Izolacje.com.pl

Projektowanie ścian zewnętrznych z uwzględnieniem wymagań cieplno-wilgotnościowych od 1 stycznia 2021 r.

Design of external walls considering thermal insulation and waterproofing requirements entering into force on 1 January 2021

Jak projektować ściany zewnętrzne z uwzględnieniem wymagań cieplno-wilgotnościowych od 1 stycznia 2021 r.?

Jak projektować ściany zewnętrzne z uwzględnieniem wymagań cieplno-wilgotnościowych od 1 stycznia 2021 r.?

Osiągnięcie wymaganych przez przepisy wartości współczynnika przenikania ciepła Uc poniżej wartości granicznej polega na określeniu odpowiedniej grubości materiału termoizolacyjnego oraz poprawnym jego usytuowaniu. Należy jednak zwrócić uwagę na odpowiednie kształtowanie układów materiałowych złączy budowlanych (połączenie dwóch lub trzech przegród w węźle), określanych także w literaturze jako mostki cieplne (mostki termiczne). Dobór materiałów, szczególnie termoizolacyjnych, powinien uwzględniać innowacyjne rozwiązania pozwalające na optymalizację (minimalizację) ich grubości.

Zobacz także

PU Polska – Związek Producentów Płyt Warstwowych i Izolacji Płyty warstwowe PUR/PIR w aspekcie wymagań technicznych stawianych lekkiej obudowie

Płyty warstwowe PUR/PIR w aspekcie wymagań technicznych stawianych lekkiej obudowie Płyty warstwowe PUR/PIR w aspekcie wymagań technicznych stawianych lekkiej obudowie

Rozwój technologii budowlanej w ciągu ostatnich kilkudziesięciu lat zmienił oblicze branży w Polsce, umożliwiając szybszą, tańszą i ekologiczną realizację wznoszonych obiektów. Wprowadzając szeroko do...

Rozwój technologii budowlanej w ciągu ostatnich kilkudziesięciu lat zmienił oblicze branży w Polsce, umożliwiając szybszą, tańszą i ekologiczną realizację wznoszonych obiektów. Wprowadzając szeroko do branży rewolucyjny i rewelacyjny produkt, jakim jest płyta warstwowa, zmodernizowaliśmy de facto ideę prefabrykacji i zamianę tradycyjnych, mokrych i pracochłonnych technologii wznoszenia budynków z elementów małogabarytowych lub konstrukcji szalunkowych na szybki, suchy montaż gotowych elementów w...

Saint-Gobain Construction Products Polska/ Isover Nowe wełny ISOVER PRO na poddasza – bez komPROmisów, z mocą welonu

Nowe wełny ISOVER PRO na poddasza – bez komPROmisów, z mocą welonu Nowe wełny ISOVER PRO na poddasza – bez komPROmisów, z mocą welonu

ISOVER wprowadza na rynek nową linię produktów PRO do izolacji cieplnej i akustycznej poddaszy. Super-Mata PLUS PRO i Super-Mata PRO to wełny o bardzo dobrych parametrach termicznych, wyprodukowane w technologii...

ISOVER wprowadza na rynek nową linię produktów PRO do izolacji cieplnej i akustycznej poddaszy. Super-Mata PLUS PRO i Super-Mata PRO to wełny o bardzo dobrych parametrach termicznych, wyprodukowane w technologii Thermitar™ i pokryte jednostronnie welonem szklanym.

Saint-Gobain Construction Products Polska/ Isover Nowość ISOVER! Płyty zespolone EasyTherm – więcej powierzchni użytkowej i doskonały komfort cieplny

Nowość ISOVER! Płyty zespolone EasyTherm – więcej powierzchni użytkowej i doskonały komfort cieplny Nowość ISOVER! Płyty zespolone EasyTherm – więcej powierzchni użytkowej i doskonały komfort cieplny

W nowoczesnym budownictwie wielorodzinnym i komercyjnym nie brakuje wyzwań, a wśród nich ważna jest izolacja termiczna między ogrzewanymi i nieogrzewanymi częściami budynku, jak np. korytarze i klatki...

W nowoczesnym budownictwie wielorodzinnym i komercyjnym nie brakuje wyzwań, a wśród nich ważna jest izolacja termiczna między ogrzewanymi i nieogrzewanymi częściami budynku, jak np. korytarze i klatki schodowe. Kolejną istotną kwestią są oczekiwania inwestorów dotyczące wytrzymałości na uszkodzenia ścian wewnętrznych oraz optymalnego wykorzystania przestrzeni użytkowej. W odpowiedzi na te wszystkie potrzeby inżynierowie Saint-Gobain opracowali płyty zespolone EasyTherm.

 

O czym przeczytasz w artykule?

Abstrakt

  • Przykładowe rozwiązania konstrukcyjno­‑materiałowe ścian zewnętrznych
  • Metody obliczeniowe w zakresie projektowania cieplnego ścian zewnętrznych
  • Przykłady obliczeniowe

W artykule przedstawiono rozwiązania konstrukcyjno-materiałowe ścian zewnętrznych wraz z przykładami obliczeniowymi dotyczącymi ich parametrów fizykalnych w aspekcie wymagań cieplno-wilgotnościowych według rozporządzenia Ministra Infrastruktury i Budownictwa z dnia 14 listopada 2017 r. zmieniającego rozporządzenie w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie, które będą obowiązywać od 1 stycznia 2021 r.

Design of external walls considering thermal insulation and waterproofing requirements entering into force on 1 January 2021

This paper presents examples of structural and material solutions used in external walls along with calculations of physical parameters in view of thermal insulation and waterproofing requirements according to the Regulation of the Minister of Infrastructure and Construction of 14 November 2017, amending the Regulation on the technical conditions to be met by buildings and their location, entering into force on 1 January 2021.

Projektowanie ścian zewnętrznych budynku o niskim zużyciu energii (NZEB) wymaga znajomości zagadnień z zakresu fizyki budowli, budownictwa ogólnego, materiałów budowlanych oraz przepisów prawnych w zakresie warunków technicznych jakim powinny odpowiadać budynki i ich usytuowanie [1]. Dotyczy to w szczególności:

  • właściwości technicznych materiałów budowlanych tworzących przegrody zewnętrzne i złącza budowlane,
  • określenia i przyjmowania do dalszych obliczeń parametrów technicznych stosowanych materiałów budowlanych (m.in. wartości współczynnika przewodzenia ciepła λ [W/(m·K)], współczynnika oporu dyfuzyjnego μ [-]) na podstawie norm przedmiotowych oraz udokumentowanych danych producentów,
  • określenia parametrów powietrza wewnętrznego i zewnętrznego,
  • zasad przepływu ciepła przez przegrody i ich złącza w polu jednowymiarowym (1D), dwuwymiarowym (2D) oraz trójwymiarowym (3D),
  • zasad konstruowania układów materiałowych ścian zewnętrznych i ich złączy zgodnie z wymaganiami konstrukcyjnymi, przeciwpożarowymi, cieplno-wilgotnościowymi oraz akustycznymi.

Przykładowe rozwiązania konstrukcyjno­‑materiałowe ścian zewnętrznych

Ściana zewnętrzna stanowi sztuczną przegrodę pomiędzy otoczeniem zewnętrznym (o zmiennej temperaturze i wilgotności) a wnętrzem (o określonej temperaturze i wilgotności). W pomieszczeniach przeznaczonych na stały pobyt ludzi powinny być zapewnione użytkownikom odpowiednie warunki w zakresie:

  • nośności konstrukcji,
  • ochrony cieplno-wilgotnościowej,
  • ochrony przed zmiennymi warunkami klimatycznymi: zmiana temperatur, deszcz, wiatr,
  • ochrony przed hałasem,
  • ochrony przeciwpożarowej,
  • walorów architektonicznych i estetycznych.

Zmieniające się wymagania powodują, że na etapie projektowania i wykonywania pojawiają się nowe rozwiązania konstrukcyjno-materiałowe ścian zewnętrznych. Najczęściej stosowanymi technologiami wznoszenia ścian zewnętrznych budynków w Polsce są technologia murowana, drewniana lub prefabrykowana.

RYS. 1–2. Przykładowe układy murowanych ścian zewnętrznych: ściana jednowarstwowa (1), ściana dwuwarstwowa (2). Objaśnienia: 1 – tynk wewnętrzny, 2 – pustak ścienny, 3 – tynk zewnętrzny, 4 – izolacja termiczna, 5 – warstwa elewacyjna, 6 – szczelina powietrzna; rys.: K. Pawłowski

RYS. 1–2. Przykładowe układy murowanych ścian zewnętrznych: ściana jednowarstwowa (1), ściana dwuwarstwowa (2). Objaśnienia: 1 – tynk wewnętrzny, 2 – pustak ścienny, 3 – tynk zewnętrzny, 4 – izolacja termiczna, 5 – warstwa elewacyjna, 6 – szczelina powietrzna; rys.: K. Pawłowski

RYS. 3–4. Przykładowe układy murowanych ścian zewnętrznych: ściana trójwarstwowa (3), ściana szczelinowa (4). Objaśnienia: 1 – tynk wewnętrzny, 2 – pustak ścienny, 3 – tynk zewnętrzny, 4 – izolacja termiczna, 5 – warstwa elewacyjna, 6 – szczelina powietrzna; rys.: K. Pawłowski

RYS. 3–4. Przykładowe układy murowanych ścian zewnętrznych: ściana trójwarstwowa (3), ściana szczelinowa (4). Objaśnienia: 1 – tynk wewnętrzny, 2 – pustak ścienny, 3 – tynk zewnętrzny, 4 – izolacja termiczna, 5 – warstwa elewacyjna, 6 – szczelina powietrzna; rys.: K. Pawłowski

Ściany zewnętrzne murowane jednowarstwowe (RYS. 1) stanowią mury wykonane z bloczków z betonu komórkowego, pustaków z ceramiki poryzowanej lub keramzytobetonu. Natomiast ściany zewnętrzne murowane warstwowe (RYS. 2, RYS. 3-4) składają się z:

  • warstwy konstrukcyjnej,
  • warstwy izolacji cieplnej,
  • warstwy pustki powietrznej wentylowanej (w przypadku ścian szczelinowych),
  • warstwy elewacyjnej (w przypadku ścian trójwarstwowych i szczelinowych).

Powszechnie stosowanymi materiałami do wznoszenia warstwy konstrukcyjnej są materiały ceramiczne, materiały silikatowe:

  • pełne lub drążone,
  • elementy betonowe, np. pustaki szalunkowe, pustaki z autoklawizowanego betonu komórkowego,
  • elementy murowe z kamienia naturalnego.

Głównym zadaniem tej warstwy jest zdolność przenoszenia obciążeń z wyższych kondygnacji oraz w wyniku parcia wiatru. W przypadku znaczących obciążeń często stosuje się słupy żelbetowe (jako trzpienie).

