Izolacje.com.pl

Zaawansowane wyszukiwanie

System ETICS – dokumentacja projektowa prac ociepleniowych

Skutek zbyt wczesnego ocieplenia ściany i wykonania wykończenia, fot. M. Rokiel
Skutek zbyt wczesnego ocieplenia ściany i wykonania wykończenia, fot. M. Rokiel

Artykuł jest kontynuacją artykułów opublikowanych w numerach 3/2022 i 4/2022 miesięcznika „IZOLACJE”.

Zobacz także

Rockwool Polska Termomodernizacja domu – na czym polega i jak ją zaplanować?

Termomodernizacja domu – na czym polega i jak ją zaplanować? Termomodernizacja domu – na czym polega i jak ją zaplanować?

Termomodernizacja to szereg działań mających na celu poprawę energochłonności Twojego domu. Niezależnie od zakresu inwestycji, kluczowa dla osiągnięcia spodziewanych efektów jest kolejność prac. Najpierw...

Termomodernizacja to szereg działań mających na celu poprawę energochłonności Twojego domu. Niezależnie od zakresu inwestycji, kluczowa dla osiągnięcia spodziewanych efektów jest kolejność prac. Najpierw należy docieplić ściany i dach, aby ograniczyć zużycie energii, a dopiero potem zmodernizować system grzewczy. Dzięki kompleksowej termomodernizacji domu prawidłowo wykonanej znacznie zmniejszysz koszty utrzymania budynku.

Recticel Insulation Nowoczesne technologie termoizolacyjne Recticel w renowacji budynków historycznych

Nowoczesne technologie termoizolacyjne Recticel w renowacji budynków historycznych Nowoczesne technologie termoizolacyjne Recticel w renowacji budynków historycznych

W dzisiejszych czasach zachowanie dziedzictwa kulturowego i jednoczesne dostosowanie budynków do współczesnych standardów efektywności energetycznej stanowi duże wyzwanie zarówno dla inwestora, projektanta...

W dzisiejszych czasach zachowanie dziedzictwa kulturowego i jednoczesne dostosowanie budynków do współczesnych standardów efektywności energetycznej stanowi duże wyzwanie zarówno dla inwestora, projektanta jak i wykonawcy. Niejednokrotnie w ramach inwestycji, począwszy już od etapu opracowywania projektu, okazuje się, że tradycyjne materiały izolacyjne i metody ich aplikacji nie są wystarczające, aby zapewnić właściwe parametry termiczne i należytą ochronę wartości historycznych budynku.

Sievert Polska Sp. z o.o. System ociepleń quick-mix S-LINE

System ociepleń quick-mix S-LINE System ociepleń quick-mix S-LINE

System ociepleń quick-mix S-LINE to rozwiązanie warte rozważenia zawsze, kiedy zachodzi potrzeba wykonania termomodernizacji ścian zewnętrznych. Umożliwia montaż nowej izolacji termicznej na istniejącym...

System ociepleń quick-mix S-LINE to rozwiązanie warte rozważenia zawsze, kiedy zachodzi potrzeba wykonania termomodernizacji ścian zewnętrznych. Umożliwia montaż nowej izolacji termicznej na istniejącym już systemie ociepleń, który nie spełnia dzisiejszych wymagań pod kątem wartości współczynnika przenikania ciepła U = 0,2 W/(m²·K).

O czym piszemy w artykule:

  • niuanse projektowe wynikające z konieczności stosowania materiału niepalnego na wysokości powyżej 25 m
  • rozwiązania detali dotyczących połączeń obramowań okiennych
  • analiza kilku przypadków typowych mostków termicznych
  • problemy z ocieplaniem elewacji zawilgoconych i zasolonych

Artykuł jest kontynuacją cyklu o dokumentacji projektowej systemów ETICS. Tym razem autor porusza kwestie związane z pracami ociepleniowymi, w szczególności dotyczące miejsc, które mogą być problematyczne, jak np. połączenie ocieplenia między wełną mineralną a styropianem, ościeża lub balkony.

Etics system – how to read and analyse design documentation. Part 3: Thermal insulation work

The article is a continuation of the series on ETICS systems design documentation. This time, the author discusses issues related to insulation work, in particular concerning places that may be problematic, such as the connection of insulation between mineral wool and polystyrene, reveals or balconies.

Pozostańmy przy analizie pewnych problemów, które w projekcie są teoretycznie łatwe do zauważenia. Wymagania, które ogólnie można nazwać jako związane z odpornością na ogień, zawierają Warunki Techniczne [1]. Jednym z nich jest konieczność stosowania materiału niepalnego na wysokości powyżej 25 m (pomijam tu oczywiście inne aspekty wymuszające zastosowanie wełny mineralnej), co powoduje konieczność wykonania połączenia pomiędzy wspomnianą wełną a najczęściej stosowanym styropianem.

Próby wykonania takiego połączenia mają długą historię, począwszy od montażu w tym miejscu obróbki blacharskiej, a skończywszy na poziomo zamocowanym (!!!) profilu dylatacyjnym.

Poznaj techniczne aspekty stosowania ciemnych kolorów na elewacjach

Tego typu próby oczywiście są z góry skazane na niepowodzenie. Gorzej gdy „dokumentacja projektowa” przewidywała dodatkowo zróżnicowanie grubości termoizolacji w tym obszarze, co wbrew pozorom wcale nie było tak rzadkie.

rys1 rokiel

RYS. 1. Zasada łączenia ocieplenia z EPS z ociepleniem z wełną; opis w tekście; rys.: Atlas

Dla „wariantu ze zmianą grubości materiału termoizolacyjnego” należy od razu zażądać od projektanta szczegółowego detalu, a w realizacji zastosować termoizolację o tej samej grubości na całej powierzchni ściany. To jedyny sposób poprawnego wykonania tego miejsca.

Oczywiście grubość termoizolacji i jej współczynnik przewodzenia ciepła muszą zapewnić wymaganą wartość UC(max), należy więc to wcześniej sprawdzić (przeliczyć). Poziome wbudowanie profilu dylatacyjnego spowoduje jedynie nagromadzenie się w nim wody. Jak zatem to wykonać?

Należy mieć świadomość, że łączą się ze sobą materiały o zupełnie innej charakterystyce i właściwościach. Dlatego konieczne jest dodatkowe wzmocnienie miejsca styku dodatkowym pasem siatki oraz kołkowaniem zarówno wełny mineralnej, jak i styropianu wzdłuż krawędzi styku (RYS. 1).

W 2018 r. pojawiły się Wytyczne SITP [2] będące może nie kalką zaleceń niemieckich, czeskich czy francuskich, ale powielające ideę wykonania poziomych i przyokiennych pasów przeciwogniowych. Zalecenia te nie mają żadnej mocy prawnej, jednak zdarzają się sytuacje, że tego typu pasy są umieszczane w projektach.

