Izolacje.com.pl

Zaawansowane wyszukiwanie

Płyty warstwowe o wysokich wskaźnikach izolacyjności akustycznej – studium przypadku

Sandwich panels with high acoustic insulation indexes – case study

Dowiedz się więcej o zastosowaniu ścian warstwowych jako przegród zewnetrznych w budynkach przemysłowych, fot. MP Alamentti

Dowiedz się więcej o zastosowaniu ścian warstwowych jako przegród zewnetrznych w budynkach przemysłowych, fot. MP Alamentti

Płyty warstwowe zastosowane jako przegrody akustyczne stanowią rozwiązanie charakteryzujące się dobrymi własnościami izolacyjnymi głównie w paśmie średnich, jak również wysokich częstotliwości, przy obciążeniu niewielką masą powierzchniową. W wielu zastosowaniach wyparły typowe rozwiązania przegród masowych (np. z ceramiki, elementów wapienno­ piaskowych, betonu, żelbetu czy gipsu), które cechują się kilkukrotnie wyższymi masami powierzchniowymi.

Zobacz także

PU Polska – Związek Producentów Płyt Warstwowych i Izolacji Płyty warstwowe PUR/PIR w aspekcie wymagań technicznych stawianych lekkiej obudowie

Płyty warstwowe PUR/PIR w aspekcie wymagań technicznych stawianych lekkiej obudowie Płyty warstwowe PUR/PIR w aspekcie wymagań technicznych stawianych lekkiej obudowie

Rozwój technologii budowlanej w ciągu ostatnich kilkudziesięciu lat zmienił oblicze branży w Polsce, umożliwiając szybszą, tańszą i ekologiczną realizację wznoszonych obiektów. Wprowadzając szeroko do...

Rozwój technologii budowlanej w ciągu ostatnich kilkudziesięciu lat zmienił oblicze branży w Polsce, umożliwiając szybszą, tańszą i ekologiczną realizację wznoszonych obiektów. Wprowadzając szeroko do branży rewolucyjny i rewelacyjny produkt, jakim jest płyta warstwowa, zmodernizowaliśmy de facto ideę prefabrykacji i zamianę tradycyjnych, mokrych i pracochłonnych technologii wznoszenia budynków z elementów małogabarytowych lub konstrukcji szalunkowych na szybki, suchy montaż gotowych elementów w...

Austrotherm EPS na ściany, XPS na fundamenty – dlaczego ten duet to najlepszy wybór?

EPS na ściany, XPS na fundamenty – dlaczego ten duet to najlepszy wybór? EPS na ściany, XPS na fundamenty – dlaczego ten duet to najlepszy wybór?

Z roku na rok budownictwu stawia się coraz wyższe wymagania, które dotyczą nie tylko aspektów wizualnych, ale przede wszystkim efektywności energetycznej. Obowiązujące przepisy dotyczące izolacyjności...

Z roku na rok budownictwu stawia się coraz wyższe wymagania, które dotyczą nie tylko aspektów wizualnych, ale przede wszystkim efektywności energetycznej. Obowiązujące przepisy dotyczące izolacyjności termicznej budynków oraz zapewnienia komfortu ich użytkowania zgodnie z przeznaczeniem, przy jednoczesnym możliwie najniższym zużyciu energii, są coraz bardziej rygorystyczne. Aby je spełnić, konieczne jest stosowanie odpowiednich materiałów termoizolacyjnych.

JURGA spółka komandytowa Papa w płynie – hydroizolacja i dekoracja w jednym

Papa w płynie – hydroizolacja i dekoracja w jednym Papa w płynie – hydroizolacja i dekoracja w jednym

Uniwersalny produkt, który łączy w sobie właściwości hydroizolacyjne i dekoracyjne, jest przeznaczony do renowacji powierzchni, takich jak mury, przyziemia ścian zewnętrznych budynku, dachy, opierzenia,...

Uniwersalny produkt, który łączy w sobie właściwości hydroizolacyjne i dekoracyjne, jest przeznaczony do renowacji powierzchni, takich jak mury, przyziemia ścian zewnętrznych budynku, dachy, opierzenia, a także elementów architektury ogrodowej: altan, domków i skrzyń na narzędzia, wiat itp.

Przedmiotem artykułu jest wskazanie wytycznych rozwiązań do poprawy własności akustycznych ścian warstwowych w zakresie niskich częstotliwości. Pozwoli to na ich wykorzystanie jako przegrody zewnętrzne w budynkach przemysłowych o znacznym natężeniu hałasu, charakteryzujących się znacznymi udziałami niskoczęstotliwościowych składowych hałasu. W artykule podano przykład takiego rozwiązania i opisano uzyskane rezultaty.

Sandwich panels with high acoustic insulation indexes – case study

The subject of the article is to indicate the guidelines for solutions to improve the acoustic properties of sandwich walls in the low frequency range. This will make it possible to use them as external partitions in industrial buildings with high noise levels, characterized by noises with major components of low frequencies. The article gives an example of such a solution and describes the results obtained.

***

Dużym niedociągnięciem typowych płyt warstwowych są niskie wartości współczynników izolacyjności akustycznej w dolnych pasmach częstotliwości. Dotyczy to zwłaszcza przegród akustycznych w budynkach wykorzystywanych dla celów przemysłowych, charakteryzujących się znacznymi udziałami składowych niskoczęstotliwościowych, w których z reguły stosuje się przegrody masywne.

W artykule przedstawiono kierunki rozwiązań pozwalające na ograniczenie tego niedociągnięcia.

Postawienie problemu

Podczas nadzoru akustycznego dużego obiektu przemysłowego, którego granice sąsiadowały bezpośrednio z terenami „Natura 2000”, ze względu na hałas o strukturze niskoczęstotliwościowej spotkałem się z potrzebą zastosowania ścian warstwowych. W trakcie opracowywania wytycznych technologii akustycznej dla tego obiektu wystąpiła konieczność zastosowania przegród zewnętrznych wysokiej izolacyjności akustycznej w paśmie niskich częstotliwości, wyrażona liczbowo, zgodnie z normą [1], wartością roboczą wskaźnika oceny izolacyjności akustycznej właściwej RA2R 52 dB, z wewnętrznym pochłanianiem dźwięku, nazywanych płytami akustycznymi. Prostym rozwiązaniem byłoby zastosowanie ściany masywnej, np. żelbetowej o grubości 200 mm, o masie powierzchniowej ok. 480 kg/m2 [2, nr rozwiązania 1.2.1.9] oraz wartości wskaźnika oceny izolacyjności akustycznej właściwej RA2R 53 dBA i dodatkowego włożenia materiałami dźwiękochłonnymi.

