków dotyczą jednoczesnego spełnienia dwóch wymagań w zakresie współczynnika przenikania ciepła

  • U [W/(m2·K)] – Uc  ≤  Uc(max) dla pojedynczych przegród budynku
  • oraz wskaźnika zapotrzebowania na nieodnawialną energię pierwotną
    EP
    [kWh/(m2·rok)] – EP  ≤  EP(max) dla całego budynku.

Wymagania minimalne, o których mowa w ust. 1 rozporządzenia [1], uznaje się za spełnione dla budynku podlegającego termomodernizacji, jeżeli przegrody oraz wyposażenie techniczne budynku podlegające przebudowie odpowiadają przynajmniej wymaganiom izolacyjności cieplnej określonym w załączniku nr 2 do rozporządzenia [1].

Ponadto należy pamiętać, że budynek powinien być zaprojektowany i wykonany w taki sposób, aby ograniczyć ryzyko przegrzewania budynku w okresie letnim (dotyczy przegród przezroczystych, tj. stolarki okiennej).

W trakcie projektowania i wykonywania docieplenia przegród zewnętrznych budynku należy pamiętać o wyeliminowaniu zjawiska kondensacji powierzchniowej (ryzyko rozwoju pleśni i grzybów pleśniowych) oraz kondensacji międzywarstwowej.

Zastosowanie odpowiedniego materiału termoizolacyjnego pozwala na osiągnięcie niskich wartości współczynnika przenikania ciepła U/Uc [W/(m2·K)] pełnej przegrody i liniowego współczynnika przenikania ciepła Ψ [W/(m·K)] oraz minimalizację ryzyka występowania kondensacji powierzchniowej i międzywarstwowej.

rys1 termomodernizacja budynkow

RYS. 1. Przykładowy dobór materiałów termoizolacyjnych; rys.: K. Pawłowski

Przed wyborem odpowiedniego materiału do izolacji cieplnej w aspekcie projektowania nowych obiektów lub modernizacji budynków istniejących należy zwrócić uwagę na następujące właściwości:

  • współczynnik przewodzenia ciepła λ,
  • gęstość objętościową,
  • izolacyjność akustyczną,
  • przepuszczalność pary wodnej,
  • współczynnik oporu dyfuzyjnego μ,
  • wrażliwość na czynniki biologiczne i chemiczne,
  • ochronę przeciwpożarową.

Na podstawie prowadzonych obliczeń i analiz w tym zakresie zestawiono przykładowy dobór materiałów termoizolacyjnych (RYS. 1).

Docieplenie ścian zewnętrznych budynków prefabrykowanych i w technologii tradycyjnej murowanej

W przypadku ścian zewnętrznych budynków prefabrykowanych (np. wielka płyta), aby uzyskać odpowiednią izolacyjność cieplną w postaci współczynnika przenikania ciepła U [W/(m2·K)] należy dobrać odpowiednią grubość izolacji cieplnej.

Do podstawowych metod ocieplenia ścian zewnętrznych można zaliczyć:

  • metoda ciężka mokra polega na oklejeniu całych powierzchni ścian styropianem, zawieszeniu na stalowych bolcach siatek konstrukcyjnych z prętów stalowych i wykonaniu wyprawy zewnętrznej z trójwarstwowego tynku cementowo-wapiennego na siatce stalowej podtynkowej,
  • metoda lekka mokra polega na wykonaniu ocieplenia najczęściej ze styropianu, a następnie pokryciu go powłoką zewnętrzną, w skład której z reguły wchodzi warstwa zbrojona tkaniną szklaną oraz cienkowarstwowa wyprawa tynkarska lub okładzina ceramiczna; systemy oparte na tej technologii można podzielić na kilka podstawowych typów, opisanych szczegółowo w [4],
  • metoda lekka sucha opiera się na wykonywaniu robót budowlanych bez prac mokrych; wykonywanie ocieplenia polega na przymocowaniu do ścian budynku rusztu drewnianego lub metalowego, ułożeniu między elementami rusztu materiału termoizolacyjnego i zamocowaniu gotowych elementów elewacyjnych.

Technologia bezspoinowego systemu ocieplenia (ETICS) ścian zewnętrznych budynku polega na przymocowaniu do ściany systemu warstwowego, składającego się z materiału termoizolacyjnego oraz warstwy zbrojonej i wyprawy tynkarskiej. System mocowany jest do ściany za pomocą zaprawy klejącej i dodatkowo łącznikami mechanicznymi.

Zasadniczą funkcję w tym systemie pełni materiał termoizolacyjny, który powinien charakteryzować się następującymi cechami [4]:

  • niską wartością współczynnika przewodzenia ciepła λ ≤ 0,04 W/(m·K),
  • niską wilgotnością i nasiąkliwością zarówno w trakcie wbudowania, jak i użytkowania,
  • odpowiednią wytrzymałością mechaniczną,
  • odpornością na działanie ognia: niepalnością, trudnozapalnością – odpowiednią klasą reakcji na ogień,
  • odpornością na wpływy biologiczne,
  • odpornością na działanie materiałów, z którymi będzie się stykać po wbudowaniu,
  • brakiem trwałego zapachu i brakiem szkodliwego oddziaływania na ludzi i zwierzęta,
  • znaczną trwałością w zmiennych warunkach eksploatacyjnych,
  • małym obciążeniem środowiska naturalnego podczas produkcji i utylizacji materiałów rozbiórkowych.

W systemach ETICS jako izolację termiczną stosuje się najczęściej fasadowe płyty styropianowe (EPS), płyty ze styropianu grafitowego (szarego), fasadowe płyty z wełny mineralnej lub płyty z pianki poliuretanowej oraz materiały uzupełniające, przeznaczone do ocieplenia cokołowej i podziemnej części ściany w postaci płyt polistyrenowych o zmniejszonej nasiąkliwości.

Do mocowania płyt styropianowych do podłoża i wykonywania warstwy zbrojonej mogą być stosowane następujące wyroby [5]:

  • masy na spoiwie dyspersyjnym tworzywa sztucznego nadające się do użycia bez dodatkowych zabiegów,
  • masy na spoiwie dyspersyjnym tworzywa sztucznego wymagające wymieszania z cementami,
  • zaprawy klejące, wykonywane z suchej mieszanki cementu, piasku i dodatków organicznych, wymagające wymieszania z wodą.

Ponadto do mocowania płyt do ściany może być stosowany klej (pianka) poliuretanowy. Jednak najpopularniejsza jest zaprawa klejąca w postaci suchej mieszanki zarabianej [4].

Do mocowania płyt z wełny mineralnej do podłoża ściennego oraz wykonywania warstwy zbrojonej należy stosować zaprawę klejącą wykonywaną z suchej mieszanki cementu, piasku i dodatków organicznych.

Według [5] masy klejące na organicznym spoiwie dyspersyjnym z wypełniaczami mineralnymi oraz masy klejące na organicznym spoiwie dyspersyjnym wymagające wymieszania z cementem nie uzyskują klasyfikacji materiału niepalnego.

Oprócz podstawowych zapraw na bazie cementu szarego do wykonania warstwy zbrojącej produkuje się zaprawy z cementu białego. Warstwa zbrojona wykonana z użyciem takiej zaprawy może nie wymagać stosowania środka gruntującego przed nałożeniem tynku cienkowarstwowego [6].

Bardzo istotne jest także poprawne ułożenie płyt z materiałów termoizolacyjnych w celu minimalizacji wpływu nieszczelności w warstwie izolacji cieplnej. Na etapie projektowania zakłada się poziom nieszczelności (ΔU′′) oraz dodatek uwzględniający wpływ nieszczelności w warstwie izolacji cieplnej (ΔUg) na wartość współczynnika przenikania ciepła Uc według normy PN-EN ISO 6946:2008 [2].

Łączniki mechaniczne (kołki) wraz z zaprawą klejącą mocującą płyty termoizolacyjne do warstwy konstrukcyjnej ściany zewnętrznej zapewniają wymaganą stateczność konstrukcyjną układu ocieplającego od działania obciążenia wiatrem (ssanie wiatru) oraz sił ścinających wynikających z ciężaru własnego systemu ocieplenia. Kołki powinny także zapobiegać przed tzw. wybrzuszeniem się płyt izolacyjnych pod wpływem zmiany warunków cieplno-wilgotnościowych.

Deformacja płyt może wystąpić wskutek braku swobody wydłużania się ich na styku z sąsiadującymi elementami. Dodatkowe mocowanie mechaniczne w obrębie krawędzi, jak również pośrodku płyty zapewnia dobre połączenie ze ścianą i zabezpiecza przed tzw. miksowaniem płyt i pękaniem wyprawy tynkarskiej w wyniku tego zjawiska [4] (RYS. 2–3).

rys2 3 termomodernizacja budynkow

RYS. 2–3. Efekt tzw. miksowania płyt termoizolacyjnych; rys.: [7]

Dodatkowe mocowanie płyt izolacyjnych wykonuje się w miejscach dochodzenia do siebie krawędzi trzech płyt izolacyjnych. Taki układ łączników bywa nazywany kołkowaniem na „T”.

