Produkcja betonu a problem redukcji emisji dwutlenku węgla
Produkcja betonu | Emisja dwutlenku węgla
Produkcja betonu a problem redukcji emisji dwutlenku węgla
Concrete production versus the problem of carbon dioxide emissions reduction
Archiwa autorów
Beton jako najpopularniejszy materiał budowlany został objęty programem budownictwa zrównoważonego.
W programie tym szuka się takich materiałów i procesów wytwórczych, które byłyby przyjazne środowisku, prowadziły do oszczędności energii i zapobiegały powiększeniu efektu cieplarnianego przez redukcję emisji gazów cieplarnianych.
Zobacz także
Bostik Bostik AQUASTOPP – szybkie i efektywne rozwiązanie problemu wilgoci napierającej
Bostik to firma z wieloletnią tradycją, sięgającą 1889 roku, oferująca szeroką gamę produktów chemii budowlanej dla profesjonalistów i majsterkowiczów. Producent słynie z innowacyjnych rozwiązań i wysokiej...
Bostik to firma z wieloletnią tradycją, sięgającą 1889 roku, oferująca szeroką gamę produktów chemii budowlanej dla profesjonalistów i majsterkowiczów. Producent słynie z innowacyjnych rozwiązań i wysokiej jakości preparatów, które znajdują zastosowanie w budownictwie, przemyśle i renowacji.
Alchimica Polska Sp. z o.o. Skuteczna naprawa betonu z zaprawą Hygrosmart®-Fix&Finish
Hygrosmart Fix&Finish to jednoskładnikowa, szybkowiążąca, zbrojona włóknami zaprawa cementowa typu PCC (beton polimerowo-cementowy nazywany również betonem żywicznym). Służy do napraw strukturalnych betonu...
Hygrosmart Fix&Finish to jednoskładnikowa, szybkowiążąca, zbrojona włóknami zaprawa cementowa typu PCC (beton polimerowo-cementowy nazywany również betonem żywicznym). Służy do napraw strukturalnych betonu i wyrównywania jego powierzchni.
Fiberglass Fabrics s.c. Wiele zastosowań siatki z włókna szklanego
Siatka z włókna szklanego jest wykorzystywana w systemach ociepleniowych jako warstwa zbrojąca tynków zewnętrznych. Ma za zadanie zapobiec ich pękaniu oraz powstawaniu rys podczas użytkowania. Siatka z...
Siatka z włókna szklanego jest wykorzystywana w systemach ociepleniowych jako warstwa zbrojąca tynków zewnętrznych. Ma za zadanie zapobiec ich pękaniu oraz powstawaniu rys podczas użytkowania. Siatka z włókna szklanego pozwala na przedłużenie żywotności całego systemu ociepleniowego w danym budynku. W sklepie internetowym FFBudowlany.pl oferujemy szeroki wybór różnych gramatur oraz sposobów aplikacji tego produktu.
ABSTRAKT |
---|
W artykule omówiono problem emisji dwutlenku węgla w kontekście przemysłu cementowego. Wskazano główne różnice między betonem klinkierowym a geopolimerowym. Przedstawiono także możliwości zastosowania tego materiału w budownictwie. |
The article presents the problem of carbon dioxide emissions in the context of the cement industry. It indicates the main differences between clinker concrete and geopolymer concrete. The article also presents the possibilities of using this material in the construction industry. |
Według danych uzyskiwanych przez niezależne komisje badające problem globalnego ocieplenia ilość wytwarzanego gazu cieplarnianego jest z każdym rokiem coraz większa. Rośnie również ogólna antropogeniczna produkcja dwutlenku węgla związana z przemysłem cementowym (rys. 1) [1, 2].
Ograniczanie emisji dwutlenek węgla
Pierwszy odczyt ilości dwutlenku węgla w atmosferze wykonano w lipcu 1987 r. Zmierzona wartość wynosiła wówczas 349,91 ppm. Obecnie najbardziej wiarygodne badania przeprowadzane są w National Oceanic and Atmospheric Administration, mającej swoje obserwatorium badawcze na Hawajach, a ilość dwutlenku węgla w powietrzu wynosi ponad 397 ppm.
