Izolacje.com.pl

Zaawansowane wyszukiwanie

System ETICS – dokumentacja projektowa prac ociepleniowych

Skutek zbyt wczesnego ocieplenia ściany i wykonania wykończenia, fot. M. Rokiel
Skutek zbyt wczesnego ocieplenia ściany i wykonania wykończenia, fot. M. Rokiel

Artykuł jest kontynuacją artykułów opublikowanych w numerach 3/2022 i 4/2022 miesięcznika „IZOLACJE”.

Zobacz także

Austrotherm EPS na ściany, XPS na fundamenty – dlaczego ten duet to najlepszy wybór?

EPS na ściany, XPS na fundamenty – dlaczego ten duet to najlepszy wybór? EPS na ściany, XPS na fundamenty – dlaczego ten duet to najlepszy wybór?

Z roku na rok budownictwu stawia się coraz wyższe wymagania, które dotyczą nie tylko aspektów wizualnych, ale przede wszystkim efektywności energetycznej. Obowiązujące przepisy dotyczące izolacyjności...

Z roku na rok budownictwu stawia się coraz wyższe wymagania, które dotyczą nie tylko aspektów wizualnych, ale przede wszystkim efektywności energetycznej. Obowiązujące przepisy dotyczące izolacyjności termicznej budynków oraz zapewnienia komfortu ich użytkowania zgodnie z przeznaczeniem, przy jednoczesnym możliwie najniższym zużyciu energii, są coraz bardziej rygorystyczne. Aby je spełnić, konieczne jest stosowanie odpowiednich materiałów termoizolacyjnych.

JURGA spółka komandytowa Papa w płynie – hydroizolacja i dekoracja w jednym

Papa w płynie – hydroizolacja i dekoracja w jednym Papa w płynie – hydroizolacja i dekoracja w jednym

Uniwersalny produkt, który łączy w sobie właściwości hydroizolacyjne i dekoracyjne, jest przeznaczony do renowacji powierzchni, takich jak mury, przyziemia ścian zewnętrznych budynku, dachy, opierzenia,...

Uniwersalny produkt, który łączy w sobie właściwości hydroizolacyjne i dekoracyjne, jest przeznaczony do renowacji powierzchni, takich jak mury, przyziemia ścian zewnętrznych budynku, dachy, opierzenia, a także elementów architektury ogrodowej: altan, domków i skrzyń na narzędzia, wiat itp.

Fiberglass Fabrics sp. z o.o. Tynki i farby w dużych inwestycjach budowlanych

Tynki i farby w dużych inwestycjach budowlanych Tynki i farby w dużych inwestycjach budowlanych

Przy projektowaniu i realizacji dużych inwestycji, takich jak osiedla mieszkaniowe, biurowce czy obiekty użyteczności publicznej, kluczowe znaczenie ma wybór odpowiednich materiałów wykończeniowych. Nie...

Przy projektowaniu i realizacji dużych inwestycji, takich jak osiedla mieszkaniowe, biurowce czy obiekty użyteczności publicznej, kluczowe znaczenie ma wybór odpowiednich materiałów wykończeniowych. Nie do przecenienia jest rola tynków i farb, które wpływają na wygląd budynków, a także na ich trwałość i komfort użytkowania.

O czym piszemy w artykule:

  • niuanse projektowe wynikające z konieczności stosowania materiału niepalnego na wysokości powyżej 25 m
  • rozwiązania detali dotyczących połączeń obramowań okiennych
  • analiza kilku przypadków typowych mostków termicznych
  • problemy z ocieplaniem elewacji zawilgoconych i zasolonych

Artykuł jest kontynuacją cyklu o dokumentacji projektowej systemów ETICS. Tym razem autor porusza kwestie związane z pracami ociepleniowymi, w szczególności dotyczące miejsc, które mogą być problematyczne, jak np. połączenie ocieplenia między wełną mineralną a styropianem, ościeża lub balkony.

Etics system – how to read and analyse design documentation. Part 3: Thermal insulation work

The article is a continuation of the series on ETICS systems design documentation. This time, the author discusses issues related to insulation work, in particular concerning places that may be problematic, such as the connection of insulation between mineral wool and polystyrene, reveals or balconies.

Pozostańmy przy analizie pewnych problemów, które w projekcie są teoretycznie łatwe do zauważenia. Wymagania, które ogólnie można nazwać jako związane z odpornością na ogień, zawierają Warunki Techniczne [1]. Jednym z nich jest konieczność stosowania materiału niepalnego na wysokości powyżej 25 m (pomijam tu oczywiście inne aspekty wymuszające zastosowanie wełny mineralnej), co powoduje konieczność wykonania połączenia pomiędzy wspomnianą wełną a najczęściej stosowanym styropianem.

Próby wykonania takiego połączenia mają długą historię, począwszy od montażu w tym miejscu obróbki blacharskiej, a skończywszy na poziomo zamocowanym (!!!) profilu dylatacyjnym.

Poznaj techniczne aspekty stosowania ciemnych kolorów na elewacjach

Tego typu próby oczywiście są z góry skazane na niepowodzenie. Gorzej gdy „dokumentacja projektowa” przewidywała dodatkowo zróżnicowanie grubości termoizolacji w tym obszarze, co wbrew pozorom wcale nie było tak rzadkie.

rys1 rokiel

RYS. 1. Zasada łączenia ocieplenia z EPS z ociepleniem z wełną; opis w tekście; rys.: Atlas

Dla „wariantu ze zmianą grubości materiału termoizolacyjnego” należy od razu zażądać od projektanta szczegółowego detalu, a w realizacji zastosować termoizolację o tej samej grubości na całej powierzchni ściany. To jedyny sposób poprawnego wykonania tego miejsca.

Oczywiście grubość termoizolacji i jej współczynnik przewodzenia ciepła muszą zapewnić wymaganą wartość UC(max), należy więc to wcześniej sprawdzić (przeliczyć). Poziome wbudowanie profilu dylatacyjnego spowoduje jedynie nagromadzenie się w nim wody. Jak zatem to wykonać?

Należy mieć świadomość, że łączą się ze sobą materiały o zupełnie innej charakterystyce i właściwościach. Dlatego konieczne jest dodatkowe wzmocnienie miejsca styku dodatkowym pasem siatki oraz kołkowaniem zarówno wełny mineralnej, jak i styropianu wzdłuż krawędzi styku (RYS. 1).

W 2018 r. pojawiły się Wytyczne SITP [2] będące może nie kalką zaleceń niemieckich, czeskich czy francuskich, ale powielające ideę wykonania poziomych i przyokiennych pasów przeciwogniowych. Zalecenia te nie mają żadnej mocy prawnej, jednak zdarzają się sytuacje, że tego typu pasy są umieszczane w projektach.

