Izolacje.com.pl

Zaawansowane wyszukiwanie

Projektowanie cieplne przegród stykających się z gruntem

Thermal design of partitions in contact with the ground

Jak projektować przegrody stykające się z gruntem? fot. Pixabay

Jak projektować przegrody stykające się z gruntem? fot. Pixabay

Dla przegród stykających się z gruntem straty ciepła przez przenikanie należą do trudniejszych w obliczeniu. Strumienie cieplne wypływające z ogrzewanego wnętrza mają swój udział w kształtowaniu rozkładu temperatur w gruncie pod budynkiem i jego otoczeniu.

Zobacz także

Bostik Bostik AQUASTOPP – szybkie i efektywne rozwiązanie problemu wilgoci napierającej

Bostik AQUASTOPP – szybkie i efektywne rozwiązanie problemu wilgoci napierającej Bostik AQUASTOPP – szybkie i efektywne rozwiązanie problemu wilgoci napierającej

Bostik to firma z wieloletnią tradycją, sięgającą 1889 roku, oferująca szeroką gamę produktów chemii budowlanej dla profesjonalistów i majsterkowiczów. Producent słynie z innowacyjnych rozwiązań i wysokiej...

Bostik to firma z wieloletnią tradycją, sięgającą 1889 roku, oferująca szeroką gamę produktów chemii budowlanej dla profesjonalistów i majsterkowiczów. Producent słynie z innowacyjnych rozwiązań i wysokiej jakości preparatów, które znajdują zastosowanie w budownictwie, przemyśle i renowacji.

RAXY Sp. z o.o. Nowoczesne technologie w ciepłych i zdrowych budynkach

Nowoczesne technologie w ciepłych i zdrowych budynkach Nowoczesne technologie w ciepłych i zdrowych budynkach

Poznaj innowacyjne, specjalistyczne produkty nadające przegrodom budowlanym odpowiednią trwałość, izolacyjność cieplną i szczelność. Jakie rozwiązania pozwolą nowe oraz remontowane chronić budynki i konstrukcje?

Poznaj innowacyjne, specjalistyczne produkty nadające przegrodom budowlanym odpowiednią trwałość, izolacyjność cieplną i szczelność. Jakie rozwiązania pozwolą nowe oraz remontowane chronić budynki i konstrukcje?

STYROPMIN Styropmin XPS PRO – niezawodny do zadań specjalnych

Styropmin XPS PRO – niezawodny do zadań specjalnych Styropmin XPS PRO – niezawodny do zadań specjalnych

XPS PRO jest najnowszym osiągnięciem ekspertów z firmy Styropmin w dziedzinie skutecznej termoizolacji. To polistyren ekstrudowany, materiał bardziej wytrzymały i twardszy od uniwersalnego styropianu....

XPS PRO jest najnowszym osiągnięciem ekspertów z firmy Styropmin w dziedzinie skutecznej termoizolacji. To polistyren ekstrudowany, materiał bardziej wytrzymały i twardszy od uniwersalnego styropianu. Niezawodny w miejscach trudnych do ocieplenia, z ryzykiem zawilgocenia i dużą amplitudą temperatur, a także narażonych na duże naprężenia ściskające.

Artykuł stanowi kontynuację cyklu pt. „Fizyka cieplna budowli w projektowaniu, wznoszeniu i eksploatacji budynków”, w którym prezentowane są zagadnienia praktyczne współczesnego budownictwa. Tym razem przedstawiono zasady dotyczące projektowania przegród stykających się z gruntem. Opisano również metodologię obliczania strat ciepła wg polskich norm i rozporządzenia w sprawie warunków technicznych.

Thermal design of partitions in contact with the ground

The article is a continuation of the cycle entitled “Thermal physics of buildings in the design, construction and operation of buildings”, in which practical issues of modern construction are presented. This time, the principles of designing partitions in contact with the ground were presented. The methodology of calculating heat losses according to Polish standards and the ordinance on technical requirements was also described.

***

Zmiany w temperaturze gruntu obserwowane są na dość znacznym obszarze, rozciągającym się pod budynkiem i w jego sąsiedztwie. Na granicach tego obszaru pojawiają się płaszczyzny adiabatyczne świadczące o ustaniu przepływów ciepła w kierunkach prostopadłych do ich przebiegu.

Obliczenia strat ciepła przez grunt i przegrody stykające się z gruntem w świetle przepisów prawnych i polskich norm

Na wstępie należy zwrócić uwagę na rozbieżności w nazewnictwie izolacji cieplnej występującej w złączu przegród stykających się z gruntem. Izolacja termiczna na ścianach fundamentowych w budynkach niepodpiwniczonych, określana w rozporządzeniu [1] jako izolacja obwodowa, w normach określona jest następująco:

  • wg PN-EN ISO 13370:2008 [2] – izolacja krawędziowa i jest obliczeniowo włączana do wartości współczynnika przenikania ciepła podłogi (RYS. 1–2),
  • wg PN-EN 12831:2006 [3] – izolacja boczna i nie jest uwzględniana w wartości współczynnika przenikania ciepła podłogi.

Izolacja krawędziowa może być umieszczona poziomo, pionowo lub występować jako fundament o małej gęstości (RYS. 1–2).

rys1 2 pawlowski

RYS. 1–2. Schematy izolacji krawędziowej poziomej (1) i pionowej (2) wg PN-EN ISO 13370:2008. Objaśnienia: 1 – płyta podłogi, 2 – pozioma izolacja krawędziowa, 3 – ściana fundamentu, dn – grubość izolacji krawędziowej (lub fundamentu), D – szerokość poziomej izolacji krawędziowej (1), D – głębokość pionowej izolacji krawędziowej (lub fundamentu) poniżej poziomu gruntu (2); rys.: oprac. K. Pawłowski na podstawie [2]

Efekt izolacji krawędziowej jest traktowany jako liniowy współczynnik przenikania ciepła Ψg,e [W/(m·K)]. Jeżeli złącze przegród stykających się z gruntem ma więcej niż jedną część izolacji krawędziowej (pionowej lub poziomej, wewnętrznej lub zewnętrznej), należy do dalszych obliczeń uwzględnić tę, która daje większą redukcję straty ciepła.