Okazało się jednak, że wg wcześniejszego projektu przewidywano tu zastosowanie lekkich ścian warstwowych i wykonano już fundament pod ściany. Rozwiązanie fundamentu pozwalało na zastosowanie ścian o masie powierzchniowej nieprzekraczającej 100 kg/m2. Dlatego też zrodziła się konieczność poszukiwania ściany spełniającej te warunki i jednocześnie gwarantującej uzyskanie wymaganego wskaźnika oceny izolacyjności akustycznej.

Dostępne na rynku ściany warstwowe gwarantowały uzyskanie maksymalnej wartości wskaźnika oceny izolacyjności akustycznej właściwej RA2R 40 dB (jak przykładowo ściana składająca się z podwójnej płyty TRIMO FTV100 oraz płyty akustycznej FTV 80-ac, przedzielonych szczeliną powietrzną 50 mm o masie powierzchniowej ok. 40 kg/m2 [3, 4]).
Poniżej przedstawiono podjęte kierunki rozwiązań, które pozwoliły na uzyskanie wymaganych parametrów akustycznych i masowych.

rys1 plyty

RYS. 1. Szkic typowego przebiegu krzywych wskaźników izolacyjności akustycznych płyt warstwowych [5, 6]; rys.: G. Brzózka

Wytyczne rozwiązań problemu

Poniższe wytyczne opracowano na bazie analizy teoretycznego przebiegu wskaźników izolacyjności akustycznych (bez uwzględnienia wpływu koincydencji) płyt warstwowych. Przedstawiony na RYS. 1 przebieg opracowano z wykorzystaniem informacji przedstawionych w opracowaniach [56], z uzupełnieniem wynikającym z obserwacji przebiegów dla płyt warstwowych o zwiększonych masach powierzchniowych, gdzie obraz lokalizacji częstotliwości rezonansowej ƒr jest przesunięty w odniesieniu do częstotliwości ƒp wyznaczającej początek strefy B przyrostu wskaźnika izolacyjności akustycznej.

W strefie A ściana warstwowa zachowuje się jak płyta jednorodna o łącznej masie powierzchniowej całego układu, gdzie przebieg wartości wskaźników izolacyjności akustycznej można wyrazić uogólnionym wzorem na „prawo masy” [6]:

gdzie:

m1+2 – suma mas powierzchniowych powłok zewnętrznych [kg/m2],
KA1, KA2 – współczynniki prostej aproksymacji rzeczywistego przebiegu dla analizowanego układu.

W strefie C ściana warstwowa zachowuje się jak przegroda idealnie podwójna. Wskaźniki izolacyjności akustycznej – wyrażone „prawem masy” dla każdej z tych przegród się sumują.

ƒr – częstotliwość rezonansowa dwuwarstwowego ustroju warstwowego (układu: masa–element sprężysty–masa) [6]:

  • Dla mas przedzielonych warstwą powietrza:
  • Dla mas przedzielonych wyłożeniem sprężystym:

d – grubość szczeliny powietrznej [m],
s’ – sztywność dynamiczna warstwy wyłożenia sprężystego [MN/m3],
m’1, m’2 – masy powierzchniowe warstw zewnętrznych ustroju warstwowego [kg/m2],
fλn – częstotliwości rezonansowe fal stojących tworzących się w szczelinie powietrznej Hz [5, 6]:

c – prędkość rozprzestrzeniania się dźwięku w powietrzu [m/s],
RA, RB, RC – wskaźniki izolacyjności akustycznej [dB] – odpowiednio w strefach A, B, C,
ƒp – częstotliwość początkowa strefy przyrostu wskaźnika izolacyjności akustycznej [Hz],
ƒk – częstotliwość końcowa strefy przyrostu wskaźnika izolacyjności akustycznej w Hz, przy której d = λ/4 [6],
λ – długość fali akustycznej [m], gdzie λ = cT = c,
T – okres drgań fali akustycznej [s],
ƒ – częstotliwość drgań fali akustycznej [Hz].

Po podstawieniu powyższych zależności można wyznaczyć wzór na częstotliwość końcową strefy przyrostu wskaźnika izolacyjności akustycznej:

W strefie A ściana warstwowa zachowuje się jak płyta jednorodna o łącznej masie powierzchniowej całego układu, gdzie przebieg wartości wskaźników izolacyjności akustycznej można wyrazić uogólnionym wzorem na „prawo masy” [6]:

gdzie:

m1+2 – suma mas powierzchniowych powłok składowych w kg/m2,
KA1, KA2 – współczynniki prostej aproksymacji rzeczywistego przebiegu dla analizowanego układu w strefie A, zakłada się, że KA1  =  20 dB, co oznacza, że przyrost współczynników izolacyjności akustycznej wynosi 6 dB/oktawę.

W strefie B teoretyczny przyrost współczynników izolacyjności akustycznej wynosi 18 dB/oktawę. I kończy się na wartości Rk (jak poniżej).

W strefie C ściana wskaźniki izolacyjności akustycznej wyrażone „prawem masy” dla każdej z tych przegród sumują się w punkcie początkowym obszaru C, czyli przy częstotliwości:

gdzie:

Rk1 = KC1 log(m1 · ƒk) + KC21, Rk2 = KC1 log(m2 · ƒk) + KC22
m1, m2 – masy powierzchniowe powłok składowych [kg/m2],
KC1, KC22 – współczynniki prostej aproksymacji rzeczywistego przebiegu dla analizowanego układu w strefie C, zakłada się, że KC1 = 20 dB, co oznacza, że przyrost współczynników izolacyjności akustycznej wynosi 6 dB/oktawę.

Rzeczywiste przebiegi różnią się od przedstawionego modelu teoretycznego zarówno ze względu na wpływ koincydencji, jak i odchylenia w poszczególnych strefach przy stosowaniu różnych materiałów konstrukcyjnych na warstwy zewnętrzne płyty warstwowej [6], jak również wpływ przepływu energii przez mostki akustyczne utworzone przez łączniki pomiędzy płytami zewnętrznymi ustroju warstwowego. Dlatego model teoretyczny może być wykorzystany jedynie do określenia wytycznych rozwiązań dla zwiększenia wartości wskaźników oceny izolacyjności akustycznej płyt warstwowych, a nie do obliczeń tych wartości.

W przypadku układów warstwowych wpływ koincydencji na obniżenie wartości izolacyjności akustycznej jest niewielki, ponieważ te osłabienia są blokowane przez kolejne zróżnicowane materiałowo i grubościowo warstwy w takim układzie.

