Izolacje.com.pl

Analiza termiczna przegrody ściennej z wbudowanymi elementami imitującymi mostki cieplne

Thermographic analysis of a wall partition with built-in components imitating thermal bridges

Poznaj wpływ mostków termicznych na charakterystykę cieplną przegrody
Autorzy

Poznaj wpływ mostków termicznych na charakterystykę cieplną przegrody


Autorzy

W Polsce 34% zużywanej energii jest pochłaniane przez budynki mieszkalne, z czego aż 71% wykorzystywane jest do realizacji podstawowych założeń, jakie ma pełnić budynek (ogrzewanie), a następnie do jego eksploatacji. Szacuje się, że jedynie około 7% energii zużywanej podczas całego cyklu życia typowego budynku mieszkalnego wykorzystywane jest do jego wybudowania, natomiast pozostałe 93% pochłania eksploatacja.

Zobacz także

Akustyka stropów – izolacje z wełny mineralnej

Akustyka stropów – izolacje z wełny mineralnej Akustyka stropów – izolacje z wełny mineralnej

Stropy spełniają kilka podstawowych zadań: przenoszą obciążenia użytkowe, ograniczają straty ciepła, ale spełniają także rolę przegród dźwiękochłonnych.

Stropy spełniają kilka podstawowych zadań: przenoszą obciążenia użytkowe, ograniczają straty ciepła, ale spełniają także rolę przegród dźwiękochłonnych.

Maszyny X-floc do wdmuchiwania sypkich izolacji w ściany i stropy

Maszyny X-floc do wdmuchiwania sypkich izolacji w ściany i stropy Maszyny X-floc do wdmuchiwania sypkich izolacji w ściany i stropy

X-floc to skrócona nazwa firmy X-Floc Dämmtechnik-Maschinen GmbH, największego w Europie producenta maszyn, agregatów i osprzętu przeznaczonych do pneumatycznego przesyłu sypkich materiałów izolacyjnych...

X-floc to skrócona nazwa firmy X-Floc Dämmtechnik-Maschinen GmbH, największego w Europie producenta maszyn, agregatów i osprzętu przeznaczonych do pneumatycznego przesyłu sypkich materiałów izolacyjnych aplikowanych w konstrukcje ścian, stropów oraz pustki połaci dachowych w celu poprawy poziomu izolacyjności cieplnej i akustycznej. Jej generalnym przedstawicielem w Polsce jest Firma Handlowo-Usługowa DEROWERK z Łodzi.

Zastosowanie materiałów zmiennofazowych (PCM) do zwiększenia bezwładności cieplnej budynków

Zastosowanie materiałów zmiennofazowych (PCM) do zwiększenia bezwładności cieplnej budynków

Szeroko pojęty sektor budownictwa w krajach Unii Europejskiej jest konsumentem ok. 37% energii finalnej. Dwie trzecie tego zużycia jest związane z potrzebą zapewnienia warunków komfortu cieplnego, czyli...

Szeroko pojęty sektor budownictwa w krajach Unii Europejskiej jest konsumentem ok. 37% energii finalnej. Dwie trzecie tego zużycia jest związane z potrzebą zapewnienia warunków komfortu cieplnego, czyli ogrzania bądź chłodzenia pomieszczeń [1]. Szczególnie duża konsumpcja energii występuje w budynkach użyteczności publicznej. W tych budynkach wskaźnik zużycia (w kWh/m2/a) jest dwa do sześciu razy większy, odpowiednio w biurach i restauracjach, niż w mieszkaniach w budynkach wielorodzinnych. Liczby...

 

Abstrakt

W artykule przedstawiono wyniki z analizy wpływu mostków termicznych na charakterystykę cieplną przegrody, a w konsekwencji na bilans cieplny budynku. Do badań użyto kamery termowizyjnej. Badania eksperymentalne wykonano w laboratorium na zaprojektowanym i wykonanym stanowisku badawczym. Do badanej przegrody ściennej "wbudowano" elementy imitującymi mostki cieplne - liniowe i punktowe. W podsumowaniu zamieszczono wyniki badań oraz ich analizę.

Thermographic analysis of a wall partition with built-in components imitating thermal bridges

The article presents the results from an analysis of the influence of thermal bridges on the thermal characteristics of a partition, and consequently on the thermal balance of the building. A thermal imaging camera was used for the tests. Experimental research was carried out at a laboratory on a test bed. The analysed wall partition was amended with elements "imitating" thermal bridges - linear and point ones. The summary includes the results of research and their analysis.

Nadmierne zużycie energii potrzebnej do ogrzania budynku wynika głównie z właściwości izolacji termicznej przegród zewnętrznych w budynku. Duży wpływ na straty ciepła, poza niedostateczną izolacją termiczną przegród, mają mostki cieplne. Straty te mogą sięgać nawet do 30-40%.

Ilość zużytej energii bezpośrednio wpływa nie tylko na koszty utrzymania budynku, ale również na zanieczyszczenie powietrza. Do oceny stanu izolacji cieplnej budynków, w tym lokalizacji mostków cieplnych, można z powodzeniem zastosować kamerę termowizyjną, która pozwoli na szybkie i bezinwazyjne badania in situ.

Istota termowizji

Termowizja jest metodą badawczą polegającą na zdalnej i bezdotykowej ocenie rozkładu temperatury na powierzchni badanego ciała (przegrody). Metoda ta jest oparta na obserwacji i zapisie rozkładu promieniowania podczerwonego wysyłanego przez każde ciało, którego temperatura jest wyższa od zera bezwzględnego i przekształceniu tego promieniowania na światło widzialne [1].

Dzięki analizie obrazów cieplnych można zlokalizować miejsca, w których występują straty ciepła oraz wykryć źródło nieprawidłowego funkcjonowania urządzeń i instalacji cieplnych. Otrzymane w wyniku badań termogramy, wykonane przed termomodernizacją budynku, są bardzo pomocne do prawidłowego wykonania remontu (docieplenia przegród), aby do minimum ograniczyć mostki cieplne w termomodernizowanym budynku.