Do grupy materiałów ściennych ceramicznych (otrzymywanych z glin ilastych, morenowych, wstęgowych, łupków, mułków oraz lessów; surowcami pomocniczymi przy produkcji ceramiki budowlanej są piasek kwarcowy, złom suszarnikowy) można zaliczyć:

  • cegły budowlane zwykłe,
  • cegły kratówki K1, K2, K3,
  • cegły dziurawki,
  • cegły modularne,
  • pustaki modularne MAX, S2, U, M-44,
  • pustaki do ścianek działowych,
  • pustaki wentylacyjne i kominowe,
  • cegły klinkierowe.

W przeszłości elementy ceramiczne (szczególnie cegła pełna) były stosowane do wykonywania jednowarstwowych ścian zewnętrznych. Izolacyjność takich przegród była bardzo niska, a współczynnik przenikania ciepła U wynosił:

  • U = 1,51 W/(m2·K) dla ścian z cegły pełnej o λ = 0,77 W/(m·K), dla gr. 38 cm,
  • U = 1,20 W/(m2·K) dla ścian z cegły pełnej o λ = 0,77 W/(m·K), dla gr. 51 cm,
  • U = 1,28 W/(m2·K) dla ścian z cegły dziurawki o λ = 0,62 W/(m·K), dla gr. 38 cm,
  • U = 1,01 W/(m2·K) dla ścian z cegły dziurawki o λ = 0,62 W/(m·K), dla gr. 51 cm,
  • U = 1,18 W/(m2·K) dla ścian z cegły kratówki o λ = 0,56 W/(m·K), dla gr. 38 cm,
  • U = 0,93 W/(m2·K) dla ścian z cegły kratówki o λ = 0,56 W/(m·K), dla gr. 51 cm.

Aby uzyskać poprawę efektywności wyrobów ceramicznych pod względem izolacyjności cieplnej, producenci zwiększają liczbę drążeń i parametry geometryczne. Jednak w celu zapewnienia odpowiedniej wytrzymałości na ściskanie udział drążeń w wyrobach przeznaczonych na ściany zewnętrzne nie powinien przekraczać 50%.

Dodatkowe podwyższenie izolacyjności termicznej wyrobów ściennych można uzyskać przez wprowadzenie do produkcji masy ceramicznej trocin, węgla kamiennego, odprysków brykietowych, włókien celulozowych, polistyrenu w postaci kulek lub innych, w wyniku czego w czerpie pozostają otwarte pory. Tego typu wyroby określane są jako ceramika poryzowana. Ściany zewnętrzne wykonywane z takich pustaków akumulują ciepło i przepuszczają parę wodną przenikającą z wnętrza budynku, dzięki czemu w pomieszczeniach panują odpowiednie parametry mikroklimatu (temperatura, wilgotność). Jednak zamknięte pory powodują, że są bardziej kruche i nasiąkliwe niż tradycyjne materiały ścienne (np. cegła pełna). Pustaki z tzw. ciepłej ceramiki produkowane są w postaci pustaków z krawędziami bocznymi profilowanymi do połączenia na pióro i wpust.

Elementy silikatowe zgodnie z normą PN-B-12066:1998 [2] można podzielić na następujące grupy:

  • według przeznaczenia:
    • – A – murowane zwykłe ze spoinami zwykłymi,
    • – B – murowane zwykłe ze spoinami pocienionymi,
    • – C – murowane na suchy styk ze spoinami poziomymi zwykłymi,
    • – D – murowane na suchy styk ze spoinami poziomymi pocienionymi,
    • – E – murowane na wpust–wypust ze spoinami poziomymi zwykłymi,
    • – F – murowane na wpust–wypust ze spoinami poziomymi pocienionymi,
  • według odporności na działanie mrozu:
    • – M – odporne na działanie mrozu (do murowania ścian zewnętrznych i wewnętrznych),
    • – N – nieodporne na działanie mrozu (do murowania ścian wewnętrznych),
  • według otworów i drążeń:
    • – P – pełne,
    • – D – drążone.

Z elementów wapienno-piaskowych (silikatowych) wykonuje się ściany nośne zewnętrzne i wewnętrzne, ściany działowe, przeciwpożarowe, elewacyjne, elementy małej architektury, przewody wentylacyjne. Należy podkreślić, że można z łatwością łączyć z innymi materiałami: ceramicznymi, szklanymi czy też drewnianymi i drewnopochodnymi.

Elementy betonowe produkowane jako cegły cementowe pełne i drążone. Natomiast pustaki szalunkowe są przeznaczone do wykonywania fundamentów i ścian piwnic bez deskowania. Układane na „sucho” do wysokości maks. 4 warstw. Po zazbrojeniu pionowym i poziomym pustaki wypełnia się mieszanką betonową. Oprócz pustaków z betonów cementowych z kruszywami naturalnymi są produkowane elementy z innym wypełnieniem: perlit, keramzyt, materiały drewnopochodne.

Bloczki z betonu komórkowego produkowane są w różnych odmianach, np. 500, 600 i 700. Współczynnik przewodzenia ciepła bloczków zależy od gęstości objętościowej. Bloczki nowego typu posiadają profilowane ściany boczne oraz dwa uchwyty montażowe. W budynkach wielokondygnacyjnych ściany wykonywane są często jako przegrody niejednorodne cieplnie (konstrukcja słupowa z żelbetu z wypełnieniem z bloczków z betonu komórkowego).

Naturalne materiały kamienne mają zastosowanie w częściach reprezentacyjnych obiektów budowlanych i wykonywane są z odpowiednich złóż skał magmowych, osadowych lub metamorficznych. Z kamieni naturalnych są produkowane ciosy i kształtki o regulowanych kształtach. W budynkach niskich zaleca się stosowanie bloczków z lekkiego wapienia miękkiego.

W przypadku ocieplenia ścian zewnętrznych murowanych stosuje się technologię bezspoinowego systemu ocieplenia ETICS, która polega na przymocowaniu do ściany systemu warstwowego, składającego się z materiału termoizolacyjnego oraz warstwy zbrojonej i wyprawy tynkarskiej. System mocowany jest do ściany za pomocą zaprawy klejącej i dodatkowo łącznikami mechanicznymi. Zasadniczą funkcję w tym systemie pełni materiał termoizolacyjny w postaci płyt:

  • styropianowych EPS,
  • ze styropianu grafitowego (szarego),
  • z wełny mineralnej (skalnej),
  • z pianki poliuretanowej PIR lub PUR,
  • z pianki fenolowej (rezolowej).

Szczegółową charakterystykę parametrów materiałów termoizolacyjnych przedstawiono w pracach [3, 4].

W konwencjonalnym systemie ocieplającym w niektórych miejscach mogą być wprowadzane specjalne płyty lub moduły przepuszczające światło – elementy TWD (Transparente Wärmedämmung) o następujących cechach [5]:

  • czarna powłoka (absorber) położona na ścianie lub na tylnej stronie płyty pozwala uzyskać dodatkową energię cieplną z promieniowania słonecznego,
  • zjawisko przegrzewania się ścian w okresie letnim stosuje się zacienienie elementów czy też wentylacja przestrzeni między elementami a ścianą lub zastosowanie szyb pryzmatycznych, które w okresie letnim (gdy słońce jest wysoko na horyzoncie) odbijają znaczną część promieniowania słonecznego.

Na RYS. 5 przedstawiono przykładowy schemat działania izolacji transparentnej TWD z szybą pryzmatyczną.

RYS. 5. Przykładowy schemat izolacji transparentnej TWD z szybą pryzmatyczną; rys.: www.bosy-online.de

RYS. 5. Przykładowy schemat izolacji transparentnej TWD z szybą pryzmatyczną; rys.: www.bosy-online.de

Podobnym rozwiązaniem umożliwiającym uzyskanie dodatkowej energii cieplnej z promieniowania słonecznego jest zastosowanie elementów tzw. przełączalnej izolacji termicznej SWD (Schaltbare Wärmedämmung) o następujących cechach [5]:

  • w panelach próżniowych wykonanych w osłonie ze stali nierdzewnej umieszczono sprasowane włókno szklane i niewielką ilość wodorku palladu, który umożliwia uwalnianie małej ilość wodoru (ok. 50 hPa) oraz ponowne jego wchłanianie,
  • przewodność cieplna elementu może zwiększyć się ok. 40-krotnie i ponownie powrócić do stanu, jaki zapewnia próżnia,
  • wydzielanie wodoru odbywa się w wyniku podgrzania (elektrycznego) kapsuły z wodorkiem palladu, w związku z tym w fazie przewodzenia ciepła do panelu musi być dostarczona energia elektryczna o mocy ok. 5 W/m2,
  • zaletą tego rozwiązania jest dobre zabezpieczenie ścian przed przegrzewaniem w okresie letnim.

Na RYS. 6 przedstawiono tryby izolowania i przewodzenia ciepła przez panele SWD.

RYS. 6. Przykładowy schemat izolacji transparentnej SWD; rys.: www.yumpu.de

RYS. 6. Przykładowy schemat izolacji transparentnej SWD; rys.: www.yumpu.de

Od strony zewnętrznej należy zastosować tynk zewnętrzny – cienkowarstwowy (w przypadku ścian dwuwarstwowych) lub warstwę elewacyjną (w przypadku ścian trójwarstwowych i szczelinowych).

W przypadku ścian dwuwarstwowych zaleca się stosowanie tynków cienkowarstwowych, które można podzielić [6]:

  • ze względu na spoiwo: mineralne, silikatowe (krzemianowe), silikonowe, silikatowo-silikonowe, polimerowe (akrylowe),
  • ze względu na technikę wykonywania: naciągane pacą, zacierane, cyklinowane, wytłaczane, natryskowe, nakrapiane,
  • ze względu na rodzaj faktury: gładkie, drapane, ziarniste (tzw. baranek), modelowane, mozaikowe.

W przypadku ścian trójwarstwowych i szczelinowych warstwa elewacyjna wykonywana jest najczęściej z cegły klinkierowej, bloczków wapienno-piaskowych (silikatowych) oraz płyt z drewna.

W kształtowaniu układu warstw materiałowych w ścianie szczelinowej należy zaprojektować szczelinę wentylowaną pomiędzy warstwą izolacji cieplnej a warstwą elewacyjną o odpowiedniej grubości z zapewnieniem swobodnej cyrkulacji powietrza (otwory w warstwie elewacyjnej).

Warstwa elewacyjna powinna połączona z warstwą konstrukcyjną za pomocą kotew metalowych (łączników mechanicznych) w ilości od 5 do 6 szt./m2 powierzchni ściany (dobór łączników przeprowadza się na podstawie szczegółowych obliczeń). Ze względu na zamiany temperatur (w okresie letnim do 50°C, a w okresie zimowym do –25°C), w celu uniknięcia występowania zarysowań, wybrzuszeń, kruszenia i odpryskiwania materiału warstwy elewacyjnej, zaleca się stosowanie w zewnętrznej warstwie ściany szczelinowej przerwy dylatacyjnej.

Na podstawie prowadzonych analiz w TAB. 1 zestawiono zalety i wady ścian w konstrukcji murowanej.