Metody przybliżone opierają się na zbliżonych i numerycznych procedurach obliczeniowych wg PN-EN ISO 13370:2008 [2], PN-EN 12831:2006 [3] oraz rozporządzenia [4]. W obliczeniach wykorzystuje się opracowane algorytmy z zastosowaniem wzorów empirycznych, pozwalając na uniknięcie skomplikowanych symulacji numerycznych.

W normie PN-EN ISO 13370:2008 [2] przedstawiono procedury obliczeniowe w zakresie następujących przypadków występujących w praktyce (RYS. 3–5):

  • podłoga typu płyta na gruncie,
  • podłoga podniesiona,
  • budynek z podziemiem ogrzewanym.
rys3 5 pawlowski

RYS. 3–5. Schematy podłóg analizowane w PN-EN ISO 13370:2008: podłoga typu płyta na gruncie (3), podłoga podniesiona (4), budynek z podziemiem ogrzewanym (5). Objaśnienia: W – grubość ścian zewnętrznych, Rf – opór cieplny podłogi [(m2·K)/W], Rg – opór efektywny cieplny gruntu [(m2·K)/W], Rw – opór cieplny ścian podziemia, łącznie z wszystkimi warstwami [(m2·K)/W], Z – głębokość podłogi podziemia poniżej poziomu gruntu, h – wysokość powierzchni podłogi powyżej zewnętrznego poziomu gruntu; rys.: oprac. K. Pawłowski na podstawie [2]

W rozporządzeniu [4] przywołana jest metoda obliczenia strat ciepła przez grunt w oparciu o PN-EN 12831:2006 [3] w postaci współczynnika HT,ig [W/K]. Strumień strat ciepła przez podłogi i ściany podziemia, stykające się pośrednio lub bezpośrednio z gruntem, zależy od kilku czynników:

  • powierzchni i obwodu płyty podłogowej,
  • zagłębienia podłogi lub podziemia poniżej poziomu terenu,
  • właściwości cieplnych gruntu.

Na potrzeby normy PN-EN 12831:2006 [3] strumień strat ciepła do gruntu może być obliczony wg PN-EN ISO 13370:2008 [2]:

  • w sposób szczegółowy,
  • lub w sposób uproszczony – straty ciepła spowodowane mostkami cieplnymi nie są uwzględniane.

Współczynnik projektowy strat ciepła przez przenikanie w stanie ustalonym HT,ig [W/K] z przestrzeni ogrzewanej (i) do gruntu (g) oblicza się wg wzoru (pkt 7., PN-EN 12831:2006 [3], wzór 8):

gdzie

ƒg1 – współczynnik korekcyjny uwzględniający wpływ rocznych wahań temperatury zewnętrznej; współczynnik powinien być określany na podstawie danych krajowych; w przypadku braku wartości krajowych – wartości orientacyjne podano w D.4.3 PN-EN 12831:2006 [3],
ƒg2 – współczynnik redukcji temperatury uwzględniający różnicę między średnią roczną temperaturą zewnętrzną i projektową temperaturą zewnętrzną, określony wg zależności:

Ak – powierzchnia elementu budynku (k) stykająca się z gruntem [m2],

Uequiv,k – równoważny współczynnik przenikania ciepła elementu budynku (k) [W/(m2·K)], określony wg schematu podłóg (rysunki 3–6, tabele 4–7 w normie PN-EN 12831:2006 [3]),

Gw – współczynnik korekcyjny uwzględniający wpływ wody gruntowej; jeżeli odległość między zakładanym poziomem wody gruntowej a poziomem podłogi podziemia (płyty podłogowej) jest mniejsza od 1 m, wpływ ten powinien być uwzględniony; współczynnik ten powinien być obliczany wg PN-EN ISO 13370:2008 [2] określony na podstawie danych krajowych; w przypadku braku danych – wartości orientacyjne podano w D.4.3 PN-EN 12831:2006 [3].

Wartości Uequiv,k [W/(m2·K)] podano (rysunki 3–6, tabele 4–7 w normie PN-EN 12831:2006 [3]) w odniesieniu do różnych schematów podłóg wyszczególnionych w PN-EN ISO 13370:2008 [2], w funkcji U [W/(m2·K)] elementu budynku i wymiaru charakterystycznego podłogi B’ [m]; założono, że wartość współczynnika przewodzenia ciepła gruntu λg = 2,0 W/(m·K), nie uwzględniono wpływu izolacji bocznej.

Wymiar charakterystyczny podłogi B’ [m] określa się wg wzoru (pkt 7., PN-EN 12831:2006 [3], wzór 9):

gdzie:

Ag – powierzchnia rozpatrywanej płyty podłogowej [m2]; w odniesieniu do całego budynku Ag jest całkowitą powierzchnią parteru; w odniesieniu do części budynku, tzn. pojedynczego budynku w zabudowie szeregowej (bliźniaczej) Ag jest powierzchnią rozpatrywanego parteru,

P – obwód rozpatrywanej płyty podłogi [m]; w odniesieniu do całego budynku P jest całkowitym obwodem budynku; w odniesieniu do części budynku, tzn. pojedynczego budynku w zabudowie szeregowej (bliźniaczej) P odpowiada jedynie długości ścian zewnętrznych oddzielających rozpatrywaną przestrzeń ogrzewaną od środowiska zewnętrznego.