Poza tym badania termowizyjne można wykonywać w celu sprawdzenia stanu budynku czy mieszkania przed zakupem lub odbiorem od dewelopera czy też przed odbiorem robót remontowych pod kątem ewentualnych wad wykonawczych. Mogą one ujawnić np. brak ciągłości wykonania izolacji w przegrodach budowlanych, dzięki czemu można ocenić stan mostków termicznych przy wieńcach, stolarce okiennej i drzwiowej oraz połączeniu ścian z fundamentami, wykryć miejsca ucieczki ciepła w instalacjach centralnego ogrzewania, zlokalizować źródła i zasięg zawilgocenia powodującego pogorszenie właściwości cieplnych poszczególnych elementów budynku.

Termowizja służy również do ustalania temperatury punktu rosy (moment, w którym para wodna zawarta w powietrzu osiąga na skutek schładzania stan nasycenia - przy zastanym składzie i ciśnieniu powietrza - a poniżej tego momentu staje się przesycona i skrapla się lub resublimuje) [2].

Badania termowizyjne - wymagania

Badania termowizyjne najlepiej przeprowadzać w następujących warunkach [3]:

  • różnica temperatur między temperaturą wewnątrz domu i temperaturą zewnętrzną nie powinna być mniejsza niż ok. 15–20°C,
  • brak oświetlenia słonecznego (lub oświetlenie ograniczone), najlepiej wieczorem lub rano,
  • stabilne warunki środowiskowe (nie powinno się przeprowadzać kontroli np. przy silnych opadach deszczu lub śniegu),
  • okna nie powinny być otwarte na czas kontroli i bezpośrednio przed kontrolą,
  • dom powinien być wystarczająco i stabilnie ogrzany (bez dużych wahań temperatury w danym pomieszczeniu).

W związku z tym, że za pomocą termografii można opisać rozkład temperatury na powierzchni badanej przegrody, metoda ta znalazła zastosowanie do wstępnego identyfikowania zmian właściwości cieplnych części, które tworzą strukturę budynku.

Aby pomiary były miarodajne, należy dokładnie przeanalizować badany budynek, wykonać odpowiednią liczbę zdjęć wraz z ich interpretacją [4].

Aby uniknąć komplikacji i kłopotów, badanie termowizyjne powinno być przeprowadzone przy stałej różnicy temperatur i ciśnień po obu stronach przegrody. Temperatury powinny więc być pod stałą kontrolą jeszcze przed wykonaniem pomiarów. Nie zaleca się również przeprowadzania badania budynków, które narażone są na ciągłe nasłonecznienie czy działanie silnie zmiennego wiatru [5].

Badania własne na przykładzie ściany z mostkami termicznymi

Mostki cieplne

Miejsca w termicznej obudowie, które nie zostały prawidłowo zaizolowane, nazywa się mostkami cieplnymi. Są to miejsca, w których po wewnętrznej stronie przegrody, w pomieszczeniu, które jest ogrzewane, obserwuje się obniżenie temperatury powierzchni oraz wzrost gęstości strumienia cieplnego w porównaniu do pozostałej części. Na termogramach widać wyraźnie, że opisane wyżej zjawisko powoduje podwyższenie temperatury na zewnętrznej stronie przegrody. Mostki termiczne występują głównie w ścianach zewnętrznych budynku.

Miejsca, w których gęstość strumienia cieplnego w stosunku do pozostałej części przegrody jest wyższa, to przede wszystkim ościeżnice okienne i drzwiowe, naroża, nadproża okienne i drzwiowe, podokienniki, węzły konstrukcyjne ścian ze stropem itp.

Niestety mostków termicznych nie da się usunąć, a jedynie można zmniejszyć ich wpływ. Negatywy, jakie niesie za sobą występowanie mostków cieplnych, poza zwiększoną stratą ciepła, to również obniżenie temperatury na powierzchni występującego mostka, kondensowanie się pary wodnej, nadmierne osiadanie kurzu, a w konsekwencji możliwość pojawienia się grzybów pleśniowych.

Mostek tworzy się najczęściej przez występowanie w danym miejscu materiałów, które mają większy współczynnik przewodzenia ciepła λ [W/(m·K)] niż pozostała część przegrody.

RYS. 1. Mostek liniowy; rys.: autorzy

RYS. 1. Mostek liniowy; rys.: autorzy

RYS. 2. Mostek punktowy; rys.: autorzy

RYS. 2. Mostek punktowy; rys.: autorzy

Mostki cieplne dzieli się na mostki cieplne liniowe (RYS. 1) (długość ościeżnicy okien, drzwi balkonowych, nadproży itp.) oraz mostki cieplne punktowe (RYS. 2) (m.in. kołki mocujące izolację cieplną lub inne łączniki mechaniczne).

Istnienie mostków termicznych jest łatwe do zlokalizowania przy użyciu obrazu termowizyjnego ściany zewnętrznej i wewnętrznej budynku. Mostki zwiększają straty energii, ponieważ lokalna wartość temperatury w określonych miejscach przegrody budowlanej jest większa [6]. W miejscu tym ciepło ucieka do otoczenia ze względu na wzrost wartości temperatury, który powoduje wzrost strumienia radiacyjnego i konwekcyjnego.

Badania

Badaniom poddano dwa pomieszczenia o podobnej konstrukcji. Laboratorium powstało w pomieszczeniach Domu Studenta PSW w Białej Podlaskiej.

Wykonując przegrodę badawczą, podzielono istniejące pomieszczenie laboratoryjne na dwie części: pomieszczenie nadawcze oraz pomieszczenie odbiorcze (RYS. 3, RYS. 4 i RYS. 5).

Pomieszczenie nadawcze było podgrzewane, a pomieszczenie odbiorcze chłodzone, tak żeby uzyskać jak największą różnicę temperatur po obu stronach przegrody. W przegrodzie zlokalizowane zostały mostki cieplne w postaci elementów o różnym współczynniku przenikania ciepła [7] (liniowe oraz punktowe), rozmieszczone jak na przedstawionych schematach.

