Izolacje.com.pl

Zaawansowane wyszukiwanie

Bilans cieplny domu jednorodzinnego w technologii kompozytu wapienno-konopnego

Thermal balance of a single-family house built with hempcrete technology

FOT. 1. Przykładowa realizacja ściany w rozważanej technologii
Archiwa autorów

FOT. 1. Przykładowa realizacja ściany w rozważanej technologii


Archiwa autorów

Wykonywanie ścian zewnętrznych w drewnianej konstrukcji szkieletowej wypełnionej jedynie materiałami naturalnymi, takimi jak kostki słomy, glina lekka oraz kompozyt wapienno-konopny staje się coraz bardziej popularne. Materiały te bardzo pełnią funkcję termoizolacyjną, a ich zastosowanie pozwala zrezygnować z dodatkowych warstw izolacji cieplnej z materiałów konwencjonalnych.

Zobacz także

prof. dr hab. inż. Leonard Runkiewicz Wykonywanie obiektów budowlanych zgodnie z zasadami rozwoju zrównoważonego

Wykonywanie obiektów budowlanych zgodnie z zasadami rozwoju zrównoważonego Wykonywanie obiektów budowlanych zgodnie z zasadami rozwoju zrównoważonego

Rozwój gospodarczy przyczynia się do naruszenia równowagi panującej w środowisku. By ten negatywny wpływ rozwoju gospodarki na środowisko ograniczyć, opracowano koncepcję rozwoju zrównoważonego, czyli...

Rozwój gospodarczy przyczynia się do naruszenia równowagi panującej w środowisku. By ten negatywny wpływ rozwoju gospodarki na środowisko ograniczyć, opracowano koncepcję rozwoju zrównoważonego, czyli takiego, który gwarantuje zaspokojenie potrzeb obecnych pokoleń bez ograniczania możliwości przyszłych pokoleń do zaspokojenia ich potrzeb.

Fiberglass Fabrics sp. z o.o. Tynki i farby w dużych inwestycjach budowlanych

Tynki i farby w dużych inwestycjach budowlanych Tynki i farby w dużych inwestycjach budowlanych

Przy projektowaniu i realizacji dużych inwestycji, takich jak osiedla mieszkaniowe, biurowce czy obiekty użyteczności publicznej, kluczowe znaczenie ma wybór odpowiednich materiałów wykończeniowych. Nie...

Przy projektowaniu i realizacji dużych inwestycji, takich jak osiedla mieszkaniowe, biurowce czy obiekty użyteczności publicznej, kluczowe znaczenie ma wybór odpowiednich materiałów wykończeniowych. Nie do przecenienia jest rola tynków i farb, które wpływają na wygląd budynków, a także na ich trwałość i komfort użytkowania.

Connector.pl Nowoczesne piany poliuretanowe – szczelne i trwałe ocieplenie budynku

Nowoczesne piany poliuretanowe – szczelne i trwałe ocieplenie budynku Nowoczesne piany poliuretanowe – szczelne i trwałe ocieplenie budynku

Firma Connector.pl to największy polski dystrybutor materiałów do produkcji kompozytów, będący liderem na rynku od ponad 30 lat. W swojej ofercie posiadamy szeroką gamę produktów, a wśród nich znakomitej...

Firma Connector.pl to największy polski dystrybutor materiałów do produkcji kompozytów, będący liderem na rynku od ponad 30 lat. W swojej ofercie posiadamy szeroką gamę produktów, a wśród nich znakomitej jakości piany PUR otwarto- i zamkniętokomórkowe.

ABSTRAKT

W artykule poddano analizie dom jednorodzinny wykonany w technologii wapienno-konopnej. Przyjęto własne rozwiązania przegród zewnętrznych, dla których policzono wartość współczynnika przenikania ciepła, m.in. na podstawie wyników badań własnych współczynnika przewodzenia ciepła kompozytu wapienno-konopnego. Przedstawiono obliczenia zysków i strat ciepła oraz wskaźnika sezonowego zapotrzebowania na ciepło do ogrzewania.

Thermal balance of a single-family house built with hempcrete technology

The article reviews a single-family house built on the basis of the hempcrete technology. Custom assumptions were made for the external space dividing elements for which the heat transfer coefficient value was determined on the basis of such data as the results of proprietary studies of heat transmission ratios for hempcrete. Calculation of heat gains and losses and of the seasonal heat demand ratios are presented.

Zrównoważony rozwój w budownictwie zakłada wykorzystanie materiałów budowlanych w jak najmniejszym stopniu przetworzonych, których wpływ środowiskowy jest co najmniej neutralny.

Tradycyjne materiały termoizolacyjne, takie jak styropian, wykazują pozytywny wpływa na środowisko w fazie użytkowania budynku z uwagi na ograniczenie zapotrzebowania na ciepło do ogrzewania. Jednak faza ich produkcji oraz utylizacji może przyczynić się o uzyskania ostatecznie niekorzystnego bilansu ekologicznego w całym życiu materiału.

Pozytywne aspekty ekologiczne wykazują materiały budowlane składające się ze składników organicznych.

Prowadzone są badania nad wykorzystaniem materiałów roślinnych w budownictwie jako materiałów termoizolacyjnych:

  • kostek słomy [1, 2],
  • włókien konopnych i lnianych [3],
  • paździerzy konopnych [4, 5]
  • i pażdzierzy lnianych [6].

Materiały te w czasie wzrostu pochłaniają duże ilości dwutlenku węgla, ich pozyskanie nie wymaga dużych nakładów energii, a dobre właściwości termoizolacyjne pozwalają na ograniczenie zapotrzebowania na ciepło do ogrzewania.

Popularne staje się wykonywanie ścian zewnętrznych w drewnianej konstrukcji szkieletowej wypełnionej jedynie materiałami naturalnymi, takimi jak kostki słomy, glina lekka oraz kompozyt wapienno-konopny. Materiały te bardzo pełnią funkcję termoizolacyjną, a ich zastosowanie pozwala zrezygnować z dodatkowych warstw izolacji cieplnej z materiałów konwencjonalnych.

Wymienione materiały nie są w Polsce objęte normami oraz aprobatami technicznymi. Jednak zgodnie z Ustawą o wyrobach budowlanych [7] można je stosować jako wyroby przeznaczone do jednostkowego zastosowania w obiektach budowlanych, w tym w budynkach mieszkalnych jednorodzinnych. Nie są natomiast dopuszczone do zastosowania w budownictwie użyteczności publicznej, gdyż wtedy wymagałyby stosowanych aprobat technicznych, głównie z uwagi na odporność przeciwogniową.

W artykule poddano analizie dom jednorodzinny wykonany w technologii wapienno-konopnej. Przyjęto własne rozwiązania przegród zewnętrznych, dla których policzono wartość współczynnika przenikania ciepła (m.in. na podstawie wyników badań własnych współczynnika przewodności cieplnej kompozytu wapienno-konopnego). Przedstawiono obliczenia zysków i strat ciepła oraz wskaźnika sezonowego zapotrzebowania na ciepło do ogrzewania.

Procedura obliczeniowa

RYS. 1-2. Rzut parteru i przekrój rozważanego budynku; rys. archiwa autorów

RYS. 1-2. Rzut parteru i przekrój rozważanego budynku; rys. archiwa autorów

Rozważaniom poddano budynek mieszkalny zlokalizowany w pobliżu Lublina, wykonany w technologii szkieletu drewnianego wypełnionego mieszanką wapienno-konopną. Budynek jest domem jednorodzinnym parterowym, bez podpiwniczenia z dachem dwuspadowym o kącie nachylenia 15°.

Rzut parteru i przekrój przedstawiono na RYS. 1-2.

