Zdolność izolowania temperatur pożarowych w zależności od gęstości i grubości wełny mineralnej
Ability to insulate fire temperatures depending on the density and thickness of mineral wool

Widok próbki nr 3 po badaniu, fot. P. Sulik, N. Śmigielski
W bezpieczeństwie pożarowym stosuje się szereg rozwiązań zapewniających oczekiwany stopień niezawodności i bezpieczeństwa w przypadku powstania pożaru.
Zobacz także
M.B. Market Ltd. Sp. z o.o. Czy piana poliuretanowa jest palna?

W artykule chcielibyśmy przyjrzeć się bliżej temu aspektowi i rozwiać wszelkie wątpliwości na temat palności pian poliuretanowych.
W artykule chcielibyśmy przyjrzeć się bliżej temu aspektowi i rozwiać wszelkie wątpliwości na temat palności pian poliuretanowych.
Ultrapur Sp. z o.o. Pianka poliuretanowa a szczelność budynku

Wielu inwestorów, wybierając materiał do ocieplenia domu, kieruje się głównie parametrem lambda, czyli wartością współczynnika przewodzenia ciepła. Jest on jedynym zestandaryzowanym współczynnikiem, który...
Wielu inwestorów, wybierając materiał do ocieplenia domu, kieruje się głównie parametrem lambda, czyli wartością współczynnika przewodzenia ciepła. Jest on jedynym zestandaryzowanym współczynnikiem, który określa właściwości izolacyjne materiału. Jednocześnie jest współczynnikiem wysoce niedoskonałym – określa, jak dany materiał może opierać się utracie ciepła poprzez przewodzenie.
Rockwool Polska Termomodernizacja domu – na czym polega i jak ją zaplanować?