RYS. 3. Rzut pomieszczeń; rys.: autorzy

RYS. 3. Rzut pomieszczeń; rys.: autorzy

RYS. 4. Przekroje przez przegrodę; rys.: autorzy

RYS. 4. Przekroje przez przegrodę; rys.: autorzy
Objaśnienia: 1 - płaskownik UPN 100, 2 - cegła silikatowa

RYS. 5. Widok przegrody od strony pomieszczenia odbiorczego; rys.: autorzy

RYS. 5. Widok przegrody od strony pomieszczenia odbiorczego; rys.: autorzy

Do wykonania mostków użyto:

  • dwóch płaskowników UPN 100 (współczynnik przewodzenia ciepła λ = 58,00 W/(m·K); masa 1 metra bieżącego 10,6 kg/m),
  • prętów stalowych 5×∅  14 mm (współczynnik przewodzenia ciepła λ = 58,00 W/(m·K); długość każdego pręta 30 cm),
  • gipsowego tynku wewnętrznego (współczynnik przewodzenia ciepła λ = 0,40 W/(m·K); gęstość ρ = 1000 kg/m3).

Wykonano pięć odwiertów o ∅  14 mm, w których usytuowano stalowe pręty.

Kolejnym krokiem było wycięcie kątówką bruzd o wymiarach 10×60 cm na dwa płaskowniki UPN 100. Przed umieszczeniem mostków liniowych w wyznaczonym miejscu otwory zostały dostosowane do gabarytów płaskownika poprzez skucie.

Analiza termograficzna właściwości cieplnych przegrody

Badania przeprowadzono w styczniu 2014 roku. Temperatura zewnętrzna mierzona 24 godziny przed eksperymentem wahała się między –3°C a + 5°C. Nie było światła słonecznego, a niebo było zachmurzone. Również na 12 godzin przed wykonaniem kontroli nie było światła słonecznego, a niebo pozostawało całkowicie zachmurzone podczas całego okresu testowania.

Badania przeprowadzono w sprzyjających warunkach atmosferycznych. Temperatura powietrza w pomieszczeniu nadawczym wahała się w granicach 23°C, natomiast w pomieszczeniu odbiorczym - w granicach 6,3°C. Różnica temperatur między pomieszczeniami wynosiła 16,7°C.

Badania termowizyjne zostały przeprowadzone za pomocą kamery termowizyjnej FLIR ThermaCAM B2 w celu wizualizacji mostków cieplnych i analizy rozkładu temperatur na powierzchni przegrody [8].

Na FOT. 1-2, FOT. 3-4, FOT. 5-6; FOT. 7-8, FOT. 9-10 oraz FOT. 11-12 ukazano wybrane szczegóły badań termowizyjnych.

FOT. 1-2. Termogram (1) i zdjęcie poglądowe (2) przegrody niejednorodnej od strony pomieszczenia nadawczego; fot.: autorzy

FOT. 1-2. Termogram (1) i zdjęcie poglądowe (2) przegrody niejednorodnej od strony pomieszczenia nadawczego; fot.: autorzy

FOT. 3-4. Termogram (3) i zdjęcie poglądowe (4) przegrody niejednorodnej od strony pomieszczenia odbiorczego; fot.: autorzy

FOT. 3-4. Termogram (3) i zdjęcie poglądowe (4) przegrody niejednorodnej od strony pomieszczenia odbiorczego; fot.: autorzy

FOT. 5-6. Termogram (5) i zdjęcie poglądowe (6) w obszarze mostka liniowego (mostek częściowy) od strony pomieszczenia nadawczego; fot.: autorzy

FOT. 5-6. Termogram (5) i zdjęcie poglądowe (6) w obszarze mostka liniowego (mostek częściowy) od strony pomieszczenia nadawczego; fot.: autorzy

Analiza wyników

Z analizy zamieszczonych termogramów można stwierdzić, iż różnica temperatur pomiędzy pomieszczeniem odbiorczym a pomieszczeniem nadawczym wyniosła 6,4°C. Mostek liniowy (mostek częściowy) od strony pomieszczenia nadawczego jest niezauważalny. Natomiast od strony pomieszczenia odbiorczego, które było ochładzane, mostek liniowy osiągnął temperaturę 9,9°C, co daje różnicę temperatur płaskownika w stosunku do pozostałej części przegrody równą 4,6°C.

FOT. 7-8. Termogram (7) i zdjęcie poglądowe (8) w obszarze mostka liniowego (mostek częściowy) od strony pomieszczenia odbiorczego; fot.: autorzy

FOT. 7-8. Termogram (7) i zdjęcie poglądowe (8) w obszarze mostka liniowego (mostek częściowy) od strony pomieszczenia odbiorczego; fot.: autorzy

FOT. 9-10. Termogram (9) i zdjęcie poglądowe (10) w obszarze mostka punktowego od strony pomieszczenia nadawczego; fot.: autorzy

FOT. 9-10. Termogram (9) i zdjęcie poglądowe (10) w obszarze mostka punktowego od strony pomieszczenia nadawczego; fot.: autorzy

FOT. 11-12. Termogram (11) i zdjęcie poglądowe (12) w obszarze mostka punktowego od strony pomieszczenia odbiorczego; fot.: autorzy

FOT. 11-12. Termogram (11) i zdjęcie poglądowe (12) w obszarze mostka punktowego od strony pomieszczenia odbiorczego; fot.: autorzy

Temperatura mostka punktowego od strony pomieszczenia nadawczego wyniosła 19,0°C, natomiast od strony pomieszczenia odbiorczego mostek punktowy osiągnął temperaturę 17,4°C. Różnica temperatur mostka punktowego po obu stronach przegrody wyniosła 1,6°C. Różnica temperatur między mostkiem punktowym a pozostałą jednorodną częścią przegrody od strony pomieszczenia nadawczego wyniosła 1,9°C, a od strony pomieszczenia odbiorczego 2,9°C. Podczas pomiarów temperatura pozostawała na podobnym poziomie. Warunki pogodowe i ich zmienność w ciągu 24 godzin poprzedzających pomiar nie miały istotnego wpływu na wyniki pomiarów.