W pracy przyjęto następującą procedurę obliczeniową:

  • zdefiniowanie przegród zewnętrznych,
  • laboratoryjne wyznaczenie wartości współczynnika przewodzenia ciepła l kompozytu wapienno-konopnego w trzech wariantach (izolacja ściany, dachu i podłogi na gruncie),
  • obliczenie wartości współczynnika przenikania ciepła przegród zewnętrznych,
  • obliczenie strat ciepła w pomieszczeniach przez przegrody zewnętrzne oraz zysków ciepła,
  • obliczenie zapotrzebowania na ciepło do ogrzewania.

W TAB. 1 przedstawiono dane geometryczne budynku.

TABELA 1. Dane geometryczne budynku

TABELA 1. Dane geometryczne budynku

Technologia wykonania przegród zewnętrznych

Budynek został zaprojektowany w drewnianej konstrukcji szkieletowej.

Jako materiał wypełniający szkielet (a jednocześnie pełniący funkcję izolacji termicznej) zastosowano kompozyt wapienno-konopny. Jest to materiał ekologiczny, oparty o trzy główne składniki:

  • spoiwo, którym jest wapno hydratyzowane modyfikowane dodatkami pucolanowymi,
  • wypełniacz, którym są paździerze pozyskane z łodyg konopi włóknistych odmiany Białobrzeskie (konopie przemysłowe o zawartości substancji psychoaktywnej THC  <  0,2% suchej masy kwiatostanu),
  • woda, której ilość wprowadzona do mieszanki wapienno-konopnej jest znaczna z uwagi na wysoką higroskopijność paździerzy.
RYS 3. Układ warstw w ścianie zewnętrznej: 1 - tynk wapienny gr. 15 mm, 2 - słupek drewniany 60×120 mm, 3 - kompozyt wapienno­‑konopny gr. 370 mm, 4 - tynk gliniany gr. 15 mm; rys. archiwa autorów

RYS 3. Układ warstw w ścianie zewnętrznej: 1 - tynk wapienny gr. 15 mm, 2 - słupek drewniany 60×120 mm, 3 - kompozyt wapienno­‑konopny gr. 370 mm, 4 - tynk gliniany gr. 15 mm; rys. archiwa autorów

Lekki, porowaty wypełniacz zapewnia wysoką izolacyjność termiczną materiału, a spoiwo wapienne zabezpiecza przed jego korozją biologiczną. Receptury kompozytu mogą być modyfikowane w zależności od docelowego przeznaczenia materiału.

Modyfikacja składu polega przede wszystkim na zmianie stosunku wapna do konopi w mieszance. Większa zawartość spoiwa powoduje zwiększenie gęstości, wytrzymałości oraz zmniejszenie izolacyjności termicznej. Większa ilość wypełniacza spowoduje odwrotne rezultaty [4, 5].

W analizowanym budynku rama ścienna została umieszczona w środku grubości ściany.

Słupy drewniane o przekroju 60×120 mm zostały rozstawione co 500 mm.

Mieszanka została ułożona oraz zagęszczona ręcznie między płyty deskowania, tworząc warstwę ściany gr. 370 mm.

Ściana została obustronnie otynkowana: od zewnątrz tynkiem wapiennym gr. 15 mm, natomiast od wewnątrz tynkiem glinianym również gr. 15 mm.

Schemat ściany przedstawiono na RYS. 3, natomiast na FOT. na górze zaprezentowano rzeczywistą ścianę wykonaną w tej technologii.

Konstrukcję dachu stanowiły krokwie o przekroju 60×280 mm, które zostały rozmieszczone w rozstawie 500 mm. Przestrzenie między nimi zostały wypełnione mieszanką wapienno-konopną tworzącą grubość warstwy 260 mm.

Mieszanka została ułożona na podbitym od spodu deskowaniu z desek gr. 19 mm.

Celem poprawy izolacyjności termicznej dachu oraz ograniczenia liniowych mostków termicznych w postaci krokwi, od spodu umieszczono wełnę konopną gr. 80 mm pomiędzy drewnianymi listwami.

Sufit wykończono tynkiem glinianym gr. 20 mm, wzmocnionym matą trzcinową. Przekrój przez dach przedstawiono na RYS. 4.

Podłoga na gruncie również została zaprojektowana z wykorzystaniem warstwy kompozytu wapienno-konopnego, która ułożona została na warstwie kruszywa izolacyjnego - keramzytu (RYS. 5).

Okna przyjęto o przeszkleniu podwójnym z powłoką niskoemisyjną o wartości współczynnika przepuszczalności energii promieniowania słonecznego g = 0,67.

RYS. 4. Układ warstw dachu: 1 - blacha trapezowa, 2 -łata, 3 - kontrłata, 4 - folia wstępnego krycia, 5 - krokiew 60×280 mm, 6 - kompozyt wapienno-konopny gr. 260 mm, 7 - deska gr. 19 mm, 8 - wełna konopna gr. 80 mm, 9 - mata trzcinowa, 10 - tynk gliniany gr. 20 mm; rys. archiwa autorów

RYS. 4. Układ warstw dachu: 1 - blacha trapezowa, 2 -łata, 3 - kontrłata, 4 - folia wstępnego krycia, 5 - krokiew 60×280 mm, 6 - kompozyt wapienno-konopny gr. 260 mm, 7 - deska gr. 19 mm, 8 - wełna konopna gr. 80 mm, 9 - mata trzcinowa, 10 - tynk gliniany gr. 20 mm; rys. archiwa autorów 

RYS. 5. Układ warstw podłogi na gruncie: 1 - parkiet gr. 20 mm, 2 - wylewka wapienno-piaskowa gr. 40 mm, 3 -kompozyt wapienno-konopny gr. 120 mm, 4 -geowłóknina, 5 - keramzyt gr. 180 mm, 6 - zagęszczony piasek gr. 200 mm; rys. archiwa autorów

RYS. 5. Układ warstw podłogi na gruncie: 1 - parkiet gr. 20 mm, 2 - wylewka wapienno-piaskowa gr. 40 mm, 3 -kompozyt wapienno-konopny gr. 120 mm, 4 -geowłóknina, 5 - keramzyt gr. 180 mm, 6 - zagęszczony piasek gr. 200 mm; rys. archiwa autorów

Rozwiązania ograniczające mostki termiczne

Rozważając ryzyko wystąpienia mostków termicznych, kierowano się normą PN-EN ISO 14683:2008 [8].

Technologia budowy przegród z wykorzystaniem izolacji wapienno-konopnej umożliwia zachowanie szczelnej linii obudowy całego budynku.

Izolacja dachu, ściany, podłogi na gruncie wykonana z wykorzystaniem paździerzy konopnych zachowuje ciągłość i zapobiega tym samym ucieczce ciepła w węzłach łączących te przegrody.

Na fakt ograniczenia strat ciepła na tych połączeniach wpływa też rodzaj konstrukcji. Drewno sosnowe posiada wartość współczynnika przewodzenia ciepła tylko (w przybliżeniu) dwukrotnie większą w porównaniu z dobrze izolującym termicznie kompozytem wapienno-konopnym.

Na RYS. 6–8 przedstawiono przyjęte rozwiązania, mające na celu zminimalizowanie mostków termicznych.

RYS. 6-8. Rozwiązania ograniczające mostki termiczne: podłoga na gruncie - ściana (6), dach - ściana (7), osadzenie ramy okiennej (8); rys. archiwum autorów

RYS. 6-8. Rozwiązania ograniczające mostki termiczne: podłoga na gruncie - ściana (6), dach - ściana (7), osadzenie ramy okiennej (8); rys. archiwum autorów

W obliczeniach przyjęto brak występowania mostków termicznych.

