Docieplanie przegród zewnętrznych od wewnątrz – materiały, technologie i projektowanie
Fot. 1. Ocieplenie ściany zewnętrznej wełną mineralną | Thermal insulation of external bulkheads from the inside – materials, technologies and design
Isover
Metoda docieplania obiektów od strony zewnętrznej stosowana jest z powodzeniem od wielu lat. Istnieją jednak pewne ograniczenia tej technologii, np. w budynkach zabytkowych. W tego typu obiektach rozwiązaniem może być wykonanie ocieplenia od strony wewnętrznej.
Zobacz także
Rockwool Polska Termomodernizacja domu – na czym polega i jak ją zaplanować?
Termomodernizacja to szereg działań mających na celu poprawę energochłonności Twojego domu. Niezależnie od zakresu inwestycji, kluczowa dla osiągnięcia spodziewanych efektów jest kolejność prac. Najpierw...
Termomodernizacja to szereg działań mających na celu poprawę energochłonności Twojego domu. Niezależnie od zakresu inwestycji, kluczowa dla osiągnięcia spodziewanych efektów jest kolejność prac. Najpierw należy docieplić ściany i dach, aby ograniczyć zużycie energii, a dopiero potem zmodernizować system grzewczy. Dzięki kompleksowej termomodernizacji domu prawidłowo wykonanej znacznie zmniejszysz koszty utrzymania budynku.
Recticel Insulation Nowoczesne technologie termoizolacyjne Recticel w renowacji budynków historycznych
W dzisiejszych czasach zachowanie dziedzictwa kulturowego i jednoczesne dostosowanie budynków do współczesnych standardów efektywności energetycznej stanowi duże wyzwanie zarówno dla inwestora, projektanta...
W dzisiejszych czasach zachowanie dziedzictwa kulturowego i jednoczesne dostosowanie budynków do współczesnych standardów efektywności energetycznej stanowi duże wyzwanie zarówno dla inwestora, projektanta jak i wykonawcy. Niejednokrotnie w ramach inwestycji, począwszy już od etapu opracowywania projektu, okazuje się, że tradycyjne materiały izolacyjne i metody ich aplikacji nie są wystarczające, aby zapewnić właściwe parametry termiczne i należytą ochronę wartości historycznych budynku.
Sievert Polska Sp. z o.o. System ociepleń quick-mix S-LINE
System ociepleń quick-mix S-LINE to rozwiązanie warte rozważenia zawsze, kiedy zachodzi potrzeba wykonania termomodernizacji ścian zewnętrznych. Umożliwia montaż nowej izolacji termicznej na istniejącym...
System ociepleń quick-mix S-LINE to rozwiązanie warte rozważenia zawsze, kiedy zachodzi potrzeba wykonania termomodernizacji ścian zewnętrznych. Umożliwia montaż nowej izolacji termicznej na istniejącym już systemie ociepleń, który nie spełnia dzisiejszych wymagań pod kątem wartości współczynnika przenikania ciepła U = 0,2 W/(m²·K).
ABSTRAKT |
W artykule omówiono materiały i technologie stosowane w dociepleniach wykonywanych od wewnątrz. Opisano zasady projektowania takich rozwiązań z uwzględnieniem zjawisk wilgotnościowych zachodzących w przegrodzie. |
The article discusses materials and technologies used to execute bulkhead thermal insulations from the inside. It describes the rules of designing such solutions, taking into account the phenomena of humidity that take place inside a bulkhead. |
Docieplanie od wewnątrz ma pewne wady. Jedną z nich jest ryzyko zawilgocenia przegrody. Na skutek niskiej temperatury otoczenia temperatura wewnątrz przegrody znacznie spada, co powoduje kondensację na styku warstwy konstrukcyjnej i izolacji cieplnej.
Wówczas, zależnie od warunków cieplno-wilgotnościowych panujących w pomieszczeniu, parametrów technicznych przegrody i sposobu wykończenia powierzchni wewnętrznej, w krótszym lub dłuższym czasie dochodzi do pogorszenia komfortu użytkowego – ściany zewnętrzne przestają akumulować ciepło, co niekorzystnie wpływa na mikroklimat pomieszczeń. Inną wadą jest występowanie mostków termicznych, które są trudne do wyeliminowania w ociepleniach od wewnątrz.