W niektórych przypadkach zamiast kołkowania na „T” zaleca się stosować kołkowanie na „W”. W tym zakresie należy się kierować zaleceniami producenta wybranego systemu ocieplenia ścian. Z mocowania w spoinach „T” można zrezygnować w przypadku stosowania płyt izolacyjnych łączonych na piór i wpust.

Na RYS. 4 przedstawiono zalecane rozmieszczenie kołków na standardowej płycie izolacyjnej [4].

rys4 termomodernizacja budynkow

RYS. 4. Zalecane rozmieszczenie kołków na standardowej płycie izolacyjnej; rys.: [4]

W praktyce stosuje się różne rozwiązania łączników mechanicznych:

  • łączniki rozprężne z trzpieniem (których główki wykonane są z tworzywa sztucznego o zwiększonej izolacyjności cieplnej z wycięciami),
  • łączniki mocowane przez wbicie w ścianę osadzonego w nich krótkiego trzpienia, mającego korpus w kształcie dużej komory powietrznej, w znaczący sposób ograniczającej straty ciepła w miejscu wbicia kołka,
  • kołki wkręcane w płyty izolacyjne lub umieszczone w gniazdach, zasłanianych następnie krążkami z materiału termoizolacyjnego.

Należy pamiętać, aby w przypadku stosowania łączników mechanicznych nie dopuszczać do nadmiernych strat ciepła wynikających z ich występowania, co ilustruje tzw. efekt biedronki widoczny często na elewacjach budynków ocieplonych metodą lekką mokrą (FOT.).

fot termomodernizacja budynkow

FOT. Przykłady niepoprawnego zastosowania łączników mechanicznych – tzw. efekt biedronki; fot.: blogspot.com.pl

W ścianach dwuwarstwowych stosuje się łączniki mechaniczne wykonane z tworzyw sztucznych, natomiast w przypadku ścian trójwarstwowych i szczelinowych wykonane z stali lub stali nierdzewnej. Procedurę uwzględniania wpływu łączników mechanicznych (ΔUf) na wartość współczynnika przenikania ciepła Uc według normy PN-EN ISO 6946:2008 [2].

Do ocieplania ścian mogą być stosowane siatki zbrojące z włókna szklanego, metalowe lub z tworzywa sztucznego. Gdy konieczne jest wzmocnienie dolnych części budynku, stosuje się tzw. siatki pancerne.

W systemie ocieplenia powinny być stosowane materiały niepalne, w związku z tym nie należy używać siatek z tworzyw sztucznych [5].

Od strony zewnętrznej należy zastosować tynk zewnętrzny – cienkowarstwowy (w przypadku ścian dwuwarstwowych) lub warstwę elewacyjną (w przypadku ścian trójwarstwowych i szczelinowych).

W przypadku ścian dwuwarstwowych zaleca się stosowanie tynków cienkowarstwowych, które można podzielić [8]

  • ze względu na spoiwo: mineralne, silikatowe (krzemianowe), silikonowe, silikatowo-silikonowe, polimerowe (akrylowe),
  • ze względu na technikę wykonywania: naciągane pacą, zacierane, cyklinowane, wytłaczane, natryskowe, nakrapiane,
  • ze względu na rodzaj faktury: gładkie, drapane, ziarniste (tzw. baranek), modelowane, mozaikowe.

Poprawne wykonanie ocieplenia przegród zewnętrznych wymaga zastosowania materiałów o wysokiej jakości oraz stosowania wytycznych opisanych w projekcie ocieplenia.

Przykład obliczeniowy 1

Zaprojektowano grubość materiałów termoizolacyjnych przy ociepleniu istniejących ścian zewnętrznych budynków wzniesionych w technologii prefabrykowanej (dla wybranych wariantów) z uwzględnieniem wymagań cielnych obowiązujących od 1 stycznia 2021 r.

Do analizy wybrano następujące warianty ścian zewnętrznych:

  • wariant I: płyta ze żwirobetonu gr. 35–40 cm o λ= 0,60 W/(m·K), U = 1,33–1,19 W/(m2·K),
  • wariant II: płyta betonowa gr. 15 cm o λ = 1,60 W/(m·K), styropian gr. 6 cm o λ = 0,05 W/(m·K), płyta betonowa gr. 6 cm o λ = 1,60 W/(m·K); U = 0,66 W/(m2·K),
  • wariant III: płyta żelbetowa gr. 15 cm o λ = 1,90 W/(m·K), styropian gr. 6 cm o λ = 0,05 W/(m·K), płyta żelbetowa gr. 6 cm o λ = 1,90 W/(m·K); U = 0,67 W/(m2·K).

Do ocieplenia ww. wariantów ścian zewnętrznych zaproponowano następujące materiały termoizolacyjne:

  • płyty z wełny mineralnej o λ = 0,038 W/(m·K),
  • płyty styropianowe EPS o λ = 0,035 W/(m·K),
  • płyty ze styropianu grafitowego (szarego) o λ = 0,031 W/(m·K)
  • oraz płyty z pianki poliuretanowej o λ = 0,022 W/(m·K).

W TABELI 3 zestawiono wyniki obliczeń współczynnika przenikania ciepła Uc [W/(m2·K)] według PN-EN ISO 6946:2008 [2] analizowanych wariantów ścian zewnętrznych po ociepleniu przy zastosowaniu zróżnicowanych materiałów termoizolacyjnych.

tab3 termomodernizacja budynkow

TABELA 3. Wyniki obliczeń wartości współczynnika przenikania ciepła Uc według PN-EN ISO 6946:2008 [2] w odniesieniu do ścian zewnętrznych po ociepleniu
Objaśnienia:
y1) warianty izolacji cieplnej:
I – płyty z wełny mineralnej λ = 0,038 W/(m·K),
II – płyty styropianowe EPS λ = 0,035 W/(m·K),
III – płyty ze styropianu grafitowego λ = 0,031 W/(m·K),
IV – płyty z pianki poliuretanowej λ = 0,022 W/(m·K);
do obliczeń Uc przyjęto wartość ΔU = 0
Kolorem zielonym zaznaczono wartości współczynnika przenikania ciepła Uc ścian zewnętrznych spełniające wymaganie: Uc ≤ Uc(max) = 0,20 W/(m2·K)

Aby spełnić podstawowe kryterium w zakresie ochrony cieplnej: Uc  ≤  Uc(max) = 0,20 W/(m2·K) dla ścian zewnętrznych, należy dobrać rodzaj oraz grubość materiału termoizolacyjnego (kierując się jego wartością współczynnika przewodzenia ciepła λ [W/(m·K)]).

W analizowanych wariantach (TABELA 3) zastosowanie ocieplenia w postaci płyt z pianki poliuretanowej [o λ = 0,022 W/(m·K)], nawet o gr. 10 cm, gwarantuje uzyskanie wartości współczynnika przenikania ciepła Uc o wartości poniżej Uc(max) = 0,20 W/(m2·K).

Przykład obliczeniowy 2

Zaprojektowano grubość materiałów termoizolacyjnych przy ociepleniu istniejących ścian zewnętrznych budynków wzniesionych w technologii tradycyjnej murowanej (dla wybranych wariantów) z uwzględnieniem wymagań cielnych obowiązujących od 1 stycznia 2021 r.

Do analizy wybrano następujące warianty ścian zewnętrznych:

  • wariant I:
    cegła pełna gr. 25 cm o λ = 0,77 W/(m·K),
    styropian gr. 10 cm o λ = 0,045 W/(m·K);
    U = 0,37 W/(m2·K),
  • wariant II:
    bloczek wapienno-piaskowy gr. 24 cm o λ = 0,85 W/(m·K),
    styropian gr. 10 cm o λ = 0,045 W/(m·K);
    U = 0,37 W/(m2·K),
  • wariant III:
    bloczek z betonu komórkowego gr. 24 cm o λ = 0,25 W/(m·K),
    styropian gr. 10 cm o λ = 0,045 W/(m·K);
    U = 0,30 W/(m2·K)

Do ocieplenia ww. wariantów ścian zewnętrznych zaproponowano następujące materiały termoizolacyjne:

  • płyty z wełny mineralnej o λ = 0,038 W/(m·K),
  • płyty styropianowe EPS o λ = 0,035 W/(m·K),
  • płyty ze styropianu grafitowego (szarego) o λ = 0,031 W/(m·K)
  • oraz płyty z pianki poliuretanowej o λ = 0,022 W/(m·K).