W zapisach podstawowej normy europejskiej PN-EN ISO 13370:2008 [2] podano cztery sposoby obliczania stacjonarnych strat ciepła do gruntu, o różnym stopniu dokładności:

  • metoda A – pełne obliczenie komputerowe 3D, o największej dokładności, stosowane do rzeczywistych kształtów części budynku stykającej się z gruntem,
  • metoda B – obliczenia komputerowe 2D przybliżonych empirycznie części podziemnych budynku,
  • metoda C – przybliżone obliczenie wg wzorów empirycznych PN-EN ISO 13370:2008 [2] stosowane dla podziemi, uzupełnione obliczeniem numerycznym 2D, które uwzględnia wpływ mostków cieplnych,
  • metoda D – orientacyjne obliczenie wg wzorów jw. (metoda C) uzupełnione przyjęciem wpływu mostków cieplnych wartościami współczynników Ψ zgodnie z normą PN EN ISO 14683:2008 [5].

Wymagania cieplne dla przegród stykających się z gruntem sformułowano w rozporządzeniu [1]:

  • wartość współczynnika przenikania ciepła podłogi na gruncie U  ≤  Umax. = 0,30 W/(m2·K),
  • opór cieplny izolacji obwodowej R  >  Rmin. = 2,0 (m2·K)/W.

Przykład obliczeniowy

rys6 pawlowski

RYS. 6. Geometria przegrody stykającej się z gruntem. Objaśnienia: 1 – panele podłogowe gr. 1,5 cm, 2 – posadzka betonowa gr. 5 cm, 3 – folia budowlana, 4 – styropian ekstrudowany XPS gr. 10 cm, 5 – beton podkładowy gr. 10 cm, 6 – podsypka piaskowa gr. 15 cm, 7 – beton komórkowy gr. 24 cm, 8 – styropian gr. 15 cm, 9 – cegła klinkierowa gr. 12 cm, 10 – płytki klinkierowe gr. 2 cm, 11 – bloczek betonowy gr. 25 cm, 12 – polistyren ekstrudowany XPS gr. 10 cm, 13 – bloczek betonowy gr. 12 cm, 14 – izolacja przeciwwilgociowa; rys.: K. Pawłowski

Określono straty ciepła przez grunt według norm PN-EN ISO 13370:2008 [2] i PN-EN 12831:2006 [3]. Obliczono wartość współczynnika przenikania ciepła oraz współczynnika sprzężenia cieplnego płyty podłogowej z pionową izolacją krawędziową (RYS. 6).

Do obliczeń przyjęto następujące założenia:

  • budynek jednorodzinny (rzut ścian parteru budynku o wym. zewnętrznych 9,00×11,00 m),
  • płyta podłogowa izolowana płytami ze styropianu ekstrudowanego XPS gr. 10 cm o λ = 0,035 W/(m·K),
  • ściana zewnętrzna parteru trójwarstwowa: beton komórkowy gr. 24 cm, styropian gr. 15 cm, cegła klinkierowa gr. 12 cm (całkowita grubość w = 51 cm),
  • izolacja krawędziowa pionowa z polistyrenu ekstrudowanego XPS gr. 10 cm o λ = 0,035 W/(m·K),
  • budynek posadowiony na piasku zwykłym.

Schemat obliczeniowy wraz z wynikami obliczeń wg PN EN ISO 13370:2008 [2] zestawiono na RYS. 7.

rys7 pawlowski

RYS. 7. Wyniki obliczeń parametrów cieplnych przegrody stykającej się z gruntem wg PN-EN ISO 13370:2008 [2]; rys.: K. Pawłowski

Określenie wartości współczynnika przenikania ciepła U

Obliczenie współczynnika przenikania ciepła U zależy od izolacji cieplnej podłogi:

  • jeżeli dt  <  B’ (podłogi nieizolowane lub średnio izolowane), to

jeżeli dtB' (podłogi izolowane), to

Wpływ pionowej izolacji krawędziowej określono wg wzoru:

gdzie:

D – szerokość pionowej izolacji krawędziowej (lub fundamentu) poniżej poziomu gruntu [m],
d’ – dodatkowa grubość ekwiwalentna [m].

Uwzględnienie izolacji krawędziowej do obliczeń wartości współczynnika przenikania ciepła U następuje wg wzoru:

Wartość współczynnika przenoszenia ciepła przez grunt w stanie ustalonym między środowiskiem wewnętrznym a zewnętrznym oblicza się wg wzoru:

gdzie:

Ψg – liniowy współczynnik przenikania ciepła [W/(m·K)], przyjmowany na podstawie obliczeń własnych lub katalogu mostków cieplnych lub na podstawie normy PN-EN ISO 14683:2008 [5].

Wartość liniowego współczynnika przenikania ciepła na styku ściana zewnętrzna–ściana fundamentowa–podłoga na gruncie przyjęto na podstawie obliczeń własnych (jako gałęziowy współczynnik przenikania ciepła dotyczący strat ciepła dla podłogi na gruncie) – Ψg = 0,60 W/(m·K).

Analizowana przegroda spełnia wymagania w zakresie współczynnika przenikania ciepła

U = 0,22  <  UC(max) = 0,30 W/(m2·K).

Natomiast w zakresie oceny wartości oporu cieplnego izolacji cieplnej (obwodowej/krawędziowej – wg rozporządzenia [1])

R = 2,86  >  Rmin = 2,0 (m2·K)/W

warunek jest spełniony.

Schemat obliczeniowy wraz z wynikami obliczeń wg PN-EN 12831:2006 [3] zestawiono na RYS 8.

rys8 pawlowski

RYS. 8. Wyniki obliczeń parametrów cieplnych przegrody stykającej się z gruntem wg PN-EN 12831:2006 [3]; rys.: K. Pawłowski

Współczynnik strat ciepła przez grunt (określony według normy PN-EN 12831:2006 [3]) nie uwzględnia wpływu pionowej izolacji krawędziowej oraz dodatkowych strat ciepła wynikających z występowania liniowego mostka cieplnego na styku podłoga na gruncie–ściana fundamentowa–ściana parteru budynku.

Według obliczeń przeprowadzonych w oparciu o normę PN-EN 12831:2006 [3] określono wartość Uequiv,k = 0,18 W/(m2·K). W związku z tym analizowana przegroda spełnia kryterium w zakresie izolacyjności cieplnej Uequiv,k = 0,18  <  Umax = 0,30 W/(m2·K).