TABELA 1. Zalety i wady ścian zewnętrznych murowanych

TABELA 1. Zalety i wady ścian zewnętrznych murowanych

Współczesne konstrukcje ścian zewnętrznych mogą być projektowane jako fasady wentylowane, w których występują wewnątrz szczeliny powietrzne, które odprowadzają nadmierną wilgoć poza przegrodę. Fasady wentylowane mogą być wykonane w dwóch technologiach:

  • technologia lekka sucha (montaż elewacji z sidingu, płyt włókno-cementowych, płyt cementowych, laminatów, elementów drewnianych, blachy aluminiowej itp.),
  • technologia ciężka sucha (ciężkie płyty kamienne lub płyty z kruszywa kamiennego spojonego żywicą).

Obie technologie mogą spełniać kryterium rozwiązania energooszczędnego, zarówno przy realizacji nowych budynków, jak i przy termorenowacji budynków już istniejących. Stosowanie tych technologii nie ma praktycznie ograniczeń temperaturowych dotyczących procesu technologicznego, ponieważ nie wykonuje się prac mokrych na budowie. Szczegółową charakterystykę rozwiązań konstrukcyjno-materiałowych fasad wentylowanych przedstawiono w pracach [7, 8, 9].

Budownictwo drewniane to budownictwo, w którym elementy konstrukcyjne budynku wykonane zostały z drewna litego lub drewna klejonego. Zatem do budownictwa drewnianego zaliczyć należy:

  • budownictwo o lekkiej konstrukcji szkieletowej, gdzie konstrukcję wykonuje się z litych elementów drewnianych lub belek dwuteowych opartych na materiałach drewnopochodnych,
  • budownictwo prefabrykowane, tzw. domy gotowe, gdzie elementy budynku przygotowywane są w zakładzie prefabrykacji, w oparciu o elementy z litego drewna,
  • domy z bali, o ścianach zewnętrznych z drewna litego i klejonego, o grubości spełniającej wymagania izolacyjności cieplnej, niewymagających stosowania dodatkowej warstwy ocieplenia [10].

Ze względu na rodzaj i grubość bali (RYS. 7-9) rozróżnia się dwie podstawowe przegrody [11]:

RYS. 7–9. Przykładowe rozwiązania materiałowe ścian drewnianych (z bali drewnianych): ściana z okrąglaków bez dodatkowego ocieplenia (7), pojedyncze ściany zębowe z ociepleniem od wewnątrz (8), podwójne ściany zrębowe z ociepleniem pomiędzy dwoma warstwami belek (9)

RYS. 7–9. Przykładowe rozwiązania materiałowe ścian drewnianych (z bali drewnianych): ściana z okrąglaków bez dodatkowego ocieplenia (7), pojedyncze ściany zębowe z ociepleniem od wewnątrz (8), podwójne ściany zrębowe z ociepleniem pomiędzy dwoma warstwami belek (9) Objaśnienia: 1 – belki drewniane (płazy) 24 cm, 2 – poszycie wewnętrzne z desek, 3 – wełna mineralna 15 cm, 4 – szczelina powietrzna 4 cm, 5 – słupki 7×19, 6 – bale drewniane ∅ 20 cm, 7 – belki drewniane 7×12 cm, 8 – granulat korkowy 14 cm ; rys.: [12]

  • ściana z bali grubych, niewymagających dodatkowej izolacji, może być z drewna litego bądź klejonego (niezalecane dla budynków o niskim zużyciu energii),
  • ściana z bali cienkich, niezapewniająca wymaganej izolacji cieplnej przegrodzie zewnętrzne, wymagająca dodatkowej termoizolacji o odpowiedniej grubości.

Ściany prefabrykowane jednowarstwowe i ściany warstwowe wykorzystywane są przy wykonywaniu ścian zewnętrznych w budownictwie mieszkaniowym oraz przemysłowym.

Warstwa izolacji cieplnej wykonana jest ze styropianu, polistyrenu ekskrudowanego, wełny mineralnej, pianki poliuretanowej. Zewnętrzne faktury ścian mogą być jednolite lub posiadać warstwę elewacyjną wykończoną tynkami mineralnymi, fakturą z kamienia płukanego np. z łupka jurajskiego, bazaltu lub granitu. Elewacja zewnętrzna może być także odciskiem ozdobnych matryc.

Ściany produkowane są w szerokim zakresie rozmiarów i zastosowań: do obudowy obiektów handlowych, hal przemysłowych, budynków użyteczności publicznej i mieszkaniowych, z przeznaczeniem na ściany wewnętrzne i zewnętrzne nośne, ściany szybów windowych, klatek schodowych itd.

Prefabrykaty (jednowarstwowe i wielowarstwowe) mogą posiadać otwory okienne i drzwiowe w praktycznie dowolnych rozmiarach i kształtach. W zależności od grubości prefabrykatu i przyjętego sposobu wypełniania spoin odporność ogniowa ścian do REI 240.

W budownictwie stosuje się różne technologie wznoszenia obiektów. Oprócz technologii drewnianej, murowanej czy też żelbetowej można wykonywać obiekty z płyt warstwowych.

Płyty warstwowe są nowatorskim rozwiązaniem systemów lekkiej obudowy. Zarówno płyty warstwowe ścienne, jak i dachowe są ekonomiczne oraz charakteryzują się bezpiecznym i szybkim montażem. Lekka obudowa jest trwała i zachowuje wysoką jakość przez cały okres eksploatacji. Płyty warstwowe stosowane są zarówno do obudowy hal wielkogabarytowych, o powierzchniach sięgających kilkudziesięciu tysięcy metrów kwadratowych, jak i małych przenośnych obiektów [13].

Najczęściej płyty warstwowe wytwarzane są na ciągłej linii produkcyjnej. Bezpośrednimi surowcami stosowanymi do ich produkcji są:

  • blacha stalowa w kręgach przeznaczona na okładzinę zewnętrzną (dolna na linii) i wewnętrzną (górna),
  • jako materiał rdzenia – komponenty systemu PUR (ewentualnie PIR), arkusze styropianu (EPS) albo lamele (ewentualnie arkusze) wełny mineralnej (WM),
  • klej poliuretanowy służący do trwałego połączenia styropianu lub wełny z okładzinami.

Wybór konkretnego rozwiązania konstrukcyjno-materiałowego ścian zewnętrznych powinien być oparty na podstawie obliczeń i analiz w zakresie nośności oraz ochrony cieplno-wilgotnościowej, akustycznej i przeciwpożarowej.

Metody obliczeniowe w zakresie projektowania cieplnego ścian zewnętrznych

Przenikanie ciepła w budynkach może być przeprowadzone przy podziale struktury na typowe przegrody: ściany zewnętrzne, okna, drzwi, podłogi, dachy, w odniesieniu do których straty ciepła można obliczać oddzielnie na podstawie jednowymiarowego modelu przepływu ciepła, przy założeniu jednorodnej struktury przegrody, złożonej z równoległych warstw, do których strumień cieplny jest prostopadły.

Straty ciepła przez pojedyncze elementy budynku, przy przyjęciu pewnych uproszczeń, można określić za pomocą współczynnika przenikania ciepła U [W/(m2⋅K)]. Projektowanie przegród budowlanych wymaga uwzględnienia klimatu miejscowego, jaki panuje w otoczeniu budynku oraz mikroklimatu pomieszczeń.

Największy wpływ na kształtowanie właściwości cieplno-wilgotnościowych przegród mają:

  • temperatura,
  • wilgotność względna,
  • natężenie promieniowania słonecznego.

Zdolność materiału do przewodzenia ciepła jest określana przy pomocy współczynnika przewodzenia ciepła – λ [W/(m·K)]. Jest to ilość ciepła przewodzonego w jednostce czasu przez 1 m2 powierzchni przegrody o grubości 1 m przy różnicy temperatur powierzchni po obu stronach przegrody, równej 1 K, w jednostce czasu.

W normalizacji wprowadzono dwa pojęcia odnoszące się do wartości współczynnika przewodzenia ciepła materiałów (lub oporu cieplnego komponentów):

  • wartość deklarowaną (λD), służącą kontroli jakości produkcji, odpowiadająca warunkom laboratoryjnym,
  • wartość obliczeniową (λob), służącą projektowaniu, odpowiadająca warunkom stosowania materiału w budynku.

Procedury obliczania współczynnika przenikania ciepła Uc ścian zewnętrznych o budowie jednorodnie i niejednorodnie cieplnie według PN-EN ISO 6946:2008 [14] przedstawiono w pracach [15, 16].

Przykład obliczeniowy 1

RYS. 10. Układ warstw materiałowych ściany zewnętrznej. Objaśnienia: 1 – tynk gipsowy gr. 1,5 cm, 2 – bloczki z betonu komórkowego gr. 24 cm, 3 – płyty styropianowe gr. 15 cm, 4 – tynk cienkowarstwowy gr. 0,5 cm; rys.: K. Pawłowski

RYS. 10. Układ warstw materiałowych ściany zewnętrznej. Objaśnienia: 1 – tynk gipsowy gr. 1,5 cm, 2 – bloczki z betonu komórkowego gr. 24 cm, 3 – płyty styropianowe gr. 15 cm, 4 – tynk cienkowarstwowy gr. 0,5 cm; rys.: K. Pawłowski

Obliczono wartość współczynnika przenikania ciepła Uc [W/(m2·K)] dwuwarstwowej ściany zewnętrznej (RYS. 10) budynku jednorodzinnego zgodnie z procedurą normy PN-EN ISO 6946:2008 [14].

Do obliczeń przyjęto następujące założenia:

  • temperatura obliczeniowa zewnętrzna (Toruń – III strefa klimatyczna: te = –20°C),
  • temperatura obliczeniowa wewnętrzna (pomieszczenia przeznaczone do przebywania ludzi bez okryć zewnętrznych niewykonujących w sposób ciągły pracy fizycznej: pokoje mieszkalne, przedpokoje, kuchnie, korytarze: ti = 20°C),
  • opory przejmowania ciepła dla ściany; wartości oporów przejmowania ciepła zostały przyjęte według normy PN-EN ISO 6946:2008 [14] dla poziomego kierunku strumienia ciepła:
    • – opór przejmowania ciepła na zewnętrznej powierzchni przegrody: Rse = 0,04 (m2·K)/W,
    • – opór przejmowania ciepła na wewnętrznej powierzchni przegrody: Rsi = 0,13 (m2·K)/W,
  • wartości współczynnika przewodzenia ciepła λ [W/(m·K)] przyjęto na podstawie tablic w pracach [15, 16].

W TAB. 2 zestawiono dane materiałowe analizowanej przegrody.