By wspomnianych problemów uniknąć, należy stosować odpowiednie materiały i technologie (mogą to być rozwiązania wykorzystujące zarówno klasyczne materiały termoizolacyjne, jak i nowoczesne materiały ociepleniowe), a także projektować przegrody z uwzględnieniem zjawisk wilgotnościowych.
Tradycyjne materiały termoizolacyjne
W technologiach tradycyjnych stosuje się m.in. styropian i wełnę mineralną (fot. 1). Na ocieplanej powierzchni wykonuje się ruszt drewniany lub lekką konstrukcję z systemowych profili metalowych, a przestrzeń między elementami podkonstrukcji ściśle wypełnia się płytami termoizolacyjnymi.
Ocieplenie powinno być szczelnie osłonięte warstwą skutecznej paroizolacji i wykończone płytami gipsowo‑kartonowymi lub – w wypadku polistyrenu (XPS, EPS) – tynkiem cienkowarstwowym.
Nowoczesne materiały termoizolacyjne
W rozwiązaniach z zastosowaniem nowoczesnych materiałów (fot. 2–6) można wyróżnić dwie metody [1]:
- ocieplenie ze szczelną barierą paroizolacyjną od strony wnętrza,
- systemy, które gwarantują swobodny przepływ strumienia dyfuzji przez przegrodę.
Systemy z barierą paroizolacyjną
W szczelnych systemach z barierą paroizolacyjną stosowane są najczęściej płyty ociepleniowe z pianki poliuretanowej o niskiej wartości współczynnika przewodzenia ciepła λ = 0,023–0,030 W/(m·K), jedno- lub obustronnie pokryte metaliczną powłoką paroizolacyjną lub papierem mineralnym z powłoką antydyfuzyjną. Płyty mają grubość od 2 cm do 12 cm.
Wybór sposobu montażu zależy w dużej mierze od rodzaju podłoża, a także od wymogów budowlanych. Płyty można przyklejać bezpośrednio do podłoża klejem gipsowym (lub systemowym) albo mocować za pomocą profili listwowych (rys. 1–2).
Po zamocowaniu płyt ich styki zamykane są przed dyfuzją pary wodnej samoprzylepną taśmą uszczelniającą lub specjalnym kitem uszczelniającym. Warstwą wykończeniową mogą być tynki cienkowarstwowe z siatką lub tapety ocieplające o gr. 3–4 mm.
W tego typu rozwiązaniach stosuje się również szkło piankowe. Wartość współczynnika przewodzenia ciepła tego materiału wynosi λ = 0,038–0,040 W/(m·K), a grubość wyrobów dostosowywana jest do obowiązujących wymagań cieplnych. Płyty przykleja się całopowierzchniowo do ścian (np. murowych, żelbetowych). Zaszpachlowaną powierzchnię można pokryć tynkiem i płytkami ceramicznymi.
Systemy z paroizolacją od strony wnętrza najlepiej sprawdzają się w obiektach o wysokiej wilgotności. Ze względu na to, że systemy z barierą paroizolacyjną uniemożliwiają dyfuzję pary wodnej, budynki z taką izolacją muszą mieć efektywną instalację wentylacyjną.
Systemy paroprzepuszczalne
Druga grupa nowoczesnych ociepleń wewnętrznych to systemy, w których stosowane są płyty o porowatej strukturze i wysokiej przepuszczalności pary wodnej, określane jako płyty klimatyczne lub hydroaktywne: płyty wapienno-krzemianowe, perlitowe czy z autoklawizowanego betonu komórkowego [1–3].
Na rynku dostępne są m.in. płyty klimatyczne o wymiarach 125×100 cm i gr. od 2,5 cm do 5 cm produkowane z silikatu wapiennego [3]. Wyróżniają się wysokimi właściwościami kapilarnymi, uzyskanymi dzięki mikroporowatemu szkieletowi powstałemu z kryształków silikatu. W razie wytworzenia się wilgoci pod warstwą ocieplenia nie ma ryzyka zagrzybienia muru i degradacji izolacji.