Podsumowanie i wnioski

Parametry cieplne przegród stykających się z gruntem zależą od wielu czynników, m.in.: parametrów geometrycznych budynku (wymiary powierzchni zabudowy analizowanego budynku), zastosowanej izolacji podłogi na gruncie oraz izolacji krawędziowej (poziomej lub pionowej). Do projektowania tego typu przegród należy podchodzić indywidualnie, ponieważ parametry cieplne zależą od wymiaru charakterystycznego B’.

Bardzo istotne jest także poprawne zaprojektowanie izolacji przeciwwilgociowych i przeciwwodnych. Zasadne jest także wykonanie obliczeń i analiz w zakresie parametrów fizykalnych złączy przegród stykających się z gruntem, opisane m.in. w pracy [6].

Literatura

  1. Rozporządzenie Ministra Infrastruktury i Budownictwa z dnia 14 listopada 2017 r. zmieniające rozporządzenie w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie (DzU z 2017 r., poz. 2285 z późn. zm., DzU z 2022 r., poz. 248).
  2. PN-EN ISO 13370:2008, „Cieplne właściwości użytkowe budynków. Wymiana ciepła przez grunt. Metoda obliczania”.
  3. PN-EN 12831:2006, „Instalacje grzewcze w budynkach – Metoda obliczania obciążenia cieplnego”.
  4. Rozporządzenie Ministra Infrastruktury i Rozwoju z dnia 27 lutego 2015 r. w sprawie metodologii wyznaczania charakterystyki energetycznej budynku lub części budynku oraz świadectw charakterystyki energetycznej (DzU z 2019 r., poz. 1829).
  5. PN-EN ISO 14683:2008, „Mostki cieplne w budynkach. Liniowy współczynnik przenikania ciepła. Metody uproszczone i wartości orientacyjne”.
  6. K. Pawłowski, „Projektowanie przegród poziomych w budownictwie energooszczędnym. Obliczenia cieplno-wilgotnościowe przegród stykających się z gruntem, stropów oraz dachów i stropodachów w świetle obowiązujących przepisów prawnych”, Grupa MEDIUM, Warszawa 2018.

Chcesz być na bieżąco? Zapisz się do naszego newslettera!

Komentarze

Powiązane

mgr inż. Irena Domska Styropian hydrofobowy w izolacji cieplnej ścian fundamentowych

Styropian hydrofobowy w izolacji cieplnej ścian fundamentowych Styropian hydrofobowy w izolacji cieplnej ścian fundamentowych

Styropian jest materiałem izolacyjnym, który charakteryzuje się wysoką odpornością na wilgoć. Odporność ta obejmuje nie tylko niewielką, w stosunku do innych materiałów izolacyjnych, nasiąkliwość wodą,...

Styropian jest materiałem izolacyjnym, który charakteryzuje się wysoką odpornością na wilgoć. Odporność ta obejmuje nie tylko niewielką, w stosunku do innych materiałów izolacyjnych, nasiąkliwość wodą, lecz również brak negatywnego wpływu na właściwości wytrzymałościowe. Doświadczenia laboratoryjne wskazują również na odporność wytrzymałościową styropianu na wielokrotne zamrażanie i odmrażanie.

dr hab. inż., prof. nadzw. UTP Dariusz Bajno, dr inż. Anna Rawska-Skotniczny Wybrane zagadnienia dotyczące zabezpieczeń podziemnych części istniejących budynków przed wilgocią

Wybrane zagadnienia dotyczące zabezpieczeń podziemnych części istniejących budynków przed wilgocią Wybrane zagadnienia dotyczące zabezpieczeń podziemnych części istniejących budynków przed wilgocią

Wilgoć zawsze będzie towarzyszyć obiektom budowlanym w okresie eksploatacyjnym, dlatego zabezpiecza się je przed nadmiernym zawilgoceniem oraz przed przedostawaniem się wilgoci do ich pomieszczeń poprzez...

Wilgoć zawsze będzie towarzyszyć obiektom budowlanym w okresie eksploatacyjnym, dlatego zabezpiecza się je przed nadmiernym zawilgoceniem oraz przed przedostawaniem się wilgoci do ich pomieszczeń poprzez odpowiedni dobór materiałów oraz izolacje zewnętrzne. Nie istnieją uniwersalne metody zabezpieczeń materiałów przed wilgocią, dlatego podjęcie decyzji o zasadności wykonania izolacji lub też o doborze odpowiedniej technologii powinno zostać poparte przeprowadzoną wcześniej analizą, odpowiadającą...

mgr inż. Marcin Jaroszyński Szary styropian do termoizolacji fundamentów

Szary styropian do termoizolacji fundamentów Szary styropian do termoizolacji fundamentów

Fundament to realizowany jako pierwszy przy budowie budynku, ale też najważniejszy element konstrukcyjny, gwarantujący stabilność i trwałość znajdującej się na nim konstrukcji. Oczywiście metod posadowienia...

Fundament to realizowany jako pierwszy przy budowie budynku, ale też najważniejszy element konstrukcyjny, gwarantujący stabilność i trwałość znajdującej się na nim konstrukcji. Oczywiście metod posadowienia jest kilka, skupmy się jednak na dwóch najbardziej popularnych i najczęściej stosowanych w budownictwie jednorodzinnym i mieszkaniowym. Chodzi o ławy fundamentowe ze ścianką fundamentową i o płytę fundamentową.

dr inż. Mariusz Jackiewicz Hydroizolacja elementów budowli stykających się z gruntem

Hydroizolacja elementów budowli stykających się z gruntem Hydroizolacja elementów budowli stykających się z gruntem

Projektowanie oraz wykonawstwo hydroizolacji konstrukcji budowlanych w Niemczech regulowała wprowadzona w 1983 r. i w międzyczasie wielokrotnie nowelizowana norma DIN 18195. Ta norma jest stosunkowo dobrze...