Badanie współczynnika przewodzenia ciepła

Badanie przewodności cieplnej kompozytu przeprowadzono na próbkach o wymiarach 300×300×50 mm, po 28 dniach dojrzewania, przy pomocy aparatu płytowego Fox300 w oparciu o standardy PN ISO 8302:1999 [9]. Przed badaniem próbki zostały wysuszone do stałej masy.

Wilgotność względna materiałów budowlanych znacząco wpływa na ich przewodność cieplną, dlatego ważne jest, aby badane próbki posiadały jednakowy poziom wilgotności.

Zbadano temperaturę na płycie grzejnej w wysokości 25°C, natomiast chłodzącej 0°C. Uzyskano średnią temperaturę 12,5°C.

RYS. 9. Schemat sposobu układania i przepływu ciepła w ścianie z kompozytu; rys. archiwa autorów

RYS. 9. Schemat sposobu układania i przepływu ciepła w ścianie z kompozytu; rys. archiwa autorów

RYS. 10. Współczynnik przewodzenia ciepła kompozytu wapienno-konopnego w zależności od miejsca zastosowania; rys. archiwa autorów

RYS. 10. Współczynnik przewodzenia ciepła kompozytu wapienno-konopnego w zależności od miejsca zastosowania; rys. archiwa autorów

Wynikiem testu był średnia wartość współczynnika przewodzenia ciepła materiału.

Badanie polega na przepuszczeniu przez próbkę określonego strumienia ciepła oraz zmierzeniu wartości temperatury powstałych przy ustalonym przepływie ciepła na powierzchniach doprowadzenia i odprowadzenia ciepła.

Mając na uwadze głównie zastosowanie badanego kompozytu jako monolityczne wypełnienie konstrukcji drewnianej szkieletowej, aplikowane i zagęszczane w kierunku pionowym, próbki do badania przewodności cieplnej formowano w sposób pokazany na RYS. 9.

Wykres na RYS. 10 przedstawia uzyskane na drodze badawczej wartości współczynnika przewodzenia ciepła dla kompozytów wapienno-konopnych.

Badane kompozyty uzyskały różne wartości współczynnika przewodzenia ciepła w zależności od receptury, która została odpowiednio dobrana, aby uzyskać gęstości kompozytów odpowiednie dla docelowego miejsca zastosowania.

Kompozyt stosowany jako izolacja dachu uzyskał średnią wartość λ = 0,065 W/(m·K), przy gęstości objętościowej ok. 250 kg/m3.

Receptura stosowana w ścianach charakteryzowała się średnim przewodnictwem cieplnym ok. 0,076 W/(m·K), przy gęstości objętościowej ok. 350 kg/m3.

Najcięższa mieszanka (gęstość około 600 kg/m3), zastosowana jako warstwa posadzki na gruncie, osiągnęła średnią wartość λ = 0,120 W/(m·K). Zróżnicowanie to uzyskano, stosując różne proporcje spoiwa do paździerzy.

TABELA 2. Wartości współczynnika przewodzenia ciepła materiałów zastosowanych w przegrodach materiałów (badania własne oraz [12, 13])

TABELA 2. Wartości współczynnika przewodzenia ciepła materiałów zastosowanych w przegrodach materiałów (badania własne oraz [12, 13])

TABELA 3. Wartości współczynnika przenikania ciepła przegród zewnętrznych

TABELA 3. Wartości współczynnika przenikania ciepła przegród zewnętrznych

Współczynnik przenikania ciepła przegród zewnętrznych

Analizowane przegrody składają się z warstw niejednorodnych (szkieletowa konstrukcja ścian wypełniona kompozytem wapienno-konopnym oraz dach, w którym przestrzenie między krokwiami zostały wypełnione również tym materiałem).

W celu obliczenia wartości współczynnika przenikania ciepła tych przegród posłużono się metodą opisaną w punkcie 6.2 normy PN-EN ISO 6946:2008 [10].

Z kolei współczynnik U dla podłogi na gruncie obliczono w oparciu o normę PN–EN ISO 13370:2001 [11].

W TAB. 2 przedstawiono wartości współczynników przewodzenia ciepła materiałów wykorzystanych w przegrodach zewnętrznych, a w TAB. 3 obliczone wartości współczynnika przenikania ciepła tych przegród.

Przyjęte rozwiązania przegród zewnętrznych pozwoliły spełnić obecne wymagania cieple podyktowane przez Rozporządzenie Ministra Infrastruktury w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie z dnia 12 kwietnia 2002 r. [14].

Bilans cieplny budynku

Straty ciepła w pomieszczeniach przez przegrody zewnętrzne wyznaczono według Rozporządzenia Ministra Infrastruktury z dnia 06.11.2008 r. w sprawie metodologii obliczania charakterystyki energetycznej budynku i lokalu mieszkalnego lub części budynku stanowiącej samodzielną całość techniczno-użytkową oraz sposobu sporządzania i wzorów świadectw ich charakterystyki energetycznej [15].

Obliczenia zysków ciepła oraz zapotrzebowania na ciepło do ogrzewania wykonano zgodnie z procedurą opisaną w normie PN-EN 13790:2009 [11].

Budynek zlokalizowany jest niedaleko miasta Lublin, strefa klimatyczna III.

  • Zewnętrzna temperatura projektowa dla wyżej wymienionej strefy wynosi –20°C.
  • Średnia roczna temperatura zewnętrzna wynosi 7,6°C.
  • Dane meteorologiczne oraz aktynometryczne przyjęto dla stacji Lublin-Radawiec (12,8°C - wrzesień; 8,5°C - październik; 1,3°C - listopad; –2,1°C -grudzień; –2,6°C - styczeń; –1,9°C - luty; 3,2°C - marzec; 9,2°C - kwiecień; 14,4°C - maj).
  • Bilans cieplny rozpatrywanego domu jednorodzinnego w technologii wapienno-konopnej obliczono dla sezonu grzewczego trwającego 9 miesięcy - od września do maja.
  • W budynku założono temperaturę wewnętrzną obliczoną jako średnią ważoną, równą Θint,H  =  20,29°C.
  • Przyjęto wentylację mechaniczną z odzyskiem ciepła o wydajności odzysku 50%.

Straty ciepła przez przenikanie lub wentylację obliczono według wzoru:

gdzie:

Hi - współczynnik strat ciepła - przez przenikanie (tr) lub przez wentylację (ve) [W/K],

Θint,H - temperatura wewnętrzna w pomieszczeniu (średnia ważona) [°C],

Θe - średnia temperatura zewnętrzna [°C],

tM - liczba godzin w miesiącu [h].

Zyski wewnętrzne zostały obliczone metodą uproszczoną.

Przyjęto wartość strumienia cieplnego odpowiednią dla domów jednorodzinnych równą 6,8 W/m2 według Rozporządzenia Ministra Infrastruktury z dnia 06.11.2008 r. w sprawie metodologii obliczania charakterystyki energetycznej budynku i lokalu mieszkalnego lub części budynku stanowiącej samodzielną całość techniczno-użytkową oraz sposobu sporządzania i wzorów świadectw ich charakterystyki energetycznej [15].

Uwzględniono zyski od użytkowników i urządzeń. Nie uwzględniono zysków od ciepłej wody użytkowej. Poniżej przedstawiono wzór na wewnętrzne zyski ciepła:

gdzie:

Af - powierzchnia użytkowa mieszkania [m2],

qint - obciążenie cieplne zyskami wewnętrznymi [W/m2].

Zyski ciepła od promieniowania słonecznego przenikającego przez przegrody przezroczyste do przestrzeni ogrzewanej budynku obliczono z uwzględnieniem kierunków świata, związaną z nimi energią promieniowania słonecznego oraz parametrów okien zastosowanych w budynku.