Z obserwacji zmiany klimatu i analizy temperatury na świecie wynika, że aby zatrzymać efekt cieplarniany, należałoby zredukować ilość CO2 do poziomu 350 ppm, a więc zredukować emisję praktycznie do zera.
W związku tym w Europie już od kilkunastu lat trwają prace nad odpowiednimi wytycznymi. Próby te przynoszą spodziewane efekty. Dzięki aktom prawnym wprowadzanym przez ciała ustawodawcze krajów Unii Europejskiej oraz recesji w gospodarce w państwach członkowskich w ciągu 20 lat (od 1990 r. do 2012 r.) emisja CO2 spadła o 30% [3].
Nie rozwiązuje to jednak problemu, gdyż ponad 60% spodziewanej produkcji cementu w 2013 r., wynoszącej ponad 4 mld t, przypada na Chiny oraz Indie, gdzie nie stostuje się żadnych regulacji w tym zakresie.
Rzeczywista produkcja dwutlenku węgla z 1 t cementu znacznie przekracza tam 1 t dwutlenku węgla. Problem ten dotyczy także USA, Japonii czy Ameryki Południowej.
Produkcja betonu a emisja dwutlenku węgla
W przemyśle cementowym stosuje się dwa rodzaje technologii określane jako ekologiczne. Pierwsza to standardowa produkcja cementu, do której używa się paliw alternatywnych, np.: zużytych opon (fot. 1–2).
Druga to nowe rozwiązanie polegające na zastosowaniu cementu geopolimerowego [1]. To aktywowane alkaicznie spoiwo nie opiera się na węglanie wapnia. Ma niską emisyjność CO2 i lepsze parametry wytrzymałościowe niż klasyczne spoiwo klinkierowe.
Próby ograniczenia emisji dwutlenku węgla dotyczą przede wszystkim redukcji emisji gazów cieplarnianych wytwarzanych w trakcie produkcji spoiwa klinkierowego. CO2 jest bowiem głównym gazem (obok pary wodnej) w procesie wypalania klinkieru.
Dochodzi wówczas do dekarbonizacji węglanu wapnia do tlenku wapnia. Produktem ubocznym jest dwutlenek węgla – od 510 kg do 610 kg CO2 na 1 t cementu. Oprócz procesu wypalania, emisja dotyczy także transportu oraz energii elektrycznej zużywanej przez cementownie [1].
Według Integrates Pollution Prevention and Control ilość CO2 wytwarzana w procesie wypalania zależy od zawartości wapnia w klinkierze.
Wielkości te są zbliżone. Zmniejszenie produkcji dwutlenku węgla do poziomu poniżej 500 kg na 1 t klinkieru nie jest możliwe.
W rzeczywistości realna ilość CO2 wytwarzanego na 1 t cementu klinkierowego nie może spaść poniżej 700 kg. Osiągnięcie tej wartości związane byłoby z dużymi ograniczeniami i inwestycją w nowoczesne technologie.
Aby uzyskać beton zrównoważony, odchodzi się więc od produkcji cementu CEM I (zawierającego co najmniej 95% spoiwa klinkierowego) i rozpoczyna produkcję cementów CEM II z dodatkiem żużla wielkopiecowego, krzemionki czy popiołów oraz cementu hutniczego CEM III i puculowanego CEM IV, a także wieloskładnikowego CEM V.
W składzie tych ostatnich wartość czystego klinkieru może zejść nawet poniżej 20%, co znacznie obniża ogólną emisyjność przypisywaną na 1 t cementu. Należy jednak pamiętać, że żaden z tych dodatków nie jest „zeroemisyjny”.
Drugą technologią otrzymywania betonu zrównoważonego (oprócz tej klasycznej, związanej z cementem klinkierowym) jest, okrzyknięta „ewolucyjną”, technologia spoiw geopolimerowych. Dwiema przodującymi metodami otrzymania spoiwa geopolimerowego jest wykorzystanie do tego popiołów lotnych oraz żużla wielkopiecowego.