Na podstawie analizy przedstawionego powyżej przebiegu teoretycznego (RYS. 1) można sformułować następujące wytyczne do poprawienia tej izolacyjności w paśmie niskich częstotliwości:

  1. Zwiększyć masy powierzchniowe płyt zewnętrznych (przyrost wartości R w strefie A).
  2. Zwiększyć grubość szczeliny powietrznej (przesunięcie strefy B w stronę niższych częstotliwości.
  3. Powyższe wytyczne wpływają na obniżenie częstotliwości rezonansowej analizowanej płyty warstwowej. Wskazane jest obniżenie tej częstotliwości powyżej 50/2(1/2) 35 Hz, co wyeliminuje wpływ rezonansu na obniżenie wartości wskaźnika oceny izolacyjności akustycznej RA2.
rys2 plyty

RYS. 2. Szkic rozwiązania dwuwarstwowej ściany TRIMO. Oznaczenia: 1 – blacha 0,6 mm, 2 – wełna skalna 100 kg/m3, 3 – blacha perforowana 0,6 mm, 4 – profil C 30×50×60, 5 – śruba 6,3×100, 6 – szczelina powietrzna, 7 – śruba 6,3×25, 8 – śruba 6,×80 ; rys.: [6]

Proponowane rozwiązanie

Do zamierzonej adaptacji akustycznej zleceniodawca tematu narzucił wykorzystanie podwójnych paneli TRIMO [4] (RYS. 2).

Rozwiązanie to okazało się korzystne do wykonania zamierzonej adaptacji akustycznej. Pozwala na dociążenie masowe paneli oraz na swobodne ich rozsunięcie (zwiększenie szczeliny powietrznej), czyli na zwiększenie masy powierzchniowej paneli i obniżenie częstotliwości rezonansowej ściany.

rys3 plyty

RYS. 3. Przebieg wyników pomiarów wskaźników izolacyjności akustycznej w pasmach tercjowych w funkcji częstotliwości dla panelu Trimoterm FTV 100; rys.: [4]

Na RYS. 3–4 zilustrowano porównawczo uzyskane rezultaty pomiarów izolacyjności akustycznej samego panelu Trimoterm FTV 100 oraz rozwiązania dwuwarstwowej ściany według TRIMO (RYS. 2).

rys4 plyty

RYS. 4. Przebieg wyników pomiarów wskaźników izolacyjności akustycznej w pasmach tercjowych w funkcji częstotliwości dla rozwiązania dwuwarstwowej ściany TRIMO – jak na RYS. 2; rys.: [3, 4]

Poniżej przedstawiono koncepcję rozwiązania, które z teoretycznego punktu widzenia powinno zwiększyć izolacyjność dwuwarstwowej ściany warstwowej TRIMO – w odniesieniu do rozwiązań aktualnie stosowanych tak, aby zagwarantować uzyskanie wymaganej wartości roboczej wskaźnika oceny izolacyjności akustycznej RA2R 52 dBA.

Ogólną koncepcję technologii akustycznej rozwiązania przedstawiono szkicowo na RYS. 5. Jej istota polega na przesunięciu częstotliwości rezonansowej płyty warstwowej w obszar poniżej 50 Hz, przy możliwie zwiększeniu jej masy powierzchniowej i szczeliny powietrznej. Polega ona na wykorzystaniu typowych paneli akustycznych TRIMO, w nieco innej niż w dotychczasowych rozwiązaniach konfiguracji, wykorzystaniem jednej płyty Trimoterm FTV 100 dociążonej blachą stalową oraz dwóch połączonych z sobą paneli akustycznych Trimoterm FTV 80-ac oraz zwiększeniem wymiaru szczeliny powietrznej.

rys5 plyty

RYS. 5. Szkic koncepcji technologii akustycznej rozwiązania ściany warstwowej TRIMO o zwiększonej izolacyjności akustycznej. Objaśnienia: 1 – panel FTV 100 z poszyciem z blachy o gr. 0,6 mm i wypełnieniem płytą z wełny minimalnej o gęstości g≥ 120 kg/m3 oraz gr. 100 mm; 2 – panel FTV 80-ac z poszyciem z blachy o gr. 0,83 mm i wypełnieniem płytą z wełny minimalnej o gęstości g≥ 120 kg/m3 i gr. 80 mm – jednostronnie perforowanym, ze stroną pochłaniającą od strony szczeliny powietrznej; 3 – panel FTV 80-ac, z poszyciem z blachy o gr. 0,83 mm i wypełnieniem płytą z wełny minimalnej o gęstości g≥ 120 kg/m3 i gr. 80 mm – jednostronnie perforowany, ze stroną pochłaniającą od strony wnętrza budynku; 4 – płyta z blachy stalowej o gr. 2,0 mm; 5 – pokrycie antywibracyjne płyty z blachy stalowej; 6 – przekładka elastyczna z PCV lub miękkiej gumy (możliwe jest wykorzystanie płyt przekładkowych stosowanych jako warstwy wyrównawcze pod panele podłogowe lub podobnego typu); rys.: G. Brzózka

Dla uzyskania możliwie minimalnej grubości całej ściany zaproponowano dociążenie za pomocą płyty z blachy stalowej o gr. 2 mm. Możliwe jest jej zastąpienie płytami włóknisto-gipsowymi bądź włóknisto-cementowymi o grubości 2×10 = 20 mm. Wtedy nie ma potrzeby pokrywania tych płyt pokryciem antywibracyjnym, ale będzie to kosztem zwiększenia wymiaru zewnętrznego ściany warstwowej. Możliwe jest również zastąpienie blachy płaskiej trapezową o masie powierzchniowej ok. 16 kg/m2, co poprawi znacznie sztywność całej płyty. Dla ograniczenia przenoszenia drgań przez mostki akustyczne zaproponowano zastosowanie przekładek elastycznych (poz. 6 na RYS. 5).

Wyniki

W laboratorium akustycznym ITB wykonano badania próbki technicznej tego rozwiązania [7], w której w miejsce poz. 4–6 z RYS. 5 zastosowano: blachę trapezową T55 o gr. 1,5 mm, przekładkę z twardej wełny mineralnej o gr. 20 mm i gęstości 180 kg/m3 oraz szczelinę powietrzną 290 mm (ze względu na wymagania wynikające z wykonania próbki do badań). Uzyskane rezultaty przedstawiono na RYS. 6.