Wzór na zyski ciepła od słońca jest następujący:

gdzie:

Asol - efektywne pole powierzchni zbierającej (uzależnione od powierzchni szyby, współczynnika przepuszczania energii słonecznej przez oszklenie oraz współczynnika zacienienia budynku) [m2],

Isol - średnia energia promieniowania słonecznego w rozpatrywanym miesiącu na 1 m2 płaszczyzny, w której usytuowane jest okno (na podstawie danych ze stacji aktynometrycznej Lublin-Radawiec).

Zapotrzebowanie na ciepło zostało wyliczone ze wzoru:

gdzie:

QH,ht - całkowite straty ciepła przez przenikanie i wentylację w okresie miesięcznym [kWh/m-c],

QH,gn - całkowite zyski ciepła wewnętrzne oraz od promieniowania słonecznego w okresie miesięcznym [kWh/m-c],

ηH,gn - współczynnik efektywności wykorzystania zysków ciepła, wyznaczony ze wzoru:

gdzie:

γH - stosunek zysków i strat ciepła [-],

aH - współczynnik referencyjny [-],

τ  - stała czasowa [h].

gdzie:

aH,0 = 1,

τH,0 = 15 h.

gdzie:

Cm,A - wewnętrzna jednostkowa pojemność cieplna budynku odniesiona do powierzchni użytkowej (ogrzewanej) zgodnie z PN-EN ISO 13790:2009 [16], przyjęta dla lekkiego typu konstrukcji, równa 110  000×Af [J/K].

Wskaźnik sezonowego zapotrzebowania na energię do ogrzewania odniesiono po ogrzewanej powierzchni użytkowej w budynku i obliczono ze wzoru:

gdzie:

Af - użytkowa powierzchnia ogrzewana w budynku [m2].

W TAB. 4 zestawiono wyniki obliczeń miesięcznego zapotrzebowania na energię do ogrzewania i wentylacji.

TABELA 4. Wyniki obliczeń miesięcznego zapotrzebowania na energię do ogrzewania i wentylacji

TABELA 4. Wyniki obliczeń miesięcznego zapotrzebowania na energię do ogrzewania i wentylacji

Na podstawie wyników można stwierdzić, że zapotrzebowania na ciepło do ogrzewania występuje przez cały sezon grzewczy od IX do V.

We wrześniu, kwietniu oraz maju występują duże zyski ciepła od promieniowania słonecznego, które w bilansie w znacznej mierze pokryły występujące straty cieplne. Miarą wykorzystania zysków ciepła w danym miesiącu jest współczynnik ηH,gn.

RYS. 11. Bilans cieplny w sezonie grzewczym analizowanego budynku; rys. archiwa autorów

RYS. 11. Bilans cieplny w sezonie grzewczym analizowanego budynku; rys. archiwa autorów

RYS. 12. Zapotrzebowanie na ciepło do ogrzewania w poszczególnych miesiącach sezonu grzewczego; rys. archiwa autorów

RYS. 12. Zapotrzebowanie na ciepło do ogrzewania w poszczególnych miesiącach sezonu grzewczego; rys. archiwa autorów 

RYS. 13-14. Udział procentowy strat oraz zysków ciepła w analizowanym budynku; rys. archiwa autorów

RYS. 13-14. Udział procentowy strat oraz zysków ciepła w analizowanym budynku; rys. archiwa autorów 

Na RYS. 11 przedstawiono w formie wykresu wartości strat i zysków ciepła w okresie rocznym oraz roczne zapotrzebowanie na energię użytkową dla ogrzewania i wentylacji w analizowanym budynku.

Na RYS. 12 przedstawiono w formie graficznej zmiany zapotrzebowania na energię do ogrzewania w ciągu sezonu grzewczego.

Największy udział strat ciepła generują przegrody zewnętrzne.

Straty przez przenikanie wynoszą 5379.4 kWh/rok, z czego największy udział mają ściany zewnętrzne (36%) - z uwagi na ich największą powierzchnię, a także konieczność zastosowania kompozytu o słabszych właściwościach termoizolacyjnych niż w dachu (ze względów wytrzymałościowych).

Pomimo zastosowania kompozytu o największej wartości współczynnika przewodzenia ciepła w podłodze na gruncie i uzyskaniu najwyższego współczynnika przenikania ciepła spośród przegród pełnych, z uwagi na małą powierzchnię oraz charakter przepływu ciepła przez podłogę na gruncie (wynikający z procedury podanej w [11]), straty ciepła przez tą przegrodę są najmniejsze i stanowią 18% strat przez przenikanie).

Straty przez wentylację wynoszą 2340,4 kWh/rok, co stanowi 30% wszystkich strat w budynku (RYS. 13-14). Na fakt ten wpływa zastosowanie mechanicznej wentylacji z odzyskiem ciepła. Możliwe jest zminimalizowanie strat poprzez zastosowanie wentylacji z rekuperatorem o większej sprawczości odzysku, rzędu np. 80%.

Udział poszczególnych zysków ciepła w całościowym zestawieniu jest niemalże jednakowy (RYS. 13-14).

Największe zyski ciepła od promieniowania słonecznego występują od strony południowej elewacji i stanowią 71% całkowitych zysków ciepła od słońca (powierzchnia przeszklenia na elewacji południowej stanowi 66% całkowitej powierzchni przegród przeszkolonych).

Stosowanie największej powierzchni przeszklenia na elewacji południowej i minimalizowanie jej na elewacji północnej jest celowym zabiegiem w celu uzyskania jak najwyższej efektywności energetycznej budynku. Ma to związek z najwyższą energią promieniowania słonecznego na powierzchnię elewacji od strony południowej.

Szyby ciepłochronne, które ograniczają straty ciepła, mają również mniejszą przepuszczalność niż zwykła szyba bez powłok niskoemisyjnych. Im lepiej oszklenie ogranicza straty ciepła, tym słabiej pozyskuje ciepło od promieniowania słonecznego.

Największe zapotrzebowanie na ciepło do ogrzewania przypada na grudzień i styczeń i stanowi 45% całkowitego zapotrzebowania.

Aby utrzymać projektową temperaturę wewnątrz pomieszczeń, obliczenia wykazały zapotrzebowanie na ciepło przez cały sezon grzewczy, jednak w sumaryczna ilość potrzebnego ciepła we wrześniu i maju stanowi jedynie 1,5% całościowego zestawienia.

Budynek osiągnął wskaźnik zapotrzebowania na energię do ogrzewania równy 58,9 kWh/m2·rok.

W budynkach o klasie niskoenergetycznej NF40 możliwe byłoby skrócenie sezonu grzewczego do np. 6 miesięcy [17].

Podsumowanie

Analiza miała na celu przedstawienie możliwości spełnienia obecnych wymagań cieplnych przy zastosowaniu ekologicznego materiału opartego na paździerzach konopnych i wapnie oraz zestawienie bilansu cieplnego budynku jednorodzinnego wykonanego przy zastosowaniu tego materiału.

Obliczenia dowiodły, że możliwe jest skonstruowanie przegród zewnętrznych z kompozytu wapienno-konopnego o porównywalnych grubościach z technologiami tradycyjnymi, tak aby spełnione zostały obecne wymagania cieplne (w przypadku ścian - bez dodatkowej izolacji). Technologia ta zapewnia zachowanie ciągłości izolacji i redukuje mostki termiczne w węzłach konstrukcyjnych.

Największe straty ciepła powstały przez przenikanie przez przegrody zewnętrzne, pośród których największy udział w stratach miały ściany zewnętrzne, a w drugiej kolejności otwory okienne i drzwiowe. Zyski ciepła wewnętrzne i od promieniowania słonecznego uzyskano na podobnym poziomie. Wskaźnik zapotrzebowania na energię do ogrzewania wyniósł 58,9 kWh/m2·rok.