Analizy przeprowadzono w dwóch przypadkach:

  • A (wariant I, II, III) – zastosowanie dodatkowego ocieplenia gr. 10, 12, 15 cm jako metoda docieplenia na ocieplenie,
  • B (wariant IV, V, VI) – usunięcie istniejącego ocieplenia, a następnie zastosowanie ocieplenia gr. 10, 12, 15 i 20 cm.

W TABELI 4 zestawiono wyniki obliczeń współczynnika przenikania ciepła Uc [W/(m2·K)] według PN-EN ISO 6946:2008 [2] analizowanych wariantów ścian zewnętrznych po ociepleniu przy zastosowaniu zróżnicowanych materiałów termoizolacyjnych.

tab4 termomodernizacja budynkow

TABELA 4. Wyniki obliczeń wartości współczynnika przenikania ciepła Uc według PN-EN ISO 6946:2008 [2] w odniesieniu do ścian zewnętrznych po ociepleniu
Objaśnienia:
y1) warianty izolacji cieplnej:
I – płyty z wełny mineralnej λ = 0,038 W/(m·K),
II – płyty styropianowe EPS λ = 0,035 W/(m·K),
III – płyty ze styropianu grafitowego λ = 0,031 W/(m·K),
IV – płyty z pianki poliuretanowej λ = 0,022 W/(m·K);
do obliczeń Uc przyjęto wartość ΔU = 0
Kolorem zielonym zaznaczono wartości współczynnika przenikania ciepła Uc ścian zewnętrznych spełniające wymaganie: Uc ≤ Uc(max) = 0,20 W/(m2·K)

Należy podkreślić, że wykonywania dodatkowego ocieplenia na już istniejącym stało bardzo ważnym istotnym zagadnieniem remontowym wielu istniejących budynków mieszkalnych lub użyteczności publicznej. Dlatego też Instytut Techniki Budowlanej, a także organizacje zrzeszające producentów ociepleń starają się szczegółowo zapoznać z problematyką tego typu realizacji.

Zasadne staje się opracowanie wytycznych realizacji ociepleń wykonywanych na ociepleniach istniejących. W ostatnich latach powstały aprobaty techniczne wydane przez Instytut Techniki Budowlanej w Warszawie dla systemów uwzględniających możliwość mocowania do ścian ocieplonych nowego ocieplenia w zakresie spełnienia obowiązujących wymagań cieplnych. Obecne rozwiązania dotyczą jedynie systemów z zastosowaniem styropianu [9, 10].

Na podstawie prowadzonych analiz i obserwacji własnych oraz wytycznych dotyczących renowacji istniejących systemów dociepleń budynków opracowano algorytm (schemat) postępowania w zakresie ocieplenia na istniejące ocieplenie (RYS. 5).

rys5 termomodernizacja budynkow

RYS. 5. Kolejność postępowania w aspekcie ocieplenia na istniejące ocieplenie; rys.: opracowanie K. Pawłowskiego na podst. [9, 10]

Docieplenie ścian zewnętrznych budynków zabytkowych

Ocieplenie przegród zewnętrznych od wewnątrz projektowane i wykonywane jest w:

  • obiektach zabytkowych (budynki wpisane do rejestru zabytków lub objęte ochroną konserwatorską),
  • obiektach o wartości architektonicznej (ciekawy charakter elewacji lub oryginalny wygląd budynku),
  • obiektach o ograniczonych prawach własności (w przypadku gdy część ścian zewnętrznych znajduje się dokładnie na granicy działki),
  • a także obiektach użytkowanych czasowo (ogrzewanie czasowe w nieregularnych okresach).

Takie rozwiązanie wiąże się jednak ze zjawiskiem wnikania pary wodnej w strukturę przegrody i jej kondensacji.

Na skutek niskiej temperatury otoczenia spada znacznie temperatura wewnątrz przegrody, powodując kondensację na styku warstwy konstrukcyjnej i izolacji cieplnej. Warstwa izolacji cieplnej od strony wewnętrznej przegrody oddziela konstrukcję muru od środowiska wewnętrznego co wpływa na zmniejszenie pojemności cieplnej całego budynku i powoduje wprowadzenie całej warstwy konstrukcyjnej w strefę przemarzania (RYS. 6–7).

rys6 7 termomodernizacja budynkow

RYS. 6–7. Rozkład temperatury w ścianie ocieplonej: od zewnątrz (6), od wewnątrz (7); rys.: K. Pawłowski

Podstawową zaletą ocieplenia od wewnątrz jest zmniejszenie ilości energii niezbędnej do ogrzania pomieszczeń o żądanej temperaturze oraz skrócenia czasu nagrzewania [11].

Przykład obliczeniowy 3

Obliczono współczynnik przenikania ciepła Uc [W/(m2·K)] ścian zewnętrznej z cegły pełnej gr. 25 cm i 37 cm ocieplonej od strony wewnętrznej, różnymi materiałami zgodnie z procedurą według normy PN-EN ISO 6946:2008 [2] z uwzględnieniem wymagań cielnych obowiązujących od 1 stycznia 2021 r.

Do ocieplenia ww. wariantów ścian zewnętrznych od strony wewnętrznej zaproponowano następujące materiały termoizolacyjne:

  • płyty klimatyczne (silikat wapienny) λ = 0,059 W/(m·K),
  • lekka odmiana betonu komórkowego λ = 0,040 W/(m·K),
  • płyty z wełny mineralnej λ = 0,038 W/(m·K),
  • płyty ze styropianu grafitowego λ = 0,031 W/(m·K),
  • płyty rezolowe λ = 0,022 W/(m·K),
  • płyty aerożelowe λ = 0,015 W/(m·K)
  • oraz płyty z paneli próżniowych VIP λ = 0,007 W/(m·K).

Wyniki obliczeń współczynnika przenikania ciepła Uc dla analizowanych rozwiązań materiałowych ściany zewnętrznej zestawiono w TABELI 5.

tab5 termomodernizacja budynkow

TABELA 5. Wyniki obliczeń wartości współczynnika przenikania ciepła Uc według PN-EN ISO 6946:2008 [2] w odniesieniu do ściany zewnętrznej z cegły pełnej ocieplonej od wewnątrz – opracowanie K. Pawłowskiego
Objaśnienia:
y1) warianty izolacji cieplnej:
I – płyty klimatyczne (silikat wapienny) λ = 0,059 W/(m·K),
II – lekka odmiana betonu komórkowego λ = 0,040 W/(m·K),
III – płyty z wełny mineralnej λ = 0,038 W/(m·K),
IV – płyty ze styropianu grafitowego λ = 0,031 W/(m·K),
V – płyty rezolowe λ = 0,022 W/(m·K),
VI – płyty aerożelowe λ = 0,015 W/(m·K),
VII – płyty z paneli próżniowych VIP λ = 0,007 W/(m·K); dla wariantu VII obliczenia wykonano tylko dla gr. 10 i 12 cm zgodnie z zaleceniami producenta
Kolorem zielonym zaznaczono wartości współczynnika przenikania ciepła Uc ścian zewnętrznych spełniające wymaganie: UcUc(max) = 0,20 W/(m2·K)

Istotny wpływ na wartość współczynnika przenikania ciepła przegrody budowlanej Uc [W/(m2·K)] ma wartość współczynnika przewodzenia ciepła λ [W/(m·K)] materiału izolacyjnego. W odniesieniu do jednego rodzaju izolacji może się ona wahać w znacznym przedziale w zależności od produktu, co wynika z szybkiego rozwoju rynku materiałów termoizolacyjnych oraz coraz bardziej zaawansowanych technologii produkcyjnych.

W obliczeniach różnicowano grubość warstwy izolacji cieplnej i wartość współczynnika przewodzenia ciepła materiału izolacyjnego λ [W/(m·K)]. Dodatkowo zamieszczono poziomy wymagań co do izolacyjności cieplnej Uc(max) [W/(m2·K)] według rozporządzenia [1], obowiązujące od 1.01.2021 r. (rozwiązania materiałowe ścian zewnętrznych spełniających kryterium cieplne: Uc  ≤ Uc(max) = 0,20 W/(m2·K) – zaznaczono kolorem zielonym).

Przykład obliczeniowy 4

Określono parametry fizykalne przegród zewnętrznych i złączy przy zastosowania ocieplenia od strony wewnętrznej.