Płyta klimatyczna dzięki aktywności kapilarnej pochłania wilgoć i rozmieszcza ją na całej swojej powierzchni, skąd zostaje ona odparowana. Materiał nie traci przy tym właściwości termoizolacyjnych, jest niepalny, bezemisyjny, ma także właściwości antygrzybiczne (pH = 10). Podobne zalety ma klej służący do łączenia płyt i mocowania ich do ścian (rys. 3).
Płyty klimatyczne w postaci płyt samonośnych nie wymagają usztywnień montażowych, a jedynie dokładnego przyklejenia do ocieplanej powierzchni.
O kondensacji wilgoci w przegrodzie |
W kondensacji pary wodnej w przegrodzie istotną właściwością jest zdolność do oddawania wilgoci do otoczenia. Wzrost wilgotności otoczenia (powietrza) powoduje, że w każdym materiale wzrasta zawartość wilgoci wskutek sorpcji. Cząsteczki pary wodnej transportowanej przez pory materiału mogą osadzać się na ścianach porów wewnątrz wyrobu wskutek słabego oddziaływania sił van der Waalsa. W efekcie na powierzchni ścian porów powstaje jedno- lub wielowarstwowy film cząsteczek wody. Zjawisko to zachodzi w zakresie do 95% wilgotności względnej. Wzrost wilgotności materiału wraz ze wzrostem wilgotności powietrza opisany jest krzywą sorpcji. Krzywa desorpcji obrazuje sytuację odwrotną – spadek zawartości wilgoci w materiale spowodowany spadkiem wilgotności względnej otoczenia. Im mniejsza różnica krzywej histerezy sorpcji – desorpcji, tym wyższa zdolność materiału do oddawania gromadzonej wilgoci [4]. |
Innym materiałem zalecanym do ocieplania ścian od strony wewnętrznej jest lekki beton komórkowy (fot. 7–8), występujący w postaci płyt o gęstości do 115 kg/m³.
Materiał ten chłonie wilgoć z powietrza i bardzo szybko wysycha. Jego wartość współczynnika przewodzenia ciepła w stanie suchym λ10,dry = 0,042 W/(m·K), a wartość obliczeniowa λD = 0,043 W/(m·K).
Płyty charakteryzują się bardzo niskim oporem dyfuzyjnym (współczynnik oporu dyfuzyjnego μ = 3). Oznacza to, że para wodna ma możliwość swobodnego wnikania w porowatą strukturę płyt.
Za izolację hydroaktywną uznaje się również płyty z pianki poliuretanowej z perforowaną siecią otworów kapilarnych wypełnionych paroprzepuszczalną masą mineralną. Wykończeniem powierzchni płyt są mineralne tynki cienkowarstwowe [1]. Aby tego typu ocieplenia spełniały swoje funkcje, pozostałe warstwy przegrody muszą mieć wysoką paroprzepuszczalność. W przypadku pomieszczeń mieszkalnych lub przeznaczonych na długotrwały pobyt ludzi jest to rozwiązanie korzystniejsze niż ocieplenie z paroizolacją – ze względu na naturalną regulację wilgotności wnętrza, wynikającą ze swobodnego przepływu pary przez warstwy ocieplenia. Materiały te są niepalne (klasa A1), więc mogą być stosowane także w obrębie dróg ewakuacyjnych i stref pożarowych.
Izolacje transparentne
Klasyczne izolacje cieplne są nieprzezroczyste. Ich podstawowym zadaniem jest ograniczenie strumienia ciepła.
Izolacje transparentne natomiast poza ograniczaniem strat ciepła przez przegrodę umożliwiają przepływ światła słonecznego do wnętrza budynku.
Obecnie stosowane są trzy systemy, które można zakwalifikować jako systemy izolacyjne z pozyskiwaniem energii słonecznej:
- oszklenie trzyszybowe z wypełnieniem z kryptonu (rzadko stosowane jako forma izolacji transparentnej);
- granulat z aerożelu krzemionkowego umieszczony między dwiema zespolonymi taflami szklanymi;
- struktury komórkowe lub kapilarne z tynkiem szklanym z absorberem pozyskującym energię słoneczną [5].
Aerożel jest rodzajem sztywnej piany o wyjątkowo małej gęstości. Składa się w 90–99,8% z powietrza, resztę zaś stanowi żel tworzący nanostrukturę. Wartość współczynnika przewodzenia ciepła λ tego materiału wynosi 0,018 W/(m·K). Izolacje z aerożelem produkowane są również w postaci nieprzezroczystych izolacji technicznych o wartości współczynnika przewodzenia ciepła λ = 0,013 W/(m·K).