Mamy więc znowu połączenie ze sobą dwóch materiałów. Jednak poprawna realizacja tego typu połączeń wymaga rozwiązania kilku problemów. Pół biedy, jeżeli jest to tylko poziomy pas (RYS. 2), znacznie więcej problemów przysparza obramowanie okienne (RYS. 3).

rys2 rokiel

RYS. 2. Widok pasa przeciwogniowego z wełny mineralnej; rys.: [2]

rys3 rokiel

RYS. 3. Zabezpieczenie przeciwogniowe okna obsadzonego w warstwie termoizolacji; rys.: [2]

Sposób wykonania połączenia pomiędzy wełną a styropianem jest analogiczny do opisanego powyżej. Tu jednak wymagana jest pewna minimalna szerokość pasa wełny, proszę pamiętać o wymaganej średnicy łącznika mechanicznego.

rys4 rokiel

RYS. 4. Zasady kołkowania styropianu przy otworach okiennych; rys.: Atlas

Więcej problemów generują obramowania okienne. Z jednej strony połączenie wełny i EPS-u wymaga podwójnej warstwy siatki oraz kołkowania, z drugiej strony odległość łączników od ościeży nie jest dowolna (RYS. 4) i wymagane są siatki diagonalne. A co w sytuacji, gdy mamy dodatkowo w tym obszarze łączenie pasów siatki? Ten detal należy rozwiązać indywidualnie. Czyli zaplanować go przed rozpoczęciem robót.

Nie wolno także zapominać o doborze odpowiednich materiałów (nie zawsze klej do styropianu może być stosowany do wełny, odwrotnie zwykle nie ma problemu, przynajmniej ze względu na aspekty techniczne, nie mówię tu o formalnoprawnych). I co z tynkiem akrylowym, gdy jest stosowany akurat w takiej sytuacji?

Wróćmy jeszcze do zagadnień związanych z kondensacją wilgoci, tym razem powierzchniową. Chodzi oczywiście o powierzchnie wewnętrzne. Zagadnienie to łączy się z kwestią analizy mostków termicznych.

Kondensacja powierzchniowa zachodzi w sytuacji, gdy powietrze mające kontakt z chłodną powierzchnią ochładza się do temperatury niższej niż punkt rosy (powietrze o danej zawartości pary wodnej osiąga stan nasycenia). Jeżeli punkt rosy jest niższy niż temperatura na powierzchni przegrody, do kondensacji nie dochodzi. Zatem do kondensacji powierzchniowej dochodzi w pomieszczeniach o podwyższonej wilgotności powierza i/lub niedostatecznej izolacyjności termicznej. Kondensacja pojawia się w miejscach, w których temperatura jest najniższa, generalnie w miejscach występowania geometrycznych i/lub materiałowych mostków termicznych.

Norma PN-EN 13788 [3] do określenia ryzyka kondensacji pary wodnej posługuje się współczynnikiem temperaturowym wewnętrznej powierzchni ƒRsi,

określając go jako bezwymiarowy współczynnik zależny od:

  • temperatury wewnętrznej powierzchni przegrody θsi
  • temperatury powietrza zewnętrznego θe
  • temperatury powietrza w pomieszczeniu θi.

Im wyższa wartość tego współczynnika, tym wyższa temperatura wewnętrznej powierzchni przegrody i mniejsze ryzyko kondensacji pary wodnej na powierzchni i związanego z tym rozwoju grzybów pleśniowych. Przegrodę uznaje się za zaprojektowaną poprawnie, gdy wartość ƒRsi dla każdego miesiąca jest większa od wartości krytycznej. Tyle teoria.

Czy wiesz: Jakie czynniki decydują o jakości wykonania izolacji z płyt styropianowych?

Pokłosiem kondensacji jest rozwój grzybów pleśniowych, dlatego w literaturze zaczęło się pojawiać sformułowanie „punkt pleśniowy” [4]. Najwcześniej uwidacznia się on w obszarze występowania przynajmniej dwóch liniowych mostków termicznych (np. na styku ściany i stropu połaci, przy progu drzwiowym itp.), co oznacza, że istotny wpływ na to zjawisko ma nie tylko izolacyjność cieplna samych ścian zewnętrznych, ale np. pomieszczenia pod tarasem czy przegród przyległych do tarasu, jak również progu drzwiowego (nie tylko samej stolarki).

Dokładne wyznaczenie współczynnika temperaturowego w obszarze trójwymiarowych mostków cieplnych wymaga zastosowania metod numerycznych (wynika to także wprost z zaleceń normy [5]).

Można także korzystać z metod uproszczonych, jednak w wielu przypadkach, zwłaszcza bardziej skomplikowanych, ich dokładność jest niezadawalająca.

Skoro punkt rosy jest wypadkową temperatury powietrza i jego wilgotności, to możliwe jest wyznaczenie zależności punktu rosy od wilgotności powietrza w danym pomieszczeniu i odniesienie jej do minimalnej temperatury na wewnętrznej powierzchni przegrody (tę ostatnią wyznaczono np. metodami numerycznymi) i określenie niebezpieczeństwa kondensacji powierzchniowej.

Literatura techniczna [4] definiuje pojęcie wspomnianego wcześniej punktu pleśniowego przez analogię do punktu rosy. Za wartość punktu pleśniowego przyjmuje się temperaturę kondensacji (czyli punkt rosy) + 3°C (temperatura w najchłodniejszym miejscu przegrody powinna być minimum o 3°C wyższa niż punkt rosy).

Przeanalizujmy kilka typowych mostków termicznych. Zacznijmy od ościeży. Problem z ociepleniem ościeży teoretycznie nie powinien dotyczyć budynków nowo budowanych. O tym, że jest to tylko teoria, świadczą liczne problemy w tym obszarze. Okno w takich przypadkach zazwyczaj montuje się albo w płaszczyźnie termoizolacji, albo tak, że jest zlicowane ze ścianą. Nie występuje tu wówczas typowe ocieplenie ościeży. Montaż okna wymaga jednak szczelności na styku z murem.

W punkcie 2.3.1. załącznika nr 2 do Rozporządzenia [1] czytamy:

„W budynku mieszkalnym, zamieszkania zbiorowego, użyteczności publicznej i produkcyjnym przegrody zewnętrzne nieprzezroczyste (…) oraz połączenia okien z ościeżami należy projektować i wykonywać pod kątem osiągnięcia ich całkowitej szczelności na przenikanie powietrza”.

Może to być realizowane poprzez zamocowanie specjalnych fartuchów. W takim przypadku trzeba przewidzieć konieczność innego zamocowania termoizolacji, nie cementowym klejem, lecz np. na systemową piankę poliuretanową. Skutek przyklejenia na klej cementowy pokazuje FOT. 1.

fot1 rokiel

FOT. 1. Kołnierz okienny pod ETICS nie może być mocowany na kleje cementowe; fot.: Atlas

Zupełnie inna sytuacja ma miejsce w przypadku budynków istniejących. Możliwość ocieplenia ościeży ma zasadniczy wpływ na niebezpieczeństwo kondensacji powierzchniowej i rozwój grzybów pleśniowych w strefie ościeży.