Podsumowanie i wnioski

Przegroda budowlana, która była przedmiotem badań, została zaprojektowana i wykonana na podstawie zebranych informacji z zakresu budownictwa i fizyki cieplnej tak, aby na jej przykładzie w prosty sposób można było wyjaśnić wybrane zagadnienia związane z występowaniem mostków termicznych.Do badań użyto kamery termowizyjnej, która jest doskonałym narzędziem w diagnozowaniu istnienia i wielkości ewentualnych anomalii i wad termicznych obiektów budowlanych. Należy jednak zwrócić uwagę na trudności związane z poprawną interpretacją otrzymanych wyników.

Mając powyższe na uwadze, na podstawie przeprowadzonego badania eksperymentalnego przy użyciu kamery termowizyjnej wyciągnięto następujące wnioski:

  • Analiza termograficzna badanej przegrody wykazała wyraźny negatywny wpływ mostków termicznych na właściwości termiczne przegrody. Różnica temperatur między pomieszczeniem odbiorczym a pomieszczeniem przesyłowym wynosiła 6,4°C.
  • W przypadku termogramów mostka częściowego liniowego różnica temperatur pomiędzy mostkiem a pozostałą częścią przegrody od strony pomieszczenia odbiorczego wyniosła 4,6°C, natomiast od strony pomieszczenia nadawczego mostek był niezauważalny. Przyczyną była zbyt mała różnica temperatur pomiędzy pomieszczeniem nadawczym a pomieszczeniem odbiorczym.
  • Różnica temperatur mostka punktowego po obu stronach przegrody wyniosła 1,6°C.

Podsumowując należy stwierdzić, że aby tego typu badania były miarodajne (wiarygodne) i mogły posłużyć np. jako stanowisko badawcze, różnica temperatur w pomieszczeniach przedzielonych analizowaną przegrodą powinna wynosić minimum 10°C (wskazane nawet do 15-20°C). Dlatego też pomieszczenia te przed rozpoczęciem badań powinny być w odpowiednim czasie (w zależności od pojemności cieplnej przegród) chłodzone lub ogrzewane.

Literatura

  1. PN-EN 13187-2001, "Właściwości cieplne budynków. Jakościowa detekcja wad cieplnych w obudowie budynku. Metoda podczerwieni".
  2. H. Nowak, "Zastosowanie badań termowizyjnych w budownictwie", Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław 2012.
  3. W. Minkina, "Pomiary termowizyjne: przyrządy i metody", Wydawnictwo Politechniki Częstochowskiej, Częstochowa 2004.
  4. B. Więcek, G. De Mey, "Termowizja w podczerwieni. Podstawy i zastosowania", Wydawnictwo PAK, Warszawa 2011.
  5. J. Jaworski, "Termografia budynków", Dolnośląskie Wydawnictwo Edukacyjne, Wrocław 2000.
  6. D. Tokarski, B. Zegardło, P. Ogrodnik, P. Woliński, G. Adamczewski, "Analiza możliwości zastosowania nowoczesnej aparatury elektrotechnicznej w postaci kamery termowizyjnej do wykrywania mikromostków cieplnych w budynku przy zastosowaniu termografii",  "Wiadomości Elektrotechniczne" 8/2017.
  7. P. Klemm, "Budownictwo ogólne", t. 2 "Fizyka budowli", Wydawnictwo Arkady, Warszawa 2006.
  8. Katalogi firmy FLIR Systems.

Chcesz być na bieżąco? Zapisz się do naszego newslettera!

Komentarze

Powiązane

Trwałość murów licowych

Trwałość murów licowych Trwałość murów licowych

W artykule zostanie przedstawione ujęcie trwałości murów licowych w opracowywanym do wdrożenia w Polsce Eurokodzie EN 1996 „Projektowanie konstrukcji murowych” [1]. Problematyka ta ujęta jest w części...

W artykule zostanie przedstawione ujęcie trwałości murów licowych w opracowywanym do wdrożenia w Polsce Eurokodzie EN 1996 „Projektowanie konstrukcji murowych” [1]. Problematyka ta ujęta jest w części II „Uwarunkowania projektowe, dobór materiałów i wykonawstwo konstrukcji murowych”, która wskazuje również wiele norm związanych (m.in. grupy norm EN 771 [2], EN 998 [3] i pośrednio EN 845 [4]). Jednak w tej grupie norm zawarte są tylko ogólne wytyczne dotyczące zasad doboru materiałów. Doświadczenia...

Tynki gipsowe stosowane we wnętrzach – rodzaje i właściwości

Tynki gipsowe stosowane we wnętrzach – rodzaje i właściwości Tynki gipsowe stosowane we wnętrzach – rodzaje i właściwości

Tynki wewnętrzne, zwane także wyprawami tynkarskimi, to powłoki wykonane z zapraw przeznaczonych do pokrywania lub kształtowania powierzchni ścian i stropów. Należy jednak pamiętać, że tynk to nie tylko...

Tynki wewnętrzne, zwane także wyprawami tynkarskimi, to powłoki wykonane z zapraw przeznaczonych do pokrywania lub kształtowania powierzchni ścian i stropów. Należy jednak pamiętać, że tynk to nie tylko element zwiększający estetykę i wytrzymałość powierzchni ściany, lecz także czynnik zapewniający odpowiedni mikroklimat w pomieszczeniach, stanowiący o komforcie jego użytkowania. Aby te funkcje mógł pełnić w każdym wnętrzu, jego rodzaj należy starannie dobrać w zależności od podłoża oraz przewidywanego...

Materiały do systemów ociepleń ETICS

Materiały do systemów ociepleń ETICS Materiały do systemów ociepleń ETICS

Gdy patrzymy na ścianę wyklejoną termoizolacją, z której robotnicy zdejmują kolejne niezwiązane z podłożem płyty, zadajemy sobie pytanie: czy rzeczywiście dobór materiałów i ich wbudowanie są łatwe?

Gdy patrzymy na ścianę wyklejoną termoizolacją, z której robotnicy zdejmują kolejne niezwiązane z podłożem płyty, zadajemy sobie pytanie: czy rzeczywiście dobór materiałów i ich wbudowanie są łatwe?