Mamy więc znowu połączenie ze sobą dwóch materiałów. Jednak poprawna realizacja tego typu połączeń wymaga rozwiązania kilku problemów. Pół biedy, jeżeli jest to tylko poziomy pas (RYS. 2), znacznie więcej problemów przysparza obramowanie okienne (RYS. 3).

rys2 rokiel

RYS. 2. Widok pasa przeciwogniowego z wełny mineralnej; rys.: [2]

rys3 rokiel

RYS. 3. Zabezpieczenie przeciwogniowe okna obsadzonego w warstwie termoizolacji; rys.: [2]

Sposób wykonania połączenia pomiędzy wełną a styropianem jest analogiczny do opisanego powyżej. Tu jednak wymagana jest pewna minimalna szerokość pasa wełny, proszę pamiętać o wymaganej średnicy łącznika mechanicznego.

rys4 rokiel

RYS. 4. Zasady kołkowania styropianu przy otworach okiennych; rys.: Atlas

Więcej problemów generują obramowania okienne. Z jednej strony połączenie wełny i EPS-u wymaga podwójnej warstwy siatki oraz kołkowania, z drugiej strony odległość łączników od ościeży nie jest dowolna (RYS. 4) i wymagane są siatki diagonalne. A co w sytuacji, gdy mamy dodatkowo w tym obszarze łączenie pasów siatki? Ten detal należy rozwiązać indywidualnie. Czyli zaplanować go przed rozpoczęciem robót.

Nie wolno także zapominać o doborze odpowiednich materiałów (nie zawsze klej do styropianu może być stosowany do wełny, odwrotnie zwykle nie ma problemu, przynajmniej ze względu na aspekty techniczne, nie mówię tu o formalnoprawnych). I co z tynkiem akrylowym, gdy jest stosowany akurat w takiej sytuacji?

Wróćmy jeszcze do zagadnień związanych z kondensacją wilgoci, tym razem powierzchniową. Chodzi oczywiście o powierzchnie wewnętrzne. Zagadnienie to łączy się z kwestią analizy mostków termicznych.

Kondensacja powierzchniowa zachodzi w sytuacji, gdy powietrze mające kontakt z chłodną powierzchnią ochładza się do temperatury niższej niż punkt rosy (powietrze o danej zawartości pary wodnej osiąga stan nasycenia). Jeżeli punkt rosy jest niższy niż temperatura na powierzchni przegrody, do kondensacji nie dochodzi. Zatem do kondensacji powierzchniowej dochodzi w pomieszczeniach o podwyższonej wilgotności powierza i/lub niedostatecznej izolacyjności termicznej. Kondensacja pojawia się w miejscach, w których temperatura jest najniższa, generalnie w miejscach występowania geometrycznych i/lub materiałowych mostków termicznych.

Norma PN-EN 13788 [3] do określenia ryzyka kondensacji pary wodnej posługuje się współczynnikiem temperaturowym wewnętrznej powierzchni ƒRsi,

określając go jako bezwymiarowy współczynnik zależny od:

  • temperatury wewnętrznej powierzchni przegrody θsi
  • temperatury powietrza zewnętrznego θe
  • temperatury powietrza w pomieszczeniu θi.

Im wyższa wartość tego współczynnika, tym wyższa temperatura wewnętrznej powierzchni przegrody i mniejsze ryzyko kondensacji pary wodnej na powierzchni i związanego z tym rozwoju grzybów pleśniowych. Przegrodę uznaje się za zaprojektowaną poprawnie, gdy wartość ƒRsi dla każdego miesiąca jest większa od wartości krytycznej. Tyle teoria.

Czy wiesz: Jakie czynniki decydują o jakości wykonania izolacji z płyt styropianowych?

Pokłosiem kondensacji jest rozwój grzybów pleśniowych, dlatego w literaturze zaczęło się pojawiać sformułowanie „punkt pleśniowy” [4]. Najwcześniej uwidacznia się on w obszarze występowania przynajmniej dwóch liniowych mostków termicznych (np. na styku ściany i stropu połaci, przy progu drzwiowym itp.), co oznacza, że istotny wpływ na to zjawisko ma nie tylko izolacyjność cieplna samych ścian zewnętrznych, ale np. pomieszczenia pod tarasem czy przegród przyległych do tarasu, jak również progu drzwiowego (nie tylko samej stolarki).

Dokładne wyznaczenie współczynnika temperaturowego w obszarze trójwymiarowych mostków cieplnych wymaga zastosowania metod numerycznych (wynika to także wprost z zaleceń normy [5]).

Można także korzystać z metod uproszczonych, jednak w wielu przypadkach, zwłaszcza bardziej skomplikowanych, ich dokładność jest niezadawalająca.

Skoro punkt rosy jest wypadkową temperatury powietrza i jego wilgotności, to możliwe jest wyznaczenie zależności punktu rosy od wilgotności powietrza w danym pomieszczeniu i odniesienie jej do minimalnej temperatury na wewnętrznej powierzchni przegrody (tę ostatnią wyznaczono np. metodami numerycznymi) i określenie niebezpieczeństwa kondensacji powierzchniowej.

Literatura techniczna [4] definiuje pojęcie wspomnianego wcześniej punktu pleśniowego przez analogię do punktu rosy. Za wartość punktu pleśniowego przyjmuje się temperaturę kondensacji (czyli punkt rosy) + 3°C (temperatura w najchłodniejszym miejscu przegrody powinna być minimum o 3°C wyższa niż punkt rosy).

Przeanalizujmy kilka typowych mostków termicznych. Zacznijmy od ościeży. Problem z ociepleniem ościeży teoretycznie nie powinien dotyczyć budynków nowo budowanych. O tym, że jest to tylko teoria, świadczą liczne problemy w tym obszarze. Okno w takich przypadkach zazwyczaj montuje się albo w płaszczyźnie termoizolacji, albo tak, że jest zlicowane ze ścianą. Nie występuje tu wówczas typowe ocieplenie ościeży. Montaż okna wymaga jednak szczelności na styku z murem.

W punkcie 2.3.1. załącznika nr 2 do Rozporządzenia [1] czytamy:

„W budynku mieszkalnym, zamieszkania zbiorowego, użyteczności publicznej i produkcyjnym przegrody zewnętrzne nieprzezroczyste (…) oraz połączenia okien z ościeżami należy projektować i wykonywać pod kątem osiągnięcia ich całkowitej szczelności na przenikanie powietrza”.

Może to być realizowane poprzez zamocowanie specjalnych fartuchów. W takim przypadku trzeba przewidzieć konieczność innego zamocowania termoizolacji, nie cementowym klejem, lecz np. na systemową piankę poliuretanową. Skutek przyklejenia na klej cementowy pokazuje FOT. 1.

fot1 rokiel

FOT. 1. Kołnierz okienny pod ETICS nie może być mocowany na kleje cementowe; fot.: Atlas

Zupełnie inna sytuacja ma miejsce w przypadku budynków istniejących. Możliwość ocieplenia ościeży ma zasadniczy wpływ na niebezpieczeństwo kondensacji powierzchniowej i rozwój grzybów pleśniowych w strefie ościeży.