Projektowanie oraz wykonawstwo hydroizolacji konstrukcji budowlanych w Niemczech regulowała wprowadzona w 1983 r. i w międzyczasie wielokrotnie nowelizowana norma DIN 18195. Ta norma jest stosunkowo dobrze znana w Polsce, z dwóch powodów - braku krajowej, tak kompleksowej normy oraz znaczącego udziału na polskim rynku produktów hydroizolacyjnych niemieckich producentów.

dr inż. Paula Szczepaniak Ocena jakości termicznej rozwiązań węzła połączenia budynku z gruntem posadowionym na płycie fundamentowej

Ocena jakości termicznej rozwiązań węzła połączenia budynku z gruntem posadowionym na płycie fundamentowej Ocena jakości termicznej rozwiązań węzła połączenia budynku z gruntem posadowionym na płycie fundamentowej

Płyta fundamentowa należy do grupy posadowień bezpośrednich. Jest stosowana przy występowaniu słabego podłoża gruntowego, poziomie posadowienia poniżej zwierciadła wody gruntowej, stosowaniu konstrukcji...

Płyta fundamentowa należy do grupy posadowień bezpośrednich. Jest stosowana przy występowaniu słabego podłoża gruntowego, poziomie posadowienia poniżej zwierciadła wody gruntowej, stosowaniu konstrukcji szczelnej wanny lub w przypadku konieczności zapewnienia równomiernego osiadania budynku [1].

mgr inż. Maciej Rokiel Hydroizolacje w gruncie - podział, zastosowanie i właściwości

Hydroizolacje w gruncie - podział, zastosowanie i właściwości Hydroizolacje w gruncie - podział, zastosowanie i właściwości

Konieczność wykonania skutecznych powłok wodochronnych to nie tylko jeden z podstawowych wymogów bezproblemowego i komfortowego użytkowania zarówno budynków (obojętne, czy w budownictwie mieszkaniowym,...

Konieczność wykonania skutecznych powłok wodochronnych to nie tylko jeden z podstawowych wymogów bezproblemowego i komfortowego użytkowania zarówno budynków (obojętne, czy w budownictwie mieszkaniowym, użyteczności publicznej, czy przemysłowym), jak i budowli, a także wymóg formalny. Intensywny rozwój chemii budowlanej w ciągu ostatnich kilkunastu lat spowodował, że mamy do dyspozycji szeroką gamę materiałów, począwszy od stosowanych tylko do izolacji przeciwwilgociowych, a skończywszy na materiałach...

dr inż. Maciej Trochonowicz Diagnostyka hydroizolacji w pracach modernizacyjnych

Diagnostyka hydroizolacji w pracach modernizacyjnych Diagnostyka hydroizolacji w pracach modernizacyjnych

Woda jest substancją warunkującą możliwość wykonania praktycznie wszystkich procesów budowlanych. Niezbędna jest zarówno do produkcji materiałów, jak i ich wbudowania. Jednocześnie ta sama woda, a raczej...

Woda jest substancją warunkującą możliwość wykonania praktycznie wszystkich procesów budowlanych. Niezbędna jest zarówno do produkcji materiałów, jak i ich wbudowania. Jednocześnie ta sama woda, a raczej jej nadmiar, jest czynnikiem powodującym największe zagrożenie dla obiektów budowlanych. Wprowadzana na wiele sposobów z czasem staje się przyczyną wielu niekorzystnych zjawisk, a jej usunięcie poważnym problemem. Dlatego też nieodłącznym elementem wznoszenia czy też remontowania budynków są hydroizolacje.

prof. nzw. dr hab. inż. Irena Ickiewicz Wpływ ocieplenia fundamentów na rozkład temperatury w gruncie w otoczeniu budynku

Wpływ ocieplenia fundamentów na rozkład temperatury w gruncie w otoczeniu budynku Wpływ ocieplenia fundamentów na rozkład temperatury w gruncie w otoczeniu budynku

Głębokość posadowień bezpośrednich określa w Polsce norma PN-81-B-03020 "Grunty budowlane. Posadowienie bezpośrednie. Obliczenia statystyczne i projektowanie".

Głębokość posadowień bezpośrednich określa w Polsce norma PN-81-B-03020 "Grunty budowlane. Posadowienie bezpośrednie. Obliczenia statystyczne i projektowanie".

dr inż. Sławomir Chłądzyński, mgr inż. Katarzyna Walusiak Wpływ wytrzymałości cementu na właściwości klejów do ociepleń

Wpływ wytrzymałości cementu na właściwości klejów do ociepleń Wpływ wytrzymałości cementu na właściwości klejów do ociepleń

Cement portlandzki jest najczęściej stosowanym spoiwem w recepturach suchych mieszanek. Według opracowania na temat przemysłu cementowego w Polsce na rynku krajowym rocznie wykorzystywane jest obecnie...

Cement portlandzki jest najczęściej stosowanym spoiwem w recepturach suchych mieszanek. Według opracowania na temat przemysłu cementowego w Polsce na rynku krajowym rocznie wykorzystywane jest obecnie ok. 700-800 tys. ton tego spoiwa do wytworzenia suchych mieszanek chemii budowlanej [1], co stanowi ok. 4-5% sprzedaży cementu w kraju.

mgr inż. arch. Tomasz Rybarczyk Fundamenty w budynkach jednorodzinnych

Fundamenty w budynkach jednorodzinnych Fundamenty w budynkach jednorodzinnych

Fundamenty są elementem budynku, który przekazuje obciążenia z części naziemnej na podłoże gruntowe. Wszystkie siły działające na budynek, czyli wiatr, śnieg, obciążenia użytkowe, masa własna konstrukcji...