Ocena

Teoretyczne wartości rezonansowe ƒr analizowanych układów warstwowych oraz ich podstawowych fal stojących wynoszą odpowiednio:

  • Dla panelu TRIMO FTV 100:

Wysoka wartość częstotliwości rezonansowej układu warstwowego decyduje o tym, że przebieg wskaźników izolacyjności akustycznej jest zbliżony do typowego dla strefy A (RYS. 1), przy czym wskaźnik KA2 jest nieco większy od teoretycznego. Wartość tego wskaźnika przyjęto w pozostałych rozwiązaniach w odniesieniu do panelu FTV 100. Dla tego rozwiązania uwidoczniony jest silny wpływ obniżenia przebiegu w obszarze podstawowej częstotliwości rezonansowej fali stojącej ƒλ1.

  • Dla rozwiązania dwuwarstwowej ściany TRIMO:

Lokalizacje częstotliwości rezonansowych naniesione na RYS. 4 pokrywają się z ilustracją przebiegu wskaźników izolacyjności akustycznej. Zwraca uwagę niska wartość wskaźnika KB1, w odniesieniu do przebiegu teoretycznego oraz bardzo obniżony przebieg w obszarze C.

  • Dla ściany warstwowej TRIMO o zwiększonej izolacyjności akustycznej:
rys6 plyty

RYS. 6. Przebieg wyników pomiarów wskaźników izolacyjności akustycznej w pasmach tercjowych w funkcji częstotliwości dla ściany warstwowej TRIMO o zwiększonej izolacyjności akustycznej; rys.: G. Brzózka

Przebieg wskaźników izolacyjności akustycznej dobrze odzwierciedla przebieg teoretyczny, przy czym w strefie A wartości są ok. 10 dB wyższe (korzystne dla podniesienia wskaźnika oceny RA2), w strefie B wskaźnik KB1 jest też nieco wyższy (co ma korzystny wpływ na podniesienie wskaźnika Rw), a jedynie w strefie C wartości są nieco zaniżone.

Porównanie analizowanych przebiegów potwierdza przyrost izolacyjności akustycznej w strefie A wraz ze wzrostem mas powierzchniowych porównywanych ścian warstwowych. Przyrosty te dla rozwiązania jak na RYS. 5 są większe, niż wynikałoby to z teoretycznego przebiegu „prawa masy”. Również przyrosty wartości wskaźników izolacyjności akustycznej w strefie B (teoretycznie 18 dB/oktawę) zwiększają się nieznacznie wraz ze wzrostem mas powierzchniowych porównywanych ścian warstwowych (w analizowanych przykładach przyrost do 22 dB/oktawę). Uzyskane rezultaty potwierdzają poprawność zaproponowanego rozwiązania ściany warstwowej.

Z danych powyżej wartość robocza wskaźnika oceny izolacyjności akustycznej właściwej wynosi: RA2R = 66 – 11 – 2 = 53 dB 52 dB i tym samym spełnione zostały wymagania z postawionego w niniejszym opracowaniu problemu (dominacja hałasu w obiekcie występowała nieco powyżej 100 Hz).

Również dla przypadku rozpatrywania rozwiązania hałasu wewnątrz budynku przy dominującej emisji w pasmach poniżej 100 Hz wartość robocza wskaźnika oceny izolacyjności akustycznej właściwej RA2R 50–5000 = 66 – 15 – 2 = 49 dB jest porównywalna z wartościami przy zastosowaniu ściany żelbetowej o gr. 180 mm, gdzie RA2R 50–5000 57 – 5 – 2 = 50 dB.

Należy podkreślić, że przyjęte rozwiązania ściany warstwowej są ok. 5-krotnie lżejsze od ściany żelbetowej, co stanowi istotną zaletę. Również w tym aspekcie zostały spełnione wymagania z postawionego w niniejszym opracowaniu problemu (masa powierzchniowa badanej ściany warstwowej m 85 kg/m2 < 100 kg/m2). Niedogodnością jest konieczność wykonania ścian o dużych grubościach, chociaż w przypadku stosowania na ścianach zewnętrznych nie stanowi to aż tak dużego problemu.

Podsumowanie

W opracowaniu przedstawiono wytyczne do rozwiązania ściany warstwowej charakteryzującej się dobrymi parametrami dźwiękoizolacyjnymi w paśmie niskich częstotliwości, porównywalnymi z osiąganymi w ścianach masywnych, przy dużo mniejszej masie powierzchniowej i tylko ok. dwukrotnie grubszej od typowych rozwiązań lekkich ścian warstwowych. Ich zastosowanie pozwala na wykonanie dużo słabszych fundamentów pod budynki. Rozwiązanie to zapewnia również dobre własności dźwiękochłonne wewnątrz budynku (wyznaczony pomiarowo ważony współczynnik pochłaniania dźwięku panelu akustycznego αw = 0,85 [7]).

Skuteczność wykorzystania powyższego rozwiązania zilustrowano przykładem wykonania takiej ściany oraz wynikami badań laboratoryjnych.

Literatura

  1. PN-EN ISO 717-1:2021-06, „Akustyka. Ocena izolacyjności akustycznej w budynkach i izolacyjności akustycznej elementów budowlanych. Izolacyjność od dźwięków powietrznych”.
  2. B. Szudrowicz, I. Żuchowicz-Wodzikowska, P. Tomczyk, „Własności dźwiękoizolacyjne przegród budowlanych i ich elementów”, Instrukcja ITB nr 369/2002, Warszawa 2002.
  3. „Izolacyjność akustyczna właściwa wg PN-EN 20140-3:1999. System akustyczny paneli warstwowych TRIMO – próbka złożona z dwóch warstw paneli akustycznych ściennych oddzielonych od siebie szczeliną powietrzną, montowanych do konstrukcji stalowej z profili zimnogiętych”, Instytut Techniki Budowlanej – Zespół Laboratoriów Badawczych – Laboratorium Akustyczne, Karta badania laboratoryjnego nr LA/01485/10.
  4. Trimoterm. Dokumentacja nr 66 „Izolacyjność akustyczna i pochłanianie dźwięku elementów Trimo. Zastosowania ogólne (PL)”, Wersja 1.1, styczeń 2017 r.
  5. W. Schirmer, „Lärmbekämpfung”, Verlag Tribüne, Berlin 1974.
  6. B. Szudrowicz, „Podstawy kształtowania izolacyjności akustycznej pomieszczeń w budynkach mieszkalnych”, Prace naukowe ITB, rok XLVII, Warszawa 1992.
  7. „System akustyczny na bazie płyt warstwowych TRIMO”, Raport z badań nr LA – 02075/20/2010, Instytut Techniki Budowlanej – Zespół Laboratoriów Badawczych akredytowany przez Polskie Centrum Akredytacji – certyfikat akredytacji Nr AB 023 – Laboratorium Akustyczne.
  8. PN-EN ISO 12354-1:2017-10, „Akustyka budowlana. Określenie własności akustycznych budynków na podstawie własności elementów. Cz. 1: Izolacyjność od dźwięków powietrznych między pomieszczeniami”.