Z drugiej strony o możliwości ocieplenia ościeży decyduje przede wszystkim geometria profili okiennych. Często jest tam jedynie kilka centymetrów dostępnego miejsca, co nie pozwala na zastosowanie termoizolacji grubszej niż 2–3 cm. W takiej sytuacji, o ile nie ma innych przeciwwskazań technicznych, należy stosować termoizolację o jak najniższym współczynniku przewodzenia ciepła, np. płyty rezolowe (z pianki fenolowej) – RYS. 5.

rys5 rokiel

RYS. 5. Ościeże cofnięte ocieplone płytami rezolowymi. Objaśnienia: 1 – ściana ocieplona jednym z systemów ETICS, 2 – pianka niskorozprężna (opcjonalnie), 3 – okno cofnięte względem lica ściany, 4 – klej do mocowania płyt izolacji termicznej, 5 – profil przyokienny z siatką zbrojącą, 6 – ocieplenie ościeży pianką rezolową, 7 – zaprawa do wykonywania warstwy zbrojonej z wtopioną siatką zbrojącą, 8 – profil narożnikowy z siatką, 9 – preparat gruntujący pod wyprawę tynkarską, 10 – wyprawa tynkarska, 11 – część profilu przyokiennego do usunięcia po otynkowaniu; rys.: Atlas

Różnica w λobl pomiędzy EPS-em a rezolem wynosi około 100% (λ dla rezolu to rząd wielkości 0,022 W/(m·K), dla EPS-u to 0,042 W/(m·K).

Wprawdzie nie należy oczekiwać drastycznej różnicy w temperaturze na wewnętrznej powierzchni ościeży, jednak zmiana nawet o 1°C z punktu ochrony przed kondensacją i rozwojem grzybów pleśniowych może mieć znaczenie, zwłaszcza gdy w analizowanym pomieszczeniu należy się liczyć z podwyższoną wilgotnością powietrza (np. kuchnia). Także od strony formalnej nie ma przeszkód, aby stosować wspomniane płyty tylko na ościeżach (na rynku dostępne są systemy posiadające stosowną ocenę techniczną).

Kolejny przykład dotyczy także geometrycznego mostka termicznego, ale związany jest z użytkowaniem obiektu. Ścianę zaprojektowano i wykonano jako trójwarstwową: część konstrukcyjna o grubości 25 cm z cegły pełnej i 15 cm ocieplenia (EPS). Wewnątrz zaobserwowano destrukcję tynków gipsowych w narożnikach ścian.

Budynek był użytkowany tylko w lecie, natomiast w zimie termostat utrzymywał temperaturę na poziomie od +5°C do +7°C. Nie chodzi tu więc o wartość współczynnika U, lecz o temperaturę w przekroju narożnika. Najniższe temperatury zarejestrowane przez stację meteorologiczną w tej okolicy wynosiły około -18°C.

Przyjmując do analizy temperaturę zewnętrzną –18°C i wewnętrzną +5°C, okazuje się, że powierzchnia wewnętrzna w narożniku ma temperaturę nieprzekraczającą 2,5°C (RYS. 6).

rys6 rokiel

RYS. 6. Temperatura w narożniku ocieplonej ściany. Analizę należy zawsze wykonywać dla rzeczywistych warunków użytkowania, opis w tekście; rys.: M. Rokiel

Ta sytuacja pokazuje, jak istotne jest użytkowanie obiektu – dla średnich miesięcznych temperatur problemu nie ma, jednak w wielu sytuacjach są one w ogóle niemiarodajne. Analizowanie warunków użytkowania obiektu nie jest wprawdzie zadaniem kierownika budowy czy inspektora nadzoru (to obowiązek architekta i powinien on przeprowadzić stosowne obliczenia dla rzeczywistych warunków użytkowania), jednak w przypadku obiektów, których lokalizacja i charakter jednoznacznie wskazuje na możliwość użytkowania w okresie letnim i dorywczego w zimie, warto mieć powyższe na uwadze. Przykład ten pokazuje też, jak istotna jest rola i doświadczenie kierownika budowy.

Kolejnym, często spotykanym mostkiem termicznym jest styk ściany z połacią balkonu lub tarasu. W tym obszarze wymagana jest ciągłość zarówno termoizolacji, jak i hydroizolacji, co wymusza odpowiednią organizację robót, spójną z projektowaną koncepcją uszczelnienia i ocieplenia połaci oraz warunkami geometrycznymi tego obszaru (przede wszystkim chodzi o wzajemny poziom płyty stropowej w pomieszczeniu oraz zapas wysokości). Teoretycznie można powiedzieć, że zagadnienie związane jest z balkonami i tarasami, ale to nie do końca prawda.

Rozpatrzmy zatem kilka typowych wariantów rozwiązań. Pierwszy, wydawałoby się najprostszy, to balkon w układzie wspornikowym, ściana dwuwarstwowa ocieplona systemem ETICS. Taki wariant można znaleźć w bardzo wielu budynkach zarówno mieszkalnych, jak i użyteczności publicznej.

Żelbetowa płyta balkonu jest wypuszczona z wieńca i monolitycznie zespolona ze stropem. FOT. 2 pokazuje jednak pewną bezmyślność postępowania uczestników procesu budowlanego. Pozostawienie takiego „status quo”, nawet po wykonaniu uszczelnienia, będzie skutkowało powstaniem mostka termicznego.

fot2 rokiel

FOT. 2. W jaki sposób zlikwidować mostek termiczny, gdy płyta ma być ocieplona obustronnie?; fot.: M. Rokiel

Jeżeli balkon jest mocowany na łączniku izotermicznym lub na dostawianej, niezależnej konstrukcji, to problem mostka termicznego, o ile nie popełniono błędów, praktycznie nie istnieje.

Co jednak w sytuacji, gdy balkon jest wspornikowy lub gdy ściana budynku jest ścianą trójwarstwową, np. z klinkierową oblicówką? W tym pierwszym przypadku konieczność ocieplenia obustronnego wydaje się oczywista, przy czym ocieplić należy także boki i czoło płyty.

Drugi przypadek – w przypadku balkonowej płyty wspornikowej nie da się wyeliminować mostka termicznego [6, 7].

fot3 rokiel

FOT. 3. Wilgotność podłoża to jeden z istotnych czynników wpływających na poprawność prac, opis w tekście; fot.: M. Rokiel

W przypadku balkonów z ociepleniem istotna jest zarówno grubość termoizolacji, jak i jej umiejscowienie. Nie wolno ograniczać się tylko do ocieplenia płyty balkonu z góry i od spodu, konieczne jest także ocieplenie boków i czoła płyty. Grubość termoizolacji powinna wynikać z analiz numerycznych, ewentualnie z obliczeń ƒRsi. Jedno jest pewne, niedopuszczalne jest ocieplanie tylko części połaci, np. od spodu pasem o szerokości jednej czy dwóch płyt.

Kolejnym bardzo poważnym problemem jest ocieplanie obiektów zawilgoconych i zasolonych. Problem z wilgocią w podłożu (FOT. 3) dotyczy także budynków nowo budowanych, jednak jest to zupełnie inna sytuacja. Co zrobić w przypadku budynków pokazanych na FOT. 4–7 czy przegród pokazanych na FOT. 8?

fot4 7 rokiel

FOT. 4–7. Takie obiekty mogą być ocieplane, jednak wymagana jest zawsze wcześniejsza bardzo staranna diagnostyka wilgotnościowa, opis w tekście; fot.: M. Rokiel

fot8 rokiel

FOT. 8. Zasolona ściana – takie podłoże zawsze musi być traktowane indywidualnie, opis w tekście; fot.: M. Rokiel

Już na oko trudno określić ich stan techniczny jako zadawalający, a po szczegółowych badaniach diagnostycznych (zawilgocenie, zasolenie) okazuje się, że klasyfikacja przegród jako „mokre” jest daleko niewystarczająca.