Zaprezentowane wyniki dotyczą jedynie przykładowych kompozytów o różnych wartościach współczynnika przewodzenia ciepła. Możliwe jest wykonanie kompozytów konopno-wapiennych o lepszych parametrach niż te zaprezentowane w artykule, co przyczyniłoby się do zredukowania grubości ściany lub możliwości uzyskania standardu budynku niskoenergetycznego.

W pracy skupiono się na współczynniku przewodzenia ciepła jako jedynym parametrze cieplnym kompozytu wapienno-konopnego. Kompozyt posiada dodatkowo wysoką pojemność cieplną, która wpływa na zwiększenie poczucia komfortu cieplnego. Zasadne jest zatem kontynuowanie analiz z uwzględnieniem złożonego stanu przepływu ciepła, gdyż okazać się może, że przy uzyskanym w niniejszych obliczeniach współczynnikiem U dla przegród zewnętrznych, przy zachowaniu danej grubości przegrody, możliwe będzie uzyskanie lepszych parametrów niż dla przegrody o standardzie niskoenergetycznym wykonanej z tradycyjnych materiałów (np. bloczek + wełna mineralna).

Literatura

  1. G. Minke, F. Mahlke, "Building with Straw, Birkhäuser Architecture", Germany 2005.
  2. O. Douzane, G. Promis, J.M. Roucoult, A.D. Tran Le, T. Langlet, "Hygrothermal performance of a straw bale building: In situ and laboratory investigations", "Journal of Building Engineering", nr 8/2016, s. 91-98.
  3. H.R. Kymalainen, A.M. Sjoberg, "Flax and hemp fibres as raw materials for thermal insulations", "Building and Environment", nr 43(7)/2008, s. 1261-1269.
  4. D. Barnat-Hunek, P. Smarzewski, S. Fic, "Mechanical and thermal properties of hemp-lime composites", "Composites Theory and Practice", vol, 15/1, 2015, s. 21-27.
  5. D. Barnat-Hunek, P. Smarzewski, P. Brzyski, "Properties of Hemp--Flax Composites for Use in the Building Industry", "Journal of Natural Fibers".
  6. S. Fic, P. Brzyski, "Badanie kompozytu opartego na lekkich wypełniaczach (len i perlit) do zastosowań w budownictwie jako materiał ścienny”, „Przegląd Budowlany", nr 2/2015.
  7. Ustawa z dnia 16 kwietnia 2004 r. o wyrobach budowlanych (DzU 2004 nr 92, poz. 881).
  8. PN-EN ISO 14683:2008, "Mostki cieplne w budynkach - Liniowy współczynnik przenikania ciepła. Metody uproszczone i wartości orientacyjne".
  9. PN ISO 8302:1999, "Izolacja cieplna. Określanie oporu cieplnego i właściwości z nim związanych w stanie ustalonym. Aparat płytowy z osłoniętą płytą grzejną".
  10. PN-EN ISO 6946:2008, "Komponenty budowlane i elementy budynku. Opór cieplny i współczynnik przenikania ciepła. Metoda obliczania".
  11. PN-EN 13790:2009, "Energetyczne właściwości użytkowe budynków. Obliczanie zużycia energii na potrzeby ogrzewania i chłodzenia".
  12. PN-EN ISO 10456:2009, "Materiały i wyroby budowlane. Właściwości cieplno-wilgotnościowe".
  13. Strona internetowa: www.steico.com.
  14. Rozporządzenie Ministra Infrastruktury w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie z dnia 12 kwietnia 2002 r. (Dz.U. Nr 75, poz. 690) ze zmianą z dnia 1 stycznia 2014 r. (Dz.U., poz.926).
  15. Rozporządzenia Ministra Infrastruktury z dnia 06 listopada 2008 r. w sprawie metodologii obliczania charakterystyki energetycznej budynku i lokalu mieszkalnego lub części budynku stanowiącej samodzielną całość techniczno-użytkową oraz sposobu sporządzania i wzorów świadectw ich charakterystyki energetycznej.
  16. PN-EN ISO 13790:2009, "Energetyczne właściwości użytkowe budynków. Obliczanie zużycia energii na potrzeby ogrzewania i chłodzenia”.
  17. P. Brzyski, "Bilans cieplny budynku na przykładzie jednorodzinnego domu niskoenergetycznego", rozdział w monografii pt. "Wybrane zagadnienia budownictwa energooszczędnego", Politechnika Warszawska, Płock 2014.

Chcesz być na bieżąco? Zapisz się do naszego newslettera!

Komentarze

Powiązane

dr inż. Gerard Brzózka Propozycja modyfikacji projektowania rezonansowych układów pochłaniających

Propozycja modyfikacji projektowania rezonansowych układów pochłaniających Propozycja modyfikacji projektowania rezonansowych układów pochłaniających

Podstawy do projektowania rezonansowych układów pochłaniających zostały zaproponowane w odniesieniu do rezonatorów komorowych perforowanych i szczelinowych przez Smithsa i Kostena już w 1951 r. [1]. Jej...

Podstawy do projektowania rezonansowych układów pochłaniających zostały zaproponowane w odniesieniu do rezonatorów komorowych perforowanych i szczelinowych przez Smithsa i Kostena już w 1951 r. [1]. Jej szeroką interpretację w polskiej literaturze przedstawili profesorowie Sadowski i Żyszkowski [2, 3]. Pewną uciążliwość tej propozycji stanowiła konieczność korzystania z nomogramów, co determinuje stosunkowo małą dokładność.

Adrian Hołub Uszkodzenia stropów – monitoring przemieszczeń, ugięć i spękań

Uszkodzenia stropów – monitoring przemieszczeń, ugięć i spękań Uszkodzenia stropów – monitoring przemieszczeń, ugięć i spękań

Corocznie słyszymy o katastrofach budowlanych związanych z zawaleniem stropów w budynkach o różnej funkcjonalności. Przed wystąpieniem o roszczenia do wykonawcy w odniesieniu do uszkodzeń stropu niezbędne...

Corocznie słyszymy o katastrofach budowlanych związanych z zawaleniem stropów w budynkach o różnej funkcjonalności. Przed wystąpieniem o roszczenia do wykonawcy w odniesieniu do uszkodzeń stropu niezbędne jest określenie, co było przyczyną destrukcji. Często jest to nie jeden, a zespół czynników nakładających się na siebie. Ważne jest zbadanie, czy błędy powstały na etapie projektowania, wykonawstwa czy nieprawidłowego użytkowania.

mgr inż. Cezariusz Magott, mgr inż. Maciej Rokiel Analiza dokumentacji technicznej prac renowacyjnych (cz. 4). Uszczelnienia typu wannowego

Analiza dokumentacji technicznej prac renowacyjnych (cz. 4). Uszczelnienia typu wannowego Analiza dokumentacji technicznej prac renowacyjnych (cz. 4). Uszczelnienia typu wannowego

W przypadku izolacji typu wannowego trzeba zwrócić szczególną uwagę na stan przegród. Chodzi o stan powierzchni oraz wilgotność. Jeżeli do budowy ścian fundamentowych piwnic nie zastosowano materiałów...

W przypadku izolacji typu wannowego trzeba zwrócić szczególną uwagę na stan przegród. Chodzi o stan powierzchni oraz wilgotność. Jeżeli do budowy ścian fundamentowych piwnic nie zastosowano materiałów całkowicie nieodpornych na wilgoć (np. beton komórkowy), to nie powinno być problemów związanych z bezpieczeństwem budynku, chociaż rozwiązanie z zewnętrzną powłoką uszczelniającą jest o wiele bardziej korzystne.