Dzięki tej technologii, w zależności od zastosowanego półproduktu, redukcja CO2 może osiągnąć od 70% do 90% w porównaniu z klasyczną produkcją cementu klinkierowego (rys. 2) [4].
Należy jednak zaznaczyć, że wartości średnie przedstawione na rys. 2 są jedynie teoretyczne. Opierają się na warunkach idealnych, w praktyce rzadko spotykanych w wytwórniach cementu. Dotyczą pracy nowych, maksymalnie wydolnych urządzeń.
Ponadto zakładają stosowanie wyłącznie materiałów i surowców o znanych parametrach. W obliczeniach nie uwzględniono wielu nieetycznych działań, przekładających się na zanieczyszczenia atmosfery przekraczające przyjmowane założenia niemal dwu- lub trzykrotnie [2].
Możliwości redukcji emisji dwutlenku węgla
Z pewnością najbliższe lata nie przyniosą zmiany w technologii, a wytyczne Unii Europejskiej odnoszące się do niespełna 5% światowej produkcji cementu [2] są jedynie kroplą w morzu potrzeb redukcji emisji gazów cieplarnianych na świecie. Niemniej technologia spoiw geopolimerowych jest rozwiązaniem mogącym sprawić, że przemysł cementowy zbliży się do takiego, które można określić jako ekologiczny.
Szacuje się, że do 2020 r. będzie możliwe wyprodukowanie 328 mln t cementu geopolimerowego (tabela) [5, 6]. Należy dodać, że możliwości wdrożeniowe nie zaspokoją światowego popytu na cement. Mogą być natomiast wskazówką, w którą stronę powinna podążać gospodarka międzynarodowa.
Podsumowanie
Aby zapobiegać niszczeniu ekosystemu spowodowanemu emisją dwutlenku węgla, powinno się przede wszystkim stosować zabiegi pozwalających na absorbcję tego gazu z atmosfery.
Według danych Nature Geoscience 9,5 mld t dwutlenku węgla może zostać corocznie pochłonięte przez środowisko lądowe, kolejne 8,8 absorbuje fauna i flora powierzchni oceanicznych i morskich.
Innym przykładem redukcji CO2 w atmosferze jest zastosowanie kruszywa recyklingowego [6], które w połączeniu ze zjawiskiem odwrotnym do zachodzącego podczas produkcji cementu klinkierowego, czyli karbonatyzacją, jest w stanie pochłonąć dwutlenek węgla z atmosfery.
Czas karbonatyzacji betonu może wynieść nawet 1 tys. lat. Intensywność tego procesu jest jednak największa w trakcie pierwszych 50 lat i zależy od frakcji pokruszonego betonu.
Literatura
- T. Błaszczyński, M. Król, „Geopolimery w budownictwie”, „IZOLACJE”, nr 5/2013, s. 38–44.
- T. Błaszczyński, M. Król, „Ekobetony geopolimerowe”, „Materiały Budowlane”, nr 11/2013, s. 23–26.
- J.G.J. Olivier, G. Janssens-Maenhout, J.A.H.W. Peters, „Trends in global CO2 emissions”, PBL Netherlands Environmental Assessment Agency, 2012.
- B.C. McLellan, R.P. Williams, J. Lay et al., „Costs and carbon emissions for geopolymer pastes in comparison to ordinary portland cement”, „Journal of Cleaner Production”, 2011, pp. 1080–1090.
- Humphreys, M. Mahasenan, „Toward a Sustainable Cement Industry: Climate Change”, World Business Council for Sustainable Development, 2002.
- B. Zając, I. Gołębiewska, „Możliwość redukcji CO2 przez zastosowanie betonu zrównoważonego i kruszywa recyklingowego”, „Inżynieria i Aparatura Chemiczna”, nr 5/2012, s. 262–264.