Problem z ociepleniem zasolonych i zawilgoconych murów wymaga zawsze indywidualnej analizy. Mamy bowiem do czynienia z bardzo złożoną sytuacją.

Klasyfikację ceglanych murów pod względem wilgotności podano w TABELI 1. Co z tego jednak wynika?

tab1 rokiel

TABELA 1. Klasyfikacja ceglanych murów pod względem wilgotności [6]

Przeanalizujmy, ile wody może zmieścić się w przegrodzie i jaka jest dopuszczalna wilgotność podłoża podczas wykonywania prac ociepleniowych. Za punkt wyjścia przyjmijmy ścianę o grubości 38 cm (a więc relatywnie cienką, jeżeli chodzi o grubość ceglanego muru).

Przyjmijmy za punkt wyjścia 4%, czyli wartość, od której zaczyna się klasyfikacja muru ceglanego jako lekko zawilgoconego (TABELA 2).

tab2 rokiel

TABELA 2. Ilość wody w ścianie o wilgotności 4%

W TABELI 3 pokazano ilość wody, którą może wchłonąć przegroda. Wprawdzie graniczne wartości nasiąkliwości dotyczą przegrody zanurzonej w wodzie lub poddanej długotrwałemu zalewaniu, jednak dają pojęcie o skali problemu. Co zatem zrobić w takiej sytuacji?

tab3 rokiel

TABELA 3. Ilość wody, którą jest w stanie wchłonąć przegroda

Zagadnienia wilgotnościowe w systemach ociepleń są i tak traktowane po macoszemu, tu dodatkowo dochodzi także problem wilgoci i soli w podłożu oraz ich wpływ zarówno na materiał termoizolacyjny, jak i na samą przegrodę, gdyby doszło do ocieplenia mokrej przegrody.

Materiały termoizolacyjne, z nielicznymi wyjątkami, są odporne na wilgoć, nie oznacza to jednak, że można je stosować na mokrej ścianie. Do tego z punktu widzenia fizyki budowli układ ociepleniowy jest dość niekorzystny. Konsekwencją ocieplenia zawilgoconej/zasolonej ściany będzie zarówno wnikanie wilgoci w termoizolację (zwłaszcza gdy zastosuje się wełnę mineralną, a „argumentem” za zastosowaniem tego materiału będzie „możliwość oddychania ściany i odparowania wilgoci”), jak i odparowanie wilgoci do wewnątrz, z wszelkimi tego konsekwencjami.

Przeanalizujmy najpierw ten drugi przypadek. Na FOT. 9–10 pokazano wygląd ściany żelbetowej ocieplonej od zewnątrz systemem ETICS na styropianie. Od wewnątrz wykonano tynk gipsowy oraz okładzinę ceramiczną. Ściana w momencie wykonywania prac ociepleniowych była zbyt mokra i zbyt szybko wykonano tynk gipsowy oraz położono płytki. Rezultat – jak na FOT. 9–10.

O ile zawilgocenie nie spowoduje drastycznych zmian parametrów wytrzymałościowych termoizolacji, to ma zasadniczy wpływ na właściwości ciepłochronne.

fot9 10 rokiel

FOT. 9–10. Skutek zbyt wczesnego ocieplenia ściany i wykonania wykończeniopisa,  w tekście; fot.: M. Rokiel

Wilgotność materiałów termoizolacyjnych określa się zazwyczaj przez wilgotność objętościową, czyli stosunek objętości wody znajdującej się w materiale do objętości materiału suchego. Ta wartość jest bardzo myląca. Przykładowo dla EPS-u o gęstości 20 kg/m3 dla 5% wilgotności objętościowej wilgotność masowa wyniesie... 250%, natomiast dla wełny mineralnej (gęstość 120 kg/m3) wilgotność masowa wyniesie około 42%. Dla styropianu powoduje to wzrost współczynnika przewodzenia ciepła nawet o kilkadziesiąt procent.

Podana w TABELI 2 wartość masowego zawilgocenia przegród (4%) nie pojawiła się tu przypadkowo. Ta wartość przyjmowana jest jako graniczna dla systemów ociepleń ETICS. Zatem dla przypadków pokazanych na FOT. 4–8 wymagane jest wcześniejsze wykonanie prac renowacyjnych i obniżenie wilgotności podłoża do 4% masowo. Większy problem stanowią sole, tu niestety konieczna jest indywidualna analiza.

Jeżeli dokumentacja projektowa przewiduje ocieplenie obiektu, którego stan wskazuje jednoznacznie na zawilgocenie, to należy sprawdzić, czy są tam także zawarte zalecenia związane z osuszeniem.

Wysychanie naturalne można podzielić na trzy etapy:

  • pierwszy, czyli wysychanie zachodzące na powierzchni ściany,
  • drugi to konwekcyjno-dyfuzyjny transport wilgoci,
  • trzeci, czyli dyfuzyjny mechanizm transportu (dyfuzja objętościowa i powierzchniowa) w sieci kapilar i porów.

Przybliżony czas naturalnego suszenia można oszacować wzorem [4]:

gdzie:

t – czas osuszania muru do poziomu wilgotności równowagowej [doby],
d – wymiar charakterystyczny przegrody równy największej odległości, na której musi przemieszczać się wilgoć z wnętrza przegrody do jej powierzchni; w przypadku wysychania na obie strony przegrody równy połowie grubości muru [cm],
α – współczynnik przewodności wilgoci zależny od własności materiału i stopnia zawilgocenia [doba/cm2].

Wartość przewodności współczynnika a dla różnych materiałów wg [4] podano w TABELI 4.

tab4 rokiel

TABELA 4. Wartość przewodności współczynnika α dla różnych materiałów wg [4]

Czas wysychania muru o grubości 1,5 cegły to okres około 170 dni, natomiast takiego samego muru z żużlobetonu wynosi około 680 dni. Ponieważ w okresie letnim spadek wilgotności muru to około 1,5% miesięcznie, a w okresie jesienno-zimowym proces osuszania naturalnego praktycznie ustaje, można przyjąć, iż doprowadzenie do stanu powietrzno-suchego przegrody ceramicznej o grubości dwóch cegieł to czas około 1000 dni [4].

Z kolei dla budynków narażonych na długotrwałe oddziaływanie wilgoci, zakładając pełną sprawność izolacji przeciwwilgociowych, dla początkowego zawilgocenia przegrody rzędu 22–24% i względnej wilgotności powietrza wewnątrz pomieszczeń piwnicznych w granicach od 70–80% pełne naturalne wysychanie ścian do wartości 4% wilgotności masowej nastąpi po kilku latach [8].

Zatem o ile dokumentacja nie przewiduje osuszania sztucznego, czas naturalnego suszenia mocno zawilgoconych budynków mierzony może być w latach (i to pod warunkiem usunięcia przyczyn zawilgocenia), a bezkrytyczne wykonanie ocieplenia jest wręcz „proszeniem się o kłopoty”.