Farby KABE Nowoczesne systemy ociepleń KABE THERM z tynkami natryskowymi AKORD

Nowoczesne systemy ociepleń KABE THERM z tynkami natryskowymi AKORD Nowoczesne systemy ociepleń KABE THERM  z tynkami natryskowymi AKORD

Bogata oferta systemów ociepleń KABE THERM zawiera kompletny zestaw systemów ociepleń z tynkami do natryskowego (mechanicznego) wykonywania ochronno-dekoracyjnych, cienkowarstwowych wypraw tynkarskich....

Bogata oferta systemów ociepleń KABE THERM zawiera kompletny zestaw systemów ociepleń z tynkami do natryskowego (mechanicznego) wykonywania ochronno-dekoracyjnych, cienkowarstwowych wypraw tynkarskich. Natryskowe tynki cienkowarstwowe AKORD firmy Farby KABE, w stosunku do tynków wykonywanych ręcznie, wyróżniają się łatwą aplikacją, wysoką wydajnością, a przede wszystkim wyjątkowo równomierną i wyraźną fakturą.

dr hab. Inż. Zbigniew Suchorab, Krzysztof Tabiś, mgr inż. Tomasz Rogala, dr hab. Zenon Szczepaniak, dr hab. Waldemar Susek, mgr inż. Magdalena Paśnikowska-Łukaszuk Bezinwazyjne pomiary wilgotności materiałów budowlanych za pomocą technik reflektometrycznej i mikrofalowej

Bezinwazyjne pomiary wilgotności materiałów budowlanych za pomocą technik reflektometrycznej i mikrofalowej Bezinwazyjne pomiary wilgotności materiałów budowlanych za pomocą technik reflektometrycznej i mikrofalowej

Badania zawilgocenia murów stanowią ważny element oceny stanu technicznego obiektów budowlanych. W wyniku nadmiernego zawilgocenia następuje destrukcja murów, ale również tworzą się niekorzystne warunki...

Badania zawilgocenia murów stanowią ważny element oceny stanu technicznego obiektów budowlanych. W wyniku nadmiernego zawilgocenia następuje destrukcja murów, ale również tworzą się niekorzystne warunki dla zdrowia użytkowników obiektu. W celu powstrzymania procesu destrukcji konieczne jest wykonanie izolacji wtórnych, a do prawidłowego ich wykonania niezbędna jest znajomość stopnia zawilgocenia murów, a także rozkładu wilgotności na grubości i wysokości ścian.

dr inż. Szymon Swierczyna Badanie nośności i sztywności ścinanych połączeń na wkręty samowiercące

Badanie nośności i sztywności ścinanych połączeń na wkręty samowiercące Badanie nośności i sztywności ścinanych połączeń na wkręty samowiercące

Wkręty samowiercące stosuje się w konstrukcjach stalowych m.in. do zakładkowego łączenia prętów kratownic z kształtowników giętych. W tym przypadku łączniki są obciążone siłą poprzeczną i podczas projektowania...

Wkręty samowiercące stosuje się w konstrukcjach stalowych m.in. do zakładkowego łączenia prętów kratownic z kształtowników giętych. W tym przypadku łączniki są obciążone siłą poprzeczną i podczas projektowania należy zweryfikować ich nośność na docisk oraz na ścinanie, a także uwzględnić wpływ sztywności połączeń na stan deformacji konstrukcji.

mgr inż. Monika Hyjek Dobór prawidłowych rozwiązań ścian zewnętrznych na granicy stref pożarowych

Dobór prawidłowych rozwiązań ścian zewnętrznych na granicy stref pożarowych Dobór prawidłowych rozwiązań ścian zewnętrznych na granicy stref pożarowych

Przy projektowaniu ścian zewnętrznych należy wziąć pod uwagę wiele aspektów: wymagania techniczne, obowiązujące przepisy oraz wymogi narzucone przez ubezpieczyciela czy inwestora. Należy uwzględnić właściwości...

Przy projektowaniu ścian zewnętrznych należy wziąć pod uwagę wiele aspektów: wymagania techniczne, obowiązujące przepisy oraz wymogi narzucone przez ubezpieczyciela czy inwestora. Należy uwzględnić właściwości wytrzymałościowe, a jednocześnie cieplne, akustyczne i ogniowe.

mgr inż. Klaudiusz Borkowicz, mgr inż. Szymon Kasprzyk Ocena stopnia rozprzestrzeniania ognia przez ściany zewnętrzne w Polsce oraz w Wielkiej Brytanii

Ocena stopnia rozprzestrzeniania ognia przez ściany zewnętrzne w Polsce oraz w Wielkiej Brytanii Ocena stopnia rozprzestrzeniania ognia przez ściany zewnętrzne w Polsce oraz w Wielkiej Brytanii

W ostatniej dekadzie coraz większą uwagę zwraca się na bezpieczeństwo pożarowe budynków. Przyczyniło się do tego m.in. kilka incydentów związanych z pożarami, gdzie przez użycie nieodpowiednich materiałów...

W ostatniej dekadzie coraz większą uwagę zwraca się na bezpieczeństwo pożarowe budynków. Przyczyniło się do tego m.in. kilka incydentów związanych z pożarami, gdzie przez użycie nieodpowiednich materiałów budowlanych pożar rozwijał się w wysokim tempie, zagrażając życiu i zdrowiu wielu ludzi.

dr inż. Krzysztof Pawłowski prof. PBŚ Charakterystyka energetyczna budynku (cz. 8)

Charakterystyka energetyczna budynku (cz. 8) Charakterystyka energetyczna budynku (cz. 8)

Opracowanie świadectwa charakterystyki energetycznej budynku lub części budynku wymaga znajomości wielu zagadnień, m.in. lokalizacji budynku, parametrów geometrycznych budynku, parametrów cieplnych elementów...

Opracowanie świadectwa charakterystyki energetycznej budynku lub części budynku wymaga znajomości wielu zagadnień, m.in. lokalizacji budynku, parametrów geometrycznych budynku, parametrów cieplnych elementów obudowy budynku (przegrody zewnętrzne i złącza budowlane), danych technicznych instalacji c.o., c.w.u., systemu wentylacji i innych systemów technicznych.

mgr inż. Cezariusz Magott, mgr inż. Maciej Rokiel Analiza dokumentacji technicznej prac renowacyjnych (cz. 5)

Analiza dokumentacji technicznej prac renowacyjnych (cz. 5) Analiza dokumentacji technicznej prac renowacyjnych (cz. 5)

Do prac renowacyjnych zalicza się także tzw. środki flankujące. Będą to przede wszystkim różnego rodzaju tynki specjalistyczne i wymalowania (farby), a także tynki tradycyjne. Błędem jest traktowanie tynku...

Do prac renowacyjnych zalicza się także tzw. środki flankujące. Będą to przede wszystkim różnego rodzaju tynki specjalistyczne i wymalowania (farby), a także tynki tradycyjne. Błędem jest traktowanie tynku (jak również farby) jako osobnego elementu, w oderwaniu od konstrukcji ściany oraz rodzaju i właściwości podłoża.

Filip Ryczywolski Pomiar pionowości budynków i budowli

Pomiar pionowości budynków i budowli Pomiar pionowości budynków i budowli

Odchylenia, przemieszczenia, skręcenia i odkształcenia to niestety codzienny widok na wielu inwestycjach – również tych nowych. Poza kontrolą ścian czy szachtów w budynkach, badania pionowości dotyczą...