Gładzie gipsowe w budownictwie

Gładzie gipsowe w budownictwie Gładzie gipsowe w budownictwie

Gładź jest ostatnią wierzchnią warstwą powierzchni tynkowanej, nadającą jej wysoką estetykę, wykonywaną z zaprawy lub masy tynkarskiej. Najbardziej szlachetna odmiana gładzi do wykonywania powłok wewnętrznych...

Gładź jest ostatnią wierzchnią warstwą powierzchni tynkowanej, nadającą jej wysoką estetykę, wykonywaną z zaprawy lub masy tynkarskiej. Najbardziej szlachetna odmiana gładzi do wykonywania powłok wewnętrznych w obiektach budowlanych to suche zaprawy tynkarskie wytwarzane na spoiwie gipsowym – tzw. gładzie gipsowe. Gładzie gipsowe stosuje się na powierzchniach ścian i sufitów w celu ich wyrównania, a dzięki temu uzyskania wysokiej jakości podłoży gładkich przeznaczonych do malowania lub tapetowania.

Płyty gipsowo-kartonowe w pomieszczeniach wilgotnych

Płyty gipsowo-kartonowe w pomieszczeniach wilgotnych Płyty gipsowo-kartonowe w pomieszczeniach wilgotnych

Historia obecności płyt gipsowo-kartonowych w Polsce ma już pięćdziesięcioletnią tradycję. Należy jednak zaznaczyć, że ten pierwszy okres stosowania (od 1957 do 1990 r.) bardzo zaszkodził opinii o przydatności...

Historia obecności płyt gipsowo-kartonowych w Polsce ma już pięćdziesięcioletnią tradycję. Należy jednak zaznaczyć, że ten pierwszy okres stosowania (od 1957 do 1990 r.) bardzo zaszkodził opinii o przydatności płyt gipsowo-kartonowych na polskich budowach. W tym pierwszym okresie była dostępna jedynie płyta, nie było natomiast żadnych akcesoriów ani kleju gipsowego czy gipsu szpachlowego, nie mówiąc już o profilach. Płyta g-k miała zastępować mokre tynki wewnętrzne, co dobitnie podkreśla obowiązująca...

Jak zwiększyć efektywność energetyczną budynków?

Jak zwiększyć efektywność energetyczną budynków? Jak zwiększyć efektywność energetyczną budynków?

Materiały zmiennofazowe (PCM, ang. phase change materials) wkomponowane w różny sposób w strukturę budynku zwiększają jego pojemność (bezwładność) cieplną. Duża pojemność cieplna konstrukcji budynku (zdolność...

Materiały zmiennofazowe (PCM, ang. phase change materials) wkomponowane w różny sposób w strukturę budynku zwiększają jego pojemność (bezwładność) cieplną. Duża pojemność cieplna konstrukcji budynku (zdolność do akumulacji ciepła) przyczynia się zaś do poprawy jego efektywności energetycznej, co przejawia się zmniejszeniem zużycia energii niezbędnej do zapewnienia i utrzymania komfortu cieplnego. Pozwala też na wykorzystanie energii ze źródeł odnawialnych bez dodatkowych kosztów inwestycyjnych.

Dom podziemny

Dom podziemny Dom podziemny

Budownictwo podziemne jest oszczędne i ekologiczne. Dom może harmonijnie współgrać z otoczeniem. W Polsce ta technologia jest jeszcze mało znana.

Budownictwo podziemne jest oszczędne i ekologiczne. Dom może harmonijnie współgrać z otoczeniem. W Polsce ta technologia jest jeszcze mało znana.

Izolacje aerożelowe

Izolacje aerożelowe Izolacje aerożelowe

Rosnące koszty wytwarzania energii konwencjonalnej oraz polityka UE zmierzająca do ograniczania zużycia energii i emisji gazów w krajach członkowskich skłaniają do poszukiwania coraz bardziej efektywnych...

Rosnące koszty wytwarzania energii konwencjonalnej oraz polityka UE zmierzająca do ograniczania zużycia energii i emisji gazów w krajach członkowskich skłaniają do poszukiwania coraz bardziej efektywnych termoizolacji, nawet mimo stosunkowo dużego kosztu ich wytwarzania. Takim materiałem izolacyjnym, który wydaje się spełniać rosnące wymagania, jest aerożel – materiał nanoporowaty, ultralekki i transparentny.

Tynki zewnętrzne z cementu romańskiego

Tynki zewnętrzne z cementu romańskiego Tynki zewnętrzne z cementu romańskiego

Zaprawy tynkarskie na bazie cementu romańskiego były powszechnie stosowane w budownictwie miejskim na przełomie XIX i XX w. Miały za zadanie chronić konstrukcję budynków przed wpływem czynników atmosferycznych...

Zaprawy tynkarskie na bazie cementu romańskiego były powszechnie stosowane w budownictwie miejskim na przełomie XIX i XX w. Miały za zadanie chronić konstrukcję budynków przed wpływem czynników atmosferycznych i zanieczyszczeń środowiska, a jednocześnie pełnić funkcję dekoracyjną. Po ich ponad 100-letniej eksploatacji można stwierdzić, że w przeważającej większości obserwowanych obiektów wygrały próbę czasu i zachowały funkcję wypraw bez specjalnych reperacji. Jednakże w wielu wypadkach wpływy atmosferyczne...

Nowe wymagania w ocenie wilgotnościowej przegród

Nowe wymagania w ocenie wilgotnościowej przegród Nowe wymagania w ocenie wilgotnościowej przegród

Od 1 stycznia 2009 r. obowiązuje znowelizowane rozporządzenie w sprawie warunków technicznych, jakim powinny opowiadać budynki i ich usytuowanie [12]. Ustawodawcy zaprezentowali w nim m.in. nowe podejście...