  • Całkowity opór cieplny ściany zewnętrznej od środowiska do środowiska określono według wzoru:

[(m2·K)/W]

  • Opór cieplny pojedynczej warstwy materiałowej ściany zewnętrznej (przegrody) obliczono według wzoru:

[(m2·K)/W]

  • Wartość współczynnika przenikania ciepła U [W/(m2·K)] określono według wzoru:

W/(m2·K)

  • Wartość skorygowanego współczynnika przenikania ciepła określono według równania:

Wartości poszczególnych poprawek ΔUg, ΔUƒ, ΔUr określono na podstawie następujących założeń:

  • ze względu na brak występowania pustek powietrznych (płyty styropianowe ułożone na zakładkę) poprawka na nieszczelności ΔUg = 0,
  • w przypadku ścian zewnętrznych poprawki ΔUr nie uwzględnia się (ΔUr = 0),
  • wpływ łączników mechanicznych pominięto (ΔUƒ = 0) – łączniki mechaniczne o wartości λƒ = 0,75 W/(m·K).

Zatem człon korekcyjny ΔU = 0 W/(m2·K), a wartość skorygowanego współczynnika przenikania ciepła ściany wynosi Uc = 0,18 W/(m2·K). Analizowana ściana zewnętrzna spełnia kryterium cieplne według rozporządzenia [1] obowiązującego od 1 stycznia 2021 r.:

TABELA 2. Zestawienie danych materiałowych ściany zewnętrznej dwuwarstwowej

TABELA 2. Zestawienie danych materiałowych ściany zewnętrznej dwuwarstwowej

Metody obliczeniowe w zakresie projektowania cieplnego ścian zewnętrznych

Przykład obliczeniowy 2

Obliczono całkowity opór cieplny RT [(m2·K)/W] oraz wartość współczynnika przenikania ciepła UC [W/(m2·K)] ściany zewnętrznej budynku o układzie warstw materiałowych (ze szczeliną dobrze wentylowaną) przedstawionym na RYS. 11-13 (rzut poziomy ściany).

RYS. 11–13. Układ warstw materiałowych ściany szczelinowej o warstwach niejednorodnych cieplnie: model obliczeniowy (11), wycinek „A” (12), wycinek „B” (13)

RYS. 11–13. Układ warstw materiałowych ściany szczelinowej o warstwach niejednorodnych cieplnie: model obliczeniowy (11), wycinek „A” (12), wycinek „B” (13). Objaśnienia: 1 – tynk gipsowy gr. 1,5 cm, 2 – cegła kratówka gr. 25 cm/słup żelbetowy 25×25 cm, 3 – wełna mineralna gr. 20 cm, 4 – szczelina dobrze wentylowana gr. 4 cm, 5 – cegła klinkierowa gr. 12 cm, część konstrukcyjna połączona z warstwą elewacyjną za pomocą stalowych łączników mechanicznych; rys.: K. Pawłowski

W analizowanej ścianie szczelinowej zaprojektowano dobrze wentylowaną warstwę powietrza gr. 4 cm – spełnia to kryterium według pkt. 5.3.4. normy PN-EN ISO 6946:2008 [14]; „całkowity opór cieplny komponentu budowlanego zawierającego dobrze wentylowaną warstwę powietrza należy obliczyć, pomijając opór cieplny warstwy powietrza i wszystkich innych warstw między warstwą powietrza a środowiskiem zewnętrznym oraz dodając zewnętrzny opór przejmowania ciepła, odpowiadający powietrzu nieruchomemu; alternatywnie może być zastosowana wartość Rsi z Tablicy 1 normy”.

Kres górny całkowitego oporu cieplnego R’T

W wyniku podziału przegrody płaszczyznami prostopadłymi do powierzchni przegrody wyodrębniono dwa zróżnicowane wycinki (sekcje): wycinek „A”, wycinek „B” o układach warstw materiałowych przedstawionych na RYS. 11-13 oraz w TAB. 3 i TAB. 4.

Pola względne wycinka „A” i „B” wyznaczono na podstawie:

  • pola wycinka „A”: Pa = 0,25 m·0,465 m = 0,12 m2
  • pola wycinka „B”: Pb = 0,80 m·0,465 m = 0,37 m2
  • sumy pól wycinka „A” i wycinka „B”:

Pola względne zatem wynoszą:

Kres górny całkowitego oporu cieplnego R’T określono według wzoru:

TABELA 3. Zestawienie danych materiałowych ściany zewnętrznej – kres górny całkowitego oporu cieplnego R'T wycinka „A”

TABELA 3. Zestawienie danych materiałowych ściany zewnętrznej – kres górny całkowitego oporu cieplnego R'T wycinka „A”

TABELA 4. Zestawienie danych materiałowych ściany zewnętrznej – kres górny całkowitego oporu cieplnego

TABELA 4. Zestawienie danych materiałowych ściany zewnętrznej – kres górny całkowitego oporu cieplnego  

Kres dolny całkowitego oporu cieplnego R’’T

W wyniku podziału przegrody płaszczyznami równoległymi do powierzchni przegrody wyodrębniono warstwę niejednorodną cieplnie [dwa materiały: cegła kratówka – λc.k. = 0,56 W/(m·K), żelbet –λż.= 2,00 W/(m·K)], dla której należy określić równoważoną (uśrednioną) przewodność cieplną λ’’ według wzoru:

gdzie:

ƒc.k. – pole względne cegły kratówki [-],

λc.k. – współczynnik przewodzenia ciepła cegły kratówki [W/(m·K)],

ƒż. – pole względne żelbetu [-],

λż. – współczynnik przewodzenia ciepła żelbetu [W/(m·K)].

Pola względne wycinka cegły kratówki i żelbetu wyznaczono na podstawie:

  • pola cegły kratówki: Pc.k. = 0,80 m·0,25 m = 0,20 m2
  • pola żelbetu: Pż. = 0,25 m·0,25 m = 0,06 m2
  • sumy pól betonu komórkowego i żelbetu:

Pola względne wycinków wynoszą zatem:

Równoważona (uśredniona) przewodność cieplna warstwy niejednorodnej cieplnie:

 W/(m·K)

Kres dolny całkowitego oporu cieplnego R’’T określono według wzoru:

TABELA 5. Zestawienie danych materiałowych ściany zewnętrznej – kres dolny całkowitego oporu cieplnego R''T

TABELA 5. Zestawienie danych materiałowych ściany zewnętrznej – kres dolny całkowitego oporu cieplnego R''T

gdzie:

Rsi – opór przejmowania ciepła na powierzchni wewnętrznej [(m2·K)/W],

Rt.g.– opór cieplny warstwy z tynku gipsowego [(m2·K)/W],

Rż./c.k. – opór cieplny warstwy z żelbetu/cegły kratówki [(m2·K)/W],

Rw.m. – opór cieplny warstwy z wełny mineralnej [(m2·K)/W],

Rsi – opór przejmowania ciepła na powierzchni wewnętrznej [(m2·K)/W].

W TAB. 5 zestawiono wyniki obliczeń.

Parametry RT i U

Całkowity opór cieplny ściany zewnętrznej RT (komponentu składającego się z warstw cieplnie jednorodnych i niejednorodnych) oblicza się jako średnią arytmetyczną górnego i dolnego kresu oporu cieplnego, zgodnie ze wzorem:

(m2·K)/W

Wartość współczynnika przenikania ciepła ściany zewnętrznej U wynosi:

W/(m2·K)

Wartość skorygowanego współczynnika przenikania ciepła określono według wzoru:

Wartości poszczególnych poprawek ΔUg, ΔUƒ, ΔUr określono na podstawie następujących założeń:

  • ze względu na brak występowania pustek powietrznych poprawka na nieszczelności ΔUg = 0,
  • w przypadku ścian zewnętrznych poprawki ΔUr nie uwzględnia się (ΔUr = 0),
  • ze względu na łączniki mechaniczne ze stali nierdzewnej (o średnicy 5 mm i układzie 5 szt./m2) obliczono wartość poprawki ΔUƒ według wzoru:

gdzie:

α = 0,8 – łącznik całkowicie przebija warstwę izolacji,

λƒ = 17 W/(m·K) – kotwy ze stali nierdzewnej o średnicy 5 mm,

Aƒ – pole przekroju jednego łącznika,

nƒ– liczba łączników na metr kwadratowy, n ƒ = 5 szt./m2,

d0 = 0,20 m – grubość warstwy izolacji zawierającej łącznik,

R1 = 5,00 (m2·K)/W – opór cieplny izolacji przebijanej przez łącznik,

RT,h = 5,75 (m2·K)/W – całkowity opór cieplny komponentu.

Po podstawieniu do wzoru uzyskano wartość poprawki ΔUƒ = 0,01 W/(m2·K).

Zatem człon korekcyjny ΔU = 0,01 W/(m2·K), a wartość skorygowanego współczynnika przenikania ciepła ściany wynosi Uc = 0,19 W/(m2·K). Analizowana ściana zewnętrzna spełnia kryterium cieplne według rozporządzenia [1] obowiązującego od 1 stycznia 2021 r.

Przykład obliczeniowy 3

Obliczono rozkład temperatury w dwuwarstwowej ścianie zewnętrznej z ociepleniem usytuowanym od zewnątrz i wewnątrz (RYS. 14-15, TAB. 6 i TAB. 7).

Do określenie rozkładu temperatur w ścianie zewnętrznej przyjęto następujące założenia:

  • temperatura obliczeniowa zewnętrzna (Toruń – III strefa klimatyczna: te = –20°C),
  • temperatura obliczeniowa wewnętrzna (pomieszczenia przeznaczone do przebywania ludzi bez okryć zewnętrznych niewykonujących w sposób ciągły pracy fizycznej: pokoje mieszkalne, przedpokoje, kuchnie, korytarze: ti = 20°C),
  • opory przejmowania ciepła dla ściany:
    – opór przejmowania ciepła na zewnętrznej powierzchni przegrody: Rse = 0,04 (m2·K)/W,
    – opór przejmowania ciepła na wewnętrznej powierzchni przegrody: Rsi = 0,25 (m2·K)/W.

TAB. 8 i TAB. 9 zestawiono wyniki obliczeń.

Należy podkreślić, że ocieplenie ściany zewnętrznej od wewnątrz powoduje, że jej warstwa konstrukcyjna (beton komórkowy) znajduje się w strefie przemarzania (t < 0°C). Takie zjawisko może spowodować zmianę parametrów technicznych i fizykalnych (cieplno-wilgotnościowych) analizowanej przegrody.

Przykład obliczeniowy 4

Obliczono współczynnik przenikania ciepła Uc [W/(m2·K)] warstwowych ścian zewnętrznych trójwarstwowych (RYS. 16), w zróżnicowanym układzie warstw materiałowych zgodnie z procedurą normy PN-EN ISO 6946:2008 [14].