Z drugiej strony o możliwości ocieplenia ościeży decyduje przede wszystkim geometria profili okiennych. Często jest tam jedynie kilka centymetrów dostępnego miejsca, co nie pozwala na zastosowanie termoizolacji grubszej niż 2–3 cm. W takiej sytuacji, o ile nie ma innych przeciwwskazań technicznych, należy stosować termoizolację o jak najniższym współczynniku przewodzenia ciepła, np. płyty rezolowe (z pianki fenolowej) – RYS. 5.

rys5 rokiel

RYS. 5. Ościeże cofnięte ocieplone płytami rezolowymi. Objaśnienia: 1 – ściana ocieplona jednym z systemów ETICS, 2 – pianka niskorozprężna (opcjonalnie), 3 – okno cofnięte względem lica ściany, 4 – klej do mocowania płyt izolacji termicznej, 5 – profil przyokienny z siatką zbrojącą, 6 – ocieplenie ościeży pianką rezolową, 7 – zaprawa do wykonywania warstwy zbrojonej z wtopioną siatką zbrojącą, 8 – profil narożnikowy z siatką, 9 – preparat gruntujący pod wyprawę tynkarską, 10 – wyprawa tynkarska, 11 – część profilu przyokiennego do usunięcia po otynkowaniu; rys.: Atlas

Różnica w λobl pomiędzy EPS-em a rezolem wynosi około 100% (λ dla rezolu to rząd wielkości 0,022 W/(m·K), dla EPS-u to 0,042 W/(m·K).

Wprawdzie nie należy oczekiwać drastycznej różnicy w temperaturze na wewnętrznej powierzchni ościeży, jednak zmiana nawet o 1°C z punktu ochrony przed kondensacją i rozwojem grzybów pleśniowych może mieć znaczenie, zwłaszcza gdy w analizowanym pomieszczeniu należy się liczyć z podwyższoną wilgotnością powietrza (np. kuchnia). Także od strony formalnej nie ma przeszkód, aby stosować wspomniane płyty tylko na ościeżach (na rynku dostępne są systemy posiadające stosowną ocenę techniczną).

Kolejny przykład dotyczy także geometrycznego mostka termicznego, ale związany jest z użytkowaniem obiektu. Ścianę zaprojektowano i wykonano jako trójwarstwową: część konstrukcyjna o grubości 25 cm z cegły pełnej i 15 cm ocieplenia (EPS). Wewnątrz zaobserwowano destrukcję tynków gipsowych w narożnikach ścian.

Budynek był użytkowany tylko w lecie, natomiast w zimie termostat utrzymywał temperaturę na poziomie od +5°C do +7°C. Nie chodzi tu więc o wartość współczynnika U, lecz o temperaturę w przekroju narożnika. Najniższe temperatury zarejestrowane przez stację meteorologiczną w tej okolicy wynosiły około -18°C.

Przyjmując do analizy temperaturę zewnętrzną –18°C i wewnętrzną +5°C, okazuje się, że powierzchnia wewnętrzna w narożniku ma temperaturę nieprzekraczającą 2,5°C (RYS. 6).

rys6 rokiel

RYS. 6. Temperatura w narożniku ocieplonej ściany. Analizę należy zawsze wykonywać dla rzeczywistych warunków użytkowania, opis w tekście; rys.: M. Rokiel

Ta sytuacja pokazuje, jak istotne jest użytkowanie obiektu – dla średnich miesięcznych temperatur problemu nie ma, jednak w wielu sytuacjach są one w ogóle niemiarodajne. Analizowanie warunków użytkowania obiektu nie jest wprawdzie zadaniem kierownika budowy czy inspektora nadzoru (to obowiązek architekta i powinien on przeprowadzić stosowne obliczenia dla rzeczywistych warunków użytkowania), jednak w przypadku obiektów, których lokalizacja i charakter jednoznacznie wskazuje na możliwość użytkowania w okresie letnim i dorywczego w zimie, warto mieć powyższe na uwadze. Przykład ten pokazuje też, jak istotna jest rola i doświadczenie kierownika budowy.

Kolejnym, często spotykanym mostkiem termicznym jest styk ściany z połacią balkonu lub tarasu. W tym obszarze wymagana jest ciągłość zarówno termoizolacji, jak i hydroizolacji, co wymusza odpowiednią organizację robót, spójną z projektowaną koncepcją uszczelnienia i ocieplenia połaci oraz warunkami geometrycznymi tego obszaru (przede wszystkim chodzi o wzajemny poziom płyty stropowej w pomieszczeniu oraz zapas wysokości). Teoretycznie można powiedzieć, że zagadnienie związane jest z balkonami i tarasami, ale to nie do końca prawda.

Rozpatrzmy zatem kilka typowych wariantów rozwiązań. Pierwszy, wydawałoby się najprostszy, to balkon w układzie wspornikowym, ściana dwuwarstwowa ocieplona systemem ETICS. Taki wariant można znaleźć w bardzo wielu budynkach zarówno mieszkalnych, jak i użyteczności publicznej.

Żelbetowa płyta balkonu jest wypuszczona z wieńca i monolitycznie zespolona ze stropem. FOT. 2 pokazuje jednak pewną bezmyślność postępowania uczestników procesu budowlanego. Pozostawienie takiego „status quo”, nawet po wykonaniu uszczelnienia, będzie skutkowało powstaniem mostka termicznego.

fot2 rokiel

FOT. 2. W jaki sposób zlikwidować mostek termiczny, gdy płyta ma być ocieplona obustronnie?; fot.: M. Rokiel

Jeżeli balkon jest mocowany na łączniku izotermicznym lub na dostawianej, niezależnej konstrukcji, to problem mostka termicznego, o ile nie popełniono błędów, praktycznie nie istnieje.

Co jednak w sytuacji, gdy balkon jest wspornikowy lub gdy ściana budynku jest ścianą trójwarstwową, np. z klinkierową oblicówką? W tym pierwszym przypadku konieczność ocieplenia obustronnego wydaje się oczywista, przy czym ocieplić należy także boki i czoło płyty.

Drugi przypadek – w przypadku balkonowej płyty wspornikowej nie da się wyeliminować mostka termicznego [6, 7].

fot3 rokiel

FOT. 3. Wilgotność podłoża to jeden z istotnych czynników wpływających na poprawność prac, opis w tekście; fot.: M. Rokiel

W przypadku balkonów z ociepleniem istotna jest zarówno grubość termoizolacji, jak i jej umiejscowienie. Nie wolno ograniczać się tylko do ocieplenia płyty balkonu z góry i od spodu, konieczne jest także ocieplenie boków i czoła płyty. Grubość termoizolacji powinna wynikać z analiz numerycznych, ewentualnie z obliczeń ƒRsi. Jedno jest pewne, niedopuszczalne jest ocieplanie tylko części połaci, np. od spodu pasem o szerokości jednej czy dwóch płyt.

Kolejnym bardzo poważnym problemem jest ocieplanie obiektów zawilgoconych i zasolonych. Problem z wilgocią w podłożu (FOT. 3) dotyczy także budynków nowo budowanych, jednak jest to zupełnie inna sytuacja. Co zrobić w przypadku budynków pokazanych na FOT. 4–7 czy przegród pokazanych na FOT. 8?

fot4 7 rokiel

FOT. 4–7. Takie obiekty mogą być ocieplane, jednak wymagana jest zawsze wcześniejsza bardzo staranna diagnostyka wilgotnościowa, opis w tekście; fot.: M. Rokiel

fot8 rokiel

FOT. 8. Zasolona ściana – takie podłoże zawsze musi być traktowane indywidualnie, opis w tekście; fot.: M. Rokiel

Już na oko trudno określić ich stan techniczny jako zadawalający, a po szczegółowych badaniach diagnostycznych (zawilgocenie, zasolenie) okazuje się, że klasyfikacja przegród jako „mokre” jest daleko niewystarczająca.