Fundamenty są elementem budynku, który przekazuje obciążenia z części naziemnej na podłoże gruntowe. Wszystkie siły działające na budynek, czyli wiatr, śnieg, obciążenia użytkowe, masa własna konstrukcji i elementów budynku, są przekazywane na grunt. Z kolei fundamenty przekazują oddziaływania gruntu na konstrukcję. Jeśli zachodzą niekorzystne zjawiska, wywołane na przykład osiadaniem gruntu, ruchy gruntu (np. spowodowane tym, że budynek został wybudowany na terenach eksploatacji górniczych lub terenach...

mgr inż. Maciej Rokiel Badanie skuteczności prac i preparatów do wykonywania przepony poziomej

Badanie skuteczności prac i preparatów do wykonywania przepony poziomej Badanie skuteczności prac i preparatów do wykonywania przepony poziomej

Iniekcja chemiczna jest jedną z metod wykonywania wtórnej izolacji poziomej. Celem iniekcji chemicznej jest wytworzenie w przegrodzie przepony przerywającej podciąganie kapilarne, a także uzyskanie, w...

Iniekcja chemiczna jest jedną z metod wykonywania wtórnej izolacji poziomej. Celem iniekcji chemicznej jest wytworzenie w przegrodzie przepony przerywającej podciąganie kapilarne, a także uzyskanie, w dalszym czasie, w strefie muru nad przeponą, obszaru normalnej wilgotności.

dr inż. Wioletta Jackiewicz-Rek, mgr inż. Kaja Kłos, inż. Paweł Zieliński Wymagania dla betonu wodoszczelnego

Wymagania dla betonu wodoszczelnego Wymagania dla betonu wodoszczelnego

Definiując beton wodoszczelny mający zastosowanie w realizacji obiektów tworzących barierę dla wody, nie sposób zacząć bez określenia, że jest to taki rodzaj betonu, który izoluje ze względu na swoje właściwości.

Definiując beton wodoszczelny mający zastosowanie w realizacji obiektów tworzących barierę dla wody, nie sposób zacząć bez określenia, że jest to taki rodzaj betonu, który izoluje ze względu na swoje właściwości.

dr inż. Bartłomiej Monczyński Prowadzenie prac hydroizolacyjnych w okresie zimowym

Prowadzenie prac hydroizolacyjnych w okresie zimowym Prowadzenie prac hydroizolacyjnych w okresie zimowym

Zima jak co roku zaskoczyła drogowców! Zdanie to (choć - nawiasem mówiąc - bardzo krzywdzące dla wspomnianych drogowców, którzy zajmują się budową dróg, a nie ich utrzymaniem) doskonale obrazuje zjawisko,...

Zima jak co roku zaskoczyła drogowców! Zdanie to (choć - nawiasem mówiąc - bardzo krzywdzące dla wspomnianych drogowców, którzy zajmują się budową dróg, a nie ich utrzymaniem) doskonale obrazuje zjawisko, które widoczne jest szczególnie w budownictwie: to, co nieuniknione, potrafi zaskoczyć.

mgr inż. Maciej Rokiel Hydroizolacje podziemnych części budynków

Hydroizolacje podziemnych części budynków Hydroizolacje podziemnych części budynków

Poprawne (zgodne ze sztuką budowlaną) zaprojektowanie i wykonanie budynku to bezwzględny wymóg bezproblemowej, długoletniej eksploatacji. Podstawą jest odpowiednie rozwiązanie konstrukcyjne części zagłębionej...

Poprawne (zgodne ze sztuką budowlaną) zaprojektowanie i wykonanie budynku to bezwzględny wymóg bezproblemowej, długoletniej eksploatacji. Podstawą jest odpowiednie rozwiązanie konstrukcyjne części zagłębionej w gruncie. Doświadczenie pokazuje, że znaczącą liczbę problemów związanych z eksploatacją stanowią problemy z wilgocią. Woda jest niestety takim medium, które bezlitośnie wykorzystuje wszelkie usterki i nieciągłości w warstwach hydroizolacyjnych, wnikając do wnętrza konstrukcji.

dr inż. Bartłomiej Monczyński Badanie wilgotności mineralnych materiałów budowlanych

Badanie wilgotności mineralnych materiałów budowlanych Badanie wilgotności mineralnych materiałów budowlanych

Kluczowym elementem diagnostyki zawilgoconych konstrukcji murowych jest ocena ich parametrów wilgotnościowych, jak również rozpoznanie rodzaju i proporcji szkodliwych soli zawartych w materiale budowlanym...

Kluczowym elementem diagnostyki zawilgoconych konstrukcji murowych jest ocena ich parametrów wilgotnościowych, jak również rozpoznanie rodzaju i proporcji szkodliwych soli zawartych w materiale budowlanym [1]. Sposoby pomiaru zawartości wody względnie wilgotności w mineralnych materiałach budowlanych zostały szerzej opisane w instrukcji WTA nr 4–11–16/D [2].

dr inż. Bartłomiej Monczyński Wtórna hydroizolacja przyziemnych części budynków

Wtórna hydroizolacja przyziemnych części budynków Wtórna hydroizolacja przyziemnych części budynków

Podstawowym zadaniem w przypadku renowacji zawilgoconych budynków jest ich osuszenie, rozumiane jako skoordynowany zespół działań technicznych i technologicznych, który ma na celu trwałe obniżenie poziomu...

Podstawowym zadaniem w przypadku renowacji zawilgoconych budynków jest ich osuszenie, rozumiane jako skoordynowany zespół działań technicznych i technologicznych, który ma na celu trwałe obniżenie poziomu zawilgocenia (zazwyczaj do poziomu 3-6% wilgotności masowej), co z kolei umożliwi prowadzenie dalszych prac budowlanych i/lub konserwatorskich, a po ich zakończeniu użytkowanie budynku zgodnie z przewidzianym przeznaczeniem [1].

mgr inż. Tomasz Połubiński, prof. dr hab. inż. Łukasz Drobiec, mgr inż. Remigiusz Jokiel Zabezpieczenie konstrukcji murowych przed zarysowaniem przez zbrojenie spoin wspornych

Zabezpieczenie konstrukcji murowych przed zarysowaniem przez zbrojenie spoin wspornych Zabezpieczenie konstrukcji murowych przed zarysowaniem przez zbrojenie spoin wspornych

Jednym ze sposobów ograniczenia tempa zarysowań w obszarach koncentracji naprężeń jest aplikacja zbrojenia, którego tradycje stosowania sięgają drugiej połowy XIX wieku. Zadaniem zbrojenia jest przejęcie...