Do analizy wybrano budynek szkoły, w którym występują dwie ściany zewnętrze:

  • ściana zewnętrzna I:
    tynk cementowo-wapienny gr. 0,015 m o λ = 0,820 W/(m·K),
    bloczek PGS 800 gr. 0,24 m o λ = 0,48 W/(m·K),
    płytki ceramiczne gr. 0,03 m o λ = 1,050 W/(m·K);
    współczynnik przenikania ciepła przed dociepleniem U = 1,40 W/(m2·K),
  • ściana zewnętrzna II:
    tynk cementowo-wapienny gr. 0,015 m o λ = 0,820 W/(m·K);
    prefabrykat ścienny gr. 0,35 m o λ = 2,30 W/(m·K);
    współczynnik przenikania ciepła przed dociepleniem U = 2,94 W/(m2·K).

W przypadku ściany zewnętrznej I, ze względu na historyczną mozaikę ceramiczną, zaproponowano ocieplenie od wewnątrz:

  • płyty mineralne gr. 6 cm o λ = 0,042 W/(m·K) – wariant I,
  • płyty z paneli próżniowych VIP gr. 3 cm o λ = 0,007 W/(m·K).

Natomiast ścianę zewnętrzną II ocieplono:

  • płytami ze styropianu grafitowego (szarego) gr. 10 cm o λ = 0,031 W/(m·K) – wariant I,
  • płytami rezolowymi gr. 10 cm o λ = 0,022 W/(m·K) – wariant II.

Wyniki obliczeń współczynnika przenikania ciepła U W/(m2·K) ścian przed i po ociepleniu zestawiono w TABELI 6.

tab6 termomodernizacja budynkow

TABELI 6. Wyniki obliczeń wartości współczynnika przenikania ciepła Uc analizowanych ścian zewnętrznych budynku przed i po ociepleniu
Kolorem zielonym zaznaczono wartości współczynnika przenikania ciepła Uc ścian zewnętrznych spełniające wymaganie: Uc ≤ Uc(max) = 0,20 W/(m2·K)

Dla narożnika ścian zewnętrznych (przed i po ociepleniu) określono parametry fizykalne przy zastosowaniu programu komputerowego TRISCO-KOBRU 86 [13], przyjmuje się następujące założenia:

  • modelowanie złączy wykonano zgodnie z zasadami przedstawionymi w normie PN-EN ISO 10211:2008 [14],
  • opory przejmowania ciepła (Rsi, Rse) przyjęto zgodnie z normą PN-EN ISO 6946:2008 [2] przy obliczeniach strumieni cieplnych oraz według PN-EN ISO 13788:2003 [15] przy obliczeniach rozkładu temperatur i czynnika temperaturowego ƒRsi(2D),
  • temperatura powietrza wewnętrznego ti = 20°C (pokój dzienny), temperatura powietrza zewnętrznego te = –20°C (III strefa),
  • wartości współczynnika przewodzenia ciepła materiałów budowlanych λ [W/(m·K)] przyjęto na podstawie załącznika do pracy [12].

Na RYS. 8–11, RYS. 12–15 oraz RYS. 16–19 przedstawiono analizowane warianty obliczeniowe.

rys8 11 termomodernizacja budynkow

RYS. 8–11. Charakterystyka połączenia ściany zewnętrznej w narożniku bez ocieplenia (wariant I): model obliczeniowy (8), linie strumieni cieplnych (adiabaty) (9), rozkład temperatury (izotermy 0–20) (10), rozkład temperatury (izotermy –20–20) (11); rys.: K. Pawłowski

rys12 15 termomodernizacja budynkow

RYS. 12–15. Charakterystyka połączenia ściany zewnętrznej w narożniku po ociepleniu (wariant II A): model obliczeniowy (12), linie strumieni cieplnych (adiabaty) (13), rozkład temperatury (izotermy 0–20) (14), rozkład temperatury (izotermy –20–20) (15); rys.: K. Pawłowski

rys16 19 termomodernizacja budynkow

RYS. 16–19. Charakterystyka połączenia ściany zewnętrznej w narożniku po ociepleniu (wariant II B): model obliczeniowy (16), linie strumieni cieplnych (adiabaty) (17), rozkład temperatury (izotermy 0–20) (18), rozkład temperatury (izotermy –20–20) (19); rys.: K. Pawłowski

Szczegółowe procedury obliczeniowe parametrów fizykalnych złączy zaprezentowano m.in. w pracy [12]. Wyniki parametrów fizykalnych analizowanych złączy zestawiono w TABELI 7.

tab7 termomodernizacja budynkow

TABELA 7. Wyniki obliczeń parametrów fizykalnych analizowanych złączy ścian zewnętrznych
U1 – współczynnik przenikania ciepła ściany zewnętrznej (gałąź I)
U2 – współczynnik przenikania ciepła ściany zewnętrznej (gałąź II)
Φ – strumień ciepła przepływający przez złącze
L2D – liniowy współczynnik sprzężenia cieplnego
Ψi – liniowy współczynnik przenikania ciepła, określony po wymiarach wewnętrznych
tsi,min. – temperatura minimalna na wewnętrznej powierzchni przegrody w miejscu występowania mostka cieplnego (2D)
ƒRsi(2D) – czynnik temperaturowy, określany na podstawie temperatura minimalna na wewnętrznej powierzchni przegrody
Kolorem zielonym zaznaczono wartości współczynnika przenikania ciepła Uc ścian zewnętrznych spełniające wymaganie: Uc ≤ Uc(max) = 0,20 W/(m2·K)

Na podstawie przeprowadzonych obliczeń (TABELA 7) można stwierdzić, że w analizowane złącza generują dodatkowe straty ciepła określone m.in. w postaci liniowego współczynnika przenikania ciepła Ψi [W/(m·K)] oraz obniżenie temperatury na wewnętrznej powierzchni przegrody tsi,min. [°C] (w miejscu połączenia ścian zewnętrznych). Parametry fizykalne narożnika ścian zewnętrznych zależą od usytuowania i grubości materiału termoizolacyjnego (TABELA 7).

Zastosowanie ocieplenia (od zewnątrz i wewnątrz) powoduje obniżenie strat ciepła w postaci: współczynnika przenikania ciepła U [W/(m2·K)] pojedynczej gałęzi narożnika, strumienia przepływającego przez złącze Φ [W] i liniowego współczynnika sprzężenia cieplnego L2D [W/(m·K)]. Natomiast wartości liniowego współczynnika przenikania ciepła Ψi [W/(m·K)], często wykorzystywanego w praktyce inżynierskiej, rosną wraz z obniżeniem współczynników przenikania ciepła U [W/(m2·K)] pojedynczej gałęzi narożnika – co wynika z procedury obliczeniowej prezentowanej m.in. w pracy [12]. Dlatego zaleca się przeprowadzenie takiej analizy innych parametrów opisujących dodatkowe straty ciepła (TABELA 7).

Spełnienie kryterium w zakresie uniknięcia występowania ryzyka kondensacji powierzchniowej (rozwoju pleśni i grzybów pleśniowych): ƒRsi(2D) ≥ ƒRsi.(kryt.), wymaga określenia wartości ƒRsi(2D) na podstawie temperatury minimalnej na wewnętrznej powierzchni przegrody w miejscu mostka cieplnego (2D) tsi,min. [°C] oraz wartości  ƒRsi.(kryt.) uwzględniającej parametry powietrza wewnętrznego i zewnętrznego (wilgotność i temperatura powietrza).

Według normy PN-EN ISO 13788:2003 [15] czynnik temperaturowy  ƒRsi.(kryt.) oblicza się lub przyjmuje w zależności od zastosowanego w budynku rodzaju wentylacji (wentylacja grawitacyjna – dominująca w budownictwie mieszkaniowym lub wentylacja mechanicznej, będąca często składnikiem systemów klimatyzacyjnych, pozwalających w prawie dowolny sposób kształtować właściwości mikroklimatu wnętrz).

Wartość maksymalna z 12 miesięcy w odniesieniu do lokalizacji (Bydgoszcz) ƒRsi.(max) = ƒRsi.(kryt.) = 0,785 (luty). Oznacza to, że w każdym miesiącu roku i dla każdych innych wartości temperatur brzegowych dla uniknięcia kondensacji powierzchniowej ƒRsi(2D) powinien być większy od 0,785.

W analizowanych przypadkach (TABELA 7) warunek: ƒRsi(2D) ≥  ƒRsi.(kryt.) nie został spełniony, w związku z tym istnieje możliwość (ryzyko) występowania kondensacji na ­wewnętrznej powierzchni przegrody.

Podsumowanie i wnioski

Termomodernizacja istniejących budynków jest procesem złożonym, obejmującym m.in. zagadnienia materiałów budowlanych, budownictwa ogólnego, fizyki budowli oraz instalacji budowlanych.