Problem z ociepleniem zasolonych i zawilgoconych murów wymaga zawsze indywidualnej analizy. Mamy bowiem do czynienia z bardzo złożoną sytuacją.

Klasyfikację ceglanych murów pod względem wilgotności podano w TABELI 1. Co z tego jednak wynika?

tab1 rokiel

TABELA 1. Klasyfikacja ceglanych murów pod względem wilgotności [6]

Przeanalizujmy, ile wody może zmieścić się w przegrodzie i jaka jest dopuszczalna wilgotność podłoża podczas wykonywania prac ociepleniowych. Za punkt wyjścia przyjmijmy ścianę o grubości 38 cm (a więc relatywnie cienką, jeżeli chodzi o grubość ceglanego muru).

Przyjmijmy za punkt wyjścia 4%, czyli wartość, od której zaczyna się klasyfikacja muru ceglanego jako lekko zawilgoconego (TABELA 2).

tab2 rokiel

TABELA 2. Ilość wody w ścianie o wilgotności 4%

W TABELI 3 pokazano ilość wody, którą może wchłonąć przegroda. Wprawdzie graniczne wartości nasiąkliwości dotyczą przegrody zanurzonej w wodzie lub poddanej długotrwałemu zalewaniu, jednak dają pojęcie o skali problemu. Co zatem zrobić w takiej sytuacji?

tab3 rokiel

TABELA 3. Ilość wody, którą jest w stanie wchłonąć przegroda

Zagadnienia wilgotnościowe w systemach ociepleń są i tak traktowane po macoszemu, tu dodatkowo dochodzi także problem wilgoci i soli w podłożu oraz ich wpływ zarówno na materiał termoizolacyjny, jak i na samą przegrodę, gdyby doszło do ocieplenia mokrej przegrody.

Materiały termoizolacyjne, z nielicznymi wyjątkami, są odporne na wilgoć, nie oznacza to jednak, że można je stosować na mokrej ścianie. Do tego z punktu widzenia fizyki budowli układ ociepleniowy jest dość niekorzystny. Konsekwencją ocieplenia zawilgoconej/zasolonej ściany będzie zarówno wnikanie wilgoci w termoizolację (zwłaszcza gdy zastosuje się wełnę mineralną, a „argumentem” za zastosowaniem tego materiału będzie „możliwość oddychania ściany i odparowania wilgoci”), jak i odparowanie wilgoci do wewnątrz, z wszelkimi tego konsekwencjami.

Przeanalizujmy najpierw ten drugi przypadek. Na FOT. 9–10 pokazano wygląd ściany żelbetowej ocieplonej od zewnątrz systemem ETICS na styropianie. Od wewnątrz wykonano tynk gipsowy oraz okładzinę ceramiczną. Ściana w momencie wykonywania prac ociepleniowych była zbyt mokra i zbyt szybko wykonano tynk gipsowy oraz położono płytki. Rezultat – jak na FOT. 9–10.

O ile zawilgocenie nie spowoduje drastycznych zmian parametrów wytrzymałościowych termoizolacji, to ma zasadniczy wpływ na właściwości ciepłochronne.

fot9 10 rokiel

FOT. 9–10. Skutek zbyt wczesnego ocieplenia ściany i wykonania wykończeniopisa,  w tekście; fot.: M. Rokiel

Wilgotność materiałów termoizolacyjnych określa się zazwyczaj przez wilgotność objętościową, czyli stosunek objętości wody znajdującej się w materiale do objętości materiału suchego. Ta wartość jest bardzo myląca. Przykładowo dla EPS-u o gęstości 20 kg/m3 dla 5% wilgotności objętościowej wilgotność masowa wyniesie... 250%, natomiast dla wełny mineralnej (gęstość 120 kg/m3) wilgotność masowa wyniesie około 42%. Dla styropianu powoduje to wzrost współczynnika przewodzenia ciepła nawet o kilkadziesiąt procent.

Podana w TABELI 2 wartość masowego zawilgocenia przegród (4%) nie pojawiła się tu przypadkowo. Ta wartość przyjmowana jest jako graniczna dla systemów ociepleń ETICS. Zatem dla przypadków pokazanych na FOT. 4–8 wymagane jest wcześniejsze wykonanie prac renowacyjnych i obniżenie wilgotności podłoża do 4% masowo. Większy problem stanowią sole, tu niestety konieczna jest indywidualna analiza.

Jeżeli dokumentacja projektowa przewiduje ocieplenie obiektu, którego stan wskazuje jednoznacznie na zawilgocenie, to należy sprawdzić, czy są tam także zawarte zalecenia związane z osuszeniem.

Wysychanie naturalne można podzielić na trzy etapy:

  • pierwszy, czyli wysychanie zachodzące na powierzchni ściany,
  • drugi to konwekcyjno-dyfuzyjny transport wilgoci,
  • trzeci, czyli dyfuzyjny mechanizm transportu (dyfuzja objętościowa i powierzchniowa) w sieci kapilar i porów.

Przybliżony czas naturalnego suszenia można oszacować wzorem [4]:

gdzie:

t – czas osuszania muru do poziomu wilgotności równowagowej [doby],
d – wymiar charakterystyczny przegrody równy największej odległości, na której musi przemieszczać się wilgoć z wnętrza przegrody do jej powierzchni; w przypadku wysychania na obie strony przegrody równy połowie grubości muru [cm],
α – współczynnik przewodności wilgoci zależny od własności materiału i stopnia zawilgocenia [doba/cm2].

Wartość przewodności współczynnika a dla różnych materiałów wg [4] podano w TABELI 4.

tab4 rokiel

TABELA 4. Wartość przewodności współczynnika α dla różnych materiałów wg [4]

Czas wysychania muru o grubości 1,5 cegły to okres około 170 dni, natomiast takiego samego muru z żużlobetonu wynosi około 680 dni. Ponieważ w okresie letnim spadek wilgotności muru to około 1,5% miesięcznie, a w okresie jesienno-zimowym proces osuszania naturalnego praktycznie ustaje, można przyjąć, iż doprowadzenie do stanu powietrzno-suchego przegrody ceramicznej o grubości dwóch cegieł to czas około 1000 dni [4].

Z kolei dla budynków narażonych na długotrwałe oddziaływanie wilgoci, zakładając pełną sprawność izolacji przeciwwilgociowych, dla początkowego zawilgocenia przegrody rzędu 22–24% i względnej wilgotności powietrza wewnątrz pomieszczeń piwnicznych w granicach od 70–80% pełne naturalne wysychanie ścian do wartości 4% wilgotności masowej nastąpi po kilku latach [8].