Chcesz być na bieżąco? Zapisz się do naszego newslettera!

Komentarze

Powiązane

dr hab. Inż. Zbigniew Suchorab, Krzysztof Tabiś, mgr inż. Tomasz Rogala, dr hab. Zenon Szczepaniak, dr hab. Waldemar Susek, mgr inż. Magdalena Paśnikowska-Łukaszuk Bezinwazyjne pomiary wilgotności materiałów budowlanych za pomocą technik reflektometrycznej i mikrofalowej

Bezinwazyjne pomiary wilgotności materiałów budowlanych za pomocą technik reflektometrycznej i mikrofalowej Bezinwazyjne pomiary wilgotności materiałów budowlanych za pomocą technik reflektometrycznej i mikrofalowej

Badania zawilgocenia murów stanowią ważny element oceny stanu technicznego obiektów budowlanych. W wyniku nadmiernego zawilgocenia następuje destrukcja murów, ale również tworzą się niekorzystne warunki...

Badania zawilgocenia murów stanowią ważny element oceny stanu technicznego obiektów budowlanych. W wyniku nadmiernego zawilgocenia następuje destrukcja murów, ale również tworzą się niekorzystne warunki dla zdrowia użytkowników obiektu. W celu powstrzymania procesu destrukcji konieczne jest wykonanie izolacji wtórnych, a do prawidłowego ich wykonania niezbędna jest znajomość stopnia zawilgocenia murów, a także rozkładu wilgotności na grubości i wysokości ścian.

dr inż. Szymon Swierczyna Badanie nośności i sztywności ścinanych połączeń na wkręty samowiercące

Badanie nośności i sztywności ścinanych połączeń na wkręty samowiercące Badanie nośności i sztywności ścinanych połączeń na wkręty samowiercące

Wkręty samowiercące stosuje się w konstrukcjach stalowych m.in. do zakładkowego łączenia prętów kratownic z kształtowników giętych. W tym przypadku łączniki są obciążone siłą poprzeczną i podczas projektowania...

Wkręty samowiercące stosuje się w konstrukcjach stalowych m.in. do zakładkowego łączenia prętów kratownic z kształtowników giętych. W tym przypadku łączniki są obciążone siłą poprzeczną i podczas projektowania należy zweryfikować ich nośność na docisk oraz na ścinanie, a także uwzględnić wpływ sztywności połączeń na stan deformacji konstrukcji.

mgr inż. Monika Hyjek Dobór prawidłowych rozwiązań ścian zewnętrznych na granicy stref pożarowych

Dobór prawidłowych rozwiązań ścian zewnętrznych na granicy stref pożarowych Dobór prawidłowych rozwiązań ścian zewnętrznych na granicy stref pożarowych

Przy projektowaniu ścian zewnętrznych należy wziąć pod uwagę wiele aspektów: wymagania techniczne, obowiązujące przepisy oraz wymogi narzucone przez ubezpieczyciela czy inwestora. Należy uwzględnić właściwości...

Przy projektowaniu ścian zewnętrznych należy wziąć pod uwagę wiele aspektów: wymagania techniczne, obowiązujące przepisy oraz wymogi narzucone przez ubezpieczyciela czy inwestora. Należy uwzględnić właściwości wytrzymałościowe, a jednocześnie cieplne, akustyczne i ogniowe.

mgr inż. Klaudiusz Borkowicz, mgr inż. Szymon Kasprzyk Ocena stopnia rozprzestrzeniania ognia przez ściany zewnętrzne w Polsce oraz w Wielkiej Brytanii

Ocena stopnia rozprzestrzeniania ognia przez ściany zewnętrzne w Polsce oraz w Wielkiej Brytanii Ocena stopnia rozprzestrzeniania ognia przez ściany zewnętrzne w Polsce oraz w Wielkiej Brytanii

W ostatniej dekadzie coraz większą uwagę zwraca się na bezpieczeństwo pożarowe budynków. Przyczyniło się do tego m.in. kilka incydentów związanych z pożarami, gdzie przez użycie nieodpowiednich materiałów...

W ostatniej dekadzie coraz większą uwagę zwraca się na bezpieczeństwo pożarowe budynków. Przyczyniło się do tego m.in. kilka incydentów związanych z pożarami, gdzie przez użycie nieodpowiednich materiałów budowlanych pożar rozwijał się w wysokim tempie, zagrażając życiu i zdrowiu wielu ludzi.

dr inż. Krzysztof Pawłowski prof. PBŚ Charakterystyka energetyczna budynku (cz. 8)

Charakterystyka energetyczna budynku (cz. 8) Charakterystyka energetyczna budynku (cz. 8)

Opracowanie świadectwa charakterystyki energetycznej budynku lub części budynku wymaga znajomości wielu zagadnień, m.in. lokalizacji budynku, parametrów geometrycznych budynku, parametrów cieplnych elementów...

Opracowanie świadectwa charakterystyki energetycznej budynku lub części budynku wymaga znajomości wielu zagadnień, m.in. lokalizacji budynku, parametrów geometrycznych budynku, parametrów cieplnych elementów obudowy budynku (przegrody zewnętrzne i złącza budowlane), danych technicznych instalacji c.o., c.w.u., systemu wentylacji i innych systemów technicznych.

mgr inż. Cezariusz Magott, mgr inż. Maciej Rokiel Analiza dokumentacji technicznej prac renowacyjnych (cz. 5)

Analiza dokumentacji technicznej prac renowacyjnych (cz. 5) Analiza dokumentacji technicznej prac renowacyjnych (cz. 5)

Do prac renowacyjnych zalicza się także tzw. środki flankujące. Będą to przede wszystkim różnego rodzaju tynki specjalistyczne i wymalowania (farby), a także tynki tradycyjne. Błędem jest traktowanie tynku...

Do prac renowacyjnych zalicza się także tzw. środki flankujące. Będą to przede wszystkim różnego rodzaju tynki specjalistyczne i wymalowania (farby), a także tynki tradycyjne. Błędem jest traktowanie tynku (jak również farby) jako osobnego elementu, w oderwaniu od konstrukcji ściany oraz rodzaju i właściwości podłoża.