Od 1 stycznia 2009 r. obowiązuje znowelizowane rozporządzenie w sprawie warunków technicznych, jakim powinny opowiadać budynki i ich usytuowanie [12]. Ustawodawcy zaprezentowali w nim m.in. nowe podejście do oceny wilgotnościowej przegród. Jako właściwą wskazali normę PN-EN ISO 13788 [11], która od momentu jej wprowadzenia w 2001 r. miała status normy dobrowolnego stosowania. W związku z tym już wcześniej została wdrożona do procesu dydaktycznego na wielu uczelniach technicznych. Prowadzono również...

Termowizja jako weryfikacja jakości prac izolacyjnych

Termowizja jako weryfikacja jakości prac izolacyjnych Termowizja jako weryfikacja jakości prac izolacyjnych

Uzyskanie rzetelnej informacji o jakości i prawidłowości wykonanej w budynku izolacji termicznej może nie być proste. Istniejące budynki bardzo często nie mają dokumentacji lub jest ona niekompletna, a...

Uzyskanie rzetelnej informacji o jakości i prawidłowości wykonanej w budynku izolacji termicznej może nie być proste. Istniejące budynki bardzo często nie mają dokumentacji lub jest ona niekompletna, a dodatkowy problem mogą stanowić dokonane w trakcie realizacji zmiany technologii czy materiałów w stosunku do zaplanowanych w projekcie. Aby zatem dokonać poprawnej oceny, należy wykonać dodatkowe badania, najlepiej metodą bezinwazyjną. Taka bezinwazyjna weryfikacja prac izolacyjnych nie jest możliwa...

Izolacja aerożelowa na tle izolacji tradycyjnych

Izolacja aerożelowa na tle izolacji tradycyjnych Izolacja aerożelowa na tle izolacji tradycyjnych

Jedną ze współczesnych tendencji europejskich jest ograniczanie zużycia energii cieplnej w sektorze budowlanym, a co za tym idzie minimalizacja strat ciepła i zaostrzanie wymogów izolacyjności cieplnej....

Jedną ze współczesnych tendencji europejskich jest ograniczanie zużycia energii cieplnej w sektorze budowlanym, a co za tym idzie minimalizacja strat ciepła i zaostrzanie wymogów izolacyjności cieplnej. Zwiększenie parametrów izolacyjnych przegród budynku jest często bardzo trudne do uzyskania (przy istniejących grubych ścianach powoduje ograniczenie dopływu światła dziennego) lub wiąże się z wieloma kompromisami architektonicznymi i funkcjonalnymi (np. zmniejszeniem powierzchni użytkowej lub wysokości...

Nowe inwestycje a ochrona środowiska przed drganiami

Nowe inwestycje a ochrona środowiska przed drganiami Nowe inwestycje a ochrona środowiska przed drganiami

W ostatnich latach nastąpił intensywny rozwój budownictwa kubaturowego i komunikacyjnego. Nowym inwestycjom mogą towarzyszyć oddziaływania, przed którymi należy chronić środowisko. Jednym z takich oddziaływań...

W ostatnich latach nastąpił intensywny rozwój budownictwa kubaturowego i komunikacyjnego. Nowym inwestycjom mogą towarzyszyć oddziaływania, przed którymi należy chronić środowisko. Jednym z takich oddziaływań jest wpływ wibracji, czyli drgań mechanicznych (zwanych dalej krótko drganiami), na budynki i ludzi w nich przebywających (tzw. wpływy dynamiczne).

Właściwości akustyczne stropów i układów podłogowych

Właściwości akustyczne stropów i układów podłogowych Właściwości akustyczne stropów i układów podłogowych

Zapewnienie należytej ochrony przed hałasem jest jednym z podstawowych wymagań użytkowych stawianych obiektom budowlanym. Zostało ono sformułowane w Dyrektywie Unii Europejskiej 89/106/EEC92 oraz w Dokumencie...

Zapewnienie należytej ochrony przed hałasem jest jednym z podstawowych wymagań użytkowych stawianych obiektom budowlanym. Zostało ono sformułowane w Dyrektywie Unii Europejskiej 89/106/EEC92 oraz w Dokumencie Interpretacyjnym „Wymaganie podstawowe nr 5. Ochrona przed hałasem”. Podobne zapisy, włączające ponadto ochronę przeciwdrganiową, znajdują się w podstawowych aktach prawnych dotyczących budownictwa, do których należą: ustawa Prawo budowlane i związane z nią Rozporządzenie Ministra Infrastruktury...

Wpływ liniowych mostków cieplnych na parametry fizykalne ścian zewnętrznych budynku

Wpływ liniowych mostków cieplnych na parametry fizykalne ścian zewnętrznych budynku Wpływ liniowych mostków cieplnych na parametry fizykalne ścian zewnętrznych budynku

Podstawowym problemem w procedurach obliczeniowych jest sposób uwzględniania liniowych mostków cieplnych. Z tego względu zjawisko występowania mostka cieplnego jest zwykle niedostrzegane i pomijane przez...

Podstawowym problemem w procedurach obliczeniowych jest sposób uwzględniania liniowych mostków cieplnych. Z tego względu zjawisko występowania mostka cieplnego jest zwykle niedostrzegane i pomijane przez projektantów, architektów i konstruktorów.

Wymogi prawne związane z ewidencją materiałów zawierających azbest

Wymogi prawne związane z ewidencją materiałów zawierających azbest Wymogi prawne związane z ewidencją materiałów zawierających azbest

W związku z zagrożeniem dla zdrowia i życia powodowanym przez azbest wprowadzono w Polsce wiele przepisów regulujących postępowanie z wyrobami zawierającymi ten materiał.

W związku z zagrożeniem dla zdrowia i życia powodowanym przez azbest wprowadzono w Polsce wiele przepisów regulujących postępowanie z wyrobami zawierającymi ten materiał.

Jak określać charakterystykę energetyczną budynków?

Jak określać charakterystykę energetyczną budynków? Jak określać charakterystykę energetyczną budynków?

Zapotrzebowanie na energię netto do ogrzewania i chłodzenia stanowi istotny składnik ogólnej charakterystyki energetycznej budynków. Ponadto wiele wskaźników opartych na zapotrzebowaniu na energię netto...