Termomodernizacja to szereg działań mających na celu poprawę energochłonności Twojego domu. Niezależnie od zakresu inwestycji, kluczowa dla osiągnięcia spodziewanych efektów jest kolejność prac. Najpierw...
Termomodernizacja to szereg działań mających na celu poprawę energochłonności Twojego domu. Niezależnie od zakresu inwestycji, kluczowa dla osiągnięcia spodziewanych efektów jest kolejność prac. Najpierw należy docieplić ściany i dach, aby ograniczyć zużycie energii, a dopiero potem zmodernizować system grzewczy. Dzięki kompleksowej termomodernizacji domu prawidłowo wykonanej znacznie zmniejszysz koszty utrzymania budynku.
Przykładem takich rozwiązań są bierne [1] i czynne (aktywne) systemy zabezpieczeń przeciwpożarowych [2]. Wśród tych pierwszych możemy wyróżnić tzw. ogniochronne izolacje techniczne [3–8], uszczelnienia przejść instalacyjnych [9–12] czy uszczelnienia złączy liniowych [13–14], do których wykonania wykorzystuje się szereg specjalistycznych materiałów, przeznaczonych do konkretnych zastosowań. Dotyczy to zarówno sprofilowanych farb czy natrysków, jak i płyt, w tym gipsowo-kartonowych, gipsowo-włóknowych, silikatowo-cementowych lub silikatowo-wapniowych, oraz okładzin z wełny mineralnej.
Większość osób dostrzega różnicę między płytą gipsowo-kartonową typ A a typ DF i poprawnie, jednoznacznie identyfikuje płytę DF jako przeznaczoną do zastosowań ogniowych, pomimo że płyta typu A, również charakteryzuje się określonymi właściwościami w zakresie izolowania temperatur pożarowych. Podobne założenia można przypisać również wełnie mineralnej.
Powszechnie wysokie gęstości wełny mineralnej kojarzymy z biernymi zabezpieczeniami ogniochronnymi, ale warto sobie zadać pytanie, jak zachowa się wełna mineralna o niższej gęstości? Odpowiedź m.in. na to pytanie sformułowano w artykule.
O czym przeczytasz w artykule:
|
W artykule przedstawiona została ocena skuteczności izolowania temperatur pożarowych przez wełnę mineralną na podstawie jej gęstości oraz grubości izolacji. Na potrzeby badań w warunkach pożarowych przeprowadzono eksperyment, w którym badaniu poddano dziewięć rodzajów skalnej wełny mineralnej o różnej deklarowanej gęstości. Ability to insulate fire temperatures depending on the density and thickness of mineral wool The article presents the assessment of the effectiveness of fire temperatures isolation by mineral wool on the basis of its density and thickness of the insulation. For the purpose of testing in fire conditions, an experiment was carried out in which nine types of rock mineral wool with different declared density were tested. |
Materiały i metoda badania
W celu weryfikacji zachowania wełny mineralnej w warunkach pożarowych przeprowadzono eksperyment, w którym badaniu poddano dziewięć rodzajów skalnej wełny mineralnej o różnej deklarowanej gęstości, poczynając od 28 kg/m3, a kończąc na 170 kg/m3.
Płyty z wełny mineralnej zostały ułożone warstwowo, w czterech warstwach gr. 50 mm lub dwóch warstwach gr. 100 mm w przypadku, gdy dany rodzaj wełny mineralnej nie występował w mniejszych grubościach niż 100 mm (np. próbka S7).
Poszczególne warstwy miały wymiary nieco powyżej 50x50 cm i były szczelnie wciśnięte w otwory o wymiarach 50x50 cm, wykonane w ścianie z betonu komórkowego odmiany 600 kg/m3, gr. 240 mm.
Od strony ognia otwór był osłonięty przez blachę stalową, ocynkowaną gr. 0,5 mm i wymiarach 70x70 cm, mocowaną łącznikami mechanicznymi do muru, natomiast od strony nienagrzewanej otwór osłonięto płytą gipsowo-kartonową, gr. 12,5 mm, o wymiarach 70x70 cm, również mocowaną do muru łącznikami mechanicznymi.
Pomiędzy poszczególnymi warstwami wełny mineralnej oraz na blasze stalowej od strony wełny mineralnej i płycie gipsowo-kartonowej zamocowano po dwie termopary typ K, zgodne z normą PN-EN 1363-1, umożliwiające w sposób ciągły pomiar temperatury w czasie. Szczegóły przedstawiono na FOT. 1–6.
Płyty z wełny mineralnej przed badaniem były klimatyzowane w warunkach laboratoryjnych przez ponad 30 dni. Przed samym badaniem wszystkie wycięte na wymiar płyty zostały zważone i na podstawie tych pomiarów wyliczono rzeczywistą gęstość zastosowanej w badaniach wełny mineralnej.
Nagrzewanie przeprowadzono zgodnie z krzywą standardową, a więc krzywą, do której odwołują się Warunki Techniczne [15] w zakresie odporności ogniowej. Wszystkie otwory, w których znajdowały się próbki do badań, położone były w zakresie działania ciśnienia dodatniego (nadciśnienie). Widok elementów próbnych w trakcie badania przedstawiono na FOT. 7–10.

FOT. 7–10. Widok elementów próbnych zabezpieczonych płytą gipsowo-kartonową od strony nienagrzewanej przed badaniem, w 61., 103. oraz 151. minucie badania; fot.: P. Sulik, N. Śmigielski
Podobne badania, oceniające zachowanie wełny mineralnej w pożarze, jednak w mniejszej skali i przy zmiennym strumieniu ciepła promieniowania, od 7 kW/m2, przez 60 kW/m2 do krzywej standardowej ISO 834 przedstawiono w pracy [16].
Wyniki i dyskusja
Wyniki badań, zrealizowanych w ramach pracy NZP-136, dla dwóch grubości wełny mineralnej przedstawiono na RYS. 1–2, a widok przykładowej próbki po badaniu zobrazowano na FOT. 11–16.