RYS. 14–15 Rozkład temperatur w ścianie dwuwarstwowej: ocieplonej od strony zewnętrznej (14), ocieplonej od strony wewnętrznej (15); rys.: K. Pawłowski  TABELA 6. Zestawienie danych materiałowych ściany zewnętrznej dwuwarstwowej (ocieplenie od zewnątrz)
TABELA 7. Zestawienie danych materiałowych ściany zewnętrznej dwuwarstwowej (ocieplenie od wewnątrz) TABELA 8. Zestawienie temperatur na stykach warstw materiałowych (ściana ocieplona od zewnątrz)
TABELA 9. Zestawienie temperatur na stykach warstw materiałowych (ściana ocieplona od wewnątrz) RYS. 16. Przykładowe rozwiązanie materiałowe ścian zewnętrznych trójwarstwowych. Objaśnienia: 1 – tynk wewnętrzny, 2 – warstwa konstrukcyjna, 3 – izolacja cieplna, 4 – warstwa elewacyjna; rys.: K. Pawłowski

Do obliczenia współczynnika przenikania ciepła Uc [W/(m2·K)] przyjęto następujące założenia:

  • temperatura obliczeniowa zewnętrzna (Toruń – III strefa klimatyczna:
    te = –20°C),
  • temperatura obliczeniowa wewnętrzna (pomieszczenia przeznaczone do przebywania ludzi bez okryć zewnętrznych niewykonujących w sposób ciągły pracy:
    pokoje mieszkalne, przedpokoje, kuchnie, korytarze: ti = 20°C),
  • opory przejmowania ciepła dla ściany; wartości oporów przejmowania ciepła zostały przyjęte według PN-EN ISO 6946:2008 [14] dla poziomego kierunku strumienia ciepła:
    – opór przejmowania ciepła na zewnętrznej powierzchni przegrody:
    Rse
    = 0,04 (m2·K)/W,
    – opór przejmowania ciepła na wewnętrznej powierzchni przegrody:
    Rsi
    = 0,13 (m2·K)/W,
  • wartości współczynnika przewodzenia ciepła λ [W/(m·K)] przyjęto na podstawie tablic załącznik do pracy [15, 16].

Wyniki obliczeń zestawiono w TAB. 10.

TABELA 10. Wyniki obliczeń wartości współczynnika przenikania ciepła Uc według PN-EN ISO 6946:2008 [14] w odniesieniu do ściany zewnętrznej trójwarstwowej

TABELA 10. Wyniki obliczeń wartości współczynnika przenikania ciepła Uc według PN-EN ISO 6946:2008 [14] w odniesieniu do ściany zewnętrznej trójwarstwowej

Istotny wpływ na wartość współczynnika przenikania ciepła przegrody budowlanej Uc [W/(m2·K)] ma wartość współczynnika przewodzenia ciepła λ [W/(m·K)] materiału izolacyjnego. W odniesieniu do jednego rodzaju izolacji może się ona wahać w znacznym przedziale w zależności od produktu, co wynika z szybkiego rozwoju rynku materiałów termoizolacyjnych oraz coraz bardziej zaawansowanych technologii produkcyjnych.

W obliczeniach różnicowano grubość warstwy izolacji cieplnej i wartość współczynnika przewodzenia ciepła materiału izolacyjnego λ [W/(m·K)]. Dodatkowo zamieszczono poziomy wymagań co do izolacyjności cieplnej Uc(max) [W/(m2·K)] według rozporządzenia [1], obowiązujące od 1 stycznia 2021 r.

Przykład obliczeniowy 5

Sprawdzono ryzyko występowania kondensacji międzywarstowej w ścianie zewnętrznej trójwarstwowej rozpatrywanej w dwóch wariantach.

Do obliczeń i analizy w zakresie sprawdzenia występowania kondensacji międzywarstwowej wybrano ścianę zewnętrzna trójwarstwowa, otynkowana od wnętrza, z zewnętrzną warstwą licowej cegły klinkierowej oraz płytą termoizolacyjną w środku, wykonaną alternatywnie z wełny mineralnej lub styropianu.

Na RYS. 17-18 i w TAB. 11 przedstawiono dane geometryczne i materiałowe przegrody.

RYS. 17–18 Ściana zewnętrzna trójwarstwowa z licówką klinkierową i ociepleniem: wełną mineralną (17) i styropianem (18); rys.: K. Pawłowski

RYS. 17–18 Ściana zewnętrzna trójwarstwowa z licówką klinkierową i ociepleniem: wełną mineralną (17) i styropianem (18); rys.: K. Pawłowski

TABELA 11. Parametry geometryczno-materiałowe warstw ściany zewnętrznej trójwarstwowej

TABELA 11. Parametry geometryczno-materiałowe warstw ściany zewnętrznej trójwarstwowej

TABELA 12. Wyniki obliczeń w zakresie występowania kondensacji międzywarstwowej – ściana zewnętrzna trójwarstwowa z wełną mineralną (wariant I)

TABELA 12. Wyniki obliczeń w zakresie występowania kondensacji międzywarstwowej – ściana zewnętrzna trójwarstwowa z wełną mineralną (wariant I)

TABELA 13. Wyniki obliczeń w zakresie występowania kondensacji międzywarstwowej – ściana zewnętrzna trójwarstwowa z płytami styropianowymi (wariant II)

TABELA 13. Wyniki obliczeń w zakresie występowania kondensacji międzywarstwowej – ściana zewnętrzna trójwarstwowa z płytami styropianowymi (wariant II)

Przeprowadzono podstawowe obliczenia (TAB. 12 i TAB. 13) i analizy w zakresie stanu wilgotnościowego ściany dla dwóch różnych materiałów termoizolacyjnych: wełny mineralnej i styropianu, użytych alternatywnie, przyjmując budynek w Bydgoszczy (dane meteorologiczne) z wentylacją grawitacyjną w 3/4 klasie wilgotności pomieszczeń (dla θe < 0°C → Δp = 810 Pa).

Na RYS. 19, RYS. 20, RYS. 21 i RYS. 22 przedstawiono w skali oporów dyfuzyjnych (oś pozioma) wykresy temperatury t [°C], ciśnienia pary wodnej nasyconej psat [Pa] oraz rzeczywistego ciśnienia cząstkowego pary wodnej p [Pa] dla dwóch przypadków termoizolacji ściany.

RYS. 19 Analiza wilgotnościowa ściany trójwarstwowej ocieplonej wełną mineralną [1]; rys.: K. Pawłowski

RYS. 19 Analiza wilgotnościowa ściany trójwarstwowej ocieplonej wełną mineralną [1]; rys.: K. Pawłowski

RYS. 20 Analiza wilgotnościowa ściany trójwarstwowej ocieplonej wełną mineralną [2]; rys.: K. Pawłowski

RYS. 20 Analiza wilgotnościowa ściany trójwarstwowej ocieplonej wełną mineralną [2]; rys.: K. Pawłowski

RYS. 21 Analiza wilgotnościowa ściany trójwarstwowej ocieplonej styropianem [1]; rys.: K. Pawłowski

RYS. 21 Analiza wilgotnościowa ściany trójwarstwowej ocieplonej styropianem [1]; rys.: K. Pawłowski

RYS. 22 Analiza wilgotnościowa ściany trójwarstwowej ocieplonej styropianem [2]; rys.: K. Pawłowski

RYS. 22 Analiza wilgotnościowa ściany trójwarstwowej ocieplonej styropianem [2]; rys.: K. Pawłowski

Wykresy p [Pa] i psat [Pa] przecinają się, przegroda w obu przypadkach jest zagrożona kondensacją wewnętrzną wilgoci. Występuje jedna wewnętrzna płaszczyzna kondensacji wilgoci c w styku termoizolacji z licówką (płaszczyzna międzywarstwowa 1), ciśnienie pc [Pa].

Obliczenie ilości kondensującej wilgoci w płaszczyźnie c:

  • izolacja z wełny mineralnej:

w okresie miesiąca g(m) = 30·24·3600·559·10–10 = 0,145 kg/m2

  • izolacja ze styropianu:

w okresie miesiąca g(m) = 30·24·3600·120·10–10 = 0,031 kg/m2

Rezultaty obliczeń wskazują na fakt gromadzenia się wewnątrz przegrody (dla obu rodzajów termoizolacji) wilgoci kondensacyjnej. Nie można jednak odpowiedzieć na pytanie, czy bilans roczny wilgoci wykaże możliwość wysuszenia przegrody w okresie letnim, co jest koniecznym warunkiem jej akceptacji technicznej. Należy przeprowadzić dalsze analizy i obliczenia w tym zakresie.

Podsumowanie i wnioski

W artykule przedstawiono zasady projektowania ścian zewnętrznych i ich złączy spełniających prawne wymagania cieplno-wilgotnościowe obowiązujące od 1 stycznia 2021 roku z uwzględnieniem wytycznych budownictwa niskoenergetycznego. Osiągnięcie wartości współczynnika przenikania ciepła Uc [W/(m2·K)] poniżej wartości granicznej polega określeniu odpowiedniej grubości materiału termoizolacyjnego oraz poprawnym jego usytuowaniu. Należy jednak zwrócić uwagę także na odpowiednie kształtowanie układów materiałowych złączy budowlanych (połączenie dwóch lub trzech przegród w węźle), określanych także w literaturze jako mostki cieplne (mostki termiczne). Dobór materiałów, szczególnie termoizolacyjnych, powinien uwzględniać innowacyjne rozwiązania pozwalające na optymalizację (minimalizację) ich grubości.

Literatura

  1. Rozporządzenie Ministra Infrastruktury i Budownictwa z dnia 14 listopada 2017 r. zmieniające rozporządzenie w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie (DzU z 2017 r. poz. 2285).
  2. PN-B-12066:1998, „Wyroby budowlane silikatowe. Cegły, bloki, elementy”.
  3. M. Wesołowska, K. Pawłowski, „Aspekty związane z dostosowaniem obiektów istniejących do standardów budownictwa energooszczędnego”, Agencja Reklamowa TOP, Włocławek 2016. Praca wydana w ramach projektu finansowanego ze środków funduszy norweskich i środków krajowych.
  4. K. Pawłowski, „Innowacyjne rozwiązania materiałów termoizolacyjnych w aspekcie modernizacji budynków w Polsce”, „IZOLACJE” 3/2018, s. 48–64.
  5. D. Christoffers, U. Tron, „Transparente wärmedämmungen mit integrierter prismenscheibe zur saisonalen verschattung – Ausführungsbeispiele Vakunumdämmung“, BINE Informationsdiens, projektinfo 4/01.
  6. M. Gaczek, S. Fiszer, „Tynki” [w:] „XVIII Ogólnopolska Konferencja Warsztaty Pracy Projektanta Konstrukcji”, Ustroń 2003.
  7. K. Schabowicz, „Elewacje wentylowane. Technologia produkcji i metody badania płyt włóknisto-cementowych”, Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław 2018.
  8. K. Pawłowski, „Fasada wentylowana jako nowoczesna elewacja budynków niskoenergetycznych”, „IZOLACJE” 2/2017, s. 62–65.
  9. K. Pawłowski, „Elewacje wentylowane w budynkach energooszczędnych”, „Przewodnik projektanta” 3/2019, s. 38–41.
  10. F. Lewandowski, „Analiza numeryczna parametrów cieplnych przegród zewnętrznych i ich złączy budynku z bali drewnianych”, praca magisterska napisana pod kierunkiem dr. inż. Krzysztofa Pawłowskiego, UTP w Bydgoszczy, Bydgoszcz 2013.
  11. W. Nitka, „Mój dom z drewna”, Centrum Informacyjne Lasów Państwowych, Warszawa 2010.
  12. P. Markiewicz, „Budownictwo ogólne dla architektów”, Wydawnictwo ARCHI-PLUS, Kraków 2011.
  13. P. Tokarz, „Płyty warstwowe w systemach lekkiej obudowy budynków”, „IZOLACJE” 2/2012, s. 24–26.
  14. PN-EN ISO 6946:2008, „Komponenty budowlane i elementy budynku. Opór cieplny i współczynnik przenikania ciepła. Metoda obliczania”.
  15. K. Pawłowski, „Projektowanie ścian w budownictwie energooszczędnym. Obliczenia cieplno-wilgotnościowe ścian zewnętrznych i ich złączy w świetle obowiązujących przepisów prawnych”, Grupa MEDIUM, Warszawa 2017.
  16. K. Pawłowski, „Projektowanie przegród zewnętrznych w świetle aktualnych warunków technicznych dotyczących budynków. Obliczenia cieplno-wilgotnościowe przegród zewnętrznych i ich złączy”, Grupa MEDIUM, Warszawa 2016.