Filip Ryczywolski Pomiar pionowości budynków i budowli

Pomiar pionowości budynków i budowli Pomiar pionowości budynków i budowli

Odchylenia, przemieszczenia, skręcenia i odkształcenia to niestety codzienny widok na wielu inwestycjach – również tych nowych. Poza kontrolą ścian czy szachtów w budynkach, badania pionowości dotyczą...

Odchylenia, przemieszczenia, skręcenia i odkształcenia to niestety codzienny widok na wielu inwestycjach – również tych nowych. Poza kontrolą ścian czy szachtów w budynkach, badania pionowości dotyczą też słupów, kominów, masztów widokowych, latarni morskich oraz różnego rodzaju mostów, wiaduktów, masztów stalowych: radiowych, telewizyjnych, sieci komórkowych czy oświetleniowych. Ogólnie rzecz ujmując, pomiary pionowości stosuje się do obiektów wysmukłych, czyli takich, których wysokość przewyższa...

PPHU POLSTYR Zbigniew Święszek Jak wybrać system ociepleń?

Jak wybrać system ociepleń? Jak wybrać system ociepleń?

Prawidłowo zaprojektowane i wykonane ocieplenie przegród w budynku pozwala zmniejszyć zużycie energii, a co za tym idzie obniżyć koszty eksploatacji i domowe rachunki.

Prawidłowo zaprojektowane i wykonane ocieplenie przegród w budynku pozwala zmniejszyć zużycie energii, a co za tym idzie obniżyć koszty eksploatacji i domowe rachunki.

Krzysztof Kros Zakrętarki akumulatorowe

Zakrętarki akumulatorowe Zakrętarki akumulatorowe

Wkrętarki akumulatorowe czy wiertarko-wkrętarki od dawna są powszechnie znane i użytkowane zarówno przez amatorów, jak i profesjonalistów. Zakrętarki natomiast są mniej znanym i popularnym typem narzędzia...

Wkrętarki akumulatorowe czy wiertarko-wkrętarki od dawna są powszechnie znane i użytkowane zarówno przez amatorów, jak i profesjonalistów. Zakrętarki natomiast są mniej znanym i popularnym typem narzędzia akumulatorowego, spokrewnionego z wkrętarką czy wiertarką. Jednak w ostatnim czasie zyskują coraz większą popularność, między innymi dzięki łączonym ofertom producentów – zestawy wkrętarka i zakrętarka. Czym zatem jest zakrętarka i do czego służy?

mgr inż. Wojciech Rogala, mgr inż. Marcin Mateja Wymagania dla zapraw murarskich cienkowarstwowych stosowanych do murowania z elementów silikatowych

Wymagania dla zapraw murarskich cienkowarstwowych stosowanych do murowania z elementów silikatowych Wymagania dla zapraw murarskich cienkowarstwowych stosowanych do murowania z elementów silikatowych

Wielu uczestników procesu budowlanego utożsamia parametry muru jedynie z użytymi bloczkami. Tymczasem zgodnie z definicją z PN-EN 1996-1-1 [1] mur to materiał konstrukcyjny utworzony z elementów murowych...

Wielu uczestników procesu budowlanego utożsamia parametry muru jedynie z użytymi bloczkami. Tymczasem zgodnie z definicją z PN-EN 1996-1-1 [1] mur to materiał konstrukcyjny utworzony z elementów murowych ułożonych w określony sposób i trwale połączonych ze sobą zaprawą murarską. Zaprawa stanowi nieodłączny element konstrukcji, a jej parametry wpływają nie tylko na sam proces murowania, ale także na trwałość i parametry konstrukcji.

inż. Joanna Nowaczyk Energooszczędne i pasywne rozwiązania w budownictwie z wykorzystaniem silikatów

Energooszczędne i pasywne rozwiązania w budownictwie z wykorzystaniem silikatów Energooszczędne i pasywne rozwiązania w budownictwie z wykorzystaniem silikatów

Zgodnie z szacunkami Komisji Europejskiej sektor budowlany odpowiada za 40% zużycia energii oraz ok. 36% emisji gazów cieplarnianych w Europie. To bardzo wysokie wartości, ich ograniczenie wiąże się z...

Zgodnie z szacunkami Komisji Europejskiej sektor budowlany odpowiada za 40% zużycia energii oraz ok. 36% emisji gazów cieplarnianych w Europie. To bardzo wysokie wartości, ich ograniczenie wiąże się z głębokimi zmianami, modernizacjami, a także często z zupełną zmianą obecnie stosowanych rozwiązań. Jeśli dodamy do tego wszystkiego czynnik kosztowy związany z adaptacjami, powstaje gotowy przepis na pojawienie się skrajnych ocen wdrażanych planów czy też zobowiązań państw członkowskich. Jednakże ścieżka...

prof. dr hab. inż. Łukasz Drobiec, mgr inż. Jan Biernacki Wzmacnianie konstrukcji murowanych przy pomocy siatek kompozytowych PBO

Wzmacnianie konstrukcji murowanych przy pomocy siatek kompozytowych PBO Wzmacnianie konstrukcji murowanych przy pomocy siatek kompozytowych PBO

Wzmacnianie konstrukcji zabytkowych stanowi istotną gałąź budownictwa, która powstała w odpowiedzi na potrzebę ochrony i zachowania historycznych budowli. Historia wzmacniania konstrukcji zabytkowych sięga...

Wzmacnianie konstrukcji zabytkowych stanowi istotną gałąź budownictwa, która powstała w odpowiedzi na potrzebę ochrony i zachowania historycznych budowli. Historia wzmacniania konstrukcji zabytkowych sięga daleko wstecz i przeplata się z rozwojem technologii i inżynierii.

dr inż. Szymon Swierczyna Kratownica z kształtowników giętych

Kratownica z kształtowników giętych Kratownica z kształtowników giętych

Elementy z kształtowników giętych można stosować na konstrukcje o małej i średniej rozpiętości, które są obciążone w sposób przeważająco statyczny, m.in. jednokondygnacyjne budynki halowe bez transportu...

Elementy z kształtowników giętych można stosować na konstrukcje o małej i średniej rozpiętości, które są obciążone w sposób przeważająco statyczny, m.in. jednokondygnacyjne budynki halowe bez transportu wewnętrznego, stropy i podesty. Odpowiednią nośność i sztywność można w tym wypadku zapewnić, przyjmując ustrój kratowy (FOT.). Konstrukcje tego typu cechuje niewielkie zużycie stali, a w przypadku, gdy w połączeniach stosuje się łączniki mechaniczne (np. wkręty samowiercące), można niemal całkowicie...