Dokumentacja robót ociepleniowych wykonywanych na budynkach uprzednio zawilgoconych musi zawierać graniczne wartości zawilgocenia i zasolenia, pozwalające na skuteczne wykonanie robót. Musi ona także zawierać sposoby wykonania wtórnych izolacji (jeżeli są niezbędne) oraz zalecenia co do sztucznego osuszania ścian. Oznacza to, że podstawą wykonania prac dociepleniowych jest rzetelna diagnostyka wilgotnościowa obiektu, a przynajmniej ocieplanych przegród.

Bezpośrednio przed rozpoczęciem prac ociepleniowych konieczne jest ponowne wykonanie badań diagnostycznych potwierdzających wymagany stan wilgotnościowy przegród.

Literatura

  1. Rozporządzenie Ministra Rozwoju i Technologii z dnia 31 stycznia 2022 r. zmieniające rozporządzenie w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie (DzU z 2022 r., poz. 248).
  2. „Wytyczne Projektowania. Ocieplenia elewacji budynków z uwagi na bezpieczeństwo pożarowe”, Stowarzyszenie Inżynierów i Techników Pożarnictwa, 2018.
  3. PN-EN 13788, „Cieplno-wilgotnościowe właściwości komponentów budowlanych i elementów budynku. Temperatura powierzchni wewnętrznej konieczna do uniknięcia krytycznej wilgotności powierzchni i kondensacji międzywarstwowej. Metody obliczania”.
  4. „Ochrona przed wilgocią i korozją biologiczną w budownictwie”, J. Karyś (red.), Grupa MEDIUM, Warszawa 2014.
  5. PN-EN ISO 6946, „Komponenty budowlane i elementy budynku. Opór cieplny i współczynnik przenikania ciepła. Metody obliczania”.
  6. M. Rokiel, „Hydroizolacje w budownictwie”, wyd. III, Grupa MEDIUM, Warszawa 2019.
  7. M. Rokiel, „ABC izolacji tarasów”, Grupa Medium, Warszawa 2015.
  8. J. Karyś, K. Kujawiński, „Opóźnione w czasie skutki powodzi występujące w starych budynkach”, „Ochrona przed korozją” 5s/A/2004.

Chcesz być na bieżąco? Zapisz się do naszego newslettera!

Komentarze

Powiązane

Jacek Sawicki, konsultacja dr inż. Szczepan Marczyński – Clematis Źródło Dobrych Pnączy, prof. Jacek Borowski Roślinne izolacje elewacji

Roślinne izolacje elewacji Roślinne izolacje elewacji

Naturalna zieleń na elewacjach obecna jest od dawna. W formie pnączy pokrywa fasady wielu średniowiecznych budowli, wspina się po murach secesyjnych kamienic, nierzadko zdobi frontony XX-wiecznych budynków...

Naturalna zieleń na elewacjach obecna jest od dawna. W formie pnączy pokrywa fasady wielu średniowiecznych budowli, wspina się po murach secesyjnych kamienic, nierzadko zdobi frontony XX-wiecznych budynków jednorodzinnych czy współczesnych, nowoczesnych obiektów budowlanych, jej istnienie wnosi wyjątkowe zalety estetyczne i użytkowe.

mgr inż. Wojciech Rogala Projektowanie i wznoszenie ścian akustycznych w budownictwie wielorodzinnym na przykładzie przegród z wyrobów silikatowych

Projektowanie i wznoszenie ścian akustycznych w budownictwie wielorodzinnym na przykładzie przegród z wyrobów silikatowych Projektowanie i wznoszenie ścian akustycznych w budownictwie wielorodzinnym na przykładzie przegród z wyrobów silikatowych

Ściany z elementów silikatowych w ciągu ostatnich 20 lat znacznie zyskały na popularności [1]. Stanowią obecnie większość przegród akustycznych w budynkach wielorodzinnych, gdzie z uwagi na wiele źródeł...

Ściany z elementów silikatowych w ciągu ostatnich 20 lat znacznie zyskały na popularności [1]. Stanowią obecnie większość przegród akustycznych w budynkach wielorodzinnych, gdzie z uwagi na wiele źródeł hałasu izolacyjność akustyczna stanowi jeden z głównych czynników wpływających na komfort.

LERG SA Poliole poliestrowe Rigidol®

Poliole poliestrowe Rigidol® Poliole poliestrowe Rigidol®

Od lat obserwujemy dynamicznie rozwijający się trend eko, który stopniowo z mody konsumenckiej zaczął wsiąkać w coraz głębsze dziedziny życia społecznego, by w końcu dotrzeć do korzeni funkcjonowania wielu...

Od lat obserwujemy dynamicznie rozwijający się trend eko, który stopniowo z mody konsumenckiej zaczął wsiąkać w coraz głębsze dziedziny życia społecznego, by w końcu dotrzeć do korzeni funkcjonowania wielu biznesów. Obecnie marki, które chcą odnieść sukces, powinny oferować swoim odbiorcom zdecydowanie więcej niż tylko produkt czy usługę wysokiej jakości.

mgr inż. arch. Tomasz Rybarczyk Prefabrykacja w budownictwie

Prefabrykacja w budownictwie Prefabrykacja w budownictwie

Prefabrykacja w projektowaniu i realizacji budynków jest bardzo nośnym tematem, co przekłada się na duże zainteresowanie wśród projektantów i inwestorów tą tematyką. Obecnie wzrasta realizacja budynków...

Prefabrykacja w projektowaniu i realizacji budynków jest bardzo nośnym tematem, co przekłada się na duże zainteresowanie wśród projektantów i inwestorów tą tematyką. Obecnie wzrasta realizacja budynków z prefabrykatów. Można wśród nich wyróżnić realizacje realizowane przy zastosowaniu elementów prefabrykowanych stosowanych od lat oraz takich, które zostały wyprodukowane na specjalne zamówienie do zrealizowania jednego obiektu.

dr inż. Gerard Brzózka Płyty warstwowe o wysokich wskaźnikach izolacyjności akustycznej – studium przypadku

Płyty warstwowe o wysokich wskaźnikach izolacyjności akustycznej – studium przypadku Płyty warstwowe o wysokich wskaźnikach izolacyjności akustycznej – studium przypadku

Płyty warstwowe zastosowane jako przegrody akustyczne stanowią rozwiązanie charakteryzujące się dobrymi własnościami izolacyjnymi głównie w paśmie średnich, jak również wysokich częstotliwości, przy obciążeniu...

Płyty warstwowe zastosowane jako przegrody akustyczne stanowią rozwiązanie charakteryzujące się dobrymi własnościami izolacyjnymi głównie w paśmie średnich, jak również wysokich częstotliwości, przy obciążeniu niewielką masą powierzchniową. W wielu zastosowaniach wyparły typowe rozwiązania przegród masowych (np. z ceramiki, elementów wapienno­ piaskowych, betonu, żelbetu czy gipsu), które cechują się kilkukrotnie wyższymi masami powierzchniowymi.

dr hab. inż. Tomasz Tański, Roman Węglarz Prawidłowy dobór stalowych elementów konstrukcyjnych i materiałów lekkiej obudowy w środowiskach korozyjnych według wytycznych DAFA

Prawidłowy dobór stalowych elementów konstrukcyjnych i materiałów lekkiej obudowy w środowiskach korozyjnych według wytycznych DAFA Prawidłowy dobór stalowych elementów konstrukcyjnych i materiałów lekkiej obudowy w środowiskach korozyjnych według wytycznych DAFA

W świetle zawiłości norm, wymogów projektowych oraz tych istotnych z punktu widzenia inwestora okazuje się, że problem doboru właściwego materiału staje się bardzo złożony. Materiały odpowiadające zarówno...