Chcesz być na bieżąco? Zapisz się do naszego newslettera!

Komentarze

Powiązane

dr inż. Andrzej Konarzewski Materiałowe współczynniki bezpieczeństwa płyt warstwowych

Materiałowe współczynniki bezpieczeństwa płyt warstwowych Materiałowe współczynniki bezpieczeństwa płyt warstwowych

Materiałowe współczynniki bezpieczeństwa ɣM powinny odzwierciedlać zmienność właściwości mechanicznych płyt warstwowych, na co wskazują wyniki badań typu i zakładowej kontroli produkcji. Autor publikacji...

Materiałowe współczynniki bezpieczeństwa ɣM powinny odzwierciedlać zmienność właściwości mechanicznych płyt warstwowych, na co wskazują wyniki badań typu i zakładowej kontroli produkcji. Autor publikacji objaśnia jak je wyznaczać.

dr inż. Paweł Sulik Bezpieczeństwo pożarowe pasów międzykondygnacyjnych

Bezpieczeństwo pożarowe pasów międzykondygnacyjnych Bezpieczeństwo pożarowe pasów międzykondygnacyjnych

Pasy międzykondygnacyjne stanowią naturalnie ukształtowaną część ścian zewnętrznych budynków, co oznacza, że muszą one przede wszystkim spełnić wymagania jak dla ścian zewnętrznych.

Pasy międzykondygnacyjne stanowią naturalnie ukształtowaną część ścian zewnętrznych budynków, co oznacza, że muszą one przede wszystkim spełnić wymagania jak dla ścian zewnętrznych.

dr hab. inż. prof. PŚ Łukasz Drobiec, dr inż. Wojciech Mazur , mgr inż. Remigiusz Jokiel Badania wpływu wzmocnienia powierzchniowego systemem FRCM na wytrzymałość na ściskanie murów z autoklawizowanego betonu komórkowego

Badania wpływu wzmocnienia powierzchniowego systemem FRCM na wytrzymałość na ściskanie murów z autoklawizowanego betonu komórkowego Badania wpływu wzmocnienia powierzchniowego systemem FRCM na wytrzymałość na ściskanie murów z autoklawizowanego betonu komórkowego

Celem badań przedstawionych w artykule jest określenie wpływu wzmocnienia powierzchniowego systemem FRCM na wytrzymałość na ściskanie murów wykonanych z autoklawizowanego betonu komórkowego.

Celem badań przedstawionych w artykule jest określenie wpływu wzmocnienia powierzchniowego systemem FRCM na wytrzymałość na ściskanie murów wykonanych z autoklawizowanego betonu komórkowego.

dr inż. Paweł Krause, dr inż. Agnieszka Szymanowska-Gwiżdż, dr inż. Bożena Orlik-Kożdoń, dr inż. Tomasz Steidl Stan ochrony cieplnej elementów przyziemia w budownictwie jednorodzinnym

Stan ochrony cieplnej elementów przyziemia w budownictwie jednorodzinnym Stan ochrony cieplnej elementów przyziemia w budownictwie jednorodzinnym

Stan ochrony cieplnej elementów przyziemia w niepodpiwniczonych budynkach jednorodzinnych w istotnym stopniu zależy od izolacyjności cieplnej ściany fundamentowej i podłogi na gruncie. Rozwiązania projektowe...

Stan ochrony cieplnej elementów przyziemia w niepodpiwniczonych budynkach jednorodzinnych w istotnym stopniu zależy od izolacyjności cieplnej ściany fundamentowej i podłogi na gruncie. Rozwiązania projektowe ścian przyziemia w budynkach nieposiadających podpiwniczenia, posadowionych na ławach fundamentowych, są realizowane w zróżnicowany sposób.

mgr inż. Bartłomiej Monczyński Ochrona budynków przed naturalnymi źródłami promieniowania jonizującego

Ochrona budynków przed naturalnymi źródłami promieniowania jonizującego Ochrona budynków przed naturalnymi źródłami promieniowania jonizującego

Pojęcie promieniotwórczości (radioaktywności) w percepcji społecznej wiąże się przede wszystkim z zagrożeniem wynikającym z wykorzystywania energii jądrowej do celów wojskowych, energetycznych lub medycznych...

Pojęcie promieniotwórczości (radioaktywności) w percepcji społecznej wiąże się przede wszystkim z zagrożeniem wynikającym z wykorzystywania energii jądrowej do celów wojskowych, energetycznych lub medycznych [1]. Wciąż mało kto zdaje sobie sprawę, że niemal 3/4 dawki promieniowania jonizującego, jaką otrzymuje w ciągu roku przeciętny Polak, pochodzi ze źródeł naturalnych [2].

Nicola Hariasz Sufity podwieszane o podwyższonych właściwościach akustycznych

Sufity podwieszane o podwyższonych właściwościach akustycznych Sufity podwieszane o podwyższonych właściwościach akustycznych

Sufity podwieszane mogą stanowić ciekawy i nowoczesny element aranżacji wnętrza. Choć najczęściej kojarzą się z białymi klasycznymi modułami, są dostępne niemal w każdym kolorze i różnej stylistyce.

Sufity podwieszane mogą stanowić ciekawy i nowoczesny element aranżacji wnętrza. Choć najczęściej kojarzą się z białymi klasycznymi modułami, są dostępne niemal w każdym kolorze i różnej stylistyce.

mgr inż. Ismena Gawęda Wymagania techniczne wobec obiektów rolniczych o konstrukcji stalowej

Wymagania techniczne wobec obiektów rolniczych o konstrukcji stalowej Wymagania techniczne wobec obiektów rolniczych o konstrukcji stalowej

Popularne ostatnimi czasy w rolnictwie hale o konstrukcji stalowej (RYS. 1, FOT. 1) sprawdzają się jako specjalistyczne powierzchnie magazynowe pasz i przechowalnie płodów rolnych (w tym również w warunkach...

Popularne ostatnimi czasy w rolnictwie hale o konstrukcji stalowej (RYS. 1, FOT. 1) sprawdzają się jako specjalistyczne powierzchnie magazynowe pasz i przechowalnie płodów rolnych (w tym również w warunkach chłodni czy mroźni) oraz powierzchnie przetwórcze.

mgr inż. Bartosz Witkowski, prof. dr hab. inż. Krzysztof Schabowicz Izolacje a współczesna prefabrykacja w budynkach kubaturowych

Izolacje a współczesna prefabrykacja w budynkach kubaturowych Izolacje a współczesna prefabrykacja w budynkach kubaturowych

Prefabrykacja, w szczególności ta stosowana w budownictwie mieszkaniowym, znana jest w Polsce już od początku lat 50. ubiegłego wieku, kiedy to po drugiej wojnie światowej rozpoczęła się odbudowa miast...

Prefabrykacja, w szczególności ta stosowana w budownictwie mieszkaniowym, znana jest w Polsce już od początku lat 50. ubiegłego wieku, kiedy to po drugiej wojnie światowej rozpoczęła się odbudowa miast i znacząco wzrósł popyt na nowe mieszkania. To, co w świadomości może najbardziej być kojarzone z prefabrykacją zastosowaną w budynkach to tzw. wielka płyta, czyli połączenie żelbetowych ścian konstrukcyjnych ze ścianami osłonowymi z gazobetonu.

dr inż. Marcin Górski, dr inż. Bernard Kotala, mgr inż. Rafał Białozor Rodzaje i właściwości zbrojeń niemetalicznych

Rodzaje i właściwości zbrojeń niemetalicznych Rodzaje i właściwości zbrojeń niemetalicznych

Kompozyty włókniste, również w Polsce nazywane z angielskiego FRP (Fibre Reinforced Polymers), śmiało wkroczyły w świat konstrukcji budowlanych na początku lat 90. ubiegłego wieku, głównie w krajach Europy...

Kompozyty włókniste, również w Polsce nazywane z angielskiego FRP (Fibre Reinforced Polymers), śmiało wkroczyły w świat konstrukcji budowlanych na początku lat 90. ubiegłego wieku, głównie w krajach Europy Zachodniej, a także w Japonii, Stanach Zjednoczonych i Kanadzie. Pojawiły się niemal równocześnie dwie grupy produktów – materiały do wzmocnień konstrukcji oraz pręty do zbrojenia betonu.

Monika Hyjek Pożar ściany z barierami ogniowymi

Pożar ściany z barierami ogniowymi Pożar ściany z barierami ogniowymi

Od lat 80. XX wieku ilość materiałów ociepleniowych na ścianach zewnętrznych budynku stale rośnie. Grubość izolacji w jednej z popularniejszych w Europie metod ocieplania (ETICS) przez ten okres zwiększyła...

Od lat 80. XX wieku ilość materiałów ociepleniowych na ścianach zewnętrznych budynku stale rośnie. Grubość izolacji w jednej z popularniejszych w Europie metod ocieplania (ETICS) przez ten okres zwiększyła się 3–4-krotnie. W przypadku stosowania palnych izolacji cieplnych jest to równoznaczne ze wzrostem zagrożenia pożarowego.

mgr inż. Bartłomiej Monczyński Tynki stosowane na zawilgoconych przegrodach – tynki regulujące zawilgocenie

Tynki stosowane na zawilgoconych przegrodach – tynki regulujące zawilgocenie Tynki stosowane na zawilgoconych przegrodach – tynki regulujące zawilgocenie

Jednym z ostatnich, ale zazwyczaj nieodzownym elementem prac renowacyjnych w uszkodzonych przez wilgoć i sole obiektach budowlanych jest wykonanie nowych tynków wewnętrznych i/lub zewnętrznych.

Jednym z ostatnich, ale zazwyczaj nieodzownym elementem prac renowacyjnych w uszkodzonych przez wilgoć i sole obiektach budowlanych jest wykonanie nowych tynków wewnętrznych i/lub zewnętrznych.

Röben Polska Sp. z o.o. i Wspólnicy Sp. K. Ekoceramika na dachy i elewacje

Ekoceramika na dachy i elewacje Ekoceramika na dachy i elewacje

Wyjątkowo trwała, a na dodatek bezpieczna dla środowiska i naszego zdrowia. Znamy ją od tysięcy lat, należy do najbardziej ekologicznych materiałów budowlanych – po prostu ceramika!