Iwona Sobczak Normy akustyczne w budownictwie

Normy akustyczne w budownictwie Normy akustyczne w budownictwie

Normy akustyczne w budownictwie, takie jak PN-B-02151-4:2015-06 [1], nie powstały bez powodu. Skutki ekspozycji na hałas nie są natychmiastowe, ale za to bardzo poważne. Narażenie na głośne dźwięki może...

Normy akustyczne w budownictwie, takie jak PN-B-02151-4:2015-06 [1], nie powstały bez powodu. Skutki ekspozycji na hałas nie są natychmiastowe, ale za to bardzo poważne. Narażenie na głośne dźwięki może prowadzić do trwałego uszkodzenia słuchu, ale nie wolno też zapominać o znacznie powszechniejszym zagrożeniu – mianowicie pozasłuchowym wpływie hałasu na zdrowie. Będąc silnym stresorem, jest przyczyną m.in. zaburzeń snu, przyspieszonego zmęczenia, rozdrażnienia, kłopotów z koncentracją, a nawet chorób...

mgr inż. Cezariusz Magott, mgr inż. Maciej Rokiel Dokumentacja techniczna prac renowacyjnych – tynki specjalne (cz.6)

Dokumentacja techniczna prac renowacyjnych – tynki specjalne (cz.6) Dokumentacja techniczna prac renowacyjnych – tynki specjalne (cz.6)

Kontynuując zagadnienia związane z doborem tynków, tym razem omówimy zagadnienia związane z tynkami specjalnymi.

Kontynuując zagadnienia związane z doborem tynków, tym razem omówimy zagadnienia związane z tynkami specjalnymi.

dr inż. Michał Wieczorek, mgr inż. Klaudiusz Borkowicz Zrównoważone budownictwo w odniesieniu do złożonych systemów izolacji cieplnych

Zrównoważone budownictwo w odniesieniu do złożonych systemów izolacji cieplnych Zrównoważone budownictwo w odniesieniu do złożonych systemów izolacji cieplnych

Komisja Europejska, formułując nową strategię w postaci Europejskiego Zielonego Ładu [1], zintensyfikowała działania mające na celu przeciwdziałanie negatywnemu wpływowi człowieka na środowisko jako jednemu...

Komisja Europejska, formułując nową strategię w postaci Europejskiego Zielonego Ładu [1], zintensyfikowała działania mające na celu przeciwdziałanie negatywnemu wpływowi człowieka na środowisko jako jednemu z najważniejszych wyzwań współczesnego świata. Celem tej polityki jest osiągnięcie zerowej emisji netto gazów cieplarnianych w Unii Europejskiej (UE) w 2050 r. Realizacja tego celu zakłada jednocześnie oddzielenie wzrostu gospodarczego od wykorzystania zasobów naturalnych.

dr inż. Krzysztof Pawłowski prof. PBŚ Zasady opracowania katalogu złączy budowlanych (mostków cieplnych) (cz.10)

Zasady opracowania katalogu złączy budowlanych (mostków cieplnych) (cz.10) Zasady opracowania katalogu złączy budowlanych (mostków cieplnych) (cz.10)

Złącza budowlane (mostki cieplne) stanowią integralną część elementów obudowy budynku. Dobór ich warstw materiałowych nie powinien być przypadkowy, lecz oparty na obliczeniach analiz parametrów fizykalnych.

Złącza budowlane (mostki cieplne) stanowią integralną część elementów obudowy budynku. Dobór ich warstw materiałowych nie powinien być przypadkowy, lecz oparty na obliczeniach analiz parametrów fizykalnych.

PU Polska – Związek Producentów Płyt Warstwowych i Izolacji Montaż płyt warstwowych do ścian murowanych

Montaż płyt warstwowych do ścian murowanych Montaż płyt warstwowych do ścian murowanych

Płyty warstwowe posiadają liczne zalety, dzięki którym stały się materiałem powszechnie używanym w budownictwie przemysłowym i coraz częściej również w sektorze budownictwa mieszkaniowego. Są jednak takie...

Płyty warstwowe posiadają liczne zalety, dzięki którym stały się materiałem powszechnie używanym w budownictwie przemysłowym i coraz częściej również w sektorze budownictwa mieszkaniowego. Są jednak takie aplikacje, gdzie zastosowanie tego typu produktów nie wydaje się trafnym pomysłem, jak choćby montaż do ściany pełnej, np. murowanej. Jak zamontować płyty poprawnie? Wystarczy trzymać się pewnych reguł.

dr inż. Krzysztof Pawłowski prof. PBŚ, mgr inż. Robert Małkowski Budownictwo zrównoważone – wybrane aspekty (cz. 11)

Budownictwo zrównoważone – wybrane aspekty (cz. 11) Budownictwo zrównoważone – wybrane aspekty (cz. 11)

W myśl idei budownictwa zrównoważonego zaprojektowanie budynku wymaga podejścia kompleksowego, które uwzględnia wszystkie aspekty związane z procesem budowlanym, tj. projektowanie, budowę, użytkowanie...

W myśl idei budownictwa zrównoważonego zaprojektowanie budynku wymaga podejścia kompleksowego, które uwzględnia wszystkie aspekty związane z procesem budowlanym, tj. projektowanie, budowę, użytkowanie budynku zgodnie z jego przeznaczeniem i utrzymanie obiektu budowlanego. Wymaga to wykorzystania najlepszych dostępnych rozwiązań technologicznych, materiałowych i architektonicznych.

Redakcja Technologia wdmuchiwania izolacji i Przemysł 4.0

Technologia wdmuchiwania izolacji i Przemysł 4.0 Technologia wdmuchiwania izolacji i Przemysł 4.0

Budownictwo drewniane stale ewoluuje, przynosząc innowacyjne rozwiązania, które nie tylko zwiększają efektywność procesów, ale również zmniejszają negatywny wpływ na środowisko.

Budownictwo drewniane stale ewoluuje, przynosząc innowacyjne rozwiązania, które nie tylko zwiększają efektywność procesów, ale również zmniejszają negatywny wpływ na środowisko.

dr inż. Szymon Swierczyna Połączenia sprężane według PN-EN 1090-2:2018

Połączenia sprężane według PN-EN 1090-2:2018 Połączenia sprężane według PN-EN 1090-2:2018

Łączenie za pomocą śrub to jedna z najbardziej popularnych metod scalania konstrukcji stalowych. Ze względu na stosunkową łatwość tej operacji stosuje się ją przede wszystkim podczas montażu elementów...