Odchylenia, przemieszczenia, skręcenia i odkształcenia to niestety codzienny widok na wielu inwestycjach – również tych nowych. Poza kontrolą ścian czy szachtów w budynkach, badania pionowości dotyczą też słupów, kominów, masztów widokowych, latarni morskich oraz różnego rodzaju mostów, wiaduktów, masztów stalowych: radiowych, telewizyjnych, sieci komórkowych czy oświetleniowych. Ogólnie rzecz ujmując, pomiary pionowości stosuje się do obiektów wysmukłych, czyli takich, których wysokość przewyższa...

PPHU POLSTYR Zbigniew Święszek Jak wybrać system ociepleń?

Jak wybrać system ociepleń? Jak wybrać system ociepleń?

Prawidłowo zaprojektowane i wykonane ocieplenie przegród w budynku pozwala zmniejszyć zużycie energii, a co za tym idzie obniżyć koszty eksploatacji i domowe rachunki.

Prawidłowo zaprojektowane i wykonane ocieplenie przegród w budynku pozwala zmniejszyć zużycie energii, a co za tym idzie obniżyć koszty eksploatacji i domowe rachunki.

Krzysztof Kros Zakrętarki akumulatorowe

Zakrętarki akumulatorowe Zakrętarki akumulatorowe

Wkrętarki akumulatorowe czy wiertarko-wkrętarki od dawna są powszechnie znane i użytkowane zarówno przez amatorów, jak i profesjonalistów. Zakrętarki natomiast są mniej znanym i popularnym typem narzędzia...

Wkrętarki akumulatorowe czy wiertarko-wkrętarki od dawna są powszechnie znane i użytkowane zarówno przez amatorów, jak i profesjonalistów. Zakrętarki natomiast są mniej znanym i popularnym typem narzędzia akumulatorowego, spokrewnionego z wkrętarką czy wiertarką. Jednak w ostatnim czasie zyskują coraz większą popularność, między innymi dzięki łączonym ofertom producentów – zestawy wkrętarka i zakrętarka. Czym zatem jest zakrętarka i do czego służy?

mgr inż. Wojciech Rogala, mgr inż. Marcin Mateja Wymagania dla zapraw murarskich cienkowarstwowych stosowanych do murowania z elementów silikatowych

Wymagania dla zapraw murarskich cienkowarstwowych stosowanych do murowania z elementów silikatowych Wymagania dla zapraw murarskich cienkowarstwowych stosowanych do murowania z elementów silikatowych

Wielu uczestników procesu budowlanego utożsamia parametry muru jedynie z użytymi bloczkami. Tymczasem zgodnie z definicją z PN-EN 1996-1-1 [1] mur to materiał konstrukcyjny utworzony z elementów murowych...

Wielu uczestników procesu budowlanego utożsamia parametry muru jedynie z użytymi bloczkami. Tymczasem zgodnie z definicją z PN-EN 1996-1-1 [1] mur to materiał konstrukcyjny utworzony z elementów murowych ułożonych w określony sposób i trwale połączonych ze sobą zaprawą murarską. Zaprawa stanowi nieodłączny element konstrukcji, a jej parametry wpływają nie tylko na sam proces murowania, ale także na trwałość i parametry konstrukcji.

inż. Joanna Nowaczyk Energooszczędne i pasywne rozwiązania w budownictwie z wykorzystaniem silikatów

Energooszczędne i pasywne rozwiązania w budownictwie z wykorzystaniem silikatów Energooszczędne i pasywne rozwiązania w budownictwie z wykorzystaniem silikatów

Zgodnie z szacunkami Komisji Europejskiej sektor budowlany odpowiada za 40% zużycia energii oraz ok. 36% emisji gazów cieplarnianych w Europie. To bardzo wysokie wartości, ich ograniczenie wiąże się z...

Zgodnie z szacunkami Komisji Europejskiej sektor budowlany odpowiada za 40% zużycia energii oraz ok. 36% emisji gazów cieplarnianych w Europie. To bardzo wysokie wartości, ich ograniczenie wiąże się z głębokimi zmianami, modernizacjami, a także często z zupełną zmianą obecnie stosowanych rozwiązań. Jeśli dodamy do tego wszystkiego czynnik kosztowy związany z adaptacjami, powstaje gotowy przepis na pojawienie się skrajnych ocen wdrażanych planów czy też zobowiązań państw członkowskich. Jednakże ścieżka...

prof. dr hab. inż. Łukasz Drobiec, mgr inż. Jan Biernacki Wzmacnianie konstrukcji murowanych przy pomocy siatek kompozytowych PBO

Wzmacnianie konstrukcji murowanych przy pomocy siatek kompozytowych PBO Wzmacnianie konstrukcji murowanych przy pomocy siatek kompozytowych PBO

Wzmacnianie konstrukcji zabytkowych stanowi istotną gałąź budownictwa, która powstała w odpowiedzi na potrzebę ochrony i zachowania historycznych budowli. Historia wzmacniania konstrukcji zabytkowych sięga...

Wzmacnianie konstrukcji zabytkowych stanowi istotną gałąź budownictwa, która powstała w odpowiedzi na potrzebę ochrony i zachowania historycznych budowli. Historia wzmacniania konstrukcji zabytkowych sięga daleko wstecz i przeplata się z rozwojem technologii i inżynierii.

dr inż. Szymon Swierczyna Kratownica z kształtowników giętych

Kratownica z kształtowników giętych Kratownica z kształtowników giętych

Elementy z kształtowników giętych można stosować na konstrukcje o małej i średniej rozpiętości, które są obciążone w sposób przeważająco statyczny, m.in. jednokondygnacyjne budynki halowe bez transportu...

Elementy z kształtowników giętych można stosować na konstrukcje o małej i średniej rozpiętości, które są obciążone w sposób przeważająco statyczny, m.in. jednokondygnacyjne budynki halowe bez transportu wewnętrznego, stropy i podesty. Odpowiednią nośność i sztywność można w tym wypadku zapewnić, przyjmując ustrój kratowy (FOT.). Konstrukcje tego typu cechuje niewielkie zużycie stali, a w przypadku, gdy w połączeniach stosuje się łączniki mechaniczne (np. wkręty samowiercące), można niemal całkowicie...

Iwona Sobczak Normy akustyczne w budownictwie

Normy akustyczne w budownictwie Normy akustyczne w budownictwie

Normy akustyczne w budownictwie, takie jak PN-B-02151-4:2015-06 [1], nie powstały bez powodu. Skutki ekspozycji na hałas nie są natychmiastowe, ale za to bardzo poważne. Narażenie na głośne dźwięki może...

Normy akustyczne w budownictwie, takie jak PN-B-02151-4:2015-06 [1], nie powstały bez powodu. Skutki ekspozycji na hałas nie są natychmiastowe, ale za to bardzo poważne. Narażenie na głośne dźwięki może prowadzić do trwałego uszkodzenia słuchu, ale nie wolno też zapominać o znacznie powszechniejszym zagrożeniu – mianowicie pozasłuchowym wpływie hałasu na zdrowie. Będąc silnym stresorem, jest przyczyną m.in. zaburzeń snu, przyspieszonego zmęczenia, rozdrażnienia, kłopotów z koncentracją, a nawet chorób...

mgr inż. Cezariusz Magott, mgr inż. Maciej Rokiel Dokumentacja techniczna prac renowacyjnych – tynki specjalne (cz.6)

Dokumentacja techniczna prac renowacyjnych – tynki specjalne (cz.6) Dokumentacja techniczna prac renowacyjnych – tynki specjalne (cz.6)

Kontynuując zagadnienia związane z doborem tynków, tym razem omówimy zagadnienia związane z tynkami specjalnymi.