Wyjątkowo trwała, a na dodatek bezpieczna dla środowiska i naszego zdrowia. Znamy ją od tysięcy lat, należy do najbardziej ekologicznych materiałów budowlanych – po prostu ceramika!

Nicola Hariasz Ściany podwyższające komfort akustyczny w pomieszczeniu

Ściany podwyższające komfort akustyczny w pomieszczeniu Ściany podwyższające komfort akustyczny w pomieszczeniu

Hałas jest powszechnym problemem obniżającym komfort życia nie tylko w domu, ale także w pracy. O tym, czy może być niebezpieczny, decyduje nie tylko jego natężenie, ale również czas jego trwania. Szkodliwe...

Hałas jest powszechnym problemem obniżającym komfort życia nie tylko w domu, ale także w pracy. O tym, czy może być niebezpieczny, decyduje nie tylko jego natężenie, ale również czas jego trwania. Szkodliwe dla zdrowia mogą być nawet gwar i szum towarzyszące nam na co dzień w biurze czy w centrum handlowym.

dr inż. Paweł Krause, dr inż. Rosita Norvaišienė Rozkład temperatury systemu ETICS z zastosowaniem styropianu i wełny – badania laboratoryjne

Rozkład temperatury systemu ETICS z zastosowaniem styropianu i wełny – badania laboratoryjne Rozkład temperatury systemu ETICS z zastosowaniem styropianu i wełny – badania laboratoryjne

Ochrona cieplna ścian zewnętrznych jest nie tylko jednym z podstawowych zagadnień związanych z oszczędnością energii, ale wiąże się również z komfortem użytkowania pomieszczeń przeznaczonych na pobyt ludzi....

Ochrona cieplna ścian zewnętrznych jest nie tylko jednym z podstawowych zagadnień związanych z oszczędnością energii, ale wiąże się również z komfortem użytkowania pomieszczeń przeznaczonych na pobyt ludzi. Zapewnienie odpowiedniego komfortu cieplnego pomieszczeń, nieposiadających w większości przypadków instalacji chłodzenia, dotyczy całego roku, a nie tylko okresu ogrzewczego.

mgr Kamil Kiejna Bezpieczeństwo pożarowe w aspekcie stosowania tzw. barier ogniowych w ociepleniach ze styropianu – artykuł polemiczny

Bezpieczeństwo pożarowe w aspekcie stosowania tzw. barier ogniowych w ociepleniach ze styropianu – artykuł polemiczny Bezpieczeństwo pożarowe w aspekcie stosowania tzw. barier ogniowych w ociepleniach ze styropianu – artykuł polemiczny

Niniejszy artykuł jest polemiką do tekstu M. Hyjek „Pożar ściany z barierami ogniowymi”, opublikowanego w styczniowym numerze „IZOLACJI” (nr 1/2021), który w ocenie Polskiego Stowarzyszenia Producentów...

Niniejszy artykuł jest polemiką do tekstu M. Hyjek „Pożar ściany z barierami ogniowymi”, opublikowanego w styczniowym numerze „IZOLACJI” (nr 1/2021), który w ocenie Polskiego Stowarzyszenia Producentów Styropianu, wskutek tendencyjnego i wybiórczego przedstawienia wyników badań przeprowadzonych przez Łukasiewicz – Instytut Ceramiki i Materiałów Budowlanych (ICiMB), może wprowadzać w błąd co do rzeczywistego poziomu bezpieczeństwa pożarowego systemów ETICS z płytami styropianowymi oraz rzekomych korzyści...

dr inż. Marcin Górski, dr inż. Bernard Kotala, mgr inż. Rafał Białozor Zbrojenia niemetaliczne – zbrojenia tekstylne i pręty kompozytowe

Zbrojenia niemetaliczne – zbrojenia tekstylne i pręty kompozytowe Zbrojenia niemetaliczne – zbrojenia tekstylne i pręty kompozytowe

Zbrojenie niemetaliczne jest odporne na korozję, nie ulega degradacji pod wpływem czynników atmosferycznych. Wykazuje także odporność na chlorki, kwasy, agresję chemiczną środowiska.

Zbrojenie niemetaliczne jest odporne na korozję, nie ulega degradacji pod wpływem czynników atmosferycznych. Wykazuje także odporność na chlorki, kwasy, agresję chemiczną środowiska.

mgr inż. Bartłomiej Monczyński Redukcja zasolenia przegród budowlanych za pomocą kompresów

Redukcja zasolenia przegród budowlanych za pomocą kompresów Redukcja zasolenia przegród budowlanych za pomocą kompresów

Jednym z najbardziej niekorzystnych zjawisk związanych z obecnością soli i wilgoci w układzie porów materiałów budowlanych jest krystalizacja soli [1–2] (FOT. 1).

Jednym z najbardziej niekorzystnych zjawisk związanych z obecnością soli i wilgoci w układzie porów materiałów budowlanych jest krystalizacja soli [1–2] (FOT. 1).

dr inż. Krzysztof Pawłowski, prof. uczelni Termomodernizacja budynków – ocieplenie i docieplenie elementów obudowy budynków

Termomodernizacja budynków – ocieplenie i docieplenie elementów obudowy budynków Termomodernizacja budynków – ocieplenie i docieplenie elementów obudowy budynków

Termomodernizacja dotyczy dostosowania budynku do nowych wymagań ochrony cieplnej i oszczędności energii. Ponadto stanowi zbiór zabiegów mających na celu wyeliminowanie lub znaczne ograniczenie strat ciepła...

Termomodernizacja dotyczy dostosowania budynku do nowych wymagań ochrony cieplnej i oszczędności energii. Ponadto stanowi zbiór zabiegów mających na celu wyeliminowanie lub znaczne ograniczenie strat ciepła w istniejącym budynku. Jest jednym z elementów modernizacji budynku, który przynosi korzyści finansowe i pokrycie kosztów innych działań.

dr inż. Artur Miszczuk Ocieplenie podłóg na gruncie i stropów nad nieogrzewanymi piwnicami

Ocieplenie podłóg na gruncie i stropów nad nieogrzewanymi piwnicami Ocieplenie podłóg na gruncie i stropów nad nieogrzewanymi piwnicami

Od 1 stycznia 2021 r. obowiązują zaostrzone Warunki Techniczne (WT 2021) dla nowo budowanych obiektów, a także budynków zaprojektowanych według wcześniej obowiązującego standardu WT 2017 – zgodnie z wymaganiami...

Od 1 stycznia 2021 r. obowiązują zaostrzone Warunki Techniczne (WT 2021) dla nowo budowanych obiektów, a także budynków zaprojektowanych według wcześniej obowiązującego standardu WT 2017 – zgodnie z wymaganiami proekologicznej polityki UE. Graniczne wartości współczynnika przenikania ciepła dla podłóg na gruncie i stropów nad pomieszczeniami nieogrzewanymi nie zostały jednak (w WT 2021) zmienione.

dr inż. arch. Karolina Kurtz-Orecka Ściany zewnętrzne według zaostrzonych wymagań izolacyjności termicznej

Ściany zewnętrzne według zaostrzonych wymagań izolacyjności termicznej Ściany zewnętrzne według zaostrzonych wymagań izolacyjności termicznej

Początek roku 2021 w branży budowlanej przyniósł kolejne zaostrzenie przepisów techniczno-budowlanych, ostatnie z planowanych, które wynikało z implementacji zapisów dyrektywy unijnej w sprawie charakterystyki...

Początek roku 2021 w branży budowlanej przyniósł kolejne zaostrzenie przepisów techniczno-budowlanych, ostatnie z planowanych, które wynikało z implementacji zapisów dyrektywy unijnej w sprawie charakterystyki energetycznej budynków [1, 2], potocznie zwanej dyrektywą EPBD.

dr inż. Adam Ujma Ściany zewnętrzne z elewacjami wentylowanymi i ich izolacyjność cieplna

Ściany zewnętrzne z elewacjami wentylowanymi i ich izolacyjność cieplna Ściany zewnętrzne z elewacjami wentylowanymi i ich izolacyjność cieplna

Ściany zewnętrzne z elewacjami wykonanymi w formie konstrukcji z warstwami wentylowanymi coraz częściej znajdują zastosowanie w nowych budynków, ale również z powodzeniem mogą być wykorzystane przy modernizacji...

Ściany zewnętrzne z elewacjami wykonanymi w formie konstrukcji z warstwami wentylowanymi coraz częściej znajdują zastosowanie w nowych budynków, ale również z powodzeniem mogą być wykorzystane przy modernizacji istniejących obiektów. Dają one szerokie możliwości dowolnego kształtowania materiałowego elewacji, z wykorzystaniem elementów metalowych, z tworzywa sztucznego, szkła, kamienia naturalnego, drewna i innych. Pewną niedogodnością tego rozwiązania jest konieczność uwzględnienia w obliczeniach...

mgr inż. arch. Tomasz Rybarczyk Ściany jednowarstwowe według WT 2021

Ściany jednowarstwowe według WT 2021 Ściany jednowarstwowe według WT 2021

Elementom zewnętrznym budynków, a więc również ścianom, stawiane są coraz wyższe wymagania, m.in. pod względem izolacyjności cieplnej. Zmiany obowiązujące od 1 stycznia 2021 roku dotyczą wymagań w zakresie...

Elementom zewnętrznym budynków, a więc również ścianom, stawiane są coraz wyższe wymagania, m.in. pod względem izolacyjności cieplnej. Zmiany obowiązujące od 1 stycznia 2021 roku dotyczą wymagań w zakresie izolacyjności cieplnej, a wynikające z rozporządzenia w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie powodują, że odtąd trzeba budować budynki ze ścianami o wyższej termoizolacyjności niż budowano dotychczas.

dr inż. Bożena Orlik-Kożdoń, dr inż. Tomasz Steidl Docieplanie budynków od wewnątrz – wymagania prawne i zalecenia do projektowania

Docieplanie budynków od wewnątrz – wymagania prawne i zalecenia do projektowania Docieplanie budynków od wewnątrz – wymagania prawne i zalecenia do projektowania

Obowiązujące w Polsce wymagania prawne związane z docieplaniem budynków od wewnątrz obejmują zarówno przepisy podstawowe zdefiniowane w dokumentach unijnych, jak i wymagania szczegółowe, zawarte w dokumentach...

Obowiązujące w Polsce wymagania prawne związane z docieplaniem budynków od wewnątrz obejmują zarówno przepisy podstawowe zdefiniowane w dokumentach unijnych, jak i wymagania szczegółowe, zawarte w dokumentach krajowych. A ich realizację umożliwiają dostępne na rynku rozwiązania technologiczno-materiałowe.

Festool Polska Sp. z o. o. Pilarka do materiałów izolacyjnych

Pilarka do materiałów izolacyjnych Pilarka do materiałów izolacyjnych

Czy pilarka może być precyzyjna, szybka, lekka i jednocześnie wielozadaniowa? Właśnie takie cechy posiada pilarka do materiałów izolacyjnych ISC 240.