Łączenie za pomocą śrub to jedna z najbardziej popularnych metod scalania konstrukcji stalowych. Ze względu na stosunkową łatwość tej operacji stosuje się ją przede wszystkim podczas montażu elementów wysyłkowych na placu budowy.

prof. dr hab. inż. Łukasz Drobiec, mgr inż. Jan Biernacki Zastosowanie wzmocnień kompozytowych w istniejących konstrukcjach

Zastosowanie wzmocnień kompozytowych w istniejących konstrukcjach Zastosowanie wzmocnień kompozytowych w istniejących konstrukcjach

Z biegiem czasu obiekty budowlane ulegają procesom starzenia i awariom [1, 2]. Aby zminimalizować skutki negatywnych oddziaływań lub przywrócić stan pierwotny budowli, stosowane są różne materiały i technologie...

Z biegiem czasu obiekty budowlane ulegają procesom starzenia i awariom [1, 2]. Aby zminimalizować skutki negatywnych oddziaływań lub przywrócić stan pierwotny budowli, stosowane są różne materiały i technologie [3]. Na przestrzeni ostatnich lat pojawiło się wiele innowacyjnych rozwiązań technologicznych związanych ze wzmacnianiem konstrukcji. Materiały kompozytowe są stosowane nie tylko w przypadku starych obiektów budowlanych. Można je spotkać również w nowych budynkach przechodzących zmiany projektowe...

mgr inż. Maciej Rokiel, mgr inż. Ryszard Koć Parkingi podziemne – przyczyny i skutki zawilgoceń cz. 1. Wybrane zagadnienia

Parkingi podziemne – przyczyny i skutki zawilgoceń cz. 1. Wybrane zagadnienia Parkingi podziemne – przyczyny i skutki zawilgoceń cz. 1. Wybrane zagadnienia

Poprawne (zgodne ze sztuką budowlaną) zaprojektowanie i wykonanie budynku to bezwzględny wymóg bezproblemowej, długoletniej eksploatacji. Podstawą jest odpowiednie rozwiązanie konstrukcyjne części zagłębionej...

Poprawne (zgodne ze sztuką budowlaną) zaprojektowanie i wykonanie budynku to bezwzględny wymóg bezproblemowej, długoletniej eksploatacji. Podstawą jest odpowiednie rozwiązanie konstrukcyjne części zagłębionej w gruncie. Doświadczenie pokazuje, że znaczącą liczbę problemów związanych z eksploatacją stanowią problemy z wilgocią. Woda jest niestety takim medium, które bezlitośnie wykorzystuje wszelkie usterki i nieciągłości w warstwach hydroizolacyjnych, wnikając do wnętrza konstrukcji.

Marian Bober, Michał Kowalski, mgr inż. Mariusz Pawlak, Tomasz Petras, Jacek Stankiewicz Dobór łączników do montażu płyt warstwowych

Dobór łączników do montażu płyt warstwowych Dobór łączników do montażu płyt warstwowych

Podstawę artykułu stanowi opracowanie „DAFA M 3.01 Wytyczne doboru łączników do montażu płyt warstwowych”. Ma ono stanowić daleko idącą pomoc i punkt odniesienia dla wszystkich osób uczestniczących w procesach...

Podstawę artykułu stanowi opracowanie „DAFA M 3.01 Wytyczne doboru łączników do montażu płyt warstwowych”. Ma ono stanowić daleko idącą pomoc i punkt odniesienia dla wszystkich osób uczestniczących w procesach projektowania, realizacji i odbiorów inwestycji budowlanych wykonanych z płyt warstwowych.

Wybrane dla Ciebie

50% dopłaty na nowe źródło OZE »

50% dopłaty na nowe źródło OZE » 50% dopłaty na nowe źródło OZE »

Łatwa hydroizolacja skomplikowanych powierzchni dachowych »

Łatwa hydroizolacja skomplikowanych powierzchni dachowych » Łatwa hydroizolacja skomplikowanych powierzchni dachowych »

Docieplanie budynków to nie problem »

Docieplanie budynków to nie problem » Docieplanie budynków to nie problem »

Ochrona powierzchni betonowych i żelbetowych »

Ochrona powierzchni betonowych i żelbetowych » Ochrona powierzchni betonowych i żelbetowych »

Łatwe ocieplanie ścian »

Łatwe ocieplanie ścian » Łatwe ocieplanie ścian »

Trwały dach to dobra inwestycja »

Trwały dach to dobra inwestycja » Trwały dach to dobra inwestycja »

OZE dofinansowaniem nawet 50% »

OZE dofinansowaniem nawet 50% » OZE dofinansowaniem nawet 50% »

Dom pasywny to ciepły dom - jak go zbudować? »

Dom pasywny to ciepły dom - jak go zbudować? » Dom pasywny to ciepły dom - jak go zbudować? »

Wypróbuj profile do elewacji »

Wypróbuj profile do elewacji » Wypróbuj profile do elewacji »

Oszczędzanie przez ocieplanie »

Oszczędzanie przez ocieplanie » Oszczędzanie przez ocieplanie »

Trwała ochrona betonu »

Trwała ochrona betonu » Trwała ochrona betonu »

Dbaj o narzędzia, serwisuj je! »

Dbaj o narzędzia, serwisuj je! » Dbaj o narzędzia, serwisuj je! »

Copyright © 2004-2019 Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Spółka komandytowa, nr KRS: 0000537655. Wszelkie prawa, w tym Autora, Wydawcy i Producenta bazy danych zastrzeżone. Jakiekolwiek dalsze rozpowszechnianie artykułów zabronione. Korzystanie z serwisu i zamieszczonych w nim utworów i danych wyłącznie na zasadach określonych w Zasadach korzystania z serwisu.
Portal Budowlany - Izolacje.com.pl

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim urządzeniu końcowym. W każdym momencie możesz dokonać zmiany ustawień przeglądarki dotyczących cookies. Nim Państwo zaczną korzystać z naszego serwisu prosimy o zapoznanie się z naszą polityką prywatności oraz Informacją o Cookies. Więcej szczegółów w naszej Polityce Prywatności oraz Informacji o Cookies. Administratorem Państwa danych osobowych jest Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Sp.K., nr KRS: 0000537655, z siedzibą w 04-112 Warszawa, ul. Karczewska 18, tel. +48 22 810-21-24, właściciel strony www.izolacje.com.pl. Twoje Dane Osobowe będą chronione zgodnie z wytycznymi polityki prywatności www.izolacje.com.pl oraz zgodnie z Rozporządzeniem Parlamentu Europejskiego i Rady (UE) 2016/679 z dnia 27 kwietnia 2016r i z Ustawą o ochronie danych osobowych Dz.U. 2018 poz. 1000 z dnia 10 maja 2018r.