W świetle zawiłości norm, wymogów projektowych oraz tych istotnych z punktu widzenia inwestora okazuje się, że problem doboru właściwego materiału staje się bardzo złożony. Materiały odpowiadające zarówno za estetykę, jak i przeznaczenie obiektu, m.in. w budownictwie przemysłowym, muszą sprostać wielu wymogom technicznym oraz wizualnym.

dr inż. Jarosław Mucha Współczesne metody inwentaryzacji i badań nieniszczących konstrukcji obiektów i budynków

Współczesne metody inwentaryzacji i badań nieniszczących konstrukcji obiektów i budynków Współczesne metody inwentaryzacji i badań nieniszczących konstrukcji obiektów i budynków

Projektowanie jest początkowym etapem realizacji wszystkich inwestycji budowlanych, mającym decydujący wpływ na kształt, funkcjonalność obiektu, optymalność rozwiązań technicznych, koszty realizacji, niezawodność...

Projektowanie jest początkowym etapem realizacji wszystkich inwestycji budowlanych, mającym decydujący wpływ na kształt, funkcjonalność obiektu, optymalność rozwiązań technicznych, koszty realizacji, niezawodność i trwałość w zakładanym okresie użytkowania. Często realizacja projektowanych inwestycji wykonywana jest w połączeniu z wykorzystaniem obiektów istniejących, które są w złym stanie technicznym, czy też nie posiadają aktualnej dokumentacji technicznej. Prawidłowe, skuteczne i optymalne projektowanie...

mgr inż. Cezariusz Magott, mgr inż. Maciej Rokiel Dokumentacja techniczna prac renowacyjnych – podstawowe zasady (cz. 1)

Dokumentacja techniczna prac renowacyjnych – podstawowe zasady (cz. 1) Dokumentacja techniczna prac renowacyjnych – podstawowe zasady (cz. 1)

Kontynuując zagadnienia związane z analizą dokumentacji technicznej skupiamy się tym razem na omówieniu dokumentacji robót renowacyjnych.

Kontynuując zagadnienia związane z analizą dokumentacji technicznej skupiamy się tym razem na omówieniu dokumentacji robót renowacyjnych.

dr inż. Bartłomiej Monczyński Trudności i ograniczenia związane z wykonywaniem wtórnej hydroizolacji poziomej metodą iniekcji

Trudności i ograniczenia związane z wykonywaniem wtórnej hydroizolacji poziomej metodą iniekcji Trudności i ograniczenia związane z wykonywaniem wtórnej hydroizolacji poziomej metodą iniekcji

Wykonywanie wtórnych hydroizolacji przeciw wilgoci kapilarnej metodą iniekcji można porównać do ocieplania budynku. Obie technologie nie są szczególnie trudne, dopóki mamy do czynienia z pojedynczą przegrodą.

Wykonywanie wtórnych hydroizolacji przeciw wilgoci kapilarnej metodą iniekcji można porównać do ocieplania budynku. Obie technologie nie są szczególnie trudne, dopóki mamy do czynienia z pojedynczą przegrodą.

Materiały prasowe news Rynek silikatów – 10 lat rozwoju

Rynek silikatów – 10 lat rozwoju Rynek silikatów – 10 lat rozwoju

Wdrażanie nowych rozwiązań w branży budowlanej wymaga czasu oraz dużego nakładu energii. Polski rynek nie jest zamknięty na innowacje, jednak podchodzi do nich z ostrożnością i ocenia przede wszystkim...

Wdrażanie nowych rozwiązań w branży budowlanej wymaga czasu oraz dużego nakładu energii. Polski rynek nie jest zamknięty na innowacje, jednak podchodzi do nich z ostrożnością i ocenia przede wszystkim pod kątem korzyści – finansowych, wykonawczych czy wizualnych. Producenci materiałów budowlanych, chcąc dopasować ofertę do potrzeb i wymagań polskich inwestycji, od wielu lat kontynuują pracę edukacyjną, legislacyjną oraz komunikacyjną z pozostałymi uczestnikami procesu budowlanego. Czy działania te...

MIWO – Stowarzyszenie Producentów Wełny Mineralnej: Szklanej i Skalnej Wełna mineralna zwiększa bezpieczeństwo pożarowe w domach drewnianych

Wełna mineralna zwiększa bezpieczeństwo pożarowe w domach drewnianych Wełna mineralna zwiększa bezpieczeństwo pożarowe  w domach drewnianych

W Polsce budynki drewniane to przede wszystkim domy jednorodzinne. Jak pokazują dane GUS, na razie stanowią 1% wszystkich budynków mieszkalnych oddanych do użytku w ciągu ostatniego roku, ale ich popularność...

W Polsce budynki drewniane to przede wszystkim domy jednorodzinne. Jak pokazują dane GUS, na razie stanowią 1% wszystkich budynków mieszkalnych oddanych do użytku w ciągu ostatniego roku, ale ich popularność wzrasta. Jednak drewno używane jest nie tylko przy budowie domów szkieletowych, w postaci więźby dachowej znajduje się też niemal w każdym domu budowanym w technologii tradycyjnej. Dlatego istotne jest, aby zwracać uwagę na bezpieczeństwo pożarowe budynków. W zwiększeniu jego poziomu pomaga izolacja...

dr inż. Krzysztof Pawłowski prof. PBŚ Projektowanie złączy budowlanych w aspekcie cieplno-wilgotnościowym (cz. 6)

Projektowanie złączy budowlanych w aspekcie cieplno-wilgotnościowym (cz. 6) Projektowanie złączy budowlanych w aspekcie cieplno-wilgotnościowym (cz. 6)

Integralną częścią projektowania budynków o niskim zużyciu energii (NZEB) jest minimalizacja strat ciepła przez ich elementy obudowy (przegrody zewnętrzne i złącza budowlane). Złącza budowlane, nazywane...

Integralną częścią projektowania budynków o niskim zużyciu energii (NZEB) jest minimalizacja strat ciepła przez ich elementy obudowy (przegrody zewnętrzne i złącza budowlane). Złącza budowlane, nazywane także mostkami cieplnymi (termicznymi), powstają m.in. w wyniku połączenia przegród budynku. Generują dodatkowe straty ciepła przez przegrody budowlane.

dr inż. Bartłomiej Monczyński Zastosowanie betonu wodonieprzepuszczalnego przy renowacji zawilgoconych budowli (cz. 41)

Zastosowanie betonu wodonieprzepuszczalnego przy renowacji zawilgoconych budowli (cz. 41) Zastosowanie betonu wodonieprzepuszczalnego przy renowacji zawilgoconych budowli (cz. 41)

Wykonanie hydroizolacji wtórnej w postaci nieprzepuszczalnej dla wody konstrukcji betonowej jest rozwiązaniem dopuszczalnym, jednak technicznie bardzo złożonym, a jego skuteczność, bardziej niż w przypadku...