Na fot. 9–10 przedstawiono przykładowe zastosowanie izolacji z płyt z aerożelu [6].
Izolacje próżniowe (VIP)
W literaturze przedmiotu [7] podawane są także przykłady ocieplenia od wewnątrz za pomocą izolacji próżniowej (tzw. modułowego systemu ocieplenia od wewnątrz). Na rys. 4 pokazano rozwiązanie przegrody zewnętrznej ocieplonej płytami izolacji VIP obustronnie zabezpieczonymi płytą wiórową lub włóknocementową.
Rozwiązania z zastosowaniem izolacji próżniowej zdobywają coraz więcej zwolenników, pozwalają bowiem na zmniejszenie grubości termoizolacji, dzięki czemu utrata powierzchni użytkowej jest mniejsza.
Projektowanie izolacji cieplnej stosowanej od wewnątrz
Zgodnie z wymogami rozporządzenia ministra infrastruktury w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie [8], na wewnętrznej powierzchni przegrody zewnętrznej nie może dochodzić do kondensacji pary wodnej. Aby przegrody zewnętrzne i ich węzły konstrukcyjne mogły spełnić ten warunek, ich wartości współczynnika temperaturowego fRsi powinny być nie mniejsze niż wymagana wartość krytyczna.
Parametr ten oblicza się zgodnie z normą PN-EN ISO 13788:2003 [9]. W metodach proponowanych w tym dokumencie (nazwanych metodami Fokina–Glasera) założono, iż transport wilgoci polega wyłącznie na dyfuzji pary wodnej, opisanej równaniem dyfuzji Ficka.
Obliczenia prowadzi się od pierwszego miesiąca, w którym przewidywana jest jakakolwiek kondensacja. Przyjmuje się średnie miesięczne warunki zewnętrzne i oblicza wielkość kondensacji lub odparowania w każdym z dwunastu miesięcy roku. Masa wody powstałej w wyniku kondensacji zakumulowana pod koniec miesiąca, w którym kondensacja się pojawiła, jest porównywana z całkowitym odparowaniem w ciągu pozostałej części roku.
Analizę należy wykonywać w odniesieniu do całego roku. Nie rozpatruje się ruchu powietrza ani przez element budowlany, ani w jego wnętrzu, nie bierze się też pod uwagę podciągania kapilarnego i sorpcji. Do przeprowadzenia analizy niezbędna jest znajomość parametrów klimatu lokalnego.
W odniesieniu do badanych przegród wykonywany jest wykres prężności pary wodnej w przekroju (rys. 5), np. za pomocą programów obliczeniowych producentów materiałów izolacyjnych.
Jeżeli linie ciśnień się przecinają (następuje kondensacja), należy obliczyć maksymalną ilość kondensatu występującą na każdej z powierzchni stykowych oraz miesiąc, w którym wystąpi maksimum. Należy również rozważyć ryzyko degradacji materiałów budowlanych oraz pogorszenia ich właściwości cieplnych w wyniku obliczonej maksymalnej ilości wilgoci, zgodnie z wymaganiami zawartymi w przepisach i wskazówkach w normach wyrobów.
Strumień kondensacji jest różnicą między ilością wilgoci przenoszonej do powierzchni stykowej, na której występuje kondensacja, a ilością wilgoci przenoszonej od tej powierzchni:
W komponencie budowlanym z więcej niż jedną powierzchnią kondensacji strumień parowania oblicza się oddzielnie dla każdej powierzchni stykowej.
Wyrażenia na strumień parowania i kondensacji są takie same. Umownie kondensacja pojawia się wtedy, gdy wyrażenie jest dodatnie, a parowanie – gdy ujemne (rys. 6).
W wypadku zmiany izolacyjności cieplnej przegrody należy analizować wpływ na zmiany temperatury powierzchni i możliwość powstawania warunków sprzyjających rozwojowi pleśni lub zagrzybienia.