Jednym ze sposobów ograniczenia tempa zarysowań w obszarach koncentracji naprężeń jest aplikacja zbrojenia, którego tradycje stosowania sięgają drugiej połowy XIX wieku. Zadaniem zbrojenia jest przejęcie sił występujących w strefach rozciąganych muru, "rozładowanie" naprężeń w miejscach ich koncentracji oraz redystrybucja odkształceń skoncentrowanych w pewnych strefach muru.

dr inż. Bartłomiej Monczyński Uszczelnienie od zewnątrz odsłoniętych elementów istniejących budynków

Uszczelnienie od zewnątrz odsłoniętych elementów istniejących budynków Uszczelnienie od zewnątrz odsłoniętych elementów istniejących budynków

Hydroizolację przyziemnej części istniejącego budynku (hydroizolację wtórną), o ile jest to technicznie i/lub ekonomicznie wskazane, należy wykonywać od zewnątrz, to jest w taki sposób, aby całkowicie...

Hydroizolację przyziemnej części istniejącego budynku (hydroizolację wtórną), o ile jest to technicznie i/lub ekonomicznie wskazane, należy wykonywać od zewnątrz, to jest w taki sposób, aby całkowicie uniemożliwić wnikanie wody oraz wilgoci w strukturę przegród zagłębionych w gruncie.

dr inż. Bartłomiej Monczyński Uszczelnianie istniejących budynków od wewnątrz

Uszczelnianie istniejących budynków od wewnątrz Uszczelnianie istniejących budynków od wewnątrz

Wykonanie wtórnej hydroizolacji przyziemnej części budynku od zewnątrz jest najlepszym rozwiązaniem z punktu widzenia fizyki budowli, w pewnych sytuacjach może ono się jednak okazać (w całości lub częściowo)...

Wykonanie wtórnej hydroizolacji przyziemnej części budynku od zewnątrz jest najlepszym rozwiązaniem z punktu widzenia fizyki budowli, w pewnych sytuacjach może ono się jednak okazać (w całości lub częściowo) technicznie i/lub ekonomicznie niewskazane. Wtedy należy wziąć pod uwagę wykonanie uszczelnienia od wewnątrz.

KOESTER Polska Iniekcja uszczelniająca żelem akrylowym KÖSTER Injektion Gel G4 żelbetowej płyty fundamentowej podziemnej hali pieca do wytopu szkła

Iniekcja uszczelniająca żelem akrylowym KÖSTER Injektion Gel G4 żelbetowej płyty fundamentowej podziemnej hali pieca do wytopu szkła Iniekcja uszczelniająca żelem akrylowym KÖSTER Injektion Gel G4 żelbetowej płyty fundamentowej podziemnej hali pieca do wytopu szkła

W ramach prowadzonych prac modernizacyjnych i okresowej wymiany pieca do wytopu szkła podjęto decyzję o usunięciu powstałych podczas dotychczasowej eksploatacji nieszczelności płyty fundamentowej. Płyta...

W ramach prowadzonych prac modernizacyjnych i okresowej wymiany pieca do wytopu szkła podjęto decyzję o usunięciu powstałych podczas dotychczasowej eksploatacji nieszczelności płyty fundamentowej. Płyta o wymiarach w świetle ścian 35,50x36,27 m i grubości 1,60 m wykazywała liczne i okresowo intensywne przecieki, które powodowały konieczność tymczasowego odprowadzania przenikających wód gruntowych systemem rowków powierzchniowych wyciętych w płycie do studzienek zbiorczych i odpompowywania. Powierzchnia...

dr inż. Bartłomiej Monczyński Wtórne hydroizolacje poziome wykonywane w technologii iniekcji

Wtórne hydroizolacje poziome wykonywane w technologii iniekcji Wtórne hydroizolacje poziome wykonywane w technologii iniekcji

Pod pojęciem iniekcji, technologii iniekcji lub też iniekcji chemicznej należy rozumieć wprowadzenie środka iniekcyjnego w strukturę muru w taki sposób, aby zapewniać jego rozłożenie (rozprowadzenie) w...

Pod pojęciem iniekcji, technologii iniekcji lub też iniekcji chemicznej należy rozumieć wprowadzenie środka iniekcyjnego w strukturę muru w taki sposób, aby zapewniać jego rozłożenie (rozprowadzenie) w całym przekroju przegrody.

mgr inż. Maciej Rokiel Hybrydowe (reaktywne) masy uszczelniające

Hybrydowe (reaktywne) masy uszczelniające Hybrydowe (reaktywne) masy uszczelniające

Konieczność wykonania skutecznych powłok wodochronnych to nie tylko jeden z podstawowych wymogów bezproblemowego i komfortowego użytkowania budynków (obojętne czy w budownictwie mieszkaniowym, użyteczności...

Konieczność wykonania skutecznych powłok wodochronnych to nie tylko jeden z podstawowych wymogów bezproblemowego i komfortowego użytkowania budynków (obojętne czy w budownictwie mieszkaniowym, użyteczności publicznej, przemysłowym itp.) i budowli, lecz także wymóg formalny.

dr inż. Bartłomiej Monczyński Mechaniczne metody wykonywania wtórnych hydroizolacji poziomych

Mechaniczne metody wykonywania wtórnych hydroizolacji poziomych Mechaniczne metody wykonywania wtórnych hydroizolacji poziomych

Wtórną izolację poziomą przeciw wilgoci podciąganej kapilarnie można wykonać w technologii iniekcji chemicznej [1] lub też przy wykorzystaniu tzw. metod mechanicznych.