Wykonanie hydroizolacji wtórnej w postaci nieprzepuszczalnej dla wody konstrukcji betonowej jest rozwiązaniem dopuszczalnym, jednak technicznie bardzo złożonym, a jego skuteczność, bardziej niż w przypadku jakiejkolwiek innej metody, determinowana jest przez prawidłowe zaprojektowanie oraz wykonanie – szczególnie istotne jest zapewnienie szczelności złączy, przyłączy oraz przepustów.

mgr inż. Cezariusz Magott, mgr inż. Maciej Rokiel Analiza dokumentacji technicznej prac renowacyjnych (cz. 2). Studium przypadku

Analiza dokumentacji technicznej prac renowacyjnych (cz. 2). Studium przypadku Analiza dokumentacji technicznej prac renowacyjnych (cz. 2). Studium przypadku

Wybór rozwiązania materiałowego i kompleksowej technologii naprawy obiektu poddanego ekspertyzie musi wynikać z wcześniej wykonanych badań. Rezultaty badań wstępnych w wielu przypadkach narzucają sposób...

Wybór rozwiązania materiałowego i kompleksowej technologii naprawy obiektu poddanego ekspertyzie musi wynikać z wcześniej wykonanych badań. Rezultaty badań wstępnych w wielu przypadkach narzucają sposób rozwiązania izolacji fundamentów.

Sebastian Malinowski Izolacje akustyczne w biurach

Izolacje akustyczne w biurach Izolacje akustyczne w biurach

Ekonomia pracy wymaga obecnie otwartych, ułatwiających komunikację środowisk biurowych. Odpowiednia akustyka w pomieszczeniach typu open space tworzy atmosferę, która sprzyja zarówno swobodnej wymianie...

Ekonomia pracy wymaga obecnie otwartych, ułatwiających komunikację środowisk biurowych. Odpowiednia akustyka w pomieszczeniach typu open space tworzy atmosferę, która sprzyja zarówno swobodnej wymianie informacji pomiędzy pracownikami, jak i ich koncentracji. Nie każdy jednak wie, że bardzo duży wpływ ma na to konstrukcja sufitu.

dr inż. Beata Anwajler, mgr inż. Anna Piwowar Bioniczny kompozyt komórkowy o właściwościach izolacyjnych

Bioniczny kompozyt komórkowy o właściwościach izolacyjnych Bioniczny kompozyt komórkowy o właściwościach izolacyjnych

Współcześnie uwaga badaczy oraz polityków z całego świata została zwrócona na globalny problem negatywnego oddziaływania energetyki na środowisko naturalne. Szczególnym zagadnieniem stało się zjawisko...

Współcześnie uwaga badaczy oraz polityków z całego świata została zwrócona na globalny problem negatywnego oddziaływania energetyki na środowisko naturalne. Szczególnym zagadnieniem stało się zjawisko zwiększania efektu cieplarnianego, które jest wskazywane jako skutek działalności człowieka. Za nadrzędną przyczynę tego zjawiska uznaje się emisję gazów cieplarnianych (głównie dwutlenku węgla) związaną ze spalaniem paliw kopalnych oraz ubóstwem, które powoduje trudności w zaspakajaniu podstawowych...

Fiberglass Fabrics s.c. Wiele zastosowań siatki z włókna szklanego

Wiele zastosowań siatki z włókna szklanego Wiele zastosowań siatki z włókna szklanego

Siatka z włókna szklanego jest wykorzystywana w systemach ociepleniowych jako warstwa zbrojąca tynków zewnętrznych. Ma za zadanie zapobiec ich pękaniu oraz powstawaniu rys podczas użytkowania. Siatka z...

Siatka z włókna szklanego jest wykorzystywana w systemach ociepleniowych jako warstwa zbrojąca tynków zewnętrznych. Ma za zadanie zapobiec ich pękaniu oraz powstawaniu rys podczas użytkowania. Siatka z włókna szklanego pozwala na przedłużenie żywotności całego systemu ociepleniowego w danym budynku. W sklepie internetowym FFBudowlany.pl oferujemy szeroki wybór różnych gramatur oraz sposobów aplikacji tego produktu.

dr inż. Krzysztof Pawłowski prof. PBŚ Całkowite przenikanie ciepła przez elementy obudowy budynku (cz. 7)

Całkowite przenikanie ciepła przez elementy obudowy budynku (cz. 7) Całkowite przenikanie ciepła przez elementy obudowy budynku (cz. 7)

W celu ustalenia bilansu energetycznego budynku niezbędna jest znajomość określania współczynnika strat ciepła przez przenikanie przez elementy obudowy budynku z uwzględnieniem przepływu ciepła w polu...

W celu ustalenia bilansu energetycznego budynku niezbędna jest znajomość określania współczynnika strat ciepła przez przenikanie przez elementy obudowy budynku z uwzględnieniem przepływu ciepła w polu jednowymiarowym (1D), dwuwymiarowym (2D) oraz trójwymiarowym (3D).

Redakcja miesięcznika IZOLACJE Fasady wentylowane w budynkach wysokich i wysokościowych

Fasady wentylowane w budynkach wysokich i wysokościowych Fasady wentylowane w budynkach wysokich i wysokościowych

Projektowanie obiektów wielopiętrowych wiąże się z większymi wyzwaniami w zakresie ochrony przed ogniem, wiatrem oraz stratami cieplnymi – szczególnie, jeśli pod uwagę weźmiemy popularny typ konstrukcji...

Projektowanie obiektów wielopiętrowych wiąże się z większymi wyzwaniami w zakresie ochrony przed ogniem, wiatrem oraz stratami cieplnymi – szczególnie, jeśli pod uwagę weźmiemy popularny typ konstrukcji ścian zewnętrznych wykańczanych fasadą wentylowaną. O jakich zjawiskach fizycznych i obciążeniach mowa? W jaki sposób determinują one dobór odpowiedniej izolacji budynku?

inż. Izabela Dziedzic-Polańska Fibrobeton – kompozyt cementowy do zadań specjalnych

Fibrobeton – kompozyt cementowy do zadań specjalnych Fibrobeton – kompozyt cementowy do zadań specjalnych

Beton jest najczęściej używanym materiałem budowlanym na świecie i jest stosowany w prawie każdym typie konstrukcji. Beton jest niezbędnym materiałem budowlanym ze względu na swoją trwałość, wytrzymałość...

Beton jest najczęściej używanym materiałem budowlanym na świecie i jest stosowany w prawie każdym typie konstrukcji. Beton jest niezbędnym materiałem budowlanym ze względu na swoją trwałość, wytrzymałość i wyjątkową długowieczność. Może wytrzymać naprężenia ściskające i rozciągające oraz trudne warunki pogodowe bez uszczerbku dla stabilności architektonicznej. Wytrzymałość betonu na ściskanie w połączeniu z wytrzymałością materiału wzmacniającego na rozciąganie poprawia ogólną jego trwałość. Beton...

prof. dr hab. inż. Łukasz Drobiec Projektowanie wzmocnień konstrukcji murowych z użyciem systemu FRCM (cz. 1)

Projektowanie wzmocnień konstrukcji murowych z użyciem systemu FRCM (cz. 1) Projektowanie wzmocnień konstrukcji murowych z użyciem systemu FRCM (cz. 1)

Wzmocnienie systemem FRCM polega na utworzeniu konstrukcji zespolonej: muru lub żelbetu ze wzmocnieniem, czyli kilkumilimetrową warstwą zaprawy z dodatkowym zbrojeniem. Jako zbrojenie stosuje się siatki...