Jakość cieplna obudowy budynku jest oceniana przez określenie wartości współczynników Uc [W/(m2·K)], które wykorzystywane są do dalszych obliczeń w zakresie analizy cieplno-wilgotnościowej przegród i całego budynku (np. współczynnik strat ciepła przez przenikanie Htr [W/K], zapotrzebowanie na energię użytkową EU, energię końcową EK i pierwotną EP [kWh/(m2·rok)]). Należy także podkreślić, że przy dociepleniu przegród zewnętrznych i ich złączy trzeba uwzględniać kryteria w zakresie: izolacyjności cieplnej, kondensacji powierzchniowej i międzywarstwowej, izolacyjności akustycznej, ochrony przeciwpożarowej oraz nośności i trwałości konstrukcji.

Niektóre układy warstw materiałowych spełniają wymagania w zakresie izolacyjności cieplnej (UcUc(max)), jednak po przeprowadzeniu analizy w zakresie wymagań wilgotnościowych, akustycznych lub przeciwpożarowych usytuowanie warstwy izolacji cieplnej w dowolnym położeniu przegrody jest niedopuszczalne.

Całokształt działań termomodernizacyjnych budynków powinien obejmować także usprawnienie lub wymianę elementów instalacji szczególnie centralnego ogrzewania i przygotowania ciepłej wody użytkowej oraz wprowadzenie odnawialnych źródeł energii (OZE). Takie kompleksowe podejście do dostosowania budynków do wymagań w zakresie oszczędności energii (EPEP(max)) i ochrony cieplnej budynków (UcUC(max)) sprawia, że wartość wskaźnika zapotrzebowania budynku na energię pierwotną (EP) jest stosunkowa niska, a emisja CO2 (ECO2) do atmosfery jest maksymalnie ograniczona.

Literatura

1. Rozporządzenie Ministra Infrastruktury i Budownictwa z dnia 14 listopada 2017 r. zmieniające rozporządzenie w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie (DzU z 2017 r., poz. 2285).
2. PN-EN ISO 6946:2008, „Komponenty budowlane i elementy budynku. Opór cieplny i współczynnik przenikania ciepła. Metoda obliczania”.
3. PN-EN ISO 13370:2008, „Cieplne właściwości użytkowe budynków. Wymiana ciepła przez grunt. Metoda obliczania”.
4. M. Gaczek, J. Jasiczak, M. Kuiński, M. Siewczyńska, „Izolacyjność termiczna i nośność murowanych ścian zewnętrznych. Rozwiązania i przykłady obliczeń”, Wydawnictwo Politechniki Poznańskiej, Poznań 2011.
5. Z. Rydz, J.A. Pogorzelski, M. Wójtowicz, „Bezspoinowy system ocieplania ścian zewnętrznych budynków”, „Instrukcje, Wytyczne, Poradniki” nr 334, ITB, Warszawa 2002.
6. Kreisel – Technika Budowlana, katalog produktów, 2010.
7. Ejot, WDVS-Dübel, 2008.
8. M. Gaczek, S. Fiszer, „Tynki” [w:] „XVIII Ogólnopolska Konferencja Warsztaty pracy projektanta konstrukcji”, Ustroń 2003.
9. P. Gałek, „Metody docieplenia budynków na starych systemach ociepleń”, „Wyzwania współczesnego budownictwa w dziedzinie izolacji”, Dom Wydawniczy MEDIUM, Warszawa 2012.
10. „Ocieplenie na ocieplenia – zalecenia dotyczące renowacji istniejącego systemu ETICS”, Stowarzyszenie na Rzecz Systemów Ociepleń, wydanie I, Warszawa 2012.
11. M. Wesołowska, K. Pawłowski, „Aspekty związane z dostosowaniem obiektów istniejących do standardu budownictwa energooszczędnego”, Agencja Reklamowa TOP, Włocławek 2016.
12. K. Pawłowski, „Projektowanie przegród zewnętrznych w świetle aktualnych warunków technicznych dotyczących budynków. Obliczenia cieplno-wilgotnościowe przegród zewnętrznych i ich złączy”, Grupa MEDIUM, Warszawa 2016.
13. Program komputerowy TRISCO-KOBRU 86.
14. PN-EN ISO 10211:2008, „Mostki cieplne w budynkach. Strumienie ciepła i temperatury powierzchni. Obliczenia szczegółowe”.
15. PN-EN ISO 13788:2003, „Cieplno-wilgotnościowe właściwości komponentów budowlanych i elementów budynku. Temperatura powierzchni wewnętrznej umożliwiająca uniknięcie krytycznej wilgotności powierzchni wewnętrznej kondensacji. Metody obliczania”.

Galeria zdjęć

Tytuł
przejdź do galerii

Komentarze

Powiązane

mgr inż. Bartosz Witkowski, prof. dr hab. inż. Krzysztof Schabowicz Izolacje a współczesna prefabrykacja w budynkach kubaturowych

Izolacje a współczesna prefabrykacja w budynkach kubaturowych Izolacje a współczesna prefabrykacja w budynkach kubaturowych

Prefabrykacja, w szczególności ta stosowana w budownictwie mieszkaniowym, znana jest w Polsce już od początku lat 50. ubiegłego wieku, kiedy to po drugiej wojnie światowej rozpoczęła się odbudowa miast...

Prefabrykacja, w szczególności ta stosowana w budownictwie mieszkaniowym, znana jest w Polsce już od początku lat 50. ubiegłego wieku, kiedy to po drugiej wojnie światowej rozpoczęła się odbudowa miast i znacząco wzrósł popyt na nowe mieszkania. To, co w świadomości może najbardziej być kojarzone z prefabrykacją zastosowaną w budynkach to tzw. wielka płyta, czyli połączenie żelbetowych ścian konstrukcyjnych ze ścianami osłonowymi z gazobetonu.

dr inż. Marcin Górski, dr inż. Bernard Kotala, mgr inż. Rafał Białozor Rodzaje i właściwości zbrojeń niemetalicznych

Rodzaje i właściwości zbrojeń niemetalicznych Rodzaje i właściwości zbrojeń niemetalicznych

Kompozyty włókniste, również w Polsce nazywane z angielskiego FRP (Fibre Reinforced Polymers), śmiało wkroczyły w świat konstrukcji budowlanych na początku lat 90. ubiegłego wieku, głównie w krajach Europy...

Kompozyty włókniste, również w Polsce nazywane z angielskiego FRP (Fibre Reinforced Polymers), śmiało wkroczyły w świat konstrukcji budowlanych na początku lat 90. ubiegłego wieku, głównie w krajach Europy Zachodniej, a także w Japonii, Stanach Zjednoczonych i Kanadzie. Pojawiły się niemal równocześnie dwie grupy produktów – materiały do wzmocnień konstrukcji oraz pręty do zbrojenia betonu.

Monika Hyjek Pożar ściany z barierami ogniowymi

Pożar ściany z barierami ogniowymi Pożar ściany z barierami ogniowymi

Od lat 80. XX wieku ilość materiałów ociepleniowych na ścianach zewnętrznych budynku stale rośnie. Grubość izolacji w jednej z popularniejszych w Europie metod ocieplania (ETICS) przez ten okres zwiększyła...

Od lat 80. XX wieku ilość materiałów ociepleniowych na ścianach zewnętrznych budynku stale rośnie. Grubość izolacji w jednej z popularniejszych w Europie metod ocieplania (ETICS) przez ten okres zwiększyła się 3–4-krotnie. W przypadku stosowania palnych izolacji cieplnych jest to równoznaczne ze wzrostem zagrożenia pożarowego.

mgr inż. Bartłomiej Monczyński Tynki stosowane na zawilgoconych przegrodach – tynki regulujące zawilgocenie

Tynki stosowane na zawilgoconych przegrodach – tynki regulujące zawilgocenie Tynki stosowane na zawilgoconych przegrodach – tynki regulujące zawilgocenie

Jednym z ostatnich, ale zazwyczaj nieodzownym elementem prac renowacyjnych w uszkodzonych przez wilgoć i sole obiektach budowlanych jest wykonanie nowych tynków wewnętrznych i/lub zewnętrznych.

Jednym z ostatnich, ale zazwyczaj nieodzownym elementem prac renowacyjnych w uszkodzonych przez wilgoć i sole obiektach budowlanych jest wykonanie nowych tynków wewnętrznych i/lub zewnętrznych.

Röben Polska Sp. z o.o. i Wspólnicy Sp. K. Ekoceramika na dachy i elewacje

Ekoceramika na dachy i elewacje Ekoceramika na dachy i elewacje

Wyjątkowo trwała, a na dodatek bezpieczna dla środowiska i naszego zdrowia. Znamy ją od tysięcy lat, należy do najbardziej ekologicznych materiałów budowlanych – po prostu ceramika!

Wyjątkowo trwała, a na dodatek bezpieczna dla środowiska i naszego zdrowia. Znamy ją od tysięcy lat, należy do najbardziej ekologicznych materiałów budowlanych – po prostu ceramika!