Zatem o ile dokumentacja nie przewiduje osuszania sztucznego, czas naturalnego suszenia mocno zawilgoconych budynków mierzony może być w latach (i to pod warunkiem usunięcia przyczyn zawilgocenia), a bezkrytyczne wykonanie ocieplenia jest wręcz „proszeniem się o kłopoty”.

Dokumentacja robót ociepleniowych wykonywanych na budynkach uprzednio zawilgoconych musi zawierać graniczne wartości zawilgocenia i zasolenia, pozwalające na skuteczne wykonanie robót. Musi ona także zawierać sposoby wykonania wtórnych izolacji (jeżeli są niezbędne) oraz zalecenia co do sztucznego osuszania ścian. Oznacza to, że podstawą wykonania prac dociepleniowych jest rzetelna diagnostyka wilgotnościowa obiektu, a przynajmniej ocieplanych przegród.

Bezpośrednio przed rozpoczęciem prac ociepleniowych konieczne jest ponowne wykonanie badań diagnostycznych potwierdzających wymagany stan wilgotnościowy przegród.

Literatura

  1. Rozporządzenie Ministra Rozwoju i Technologii z dnia 31 stycznia 2022 r. zmieniające rozporządzenie w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie (DzU z 2022 r., poz. 248).
  2. „Wytyczne Projektowania. Ocieplenia elewacji budynków z uwagi na bezpieczeństwo pożarowe”, Stowarzyszenie Inżynierów i Techników Pożarnictwa, 2018.
  3. PN-EN 13788, „Cieplno-wilgotnościowe właściwości komponentów budowlanych i elementów budynku. Temperatura powierzchni wewnętrznej konieczna do uniknięcia krytycznej wilgotności powierzchni i kondensacji międzywarstwowej. Metody obliczania”.
  4. „Ochrona przed wilgocią i korozją biologiczną w budownictwie”, J. Karyś (red.), Grupa MEDIUM, Warszawa 2014.
  5. PN-EN ISO 6946, „Komponenty budowlane i elementy budynku. Opór cieplny i współczynnik przenikania ciepła. Metody obliczania”.
  6. M. Rokiel, „Hydroizolacje w budownictwie”, wyd. III, Grupa MEDIUM, Warszawa 2019.
  7. M. Rokiel, „ABC izolacji tarasów”, Grupa Medium, Warszawa 2015.
  8. J. Karyś, K. Kujawiński, „Opóźnione w czasie skutki powodzi występujące w starych budynkach”, „Ochrona przed korozją” 5s/A/2004.

Chcesz być na bieżąco? Zapisz się do naszego newslettera!

Komentarze

Powiązane

dr hab. Inż. Zbigniew Suchorab, Krzysztof Tabiś, mgr inż. Tomasz Rogala, dr hab. Zenon Szczepaniak, dr hab. Waldemar Susek, mgr inż. Magdalena Paśnikowska-Łukaszuk Bezinwazyjne pomiary wilgotności materiałów budowlanych za pomocą technik reflektometrycznej i mikrofalowej

Bezinwazyjne pomiary wilgotności materiałów budowlanych za pomocą technik reflektometrycznej i mikrofalowej Bezinwazyjne pomiary wilgotności materiałów budowlanych za pomocą technik reflektometrycznej i mikrofalowej

Badania zawilgocenia murów stanowią ważny element oceny stanu technicznego obiektów budowlanych. W wyniku nadmiernego zawilgocenia następuje destrukcja murów, ale również tworzą się niekorzystne warunki...

Badania zawilgocenia murów stanowią ważny element oceny stanu technicznego obiektów budowlanych. W wyniku nadmiernego zawilgocenia następuje destrukcja murów, ale również tworzą się niekorzystne warunki dla zdrowia użytkowników obiektu. W celu powstrzymania procesu destrukcji konieczne jest wykonanie izolacji wtórnych, a do prawidłowego ich wykonania niezbędna jest znajomość stopnia zawilgocenia murów, a także rozkładu wilgotności na grubości i wysokości ścian.

dr inż. Szymon Swierczyna Badanie nośności i sztywności ścinanych połączeń na wkręty samowiercące

Badanie nośności i sztywności ścinanych połączeń na wkręty samowiercące Badanie nośności i sztywności ścinanych połączeń na wkręty samowiercące

Wkręty samowiercące stosuje się w konstrukcjach stalowych m.in. do zakładkowego łączenia prętów kratownic z kształtowników giętych. W tym przypadku łączniki są obciążone siłą poprzeczną i podczas projektowania...

Wkręty samowiercące stosuje się w konstrukcjach stalowych m.in. do zakładkowego łączenia prętów kratownic z kształtowników giętych. W tym przypadku łączniki są obciążone siłą poprzeczną i podczas projektowania należy zweryfikować ich nośność na docisk oraz na ścinanie, a także uwzględnić wpływ sztywności połączeń na stan deformacji konstrukcji.

mgr inż. Monika Hyjek Dobór prawidłowych rozwiązań ścian zewnętrznych na granicy stref pożarowych

Dobór prawidłowych rozwiązań ścian zewnętrznych na granicy stref pożarowych Dobór prawidłowych rozwiązań ścian zewnętrznych na granicy stref pożarowych

Przy projektowaniu ścian zewnętrznych należy wziąć pod uwagę wiele aspektów: wymagania techniczne, obowiązujące przepisy oraz wymogi narzucone przez ubezpieczyciela czy inwestora. Należy uwzględnić właściwości...

Przy projektowaniu ścian zewnętrznych należy wziąć pod uwagę wiele aspektów: wymagania techniczne, obowiązujące przepisy oraz wymogi narzucone przez ubezpieczyciela czy inwestora. Należy uwzględnić właściwości wytrzymałościowe, a jednocześnie cieplne, akustyczne i ogniowe.

mgr inż. Klaudiusz Borkowicz, mgr inż. Szymon Kasprzyk Ocena stopnia rozprzestrzeniania ognia przez ściany zewnętrzne w Polsce oraz w Wielkiej Brytanii

Ocena stopnia rozprzestrzeniania ognia przez ściany zewnętrzne w Polsce oraz w Wielkiej Brytanii Ocena stopnia rozprzestrzeniania ognia przez ściany zewnętrzne w Polsce oraz w Wielkiej Brytanii

W ostatniej dekadzie coraz większą uwagę zwraca się na bezpieczeństwo pożarowe budynków. Przyczyniło się do tego m.in. kilka incydentów związanych z pożarami, gdzie przez użycie nieodpowiednich materiałów...

W ostatniej dekadzie coraz większą uwagę zwraca się na bezpieczeństwo pożarowe budynków. Przyczyniło się do tego m.in. kilka incydentów związanych z pożarami, gdzie przez użycie nieodpowiednich materiałów budowlanych pożar rozwijał się w wysokim tempie, zagrażając życiu i zdrowiu wielu ludzi.

dr inż. Krzysztof Pawłowski prof. PBŚ Charakterystyka energetyczna budynku (cz. 8)

Charakterystyka energetyczna budynku (cz. 8) Charakterystyka energetyczna budynku (cz. 8)

Opracowanie świadectwa charakterystyki energetycznej budynku lub części budynku wymaga znajomości wielu zagadnień, m.in. lokalizacji budynku, parametrów geometrycznych budynku, parametrów cieplnych elementów...