Wzmocnienie systemem FRCM polega na utworzeniu konstrukcji zespolonej: muru lub żelbetu ze wzmocnieniem, czyli kilkumilimetrową warstwą zaprawy z dodatkowym zbrojeniem. Jako zbrojenie stosuje się siatki z włókien węglowych, siatki PBO (poliparafenilen-benzobisoxazol), siatki z włóknami szklanymi, aramidowymi, bazaltowymi oraz stalowymi o wysokiej wytrzymałości (UHTSS – Ultra High Tensile Strength Steel). Zbrojenie to jest osadzane w tzw. mineralnej matrycy cementowej, w której dopuszcza się niewielką...

mgr inż. Cezariusz Magott, mgr inż. Maciej Rokiel Analiza dokumentacji technicznej prac renowacyjnych (cz.3). Przykłady realizacji

Analiza dokumentacji technicznej prac renowacyjnych (cz.3). Przykłady realizacji Analiza dokumentacji technicznej prac renowacyjnych (cz.3). Przykłady realizacji

W artykule opisano szczegóły poprawnego wykonywania iniekcji w kontekście jakości prac renowacyjnych. Kiedy należy wykonać ocenę przegrody pod kątem możliwości wykonania iniekcji?

W artykule opisano szczegóły poprawnego wykonywania iniekcji w kontekście jakości prac renowacyjnych. Kiedy należy wykonać ocenę przegrody pod kątem możliwości wykonania iniekcji?

Paweł Siemieniuk Rodzaje stropów w budynkach jednorodzinnych

Rodzaje stropów w budynkach jednorodzinnych Rodzaje stropów w budynkach jednorodzinnych

Zadaniem stropu jest przede wszystkim podział budynku na kondygnacje. Ponieważ jednak nie jest to jego jedyna funkcja, rodzaj tej poziomej przegrody musi być dobrze przemyślany, i to już na etapie projektowania...

Zadaniem stropu jest przede wszystkim podział budynku na kondygnacje. Ponieważ jednak nie jest to jego jedyna funkcja, rodzaj tej poziomej przegrody musi być dobrze przemyślany, i to już na etapie projektowania domu. Taka decyzja jest praktycznie nieodwracalna, gdyż po wybudowaniu domu trudno ją zmienić.

inż. Izabela Dziedzic-Polańska Ekologiczne i ekonomiczne ujęcie termomodernizacji budynków mieszkalnych

Ekologiczne i ekonomiczne ujęcie termomodernizacji budynków mieszkalnych Ekologiczne i ekonomiczne ujęcie termomodernizacji budynków mieszkalnych

Termomodernizacja budynku jest ważna ze względu na jej korzyści dla środowiska i ekonomii. Właściwie wykonana termomodernizacja może znacznie zmniejszyć zapotrzebowanie budynku na energię i zmniejszyć...

Termomodernizacja budynku jest ważna ze względu na jej korzyści dla środowiska i ekonomii. Właściwie wykonana termomodernizacja może znacznie zmniejszyć zapotrzebowanie budynku na energię i zmniejszyć emisję gazów cieplarnianych związanych z ogrzewaniem i chłodzeniem. Ponadto, zmniejszenie kosztów ogrzewania i chłodzenia może przyczynić się do zmniejszenia kosztów eksploatacyjnych budynku, co może przełożyć się na zwiększenie jego wartości.

Wybrane dla Ciebie

Wełna skalna jako materiał termoizolacyjny »

Wełna skalna jako materiał termoizolacyjny » Wełna skalna jako materiał termoizolacyjny »

Systemowa termomodernizacja to ciepło i estetyka »

Systemowa termomodernizacja to ciepło i estetyka » Systemowa termomodernizacja to ciepło i estetyka »

Płyty XPS – następca styropianu »

Płyty XPS – następca styropianu » Płyty XPS – następca styropianu »

Dach biosolarny - co to jest? »

Dach biosolarny - co to jest? » Dach biosolarny - co to jest? »

Zobacz, które płyty termoizolacyjne skutecznie ochronią dom przed zimnem »

Zobacz, które płyty termoizolacyjne skutecznie ochronią dom przed zimnem » Zobacz, które płyty termoizolacyjne skutecznie ochronią dom przed zimnem »

Budowanie szkieletowe czy modułowe? »

Budowanie szkieletowe czy modułowe? » Budowanie szkieletowe czy modułowe? »

Termomodernizacja z poszanowaniem wartości zabytków »

Termomodernizacja z poszanowaniem wartości zabytków » Termomodernizacja z poszanowaniem wartości zabytków »

Przekonaj się, jak inni izolują pianką poliuretanową »

Przekonaj się, jak inni izolują pianką poliuretanową » Przekonaj się, jak inni izolują pianką poliuretanową »

Papa dachowa, która oczyszcza powietrze »

Papa dachowa, która oczyszcza powietrze » Papa dachowa, która oczyszcza powietrze »

Podpowiadamy, jak wybrać system ociepleń

Podpowiadamy, jak wybrać system ociepleń Podpowiadamy, jak wybrać system ociepleń

Podpowiadamy, jak skutecznie przeprowadzić renowacje piwnicy »

Podpowiadamy, jak skutecznie przeprowadzić renowacje piwnicy » Podpowiadamy, jak skutecznie przeprowadzić renowacje piwnicy »

300% rozciągliwości membrany - TAK! »

300% rozciągliwości membrany - TAK! » 300% rozciągliwości membrany - TAK! »

Copyright © 2004-2019 Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Spółka komandytowa, nr KRS: 0000537655. Wszelkie prawa, w tym Autora, Wydawcy i Producenta bazy danych zastrzeżone. Jakiekolwiek dalsze rozpowszechnianie artykułów zabronione. Korzystanie z serwisu i zamieszczonych w nim utworów i danych wyłącznie na zasadach określonych w Zasadach korzystania z serwisu.
Portal Budowlany - Izolacje.com.pl

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim urządzeniu końcowym. W każdym momencie możesz dokonać zmiany ustawień przeglądarki dotyczących cookies. Nim Państwo zaczną korzystać z naszego serwisu prosimy o zapoznanie się z naszą polityką prywatności oraz Informacją o Cookies. Więcej szczegółów w naszej Polityce Prywatności oraz Informacji o Cookies. Administratorem Państwa danych osobowych jest Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Sp.K., nr KRS: 0000537655, z siedzibą w 04-112 Warszawa, ul. Karczewska 18, tel. +48 22 810-21-24, właściciel strony www.izolacje.com.pl. Twoje Dane Osobowe będą chronione zgodnie z wytycznymi polityki prywatności www.izolacje.com.pl oraz zgodnie z Rozporządzeniem Parlamentu Europejskiego i Rady (UE) 2016/679 z dnia 27 kwietnia 2016r i z Ustawą o ochronie danych osobowych Dz.U. 2018 poz. 1000 z dnia 10 maja 2018r.