Nicola Hariasz Ściany podwyższające komfort akustyczny w pomieszczeniu

Ściany podwyższające komfort akustyczny w pomieszczeniu Ściany podwyższające komfort akustyczny w pomieszczeniu

Hałas jest powszechnym problemem obniżającym komfort życia nie tylko w domu, ale także w pracy. O tym, czy może być niebezpieczny, decyduje nie tylko jego natężenie, ale również czas jego trwania. Szkodliwe...

Hałas jest powszechnym problemem obniżającym komfort życia nie tylko w domu, ale także w pracy. O tym, czy może być niebezpieczny, decyduje nie tylko jego natężenie, ale również czas jego trwania. Szkodliwe dla zdrowia mogą być nawet gwar i szum towarzyszące nam na co dzień w biurze czy w centrum handlowym.

dr inż. Paweł Krause, dr inż. Rosita Norvaišienė Rozkład temperatury systemu ETICS z zastosowaniem styropianu i wełny – badania laboratoryjne

Rozkład temperatury systemu ETICS z zastosowaniem styropianu i wełny – badania laboratoryjne Rozkład temperatury systemu ETICS z zastosowaniem styropianu i wełny – badania laboratoryjne

Ochrona cieplna ścian zewnętrznych jest nie tylko jednym z podstawowych zagadnień związanych z oszczędnością energii, ale wiąże się również z komfortem użytkowania pomieszczeń przeznaczonych na pobyt ludzi....

Ochrona cieplna ścian zewnętrznych jest nie tylko jednym z podstawowych zagadnień związanych z oszczędnością energii, ale wiąże się również z komfortem użytkowania pomieszczeń przeznaczonych na pobyt ludzi. Zapewnienie odpowiedniego komfortu cieplnego pomieszczeń, nieposiadających w większości przypadków instalacji chłodzenia, dotyczy całego roku, a nie tylko okresu ogrzewczego.

mgr Kamil Kiejna Bezpieczeństwo pożarowe w aspekcie stosowania tzw. barier ogniowych w ociepleniach ze styropianu – artykuł polemiczny

Bezpieczeństwo pożarowe w aspekcie stosowania tzw. barier ogniowych w ociepleniach ze styropianu – artykuł polemiczny Bezpieczeństwo pożarowe w aspekcie stosowania tzw. barier ogniowych w ociepleniach ze styropianu – artykuł polemiczny

Niniejszy artykuł jest polemiką do tekstu M. Hyjek „Pożar ściany z barierami ogniowymi”, opublikowanego w styczniowym numerze „IZOLACJI” (nr 1/2021), który w ocenie Polskiego Stowarzyszenia Producentów...

Niniejszy artykuł jest polemiką do tekstu M. Hyjek „Pożar ściany z barierami ogniowymi”, opublikowanego w styczniowym numerze „IZOLACJI” (nr 1/2021), który w ocenie Polskiego Stowarzyszenia Producentów Styropianu, wskutek tendencyjnego i wybiórczego przedstawienia wyników badań przeprowadzonych przez Łukasiewicz – Instytut Ceramiki i Materiałów Budowlanych (ICiMB), może wprowadzać w błąd co do rzeczywistego poziomu bezpieczeństwa pożarowego systemów ETICS z płytami styropianowymi oraz rzekomych korzyści...

dr inż. Marcin Górski, dr inż. Bernard Kotala, mgr inż. Rafał Białozor Zbrojenia niemetaliczne – zbrojenia tekstylne i pręty kompozytowe

Zbrojenia niemetaliczne – zbrojenia tekstylne i pręty kompozytowe Zbrojenia niemetaliczne – zbrojenia tekstylne i pręty kompozytowe

Zbrojenie niemetaliczne jest odporne na korozję, nie ulega degradacji pod wpływem czynników atmosferycznych. Wykazuje także odporność na chlorki, kwasy, agresję chemiczną środowiska.

Zbrojenie niemetaliczne jest odporne na korozję, nie ulega degradacji pod wpływem czynników atmosferycznych. Wykazuje także odporność na chlorki, kwasy, agresję chemiczną środowiska.

mgr inż. Bartłomiej Monczyński Redukcja zasolenia przegród budowlanych za pomocą kompresów

Redukcja zasolenia przegród budowlanych za pomocą kompresów Redukcja zasolenia przegród budowlanych za pomocą kompresów

Jednym z najbardziej niekorzystnych zjawisk związanych z obecnością soli i wilgoci w układzie porów materiałów budowlanych jest krystalizacja soli [1–2] (FOT. 1).

Jednym z najbardziej niekorzystnych zjawisk związanych z obecnością soli i wilgoci w układzie porów materiałów budowlanych jest krystalizacja soli [1–2] (FOT. 1).

dr inż. Artur Miszczuk Ocieplenie podłóg na gruncie i stropów nad nieogrzewanymi piwnicami

Ocieplenie podłóg na gruncie i stropów nad nieogrzewanymi piwnicami Ocieplenie podłóg na gruncie i stropów nad nieogrzewanymi piwnicami

Od 1 stycznia 2021 r. obowiązują zaostrzone Warunki Techniczne (WT 2021) dla nowo budowanych obiektów, a także budynków zaprojektowanych według wcześniej obowiązującego standardu WT 2017 – zgodnie z wymaganiami...

Od 1 stycznia 2021 r. obowiązują zaostrzone Warunki Techniczne (WT 2021) dla nowo budowanych obiektów, a także budynków zaprojektowanych według wcześniej obowiązującego standardu WT 2017 – zgodnie z wymaganiami proekologicznej polityki UE. Graniczne wartości współczynnika przenikania ciepła dla podłóg na gruncie i stropów nad pomieszczeniami nieogrzewanymi nie zostały jednak (w WT 2021) zmienione.

dr inż. arch. Karolina Kurtz-Orecka Ściany zewnętrzne według zaostrzonych wymagań izolacyjności termicznej

Ściany zewnętrzne według zaostrzonych wymagań izolacyjności termicznej Ściany zewnętrzne według zaostrzonych wymagań izolacyjności termicznej

Początek roku 2021 w branży budowlanej przyniósł kolejne zaostrzenie przepisów techniczno-budowlanych, ostatnie z planowanych, które wynikało z implementacji zapisów dyrektywy unijnej w sprawie charakterystyki...

Początek roku 2021 w branży budowlanej przyniósł kolejne zaostrzenie przepisów techniczno-budowlanych, ostatnie z planowanych, które wynikało z implementacji zapisów dyrektywy unijnej w sprawie charakterystyki energetycznej budynków [1, 2], potocznie zwanej dyrektywą EPBD.

dr inż. Adam Ujma Ściany zewnętrzne z elewacjami wentylowanymi i ich izolacyjność cieplna

Ściany zewnętrzne z elewacjami wentylowanymi i ich izolacyjność cieplna Ściany zewnętrzne z elewacjami wentylowanymi i ich izolacyjność cieplna

Ściany zewnętrzne z elewacjami wykonanymi w formie konstrukcji z warstwami wentylowanymi coraz częściej znajdują zastosowanie w nowych budynków, ale również z powodzeniem mogą być wykorzystane przy modernizacji...

Ściany zewnętrzne z elewacjami wykonanymi w formie konstrukcji z warstwami wentylowanymi coraz częściej znajdują zastosowanie w nowych budynków, ale również z powodzeniem mogą być wykorzystane przy modernizacji istniejących obiektów. Dają one szerokie możliwości dowolnego kształtowania materiałowego elewacji, z wykorzystaniem elementów metalowych, z tworzywa sztucznego, szkła, kamienia naturalnego, drewna i innych. Pewną niedogodnością tego rozwiązania jest konieczność uwzględnienia w obliczeniach...

mgr inż. arch. Tomasz Rybarczyk Ściany jednowarstwowe według WT 2021

Ściany jednowarstwowe według WT 2021 Ściany jednowarstwowe według WT 2021

Elementom zewnętrznym budynków, a więc również ścianom, stawiane są coraz wyższe wymagania, m.in. pod względem izolacyjności cieplnej. Zmiany obowiązujące od 1 stycznia 2021 roku dotyczą wymagań w zakresie...

Elementom zewnętrznym budynków, a więc również ścianom, stawiane są coraz wyższe wymagania, m.in. pod względem izolacyjności cieplnej. Zmiany obowiązujące od 1 stycznia 2021 roku dotyczą wymagań w zakresie izolacyjności cieplnej, a wynikające z rozporządzenia w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie powodują, że odtąd trzeba budować budynki ze ścianami o wyższej termoizolacyjności niż budowano dotychczas.

dr inż. Bożena Orlik-Kożdoń, dr inż. Tomasz Steidl Docieplanie budynków od wewnątrz – wymagania prawne i zalecenia do projektowania

Docieplanie budynków od wewnątrz – wymagania prawne i zalecenia do projektowania Docieplanie budynków od wewnątrz – wymagania prawne i zalecenia do projektowania

Obowiązujące w Polsce wymagania prawne związane z docieplaniem budynków od wewnątrz obejmują zarówno przepisy podstawowe zdefiniowane w dokumentach unijnych, jak i wymagania szczegółowe, zawarte w dokumentach...