Wtórną izolację poziomą przeciw wilgoci podciąganej kapilarnie można wykonać w technologii iniekcji chemicznej [1] lub też przy wykorzystaniu tzw. metod mechanicznych.

dr inż. Bartłomiej Monczyński Wtórne hydroizolacje wykonywane metodą iniekcji uszczelniających

Wtórne hydroizolacje wykonywane metodą iniekcji uszczelniających Wtórne hydroizolacje wykonywane metodą iniekcji uszczelniających

Obok iniekcyjnych metod odtwarzania hydroizolacji poziomych [1] w renowacji zawilgoconych budynków stosowane są również iniekcje uszczelniające (nazywane także iniekcjami żelowymi lub żelującymi, od niem....

Obok iniekcyjnych metod odtwarzania hydroizolacji poziomych [1] w renowacji zawilgoconych budynków stosowane są również iniekcje uszczelniające (nazywane także iniekcjami żelowymi lub żelującymi, od niem. Gelinietion oraz ang. injection of gel), tj. takie, które umożliwiają wykonanie uszczelnienia również przeciw wodzie działającej pod ciśnieniem.

Wybrane dla Ciebie

Odkryj trendy projektowania elewacji »

Odkryj trendy projektowania elewacji » Odkryj trendy projektowania elewacji »

Jak estetycznie wykończyć ściany - wewnątrz i na zewnątrz? »

Jak estetycznie wykończyć ściany - wewnątrz i na zewnątrz? » Jak estetycznie wykończyć ściany - wewnątrz i na zewnątrz? »

Przeciekający dach? Jak temu zapobiec »

Przeciekający dach? Jak temu zapobiec » Przeciekający dach? Jak temu zapobiec »

Dach biosolarny - co to jest? »

Dach biosolarny - co to jest? » Dach biosolarny - co to jest? »

Zobacz, które płyty termoizolacyjne skutecznie ochronią dom przed zimnem »

Zobacz, które płyty termoizolacyjne skutecznie ochronią dom przed zimnem » Zobacz, które płyty termoizolacyjne skutecznie ochronią dom przed zimnem »

Polecane produkty z branży budowlanej - Chemia budowlana »

Polecane produkty z branży budowlanej - Chemia budowlana » Polecane produkty z branży budowlanej - Chemia budowlana »

domni.pl Izolacja termiczna a płytki elewacyjne – co musisz wiedzieć, zanim ocieplisz i wykończysz dom?

Izolacja termiczna a płytki elewacyjne – co musisz wiedzieć, zanim ocieplisz i wykończysz dom? Izolacja termiczna a płytki elewacyjne – co musisz wiedzieć, zanim ocieplisz i wykończysz dom?

Wykończenie budynku z zewnątrz jest równie istotne, jak jego wnętrza. Odpowiednie ocieplenie zapewni komfort i zdrowie domownikom, obniży koszty ogrzewania i zużycie paliw grzewczych. Płytki elewacyjne...

Wykończenie budynku z zewnątrz jest równie istotne, jak jego wnętrza. Odpowiednie ocieplenie zapewni komfort i zdrowie domownikom, obniży koszty ogrzewania i zużycie paliw grzewczych. Płytki elewacyjne zewnętrzne sprawią natomiast, że budynek będzie odpowiednio zabezpieczony przed działaniem warunków atmosferycznych. Jaki materiał izolacyjny można stosować pod płytki elewacyjne z klinkieru? Czym kierować się wybierając płytki zewnętrzne, aby elewacja zachowała trwałość i estetyczny wygląd na lata?...

Przekonaj się, jak inni izolują pianką poliuretanową »

Przekonaj się, jak inni izolują pianką poliuretanową » Przekonaj się, jak inni izolują pianką poliuretanową »

Papa dachowa, która oczyszcza powietrze »

Papa dachowa, która oczyszcza powietrze » Papa dachowa, która oczyszcza powietrze »

Podpowiadamy, jak wybrać system ociepleń

Podpowiadamy, jak wybrać system ociepleń Podpowiadamy, jak wybrać system ociepleń

Podpowiadamy, jak skutecznie przeprowadzić renowacje piwnicy »

Podpowiadamy, jak skutecznie przeprowadzić renowacje piwnicy » Podpowiadamy, jak skutecznie przeprowadzić renowacje piwnicy »

300% rozciągliwości membrany - TAK! »

300% rozciągliwości membrany - TAK! » 300% rozciągliwości membrany - TAK! »

Copyright © 2004-2019 Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Spółka komandytowa, nr KRS: 0000537655. Wszelkie prawa, w tym Autora, Wydawcy i Producenta bazy danych zastrzeżone. Jakiekolwiek dalsze rozpowszechnianie artykułów zabronione. Korzystanie z serwisu i zamieszczonych w nim utworów i danych wyłącznie na zasadach określonych w Zasadach korzystania z serwisu.
Portal Budowlany - Izolacje.com.pl

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim urządzeniu końcowym. W każdym momencie możesz dokonać zmiany ustawień przeglądarki dotyczących cookies. Nim Państwo zaczną korzystać z naszego serwisu prosimy o zapoznanie się z naszą polityką prywatności oraz Informacją o Cookies. Więcej szczegółów w naszej Polityce Prywatności oraz Informacji o Cookies. Administratorem Państwa danych osobowych jest Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Sp.K., nr KRS: 0000537655, z siedzibą w 04-112 Warszawa, ul. Karczewska 18, tel. +48 22 810-21-24, właściciel strony www.izolacje.com.pl. Twoje Dane Osobowe będą chronione zgodnie z wytycznymi polityki prywatności www.izolacje.com.pl oraz zgodnie z Rozporządzeniem Parlamentu Europejskiego i Rady (UE) 2016/679 z dnia 27 kwietnia 2016r i z Ustawą o ochronie danych osobowych Dz.U. 2018 poz. 1000 z dnia 10 maja 2018r.