Kontynuując zagadnienia związane z doborem tynków, tym razem omówimy zagadnienia związane z tynkami specjalnymi.

dr inż. Michał Wieczorek, mgr inż. Klaudiusz Borkowicz Zrównoważone budownictwo w odniesieniu do złożonych systemów izolacji cieplnych

Zrównoważone budownictwo w odniesieniu do złożonych systemów izolacji cieplnych Zrównoważone budownictwo w odniesieniu do złożonych systemów izolacji cieplnych

Komisja Europejska, formułując nową strategię w postaci Europejskiego Zielonego Ładu [1], zintensyfikowała działania mające na celu przeciwdziałanie negatywnemu wpływowi człowieka na środowisko jako jednemu...

Komisja Europejska, formułując nową strategię w postaci Europejskiego Zielonego Ładu [1], zintensyfikowała działania mające na celu przeciwdziałanie negatywnemu wpływowi człowieka na środowisko jako jednemu z najważniejszych wyzwań współczesnego świata. Celem tej polityki jest osiągnięcie zerowej emisji netto gazów cieplarnianych w Unii Europejskiej (UE) w 2050 r. Realizacja tego celu zakłada jednocześnie oddzielenie wzrostu gospodarczego od wykorzystania zasobów naturalnych.

dr inż. Krzysztof Pawłowski prof. PBŚ Zasady opracowania katalogu złączy budowlanych (mostków cieplnych) (cz.10)

Zasady opracowania katalogu złączy budowlanych (mostków cieplnych) (cz.10) Zasady opracowania katalogu złączy budowlanych (mostków cieplnych) (cz.10)

Złącza budowlane (mostki cieplne) stanowią integralną część elementów obudowy budynku. Dobór ich warstw materiałowych nie powinien być przypadkowy, lecz oparty na obliczeniach analiz parametrów fizykalnych.

Złącza budowlane (mostki cieplne) stanowią integralną część elementów obudowy budynku. Dobór ich warstw materiałowych nie powinien być przypadkowy, lecz oparty na obliczeniach analiz parametrów fizykalnych.

PU Polska – Związek Producentów Płyt Warstwowych i Izolacji Montaż płyt warstwowych do ścian murowanych

Montaż płyt warstwowych do ścian murowanych Montaż płyt warstwowych do ścian murowanych

Płyty warstwowe posiadają liczne zalety, dzięki którym stały się materiałem powszechnie używanym w budownictwie przemysłowym i coraz częściej również w sektorze budownictwa mieszkaniowego. Są jednak takie...

Płyty warstwowe posiadają liczne zalety, dzięki którym stały się materiałem powszechnie używanym w budownictwie przemysłowym i coraz częściej również w sektorze budownictwa mieszkaniowego. Są jednak takie aplikacje, gdzie zastosowanie tego typu produktów nie wydaje się trafnym pomysłem, jak choćby montaż do ściany pełnej, np. murowanej. Jak zamontować płyty poprawnie? Wystarczy trzymać się pewnych reguł.

dr inż. Krzysztof Pawłowski prof. PBŚ, mgr inż. Robert Małkowski Budownictwo zrównoważone – wybrane aspekty (cz. 11)

Budownictwo zrównoważone – wybrane aspekty (cz. 11) Budownictwo zrównoważone – wybrane aspekty (cz. 11)

W myśl idei budownictwa zrównoważonego zaprojektowanie budynku wymaga podejścia kompleksowego, które uwzględnia wszystkie aspekty związane z procesem budowlanym, tj. projektowanie, budowę, użytkowanie...

W myśl idei budownictwa zrównoważonego zaprojektowanie budynku wymaga podejścia kompleksowego, które uwzględnia wszystkie aspekty związane z procesem budowlanym, tj. projektowanie, budowę, użytkowanie budynku zgodnie z jego przeznaczeniem i utrzymanie obiektu budowlanego. Wymaga to wykorzystania najlepszych dostępnych rozwiązań technologicznych, materiałowych i architektonicznych.

Redakcja Technologia wdmuchiwania izolacji i Przemysł 4.0

Technologia wdmuchiwania izolacji i Przemysł 4.0 Technologia wdmuchiwania izolacji i Przemysł 4.0

Budownictwo drewniane stale ewoluuje, przynosząc innowacyjne rozwiązania, które nie tylko zwiększają efektywność procesów, ale również zmniejszają negatywny wpływ na środowisko.

Budownictwo drewniane stale ewoluuje, przynosząc innowacyjne rozwiązania, które nie tylko zwiększają efektywność procesów, ale również zmniejszają negatywny wpływ na środowisko.

Wybrane dla Ciebie

Źródło OZE z dopłatą 50% »

Źródło OZE z dopłatą 50% » Źródło OZE z dopłatą 50% »

Łatwa hydroizolacja skomplikowanych powierzchni dachowych »

Łatwa hydroizolacja skomplikowanych powierzchni dachowych » Łatwa hydroizolacja skomplikowanych powierzchni dachowych »

Docieplanie budynków to nie problem »

Docieplanie budynków to nie problem » Docieplanie budynków to nie problem »

Trwały kolor tynku? To możliwe! »

Trwały kolor tynku? To możliwe! » Trwały kolor tynku? To możliwe! »

Piany poliuretanowe, otwartokomórkowe »

Piany poliuretanowe, otwartokomórkowe » Piany poliuretanowe, otwartokomórkowe »

Zatrzymaj cenne ciepło wewnątrz »

Zatrzymaj cenne ciepło wewnątrz » Zatrzymaj cenne ciepło wewnątrz »

EKOdachy spadziste »

EKOdachy spadziste » EKOdachy spadziste »

Skuteczna walka z wilgocią w ścianach »

Skuteczna walka z wilgocią w ścianach » Skuteczna walka z wilgocią w ścianach »

Trwałe drzwi na zewnątrz i do wnętrz »

Trwałe drzwi na zewnątrz i do wnętrz » Trwałe drzwi na zewnątrz i do wnętrz »

Oszczędzanie przez ocieplanie »

Oszczędzanie przez ocieplanie » Oszczędzanie przez ocieplanie »

Trwała ochrona betonu »

Trwała ochrona betonu » Trwała ochrona betonu »

Prawidłowe wykonanie elewacji w systemie ETICS to jakość, żywotność i estetyka »

Prawidłowe wykonanie elewacji w systemie ETICS to jakość, żywotność i estetyka » Prawidłowe wykonanie elewacji w systemie ETICS to jakość, żywotność i estetyka »

Copyright © 2004-2019 Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Spółka komandytowa, nr KRS: 0000537655. Wszelkie prawa, w tym Autora, Wydawcy i Producenta bazy danych zastrzeżone. Jakiekolwiek dalsze rozpowszechnianie artykułów zabronione. Korzystanie z serwisu i zamieszczonych w nim utworów i danych wyłącznie na zasadach określonych w Zasadach korzystania z serwisu.
Portal Budowlany - Izolacje.com.pl

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim urządzeniu końcowym. W każdym momencie możesz dokonać zmiany ustawień przeglądarki dotyczących cookies. Nim Państwo zaczną korzystać z naszego serwisu prosimy o zapoznanie się z naszą polityką prywatności oraz Informacją o Cookies. Więcej szczegółów w naszej Polityce Prywatności oraz Informacji o Cookies. Administratorem Państwa danych osobowych jest Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Sp.K., nr KRS: 0000537655, z siedzibą w 04-112 Warszawa, ul. Karczewska 18, tel. +48 22 810-21-24, właściciel strony www.izolacje.com.pl. Twoje Dane Osobowe będą chronione zgodnie z wytycznymi polityki prywatności www.izolacje.com.pl oraz zgodnie z Rozporządzeniem Parlamentu Europejskiego i Rady (UE) 2016/679 z dnia 27 kwietnia 2016r i z Ustawą o ochronie danych osobowych Dz.U. 2018 poz. 1000 z dnia 10 maja 2018r.