Obowiązujące w Polsce wymagania prawne związane z docieplaniem budynków od wewnątrz obejmują zarówno przepisy podstawowe zdefiniowane w dokumentach unijnych, jak i wymagania szczegółowe, zawarte w dokumentach krajowych. A ich realizację umożliwiają dostępne na rynku rozwiązania technologiczno-materiałowe.

Festool Polska Sp. z o. o. Pilarka do materiałów izolacyjnych

Pilarka do materiałów izolacyjnych Pilarka do materiałów izolacyjnych

Czy pilarka może być precyzyjna, szybka, lekka i jednocześnie wielozadaniowa? Właśnie takie cechy posiada pilarka do materiałów izolacyjnych ISC 240.

Czy pilarka może być precyzyjna, szybka, lekka i jednocześnie wielozadaniowa? Właśnie takie cechy posiada pilarka do materiałów izolacyjnych ISC 240.

dr inż. Szymon Świerczyna Wprowadzenie do projektowania lekkich kratownic stalowych z kształtowników giętych

Wprowadzenie do projektowania lekkich kratownic stalowych z kształtowników giętych Wprowadzenie do projektowania lekkich kratownic stalowych z kształtowników giętych

W nowoczesnym budownictwie stalowym poszukuje się rozwiązań pozwalających na projektowanie konstrukcji lekkich, łatwych w wytwarzaniu, transporcie i montażu. Kryteria te mogą spełniać lekkie konstrukcje...

W nowoczesnym budownictwie stalowym poszukuje się rozwiązań pozwalających na projektowanie konstrukcji lekkich, łatwych w wytwarzaniu, transporcie i montażu. Kryteria te mogą spełniać lekkie konstrukcje stalowe z kształtowników giętych. Ich korzystne parametry geometryczne sprawiają, że mogą być interesującą alternatywą dla znacznie cięższych kształtowników walcowanych na gorąco [1].

dr inż. Andrzej Konarzewski Kompleksowe określanie trwałości eksploatacyjnej płyt warstwowych

Kompleksowe określanie trwałości eksploatacyjnej płyt warstwowych Kompleksowe określanie trwałości eksploatacyjnej płyt warstwowych

Testami wykorzystywanymi do kompleksowego badania trwałości płyt warstwowych w obustronnej okładzinie stalowej z rdzeniem izolacyjnym ze sztywnej pianki poliuretanowej PUR/PIR, tzw. paneli, może być test...

Testami wykorzystywanymi do kompleksowego badania trwałości płyt warstwowych w obustronnej okładzinie stalowej z rdzeniem izolacyjnym ze sztywnej pianki poliuretanowej PUR/PIR, tzw. paneli, może być test DUR 2 oraz test autoklawu.

dr inż. Krzysztof Pawłowski, prof. uczelni Systemy ociepleń ścian zewnętrznych w świetle wymagań obowiązujących od 1 stycznia 2021 r.

Systemy ociepleń ścian zewnętrznych w świetle wymagań obowiązujących od 1 stycznia 2021 r. Systemy ociepleń ścian zewnętrznych w świetle wymagań obowiązujących od 1 stycznia 2021 r.

Termomodernizacja istniejących budynków dotyczy ich dostosowania do nowych wymagań (obowiązujących od 1 stycznia 2021 r.) w zakresie oszczędności energii i ochrony cieplno-wilgotnościowej. Ponadto stanowi...

Termomodernizacja istniejących budynków dotyczy ich dostosowania do nowych wymagań (obowiązujących od 1 stycznia 2021 r.) w zakresie oszczędności energii i ochrony cieplno-wilgotnościowej. Ponadto stanowi zbiór zabiegów mających na celu wyeliminowanie lub znaczne ograniczenie strat ciepła w istniejącym budynku. Jest jednym z elementów modernizacji budynku, który przynosi korzyści finansowe na pokrycie kosztów innych działań.

mgr inż. Waldemar Bogusz Wtórne ocieplenia budynków z wielkiej płyty – wymagania i zagrożenia

Wtórne ocieplenia budynków z wielkiej płyty – wymagania i zagrożenia Wtórne ocieplenia budynków z wielkiej płyty – wymagania i zagrożenia

Zgodnie z prawem budowlanym [1] docieplenie bloku z płyt prefabrykowanych wysokości do 25 m można zrealizować bez projektu budowlanego, stosując uproszczoną procedurę zgłoszenia bez uzyskiwania pozwolenia...

Zgodnie z prawem budowlanym [1] docieplenie bloku z płyt prefabrykowanych wysokości do 25 m można zrealizować bez projektu budowlanego, stosując uproszczoną procedurę zgłoszenia bez uzyskiwania pozwolenia na budowę. Takich robót dla budynków wysokości do 12 m nawet nie potrzeba zgłaszać.

Recticel Insulation Płyty termoizolacyjne EUROTHANE G – efektywne docieplenie budynku od wewnątrz

Płyty termoizolacyjne EUROTHANE G – efektywne docieplenie budynku od wewnątrz Płyty termoizolacyjne EUROTHANE G – efektywne docieplenie budynku od wewnątrz

Termomodernizacja jest jednym z podstawowych zadań podejmowanych w ramach modernizacji budynków. W odniesieniu do ścian docieplenie wykonuje się od zewnątrz, zgodnie z podstawowymi zasadami fizyki budowli....

Termomodernizacja jest jednym z podstawowych zadań podejmowanych w ramach modernizacji budynków. W odniesieniu do ścian docieplenie wykonuje się od zewnątrz, zgodnie z podstawowymi zasadami fizyki budowli. Czasami jednak nie ma możliwości wykonania docieplenia na fasadach, np. na budynkach zabytkowych, obiektach z utrudnionym dostępem do elewacji czy na budynkach usytuowanych w granicy. W wielu takich przypadkach jest jednak możliwe wykonanie docieplenia ścian od wewnątrz.

Jarosław Guzal Kingspan na rynku nowoczesnych fasad

Kingspan na rynku nowoczesnych fasad Kingspan na rynku nowoczesnych fasad

Michał Pieczyski, Dyrektor Zarządzający Kingspan Fasady, o kierunku rozwoju rozwiązań fasadowych oraz specyfice rynku fasadowego w Polsce.

Michał Pieczyski, Dyrektor Zarządzający Kingspan Fasady, o kierunku rozwoju rozwiązań fasadowych oraz specyfice rynku fasadowego w Polsce.

Józef Macech Ściany wewnętrzne w budownictwie mieszkaniowym – rodzaje i wymagania na podstawie rozwiązań z wykorzystaniem elementów murowych

Ściany wewnętrzne w budownictwie mieszkaniowym – rodzaje i wymagania na podstawie rozwiązań z wykorzystaniem elementów murowych Ściany wewnętrzne w budownictwie mieszkaniowym – rodzaje i wymagania na podstawie rozwiązań z wykorzystaniem elementów murowych

Ściany wewnętrzne są przegrodami, których podstawowym zadaniem jest podział przestrzeni wewnątrz budynku.

Ściany wewnętrzne są przegrodami, których podstawowym zadaniem jest podział przestrzeni wewnątrz budynku.

mgr inż. arch. Tomasz Rybarczyk Zaprawy murarskie – rodzaje, porównanie, zastosowanie

Zaprawy murarskie – rodzaje, porównanie, zastosowanie Zaprawy murarskie – rodzaje, porównanie, zastosowanie

Przed rozpoczęciem robót murarskich nie tylko należy skompletować materiały murowe, ale również dobrać do nich odpowiednią zaprawę murarską i inne akcesoria, które będą potrzebne w trakcie murowania ścian.

Przed rozpoczęciem robót murarskich nie tylko należy skompletować materiały murowe, ale również dobrać do nich odpowiednią zaprawę murarską i inne akcesoria, które będą potrzebne w trakcie murowania ścian.

Najnowsze produkty i technologie

Fabryka Styropianu ARBET Wielka płyta – czy ocieplanie jej to ważne zagadnienie?

Wielka płyta – czy ocieplanie jej to ważne zagadnienie? Wielka płyta – czy ocieplanie jej to ważne zagadnienie?

Domy z wielkiej płyty wyróżniają się w krajobrazie Polski. Najczęściej budowano z nich wieżowce, mające około 10 pięter. Przez wiele lat w kontekście ich użytkowania mówiono o aspekcie estetycznym. Dziś...