RYS. 1. Zależność przyrostu temperatury w czasie dla poszczególnych elementów badawczych o grubości 100 mm; rys.: P. Sulik, N. Śmigielski

RYS. 2. Zależność przyrostu temperatury w czasie dla poszczególnych elementów badawczych o grubości 200 mm; rys.: P. Sulik, N. Śmigielski
Analiza wyników przedstawionych na RYS. 1 w większości przypadków potwierdza lepszą izolacyjność ogniową wełny o wyższej gęstości.
W przypadku wełen o gęstości do 100 kg/m3 wyraźnie widać, że po przekroczeniu pewnej półki, gdy przyrost temperatury oscyluje wokół +50K, co odpowiada rzeczywistej temperaturze rzędu 70°C, po kilku–kilkunastu minutach następuje szybki przyrost temperatury w czasie do wartości około 500–600°C. Im niższa gęstość wełny mineralnej, tym długość płaskiej półki jest krótsza i bardziej ostry wzrost temperatury.
W przypadku wełen mineralnych o gęstości powyżej 100 kg/m3 zasięg płaskiej półki jest już znacznie większy, od 25 do 35 min, a potem wzrost temperatury ma łagodniejszy charakter.
Zakładając jako bezpieczny przyrost temperatury nieprzekraczający 200K w stosunku do temperatury początkowej, a więc o 20K wyższy od maksymalnej temperatury w kryterium izolacyjności ogniowej, wyraźnie widać, że wełny stosowane np. do izolowania ścian w fasadach wentylowanych, a więc o gęstości od 45 do 80 kg/m3, przy grubości 100 mm, zapewniają spełnienie warunków w przedziale od 12 do 21 min, podczas gdy wełny o gęstości z przedziału 150–160 kg/m3 gwarantują nieprzekroczenie tej temperatury przez 45–50 min.
Odmienny charakter mają wykresy w przypadku wełny mineralnej gr. 200 mm. W tym przypadku wykres przyrostów temperatury jest bardziej wypłaszczony, nawet w przypadku wełny o gęstości około 30 kg/m3, przy czym dla tej próbki, po przekroczeniu 75. min, przyrosty temperatur są szybsze.
W przypadku pozostałych wełen, z pojedynczymi wyjątkami, poczynając od gęstości około 50 kg/m3, przebieg wykresów wskazuje, że ich zachowanie gwarantuje izolacyjność ogniową po 150 min na poziomie nieprzekraczającym przyrostów temperatury 200K. Oczywiście również w tym przypadku wełny mineralne o wyższych gęstościach zachowują się nieco lepiej, niemniej nie istnieje już taka ich duża przewaga jak dla mniejszych grubości.
Podsumowanie
Przedstawiona ocena skuteczności izolowania temperatur pożarowych przez wełnę mineralną na podstawie jej gęstości oraz grubości izolacji ma charakter inżynierski. Nie uwzględnia on wielu aspektów, np. budowy wełny, zawartości poszczególnych składników, w tym materii organicznej, która w trakcie nagrzewania przechodzi egzotermiczne reakcje oksydacyjne wywołujące transport masy w strukturze wełny mineralnej [17], układu włókien itp. Nie oznacza to jednak, że ocena „dzielności” wełny w izolowaniu temperatur pożarowych na podstawie dostępnych na budowie parametrów, łatwych do zweryfikowania, a więc grubości i gęstości, prowadzi do błędnych wniosków.
W artykule przedstawiono wyniki dla wybranych gęstości skalnych wełen mineralnych, podczas gdy w pracy NZP-136 przebadano prawie 30 rodzajów wełny mineralnej dostępnej na rynku, uwzględniając różnorakie jej zastosowanie, w tym oprócz typowych jak ściana, dach, zabezpieczenia elementów konstrukcyjnych, również te bardziej egzotyczne, jak np. wełna kominkowa czy wełna szklana.