Zapotrzebowanie na energię netto do ogrzewania i chłodzenia stanowi istotny składnik ogólnej charakterystyki energetycznej budynków. Ponadto wiele wskaźników opartych na zapotrzebowaniu na energię netto jest podstawą do porównywania koncepcji architektonicznych i szacowania przyszłych kosztów eksploatacji obiektów, w szerszej perspektywie zaś – do oceny wpływu budynków na środowisko. W wybranych przypadkach (dla budynków mieszkalnych wielorodzinnych i zamieszkania zbiorowego) wskaźniki zapotrzebowania...

Przepisy techniczne dotyczące ochrony przed hałasem w budynkach mieszkalnych i użyteczności publicznej

Przepisy techniczne dotyczące ochrony przed hałasem w budynkach mieszkalnych i użyteczności publicznej Przepisy techniczne dotyczące ochrony przed hałasem w budynkach mieszkalnych i użyteczności publicznej

Celem ochrony przeciwdźwiękowej w budynkach mieszkalnych i użyteczności publicznej jest zapewnienie takich warunków akustycznych, „aby poziom hałasu, na który będą narażeni użytkownicy [budynku – B.S.]...

Celem ochrony przeciwdźwiękowej w budynkach mieszkalnych i użyteczności publicznej jest zapewnienie takich warunków akustycznych, „aby poziom hałasu, na który będą narażeni użytkownicy [budynku – B.S.] lub ludzie znajdujący się w ich sąsiedztwie, nie stanowił zagrożenia dla ich zdrowia, a także umożliwiał im pracę, odpoczynek i sen w zadowalających warunkach”. Ten cel, zacytowany z rozporządzenia w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie [20, 24], przedstawiony...

Aerożel: amerykańska izolacja już w Polsce

Aerożel: amerykańska izolacja już w Polsce Aerożel: amerykańska izolacja już w Polsce

"Aerożel jest stosunkowo starym materiałem – wynaleziono go w 1931 r. jego objętość stanowi w ponad 90% powietrze, co czyni go najskuteczniejszym izolatorem o najniższej wartości współczynnika przewodzenia...

"Aerożel jest stosunkowo starym materiałem – wynaleziono go w 1931 r. jego objętość stanowi w ponad 90% powietrze, co czyni go najskuteczniejszym izolatorem o najniższej wartości współczynnika przewodzenia ciepła λ" - tłumaczą Jarosławowi Guzalowi Szymon Markiewicz – dyrektor handlowy, i Dariusz Krakowski – przedstawiciel handlowy firmy Aerogels Poland Nanotechnology Sp. z o.o.

Zjawisko wysadziny zmarzlinowej – metody zapobiegania

Zjawisko wysadziny zmarzlinowej – metody zapobiegania Zjawisko wysadziny zmarzlinowej – metody zapobiegania

Wysadzina zmarzlinowa to zjawisko polegające na podnoszeniu się ku górze powierzchni przemarzającej gruntu spoistego (gliny, iłu) wskutek zamarzania wody gruntowej podciąganej kapilarnie do strefy przemarzania,...

Wysadzina zmarzlinowa to zjawisko polegające na podnoszeniu się ku górze powierzchni przemarzającej gruntu spoistego (gliny, iłu) wskutek zamarzania wody gruntowej podciąganej kapilarnie do strefy przemarzania, a dokładniej: na skutek kolejno tworzących się w podłożu soczewek lodu.

Ściany zewnętrzne w systemach elewacji wentylowanych

Ściany zewnętrzne w systemach elewacji wentylowanych Ściany zewnętrzne w systemach elewacji wentylowanych

Wentylacja ścian zewnętrznych ocieplanych w technologiach lekkich-suchych pozornie stanowi niewiele znaczący fragment globalnego systemu wentylacji obiektu. W rzeczywistości jest to istotny jego składnik,...

Wentylacja ścian zewnętrznych ocieplanych w technologiach lekkich-suchych pozornie stanowi niewiele znaczący fragment globalnego systemu wentylacji obiektu. W rzeczywistości jest to istotny jego składnik, bo w takich strefach zachodzą skomplikowane zjawiska klimatyczne związane ze zmianami tempa dyfuzji powietrza suchego i pary wodnej oraz migracją wilgoci, adekwatne do warunków cieplno-wilgotnościowych panujących po obu stronach ścian. Zjawiska te rzutują na jakość konstrukcji obiektu i kształtują...

Uciążliwa pleśń na ścianie - skąd się bierze i jak ją zwalczać?

Uciążliwa pleśń na ścianie - skąd się bierze i jak ją zwalczać? Uciążliwa pleśń na ścianie - skąd się bierze i jak ją zwalczać?

Na obecność pleśni na ścianach wpływa wiele czynników, które tworzą sprzyjający klimat dla jej rozwoju. Pleśń najlepiej rozwija się w środowisku o podwyższonym zawilgoceniu i umiarkowanych temperaturach....

Na obecność pleśni na ścianach wpływa wiele czynników, które tworzą sprzyjający klimat dla jej rozwoju. Pleśń najlepiej rozwija się w środowisku o podwyższonym zawilgoceniu i umiarkowanych temperaturach. Na ścianach wewnątrz pomieszczeń są to miejsca występowania tzw. mostków termicznych, spowodowane brakiem docieplenia muru, gdzie na styku powierzchni ściany z otoczeniem występuje zjawisko skraplania się wilgoci.

Jak izolować ściany zewnętrzne budynków?

Jak izolować ściany zewnętrzne budynków? Jak izolować ściany zewnętrzne budynków?

Inwestor czy właściciel budynku powinien zadbać o to, by budynek spełniał minimalne wymagania dotyczące izolacyjności cieplnej, wskazane w Rozporządzeniu Ministra Infrastruktury z dnia 12 kwietnia 2002...

Inwestor czy właściciel budynku powinien zadbać o to, by budynek spełniał minimalne wymagania dotyczące izolacyjności cieplnej, wskazane w Rozporządzeniu Ministra Infrastruktury z dnia 12 kwietnia 2002 r. w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie (DzU z 2002 r. nr 75, poz. 690 z późn. zm.). W jego interesie jest jednak rozważenie zastosowania lepszej ochrony cieplnej, niż wymagana w przepisach, tzn. wyboru takich rozwiązań, których efektywność ekonomiczna...