Opracowanie świadectwa charakterystyki energetycznej budynku lub części budynku wymaga znajomości wielu zagadnień, m.in. lokalizacji budynku, parametrów geometrycznych budynku, parametrów cieplnych elementów obudowy budynku (przegrody zewnętrzne i złącza budowlane), danych technicznych instalacji c.o., c.w.u., systemu wentylacji i innych systemów technicznych.

mgr inż. Cezariusz Magott, mgr inż. Maciej Rokiel Analiza dokumentacji technicznej prac renowacyjnych (cz. 5)

Analiza dokumentacji technicznej prac renowacyjnych (cz. 5) Analiza dokumentacji technicznej prac renowacyjnych (cz. 5)

Do prac renowacyjnych zalicza się także tzw. środki flankujące. Będą to przede wszystkim różnego rodzaju tynki specjalistyczne i wymalowania (farby), a także tynki tradycyjne. Błędem jest traktowanie tynku...

Do prac renowacyjnych zalicza się także tzw. środki flankujące. Będą to przede wszystkim różnego rodzaju tynki specjalistyczne i wymalowania (farby), a także tynki tradycyjne. Błędem jest traktowanie tynku (jak również farby) jako osobnego elementu, w oderwaniu od konstrukcji ściany oraz rodzaju i właściwości podłoża.

Filip Ryczywolski Pomiar pionowości budynków i budowli

Pomiar pionowości budynków i budowli Pomiar pionowości budynków i budowli

Odchylenia, przemieszczenia, skręcenia i odkształcenia to niestety codzienny widok na wielu inwestycjach – również tych nowych. Poza kontrolą ścian czy szachtów w budynkach, badania pionowości dotyczą...

Odchylenia, przemieszczenia, skręcenia i odkształcenia to niestety codzienny widok na wielu inwestycjach – również tych nowych. Poza kontrolą ścian czy szachtów w budynkach, badania pionowości dotyczą też słupów, kominów, masztów widokowych, latarni morskich oraz różnego rodzaju mostów, wiaduktów, masztów stalowych: radiowych, telewizyjnych, sieci komórkowych czy oświetleniowych. Ogólnie rzecz ujmując, pomiary pionowości stosuje się do obiektów wysmukłych, czyli takich, których wysokość przewyższa...

PPHU POLSTYR Zbigniew Święszek Jak wybrać system ociepleń?

Jak wybrać system ociepleń? Jak wybrać system ociepleń?

Prawidłowo zaprojektowane i wykonane ocieplenie przegród w budynku pozwala zmniejszyć zużycie energii, a co za tym idzie obniżyć koszty eksploatacji i domowe rachunki.

Prawidłowo zaprojektowane i wykonane ocieplenie przegród w budynku pozwala zmniejszyć zużycie energii, a co za tym idzie obniżyć koszty eksploatacji i domowe rachunki.

Krzysztof Kros Zakrętarki akumulatorowe

Zakrętarki akumulatorowe Zakrętarki akumulatorowe

Wkrętarki akumulatorowe czy wiertarko-wkrętarki od dawna są powszechnie znane i użytkowane zarówno przez amatorów, jak i profesjonalistów. Zakrętarki natomiast są mniej znanym i popularnym typem narzędzia...

Wkrętarki akumulatorowe czy wiertarko-wkrętarki od dawna są powszechnie znane i użytkowane zarówno przez amatorów, jak i profesjonalistów. Zakrętarki natomiast są mniej znanym i popularnym typem narzędzia akumulatorowego, spokrewnionego z wkrętarką czy wiertarką. Jednak w ostatnim czasie zyskują coraz większą popularność, między innymi dzięki łączonym ofertom producentów – zestawy wkrętarka i zakrętarka. Czym zatem jest zakrętarka i do czego służy?

mgr inż. Wojciech Rogala, mgr inż. Marcin Mateja Wymagania dla zapraw murarskich cienkowarstwowych stosowanych do murowania z elementów silikatowych

Wymagania dla zapraw murarskich cienkowarstwowych stosowanych do murowania z elementów silikatowych Wymagania dla zapraw murarskich cienkowarstwowych stosowanych do murowania z elementów silikatowych

Wielu uczestników procesu budowlanego utożsamia parametry muru jedynie z użytymi bloczkami. Tymczasem zgodnie z definicją z PN-EN 1996-1-1 [1] mur to materiał konstrukcyjny utworzony z elementów murowych...

Wielu uczestników procesu budowlanego utożsamia parametry muru jedynie z użytymi bloczkami. Tymczasem zgodnie z definicją z PN-EN 1996-1-1 [1] mur to materiał konstrukcyjny utworzony z elementów murowych ułożonych w określony sposób i trwale połączonych ze sobą zaprawą murarską. Zaprawa stanowi nieodłączny element konstrukcji, a jej parametry wpływają nie tylko na sam proces murowania, ale także na trwałość i parametry konstrukcji.

inż. Joanna Nowaczyk Energooszczędne i pasywne rozwiązania w budownictwie z wykorzystaniem silikatów

Energooszczędne i pasywne rozwiązania w budownictwie z wykorzystaniem silikatów Energooszczędne i pasywne rozwiązania w budownictwie z wykorzystaniem silikatów

Zgodnie z szacunkami Komisji Europejskiej sektor budowlany odpowiada za 40% zużycia energii oraz ok. 36% emisji gazów cieplarnianych w Europie. To bardzo wysokie wartości, ich ograniczenie wiąże się z...

Zgodnie z szacunkami Komisji Europejskiej sektor budowlany odpowiada za 40% zużycia energii oraz ok. 36% emisji gazów cieplarnianych w Europie. To bardzo wysokie wartości, ich ograniczenie wiąże się z głębokimi zmianami, modernizacjami, a także często z zupełną zmianą obecnie stosowanych rozwiązań. Jeśli dodamy do tego wszystkiego czynnik kosztowy związany z adaptacjami, powstaje gotowy przepis na pojawienie się skrajnych ocen wdrażanych planów czy też zobowiązań państw członkowskich. Jednakże ścieżka...

prof. dr hab. inż. Łukasz Drobiec, mgr inż. Jan Biernacki Wzmacnianie konstrukcji murowanych przy pomocy siatek kompozytowych PBO

Wzmacnianie konstrukcji murowanych przy pomocy siatek kompozytowych PBO Wzmacnianie konstrukcji murowanych przy pomocy siatek kompozytowych PBO

Wzmacnianie konstrukcji zabytkowych stanowi istotną gałąź budownictwa, która powstała w odpowiedzi na potrzebę ochrony i zachowania historycznych budowli. Historia wzmacniania konstrukcji zabytkowych sięga...