Domy z wielkiej płyty wyróżniają się w krajobrazie Polski. Najczęściej budowano z nich wieżowce, mające około 10 pięter. Przez wiele lat w kontekście ich użytkowania mówiono o aspekcie estetycznym. Dziś jednak porusza się ważne kwestie dotyczące kwestii użytkowych, w tym – ich odpowiedniej izolacji.

KOESTER Polska Sp. z o.o. Köster – Specjaliści od hydroizolacji

Köster – Specjaliści od hydroizolacji Köster – Specjaliści od hydroizolacji

KÖSTER BAUCHEMIE AG specjalizuje się w produkcji i dystrybucji materiałów do hydroizolacji i ochrony budowli oraz systemów uszczelnień, a ich produkty chronią budowle na całym świecie. Zarówno podczas...

KÖSTER BAUCHEMIE AG specjalizuje się w produkcji i dystrybucji materiałów do hydroizolacji i ochrony budowli oraz systemów uszczelnień, a ich produkty chronią budowle na całym świecie. Zarówno podczas renowacji budynków historycznych, jak i w trakcie budowy nowych obiektów – proponuje skuteczne rozwiązanie każdego problemu związanego ze szkodliwym oddziaływaniem wody i wilgoci.

TRUTEK FASTENERS POLSKA Wzmacnianie bydynków wielkopłytowych w systemie TRUTEK TCM

Wzmacnianie bydynków wielkopłytowych w systemie TRUTEK TCM Wzmacnianie bydynków wielkopłytowych w systemie TRUTEK TCM

TRUTEK FASTENERS POLSKA jest firmą specjalizującą się w produkcji najwyższej jakości systemów zamocowań przeznaczonych do budownictwa lądowego, drogowego i przemysłu. W ofercie firmy znajdują się wyroby...

TRUTEK FASTENERS POLSKA jest firmą specjalizującą się w produkcji najwyższej jakości systemów zamocowań przeznaczonych do budownictwa lądowego, drogowego i przemysłu. W ofercie firmy znajdują się wyroby tradycyjne – od wielu lat stosowane w budownictwie, a także nowatorskie, zaawansowane technologicznie rozwiązania gwarantujące najwyższy poziom bezpieczeństwa.

TRUTEK FASTENERS POLSKA Innowacyjna technologia mocowania izolacji termicznej budynku

Innowacyjna technologia mocowania izolacji termicznej budynku Innowacyjna technologia mocowania izolacji termicznej budynku

Łączniki do mocowania izolacji termicznej obiektu to bardzo ważny element zapewniający bezpieczeństwo i stabilność warstwy docieplenia.

Łączniki do mocowania izolacji termicznej obiektu to bardzo ważny element zapewniający bezpieczeństwo i stabilność warstwy docieplenia.

GERARD AHI Roofing Kft. Oddział w Polsce Sp. z o.o. | RTG Roof Tile Group Dach marzeń: stylowy, nowoczesny i wyjątkowo odporny

Dach marzeń: stylowy, nowoczesny i wyjątkowo odporny Dach marzeń: stylowy, nowoczesny i wyjątkowo odporny

Czy chciałbyś mieć elegancki, nowoczesny dach, o niepowtarzalnym antracytowym kolorze, który zapewni Twojemu domowi najlepszą ochronę?

Czy chciałbyś mieć elegancki, nowoczesny dach, o niepowtarzalnym antracytowym kolorze, który zapewni Twojemu domowi najlepszą ochronę?

Tremco CPG Poland Sp. z o.o. Flowcrete – bezspoinowe posadzki żywiczne w przemyśle

Flowcrete – bezspoinowe posadzki żywiczne w przemyśle Flowcrete  – bezspoinowe posadzki żywiczne w przemyśle

Bezspoinowe posadzki żywiczne są często nazywane posadzkami przemysłowymi. Ze względu na ich właściwości, m.in. trwałość, wytrzymałość mechaniczną, w tym odporność na ścieranie, szczelność i nienasiąkliwość...

Bezspoinowe posadzki żywiczne są często nazywane posadzkami przemysłowymi. Ze względu na ich właściwości, m.in. trwałość, wytrzymałość mechaniczną, w tym odporność na ścieranie, szczelność i nienasiąkliwość oraz łatwość utrzymania w czystości, rozwiązania posadzkowe na bazie żywic syntetycznych są powszechnie stosowane w zakładach produkcyjnych z różnych branż.

Blachy Pruszyński, mgr inż. Piotr Olgierd Korycki Zagadnienia akustyki w obiektach przemysłowych z lekką obudową

Zagadnienia akustyki w obiektach przemysłowych z lekką obudową Zagadnienia akustyki w obiektach przemysłowych z lekką obudową

Obecnie trudno sobie wyobrazić budownictwo, a zwłaszcza halowe, użyteczności publicznej, przemysłowe i specjalne bez obudowy, jaką stanowią ściany osłonowe czy przekrycia dachowe. Wykonuje się je z lekkiej...

Obecnie trudno sobie wyobrazić budownictwo, a zwłaszcza halowe, użyteczności publicznej, przemysłowe i specjalne bez obudowy, jaką stanowią ściany osłonowe czy przekrycia dachowe. Wykonuje się je z lekkiej obudowy, takiej jak: płyty warstwowe, systemy oparte na bazie kaset stalowych wzdłużnych, warstwowe przekrycia dachowe z elementem nośnym w postaci blach trapezowych. Wymienione rozwiązania mają szereg zalet, m.in. małą masę jednostkową, możliwość montażu niezależnie od warunków atmosferycznych,...

MIWO – Stowarzyszenie Producentów Wełny Mineralnej: Szklanej i Skalnej Warunki Techniczne wymagają głębokich zmian

Warunki Techniczne wymagają głębokich zmian Warunki Techniczne wymagają głębokich zmian

Przepisy rozporządzenia Ministra Infrastruktury z dnia 12 kwietnia 2002 r. w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie (z późniejszymi zmianami) – zwanego Warunkami...

Przepisy rozporządzenia Ministra Infrastruktury z dnia 12 kwietnia 2002 r. w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie (z późniejszymi zmianami) – zwanego Warunkami Technicznymi lub w skrócie WT – stosuje się przy projektowaniu, budowie i przebudowie oraz zmianie sposobu użytkowania wszystkich rodzajów budynków oraz budowli nadziemnych i podziemnych, spełniających funkcje użytkowe budynków. Ten akt prawny jest aktem wykonawczym do Ustawy Prawo budowlane i określa...

Seban Nowoczesne membrany hydroizolacyjne – rozwiązania na dachy płaskie i zielone

Nowoczesne membrany hydroizolacyjne – rozwiązania na dachy płaskie i zielone Nowoczesne membrany hydroizolacyjne – rozwiązania na dachy płaskie i zielone

Współczesne budownictwo kładzie coraz większy nacisk na energooszczędność i poprawę efektywności energetycznej obiektów. Aby zmniejszyć zapotrzebowanie budynków na energię, projektanci, architekci i inwestorzy...

Współczesne budownictwo kładzie coraz większy nacisk na energooszczędność i poprawę efektywności energetycznej obiektów. Aby zmniejszyć zapotrzebowanie budynków na energię, projektanci, architekci i inwestorzy chętniej stosują technologie korzystające z energii odnawialnej.

Copyright © 2004-2019 Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Spółka komandytowa, nr KRS: 0000537655. Wszelkie prawa, w tym Autora, Wydawcy i Producenta bazy danych zastrzeżone. Jakiekolwiek dalsze rozpowszechnianie artykułów zabronione. Korzystanie z serwisu i zamieszczonych w nim utworów i danych wyłącznie na zasadach określonych w Zasadach korzystania z serwisu.
Portal Budowlany - Izolacje.com.pl

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim urządzeniu końcowym. W każdym momencie możesz dokonać zmiany ustawień przeglądarki dotyczących cookies. Nim Państwo zaczną korzystać z naszego serwisu prosimy o zapoznanie się z naszą polityką prywatności oraz Informacją o Cookies. Więcej szczegółów w naszej Polityce Prywatności oraz Informacji o Cookies. Administratorem Państwa danych osobowych jest Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Sp.K., nr KRS: 0000537655, z siedzibą w 04-112 Warszawa, ul. Karczewska 18, tel. +48 22 810-21-24, właściciel strony www.izolacje.com.pl. Twoje Dane Osobowe będą chronione zgodnie z wytycznymi polityki prywatności www.izolacje.com.pl oraz zgodnie z Rozporządzeniem Parlamentu Europejskiego i Rady (UE) 2016/679 z dnia 27 kwietnia 2016r i z Ustawą o ochronie danych osobowych Dz.U. 2018 poz. 1000 z dnia 10 maja 2018r.