Badania na szerszej grupie wyrobów potwierdziły podane w artykule spostrzeżenia, które pozwalają na pewien wniosek generalny. W przypadku, kiedy z przyczyn technologicznych grubość izolacji termicznej musi być ograniczona, najlepszym rozwiązaniem w przypadku wełny mineralnej jest stosowanie wełen o wysokiej gęstości, do zastosowań technicznych, które gwarantują wyższy poziom izolacyjności ogniowej.
W przypadku, kiedy grubość izolacji nie jest ograniczona i można zastosować izolacje gr. np. 20 cm, warto rozważyć zastosowanie typowych, mineralnych wełen budowlanych, o niższej gęstości, które jak wykazały badania, również są w stanie zapewnić wymagany poziom bezpieczeństwa.
Literatura
1. P. Sulik, P. Turkowski, W. Węgrzyński, B. Sędłak, P. Roszkowski, G. Krajewski, „Bezpieczeństwo pożarowe podziemnej infrastruktury transportowej cz. 1. Pasywne systemy zabezpieczeń”, „Inżynieria kolejowa – szanse i wyzwania”, 64. Konferencja Naukowa Komitetu Inżynierii Lądowej i Wodnej PAN oraz Komitetu Nauki PZITB, 2018, s. 291–316.
2. W. Węgrzyński, P. Sulik, G. Krajewski, P. Antosiewicz, „Bezpieczeństwo pożarowe podziemnej infrastruktury transportowej cz. 2. Aktywne systemy zabezpieczeń”, „Inżynieria kolejowa – szanse i wyzwania”, 64. Konferencja Naukowa Komitetu Inżynierii Lądowej i Wodnej PAN oraz Komitetu Nauki PZITB, 2018, s. 317–330.
3. H.L. Vandersall, „Intumescent coating systems, their development and chemistry”, „J. Fire Flammability” 2/1971, p. 97–140.
4. P. Mather, „Saving lives with coatings”, „Eur Coating J” 48/2006, p. 50–52.
5. M. Jimenez, S. Duquense, S. Bourbigot, „Multiscale experimental approach for developing high-performance intumescent coatings”, „Ind Eng Chem Res” 45/2006, p. 4500–4508.
6. T. Mariappan, „Recent developments of intumescent fire protection coating for structural steel: A review”, „Journal of Fire Sciences” vol. 34(2)/2016, p. 120–163.
7. P. Sulik, „Bierne zabezpieczenia przeciwpożarowe konstrukcji”, „IZOLACJE” 3/2018, s. 118–124.
8. I. Gajecka-Graniczna, P. Sulik, „Weryfikacja ogniochronnych powłok malarskich”, „IZOLACJE” 5/2018, s. 74–80.
9. B. Sędłak, „Porównanie skuteczności działania opasek i kołnierzy ogniochronnych z materiałami pęczniejącymi”, „IZOLACJE” 11–12/2013, s. 63–68.
10. P. Sulik, B. Sędłak, „Badanie odporności ogniowej dużych mieszanych uszczelnień przejść instalacyjnych”, „Materiały Budowlane” 7/2014, s. 20–22.
11. Ł. Fejfer, P. Sulik, „Wymagania dotyczące bezpieczeństwa pożarowego przejść instalacyjnych”, „Materiały Budowlane” 6/2018, s. 53–55.
12. W. Joniec, „Przepusty i piony instalacyjne”, „IZOLACJE” 3/2020, s. 78–81.
13. B. Sędłak, P. Roszkowski, „Izolacyjność ogniowa uszczelnień złączy liniowych w zależności od głębokości i szerokości złącza”, „IZOLACJE” 10/2015, s. 58–63.
14. B. Sędłak, J. Kinowski, P. Roszkowski, P. Sulik, „Uszczelnienia złączy liniowych z mechanicznie wywołanym przemieszczeniem powierzchni czołowych złącza”, „Materiały Budowlane” 7/2017, s. 20–23.
15. Rozporządzenie Ministra Infrastruktury z dnia 12 kwietnia 2002 r. w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie (DzU z 2015 r., poz. 1422 i z 2017 r., poz. 2285).
16. B. Andres, K. Livkiss, J.P. Hidalgo, P. Van Hees, L. Bisby, N. Johansson, A. Bhargava, „Response of stone wool–insulated building barriers under severe heating exposures”, „J Fire Sci” 36(4)/2018, p. 315–341.
17. D. Paudel, A. Rinta-Paavola, H.P. Mattila, S. Hostikka, „Multiphysics Modelling of Stone Wool Fire Resistance”, „Fire Technology” 2020, https://doi.org/10.1007/s10694-020-01050-5.