Czy pilarka może być precyzyjna, szybka, lekka i jednocześnie wielozadaniowa? Właśnie takie cechy posiada pilarka do materiałów izolacyjnych ISC 240.

Najnowsze produkty i technologie

EuroPanels Płyty warstwowe – europejska jakość na dachu

Płyty warstwowe – europejska jakość na dachu Płyty warstwowe – europejska jakość na dachu

Na konstrukcję dachu oraz jego pokrycie oddziałuje wiele różnych czynników, zarówno zewnętrznych, jak i wewnętrznych. Dlatego tym przegrodom budynku stawia się bardzo wysokie wymagania techniczne i użytkowe....

Na konstrukcję dachu oraz jego pokrycie oddziałuje wiele różnych czynników, zarówno zewnętrznych, jak i wewnętrznych. Dlatego tym przegrodom budynku stawia się bardzo wysokie wymagania techniczne i użytkowe. Warstwowe płyty dachowe od dawna są stosowane na dachach budynków przemysłowych oraz magazynowych. W ostatnich latach widać natomiast tendencję wykorzystywania tego typu rozwiązań w budynkach mieszkalnych jednorodzinnych, a także na obiektach użyteczności publicznej.

Selena S.A. Tradycja w nowoczesnym wydaniu na rynku hydroizolacji

Tradycja w nowoczesnym wydaniu na rynku hydroizolacji Tradycja w nowoczesnym wydaniu na rynku hydroizolacji

Doświadczenie, fachowość i partnerstwo to filozofia firmy Matizol, wiodącego na polskim rynku producenta pap, gontów i mas bitumicznych. Swoją działalność opieramy na dwóch filarach: tradycji, czerpiąc...

Doświadczenie, fachowość i partnerstwo to filozofia firmy Matizol, wiodącego na polskim rynku producenta pap, gontów i mas bitumicznych. Swoją działalność opieramy na dwóch filarach: tradycji, czerpiąc z ponad 120-letniej historii marki, oraz innowacji, tworząc nowości i ulepszając istniejące produkty. Zawsze stawiamy na wysoką jakość i łatwość stosowania.

MediaMarkt Laptop na raty – czy warto wybrać tę opcję?

Laptop na raty – czy warto wybrać tę opcję? Laptop na raty – czy warto wybrać tę opcję?

Zakup nowego laptopa to spory wydatek. Może się zdarzyć, że staniemy przed dylematem: tańszy sprzęt, mniej odpowiadający naszym potrzebom, czy droższy, lepiej je spełniający, ale na raty? Często wybór...

Zakup nowego laptopa to spory wydatek. Może się zdarzyć, że staniemy przed dylematem: tańszy sprzęt, mniej odpowiadający naszym potrzebom, czy droższy, lepiej je spełniający, ale na raty? Często wybór tańszego rozwiązania, jest pozorną oszczędnością. Niższa efektywność pracy, mniejsza żywotność, nie mówiąc już o ograniczonych parametrach technicznych. Jeśli szukamy sprzętu, który posłuży nam naprawdę długo, dobrze do zakupu laptopa podejść jak do inwestycji - niezależnie, czy kupujemy go przede wszystkim...

PU Polska – Związek Producentów Płyt Warstwowych i Izolacji Płyty warstwowe PUR/PIR w aspekcie wymagań technicznych stawianych lekkiej obudowie

Płyty warstwowe PUR/PIR w aspekcie wymagań technicznych stawianych lekkiej obudowie Płyty warstwowe PUR/PIR w aspekcie wymagań technicznych stawianych lekkiej obudowie

Rozwój technologii budowlanej w ciągu ostatnich kilkudziesięciu lat zmienił oblicze branży w Polsce, umożliwiając szybszą, tańszą i ekologiczną realizację wznoszonych obiektów. Wprowadzając szeroko do...

Rozwój technologii budowlanej w ciągu ostatnich kilkudziesięciu lat zmienił oblicze branży w Polsce, umożliwiając szybszą, tańszą i ekologiczną realizację wznoszonych obiektów. Wprowadzając szeroko do branży rewolucyjny i rewelacyjny produkt, jakim jest płyta warstwowa, zmodernizowaliśmy de facto ideę prefabrykacji i zamianę tradycyjnych, mokrych i pracochłonnych technologii wznoszenia budynków z elementów małogabarytowych lub konstrukcji szalunkowych na szybki, suchy montaż gotowych elementów w...

Balex Metal Sp. z o. o. System rynnowy Zenit – orynnowanie premium

System rynnowy Zenit – orynnowanie premium System rynnowy Zenit – orynnowanie premium

Wielu inwestorów, wybierając orynnowanie, zwraca wyłącznie uwagę na kolor czy kształt rynien i rur spustowych. Oczywiście estetyka jest ważna, ale nie to jest głównym zadaniem systemu rynnowego. Ma on...

Wielu inwestorów, wybierając orynnowanie, zwraca wyłącznie uwagę na kolor czy kształt rynien i rur spustowych. Oczywiście estetyka jest ważna, ale nie to jest głównym zadaniem systemu rynnowego. Ma on przede wszystkim bezpiecznie odprowadzać wodę deszczową i roztopową z dachu, a o tym decydują detale. Zadbała o nie firma Balex Metal. System rynnowy Zenit jest dopracowany do perfekcji. Równie świetnie się prezentuje.

BREVIS S.C. Insolio - nawiewnik montowany bez konieczności frezowania szczelin

Insolio - nawiewnik montowany bez konieczności frezowania szczelin Insolio - nawiewnik montowany bez konieczności frezowania szczelin

Nawiewniki okienne to urządzenia mechaniczne zapewniające stały, a zarazem regulowany dopływ świeżego powietrza bez potrzeby otwierania okien. Ich montaż to jedna z najprostszych metod zapewnienia prawidłowego...

Nawiewniki okienne to urządzenia mechaniczne zapewniające stały, a zarazem regulowany dopływ świeżego powietrza bez potrzeby otwierania okien. Ich montaż to jedna z najprostszych metod zapewnienia prawidłowego działania wentylacji grawitacyjnej, mechanicznej wywiewnej i hybrydowej (połączenie obu poprzednich typów). Wiele osób rezygnowało z ich instalacji z powodu konieczności ingerencji w konstrukcję ramy okna. Na szczęście to już przeszłość - od kilku lat na rynku dostępne są modele montowane na...

PETRALANA Zastosowanie przeciwogniowe, termiczne, akustyczne – płyty PETRATOP i PETRALAMELA-FG

Zastosowanie przeciwogniowe, termiczne, akustyczne – płyty PETRATOP i PETRALAMELA-FG Zastosowanie przeciwogniowe, termiczne, akustyczne – płyty PETRATOP i PETRALAMELA-FG

PETRATOP i PETRALAMELA-FG to produkty stworzone z myślą o efektywnej izolacji termicznej oraz akustycznej oraz bezpieczeństwie pożarowym garaży i piwnic. Rozwiązanie to zapobiega wymianie wysokiej temperatury...

PETRATOP i PETRALAMELA-FG to produkty stworzone z myślą o efektywnej izolacji termicznej oraz akustycznej oraz bezpieczeństwie pożarowym garaży i piwnic. Rozwiązanie to zapobiega wymianie wysokiej temperatury z górnych kondygnacji budynków z niską temperaturą, która panuje bliżej gruntu.

VITCAS Polska Sp. z o.o. Jakich materiałów użyć do izolacji cieplnej kominka?

Jakich materiałów użyć do izolacji cieplnej kominka? Jakich materiałów użyć do izolacji cieplnej kominka?

Kominek to od lat znany i ceniony element wyposażenia domu. Nie tylko daje ciepło w chłodne wieczory, ale również stwarza niepowtarzalny klimat w pomieszczeniu. Obserwowanie pomarańczowych płomieni pozwala...

Kominek to od lat znany i ceniony element wyposażenia domu. Nie tylko daje ciepło w chłodne wieczory, ale również stwarza niepowtarzalny klimat w pomieszczeniu. Obserwowanie pomarańczowych płomieni pozwala zrelaksować się po ciężkim dniu pracy. Taka aura sprzyja również długim rozmowom w gronie najbliższych. Aby kominek był bezpieczny w użytkowaniu, należy zadbać o jego odpowiednią izolację termiczną. Dlaczego zabezpieczenie kominka jest tak ważne i jakich materiałów izolacyjnych użyć? Na te pytania...

Recticel Insulation Płyty termoizolacyjne EUROTHANE G – efektywne docieplenie budynku od wewnątrz

Płyty termoizolacyjne EUROTHANE G – efektywne docieplenie budynku od wewnątrz Płyty termoizolacyjne EUROTHANE G – efektywne docieplenie budynku od wewnątrz

Termomodernizacja jest jednym z podstawowych zadań podejmowanych w ramach modernizacji budynków. W odniesieniu do ścian docieplenie wykonuje się od zewnątrz, zgodnie z podstawowymi zasadami fizyki budowli....

Termomodernizacja jest jednym z podstawowych zadań podejmowanych w ramach modernizacji budynków. W odniesieniu do ścian docieplenie wykonuje się od zewnątrz, zgodnie z podstawowymi zasadami fizyki budowli. Czasami jednak nie ma możliwości wykonania docieplenia na fasadach, np. na budynkach zabytkowych, obiektach z utrudnionym dostępem do elewacji czy na budynkach usytuowanych w granicy. W wielu takich przypadkach jest jednak możliwe wykonanie docieplenia ścian od wewnątrz.

Copyright © 2004-2019 Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Spółka komandytowa, nr KRS: 0000537655. Wszelkie prawa, w tym Autora, Wydawcy i Producenta bazy danych zastrzeżone. Jakiekolwiek dalsze rozpowszechnianie artykułów zabronione. Korzystanie z serwisu i zamieszczonych w nim utworów i danych wyłącznie na zasadach określonych w Zasadach korzystania z serwisu.
Portal Budowlany - Izolacje.com.pl

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim urządzeniu końcowym. W każdym momencie możesz dokonać zmiany ustawień przeglądarki dotyczących cookies. Nim Państwo zaczną korzystać z naszego serwisu prosimy o zapoznanie się z naszą polityką prywatności oraz Informacją o Cookies. Więcej szczegółów w naszej Polityce Prywatności oraz Informacji o Cookies. Administratorem Państwa danych osobowych jest Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Sp.K., nr KRS: 0000537655, z siedzibą w 04-112 Warszawa, ul. Karczewska 18, tel. +48 22 810-21-24, właściciel strony www.izolacje.com.pl. Twoje Dane Osobowe będą chronione zgodnie z wytycznymi polityki prywatności www.izolacje.com.pl oraz zgodnie z Rozporządzeniem Parlamentu Europejskiego i Rady (UE) 2016/679 z dnia 27 kwietnia 2016r i z Ustawą o ochronie danych osobowych Dz.U. 2018 poz. 1000 z dnia 10 maja 2018r.