Zgodnie z normą PN-EN ISO 13788:2003 [9] temperatura powierzchni wewnętrznej pozwalająca uniknąć krytycznej wilgotności powierzchni i kondensacji międzywarstwowej powinna być obliczana w odniesieniu do:
- płaskiej części przegrody,
- miejsc potencjalnych mostków cieplnych.
Charakterystyką obliczeniową wyrażającą stan powierzchni pod kątem ryzyka powstawania pleśni jest obliczeniowy czynnik temperaturowy na powierzchni wewnętrznej fRsi. W miejscach mostków cieplnych temperaturę powierzchni można obliczać tylko z uwzględnieniem dwuwymiarowego przepływu ciepła. Wykorzystuje się do tego programy do analizy dwuwymiarowej (rys. 7) lub – w prostych przypadkach – katalogi mostków cieplnych uwzględniające wbudowane elementy docieplone od wewnątrz.
Podsumowanie
Sposób ocieplenia ściany budynku od strony wnętrza zależy od kilku czynników:
- sposobu eksploatacji pomieszczenia,
- rodzaju materiału ściany,
- rodzaju materiału użytego do docieplenia,
- technologii zamocowania dodatkowej termoizolacji.
Bardzo ważne jest uwzględnienie paroprzepuszczalności. Przegroda ocieplana od strony wnętrza powinna być poddana szczegółowej analizie, która uwzględni oddziaływanie wszystkich czynników wpływających na gęstość i rozkład przenikającego przez nią strumienia dyfuzji pary wodnej.
Na podstawie wyników analizy można określić odpowiedni rodzaj materiału termoizolacyjnego, właściwą grubość jego warstwy, sposób wykończenia powierzchni wewnętrznej i pozostałe rozwiązania detali ocieplenia z uwzględnieniem mostków termicznych.
Czynnikiem, który może znacznie zaburzyć wyniki uzyskane w przyjętej metodzie obliczeń, jest stan wilgotnościowy przegrody przed dociepleniem. Przed przystąpieniem do obliczeń należy więc dokładnie go określić. Drugim elementem mającym duży wpływ na poprawność wyniku jest założony (przewidywalny) sposób eksploatacji pomieszczenia przez użytkownika. Czynnik ten należy uznać za podstawowy, determinujący poziom zawilgocenia przegrody podczas jej eksploatacji.
Literatura
- A. Wanat, „Izolacje termiczne wewnętrznych ścian budynków stosowane od wewnątrz”, „Izolacje” nr 9/2012, s. 26–29.
- P. Harassek, „Zeszyt techniczny MULTIPOR. Ocieplanie od wewnątrz”, Warszawa 2012.
- Materiały informacyjne i techniczne firmy Ecovario.
- P. Krause, T. Steidl, B. Orlik, „Renowacja ścian zewnętrznych w aspekcie izolacyjności termicznej”, [w:] materiały konferencji szkoleniowej „Renowacja Budynków i Konserwacja Zabytków”, Warszawa 2012, s. 32–47.
- T. Steidl, „Nowe rozwiązania w zakresie izolacji termicznych i docieplania budynków”, [w:] materiały konferencji XXVI Ogólnopolskie Warsztaty Pracy Projektanta Konstrukcji, Szczyrk, 9–12 marca 2011 r.: „Nowoczesne rozwiązania konstrukcyjno‑materiałowo-technologiczne. Budownictwo ogólne”, t. II, s. 307–327.
- Materiały szkoleniowe firmy Energie-Cluster z kursu HLWD 2011 „Innendämmung mit Aerogel”.
- G. Steinke, A. Binz, „Bausysteme mit VIP”, [w:] 15 Schweizerisches Status-Seminar „Energie und Umweltforschung im Bauwesen”, Zürich 2008, s. 275–282.
- Rozporządzenie Ministra Infrastruktury z dnia 12 kwietnia 2002 r. w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie (DzU z 2002 nr 75, poz. 690 ze zm.).
- PN-EN ISO 13788:2003, „Cieplno-wilgotnościowe właściwości komponentów budowlanych i elementów budynku. Temperatura powierzchni wewnętrznej do uniknięcia krytycznej wilgotności powierzchni i kondensacji międzywarstwowej. Metody obliczania”.
- Materiały informacyjne i techniczne firmy Isover.
- Materiały informacyjne i techniczne firmy Recticel Insulation.