Wzmacnianie konstrukcji zabytkowych stanowi istotną gałąź budownictwa, która powstała w odpowiedzi na potrzebę ochrony i zachowania historycznych budowli. Historia wzmacniania konstrukcji zabytkowych sięga daleko wstecz i przeplata się z rozwojem technologii i inżynierii.

dr inż. Szymon Swierczyna Kratownica z kształtowników giętych

Kratownica z kształtowników giętych Kratownica z kształtowników giętych

Elementy z kształtowników giętych można stosować na konstrukcje o małej i średniej rozpiętości, które są obciążone w sposób przeważająco statyczny, m.in. jednokondygnacyjne budynki halowe bez transportu...

Elementy z kształtowników giętych można stosować na konstrukcje o małej i średniej rozpiętości, które są obciążone w sposób przeważająco statyczny, m.in. jednokondygnacyjne budynki halowe bez transportu wewnętrznego, stropy i podesty. Odpowiednią nośność i sztywność można w tym wypadku zapewnić, przyjmując ustrój kratowy (FOT.). Konstrukcje tego typu cechuje niewielkie zużycie stali, a w przypadku, gdy w połączeniach stosuje się łączniki mechaniczne (np. wkręty samowiercące), można niemal całkowicie...

Iwona Sobczak Normy akustyczne w budownictwie

Normy akustyczne w budownictwie Normy akustyczne w budownictwie

Normy akustyczne w budownictwie, takie jak PN-B-02151-4:2015-06 [1], nie powstały bez powodu. Skutki ekspozycji na hałas nie są natychmiastowe, ale za to bardzo poważne. Narażenie na głośne dźwięki może...

Normy akustyczne w budownictwie, takie jak PN-B-02151-4:2015-06 [1], nie powstały bez powodu. Skutki ekspozycji na hałas nie są natychmiastowe, ale za to bardzo poważne. Narażenie na głośne dźwięki może prowadzić do trwałego uszkodzenia słuchu, ale nie wolno też zapominać o znacznie powszechniejszym zagrożeniu – mianowicie pozasłuchowym wpływie hałasu na zdrowie. Będąc silnym stresorem, jest przyczyną m.in. zaburzeń snu, przyspieszonego zmęczenia, rozdrażnienia, kłopotów z koncentracją, a nawet chorób...

mgr inż. Cezariusz Magott, mgr inż. Maciej Rokiel Dokumentacja techniczna prac renowacyjnych – tynki specjalne (cz.6)

Dokumentacja techniczna prac renowacyjnych – tynki specjalne (cz.6) Dokumentacja techniczna prac renowacyjnych – tynki specjalne (cz.6)

Kontynuując zagadnienia związane z doborem tynków, tym razem omówimy zagadnienia związane z tynkami specjalnymi.

Kontynuując zagadnienia związane z doborem tynków, tym razem omówimy zagadnienia związane z tynkami specjalnymi.

dr inż. Michał Wieczorek, mgr inż. Klaudiusz Borkowicz Zrównoważone budownictwo w odniesieniu do złożonych systemów izolacji cieplnych

Zrównoważone budownictwo w odniesieniu do złożonych systemów izolacji cieplnych Zrównoważone budownictwo w odniesieniu do złożonych systemów izolacji cieplnych

Komisja Europejska, formułując nową strategię w postaci Europejskiego Zielonego Ładu [1], zintensyfikowała działania mające na celu przeciwdziałanie negatywnemu wpływowi człowieka na środowisko jako jednemu...

Komisja Europejska, formułując nową strategię w postaci Europejskiego Zielonego Ładu [1], zintensyfikowała działania mające na celu przeciwdziałanie negatywnemu wpływowi człowieka na środowisko jako jednemu z najważniejszych wyzwań współczesnego świata. Celem tej polityki jest osiągnięcie zerowej emisji netto gazów cieplarnianych w Unii Europejskiej (UE) w 2050 r. Realizacja tego celu zakłada jednocześnie oddzielenie wzrostu gospodarczego od wykorzystania zasobów naturalnych.

dr inż. Krzysztof Pawłowski prof. PBŚ Zasady opracowania katalogu złączy budowlanych (mostków cieplnych) (cz.10)

Zasady opracowania katalogu złączy budowlanych (mostków cieplnych) (cz.10) Zasady opracowania katalogu złączy budowlanych (mostków cieplnych) (cz.10)

Złącza budowlane (mostki cieplne) stanowią integralną część elementów obudowy budynku. Dobór ich warstw materiałowych nie powinien być przypadkowy, lecz oparty na obliczeniach analiz parametrów fizykalnych.

Złącza budowlane (mostki cieplne) stanowią integralną część elementów obudowy budynku. Dobór ich warstw materiałowych nie powinien być przypadkowy, lecz oparty na obliczeniach analiz parametrów fizykalnych.

PU Polska – Związek Producentów Płyt Warstwowych i Izolacji Montaż płyt warstwowych do ścian murowanych

Montaż płyt warstwowych do ścian murowanych Montaż płyt warstwowych do ścian murowanych

Płyty warstwowe posiadają liczne zalety, dzięki którym stały się materiałem powszechnie używanym w budownictwie przemysłowym i coraz częściej również w sektorze budownictwa mieszkaniowego. Są jednak takie...

Płyty warstwowe posiadają liczne zalety, dzięki którym stały się materiałem powszechnie używanym w budownictwie przemysłowym i coraz częściej również w sektorze budownictwa mieszkaniowego. Są jednak takie aplikacje, gdzie zastosowanie tego typu produktów nie wydaje się trafnym pomysłem, jak choćby montaż do ściany pełnej, np. murowanej. Jak zamontować płyty poprawnie? Wystarczy trzymać się pewnych reguł.

dr inż. Krzysztof Pawłowski prof. PBŚ, mgr inż. Robert Małkowski Budownictwo zrównoważone – wybrane aspekty (cz. 11)

Budownictwo zrównoważone – wybrane aspekty (cz. 11) Budownictwo zrównoważone – wybrane aspekty (cz. 11)

W myśl idei budownictwa zrównoważonego zaprojektowanie budynku wymaga podejścia kompleksowego, które uwzględnia wszystkie aspekty związane z procesem budowlanym, tj. projektowanie, budowę, użytkowanie...

W myśl idei budownictwa zrównoważonego zaprojektowanie budynku wymaga podejścia kompleksowego, które uwzględnia wszystkie aspekty związane z procesem budowlanym, tj. projektowanie, budowę, użytkowanie budynku zgodnie z jego przeznaczeniem i utrzymanie obiektu budowlanego. Wymaga to wykorzystania najlepszych dostępnych rozwiązań technologicznych, materiałowych i architektonicznych.

Redakcja Technologia wdmuchiwania izolacji i Przemysł 4.0

Technologia wdmuchiwania izolacji i Przemysł 4.0 Technologia wdmuchiwania izolacji i Przemysł 4.0

Budownictwo drewniane stale ewoluuje, przynosząc innowacyjne rozwiązania, które nie tylko zwiększają efektywność procesów, ale również zmniejszają negatywny wpływ na środowisko.

Budownictwo drewniane stale ewoluuje, przynosząc innowacyjne rozwiązania, które nie tylko zwiększają efektywność procesów, ale również zmniejszają negatywny wpływ na środowisko.

dr inż. Szymon Swierczyna Połączenia sprężane według PN-EN 1090-2:2018

Połączenia sprężane według PN-EN 1090-2:2018 Połączenia sprężane według PN-EN 1090-2:2018

Łączenie za pomocą śrub to jedna z najbardziej popularnych metod scalania konstrukcji stalowych. Ze względu na stosunkową łatwość tej operacji stosuje się ją przede wszystkim podczas montażu elementów...

Łączenie za pomocą śrub to jedna z najbardziej popularnych metod scalania konstrukcji stalowych. Ze względu na stosunkową łatwość tej operacji stosuje się ją przede wszystkim podczas montażu elementów wysyłkowych na placu budowy.

prof. dr hab. inż. Łukasz Drobiec, mgr inż. Jan Biernacki Zastosowanie wzmocnień kompozytowych w istniejących konstrukcjach

Zastosowanie wzmocnień kompozytowych w istniejących konstrukcjach Zastosowanie wzmocnień kompozytowych w istniejących konstrukcjach

Z biegiem czasu obiekty budowlane ulegają procesom starzenia i awariom [1, 2]. Aby zminimalizować skutki negatywnych oddziaływań lub przywrócić stan pierwotny budowli, stosowane są różne materiały i technologie...

Z biegiem czasu obiekty budowlane ulegają procesom starzenia i awariom [1, 2]. Aby zminimalizować skutki negatywnych oddziaływań lub przywrócić stan pierwotny budowli, stosowane są różne materiały i technologie [3]. Na przestrzeni ostatnich lat pojawiło się wiele innowacyjnych rozwiązań technologicznych związanych ze wzmacnianiem konstrukcji. Materiały kompozytowe są stosowane nie tylko w przypadku starych obiektów budowlanych. Można je spotkać również w nowych budynkach przechodzących zmiany projektowe...

mgr inż. Maciej Rokiel, mgr inż. Ryszard Koć Parkingi podziemne – przyczyny i skutki zawilgoceń cz. 1. Wybrane zagadnienia

Parkingi podziemne – przyczyny i skutki zawilgoceń cz. 1. Wybrane zagadnienia Parkingi podziemne – przyczyny i skutki zawilgoceń cz. 1. Wybrane zagadnienia

Poprawne (zgodne ze sztuką budowlaną) zaprojektowanie i wykonanie budynku to bezwzględny wymóg bezproblemowej, długoletniej eksploatacji. Podstawą jest odpowiednie rozwiązanie konstrukcyjne części zagłębionej...

Poprawne (zgodne ze sztuką budowlaną) zaprojektowanie i wykonanie budynku to bezwzględny wymóg bezproblemowej, długoletniej eksploatacji. Podstawą jest odpowiednie rozwiązanie konstrukcyjne części zagłębionej w gruncie. Doświadczenie pokazuje, że znaczącą liczbę problemów związanych z eksploatacją stanowią problemy z wilgocią. Woda jest niestety takim medium, które bezlitośnie wykorzystuje wszelkie usterki i nieciągłości w warstwach hydroizolacyjnych, wnikając do wnętrza konstrukcji.

Marian Bober, Michał Kowalski, mgr inż. Mariusz Pawlak, Tomasz Petras, Jacek Stankiewicz Dobór łączników do montażu płyt warstwowych

Dobór łączników do montażu płyt warstwowych Dobór łączników do montażu płyt warstwowych

Podstawę artykułu stanowi opracowanie „DAFA M 3.01 Wytyczne doboru łączników do montażu płyt warstwowych”. Ma ono stanowić daleko idącą pomoc i punkt odniesienia dla wszystkich osób uczestniczących w procesach...

Podstawę artykułu stanowi opracowanie „DAFA M 3.01 Wytyczne doboru łączników do montażu płyt warstwowych”. Ma ono stanowić daleko idącą pomoc i punkt odniesienia dla wszystkich osób uczestniczących w procesach projektowania, realizacji i odbiorów inwestycji budowlanych wykonanych z płyt warstwowych.

Wybrane dla Ciebie

50% dopłaty na nowe źródło OZE »

50% dopłaty na nowe źródło OZE » 50% dopłaty na nowe źródło OZE »

Łatwa hydroizolacja skomplikowanych powierzchni dachowych »

Łatwa hydroizolacja skomplikowanych powierzchni dachowych » Łatwa hydroizolacja skomplikowanych powierzchni dachowych »

Docieplanie budynków to nie problem »

Docieplanie budynków to nie problem » Docieplanie budynków to nie problem »

Trwały kolor tynku? To możliwe! »

Trwały kolor tynku? To możliwe! » Trwały kolor tynku? To możliwe! »

Piany poliuretanowe, otwartokomórkowe »

Piany poliuretanowe, otwartokomórkowe » Piany poliuretanowe, otwartokomórkowe »

Trwały dach to dobra inwestycja »

Trwały dach to dobra inwestycja » Trwały dach to dobra inwestycja »

OZE dofinansowaniem nawet 50% »

OZE dofinansowaniem nawet 50% » OZE dofinansowaniem nawet 50% »

Skuteczna walka z wilgocią w ścianach »

Skuteczna walka z wilgocią w ścianach » Skuteczna walka z wilgocią w ścianach »

Powstrzymaj odpadanie elewacji »

Powstrzymaj odpadanie elewacji » Powstrzymaj odpadanie elewacji »

Oszczędzanie przez ocieplanie »

Oszczędzanie przez ocieplanie » Oszczędzanie przez ocieplanie »

Trwała ochrona betonu »

Trwała ochrona betonu » Trwała ochrona betonu »

Certyfikat Stowarzyszenia Wykonawców Izolacji Natryskowych »

Certyfikat Stowarzyszenia Wykonawców Izolacji Natryskowych » Certyfikat Stowarzyszenia Wykonawców Izolacji Natryskowych »

Copyright © 2004-2019 Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Spółka komandytowa, nr KRS: 0000537655. Wszelkie prawa, w tym Autora, Wydawcy i Producenta bazy danych zastrzeżone. Jakiekolwiek dalsze rozpowszechnianie artykułów zabronione. Korzystanie z serwisu i zamieszczonych w nim utworów i danych wyłącznie na zasadach określonych w Zasadach korzystania z serwisu.
Portal Budowlany - Izolacje.com.pl

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim urządzeniu końcowym. W każdym momencie możesz dokonać zmiany ustawień przeglądarki dotyczących cookies. Nim Państwo zaczną korzystać z naszego serwisu prosimy o zapoznanie się z naszą polityką prywatności oraz Informacją o Cookies. Więcej szczegółów w naszej Polityce Prywatności oraz Informacji o Cookies. Administratorem Państwa danych osobowych jest Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Sp.K., nr KRS: 0000537655, z siedzibą w 04-112 Warszawa, ul. Karczewska 18, tel. +48 22 810-21-24, właściciel strony www.izolacje.com.pl. Twoje Dane Osobowe będą chronione zgodnie z wytycznymi polityki prywatności www.izolacje.com.pl oraz zgodnie z Rozporządzeniem Parlamentu Europejskiego i Rady (UE) 2016/679 z dnia 27 kwietnia 2016r i z Ustawą o ochronie danych osobowych Dz.U. 2018 poz. 1000 z dnia 10 maja 2018r.