Termowizja – zasady ogólne, środowisko pomiarowe, budowa kamer, przykłady zastosowania

Termowizja – zasady ogólne, środowisko pomiarowe, budowa kamer, przykłady zastosowania Termowizja – zasady ogólne, środowisko pomiarowe, budowa kamer, przykłady zastosowania

Celem artykułu jest przybliżenie czytelnikom tematyki związanej z promieniowaniem podczerwonym, budową kamer i wykonywaniem pomiarów termowizyjnych.

Celem artykułu jest przybliżenie czytelnikom tematyki związanej z promieniowaniem podczerwonym, budową kamer i wykonywaniem pomiarów termowizyjnych.

Najnowsze produkty i technologie

Kupuj i sprzedawaj materiały izolacyjne na platformie merXu

Kupuj i sprzedawaj materiały izolacyjne na platformie merXu Kupuj i sprzedawaj materiały izolacyjne na platformie merXu

Nowoczesne rozwiązania oraz narzędzia pomagają w prowadzeniu działalności i pozwalają firmom pozostać konkurencyjnym na rynku budowlanym. Jakie funkcjonalności wyróżniają merXu?

Nowoczesne rozwiązania oraz narzędzia pomagają w prowadzeniu działalności i pozwalają firmom pozostać konkurencyjnym na rynku budowlanym. Jakie funkcjonalności wyróżniają merXu?

Materiały do hydroizolacji fundamentów z ochroną przeciwko przenikaniu radioaktywnego radonu

Materiały do hydroizolacji fundamentów z ochroną przeciwko przenikaniu radioaktywnego radonu Materiały do hydroizolacji fundamentów z ochroną przeciwko przenikaniu radioaktywnego radonu

Poza technicznymi i sztucznymi źródłami promieniowania, będącymi najczęściej przedmiotem rozmaitych dyskusji, często mamy także do czynienia ze źródłami promieniowania pochodzenia naturalnego. Należy do...

Poza technicznymi i sztucznymi źródłami promieniowania, będącymi najczęściej przedmiotem rozmaitych dyskusji, często mamy także do czynienia ze źródłami promieniowania pochodzenia naturalnego. Należy do nich emisja radonu – radioaktywnego gazu szlachetnego pochodzącego z gruntu. Do uszczelnienia budowli przeciwko wnikaniu tego szkodliwego dla zdrowia gazu przeznaczone są zarówno samoprzylepne membrany bitumiczno‑polimerowe KÖSTER KSK SY 15, jak i dwuskładnikowe, bitumiczno‑polimerowe masy uszczelniające...

THERMANO według nowych wymagań budowlanych 2021

THERMANO według nowych wymagań budowlanych 2021 THERMANO według nowych wymagań budowlanych 2021

Płyty Thermano to najbardziej uniwersalny materiał do termoizolacji budynków i pomieszczeń. Posiadają wiele atutów, które odgrywają kluczową rolę przy realizacjach różnego rodzaju. Pozwalają również na...

Płyty Thermano to najbardziej uniwersalny materiał do termoizolacji budynków i pomieszczeń. Posiadają wiele atutów, które odgrywają kluczową rolę przy realizacjach różnego rodzaju. Pozwalają również na spełnienie wymagań wynikających z nowych Warunków Technicznych obowiązujących od 2021 roku.

Pasywne systemy mocowań do elewacji wentylowanych

Pasywne systemy mocowań do elewacji wentylowanych Pasywne systemy mocowań do elewacji wentylowanych

AGS zajmuje się projektowaniem i produkcją innowacyjnych i niespotykanych dotąd na rynku systemów mocowań do elewacji wentylowanych, elewacji klinkierowych i ciężkich okładzin. Dynamiczny rozwój spółki...

AGS zajmuje się projektowaniem i produkcją innowacyjnych i niespotykanych dotąd na rynku systemów mocowań do elewacji wentylowanych, elewacji klinkierowych i ciężkich okładzin. Dynamiczny rozwój spółki oraz ciągłe rozbudowywanie i ulepszanie oferty produktowej przyczyniły się do uzyskania prawa ochrony własności intelektualnej oraz Krajowej Oceny Technicznej.

Co zyskasz z nowymi oknami dachowymi?

Co zyskasz z nowymi oknami dachowymi? Co zyskasz z nowymi oknami dachowymi?

Szacuje się, że budynki w Europie pochłaniają aż 40% całkowitego zużycia energii, z czego najwięcej przeznaczone jest na ogrzewanie. Dążenie do poprawy efektywności energetycznej budynków znajduje swoje...

Szacuje się, że budynki w Europie pochłaniają aż 40% całkowitego zużycia energii, z czego najwięcej przeznaczone jest na ogrzewanie. Dążenie do poprawy efektywności energetycznej budynków znajduje swoje odzwierciedlenie nie tylko w nowych przepisach, ale też w rozwiązaniach w segmencie stolarki okiennej. Mają one spełnić oczekiwania inwestorów, którzy troszczą się o swój portfel, ale też o zdrowie i komfort użytkowania wnętrz.

Zmiany w Warunkach Technicznych – wybierz najcieplejszy produkt?

Zmiany w Warunkach Technicznych – wybierz najcieplejszy produkt? Zmiany w Warunkach Technicznych – wybierz najcieplejszy produkt?

Najpopularniejszym tradycyjnym materiałem izolacyjnym do dachów skośnych jest wełna mineralna. Mineralna wełna szklana climowool to jeden z najbardziej ekologicznych produktów dostępnych na rynku. Dzięki...

Najpopularniejszym tradycyjnym materiałem izolacyjnym do dachów skośnych jest wełna mineralna. Mineralna wełna szklana climowool to jeden z najbardziej ekologicznych produktów dostępnych na rynku. Dzięki procesowi produkcyjnemu wykorzystującemu wyłącznie naturalne surowce mamy gwarancję, że dom został ocieplony produktem przyjaznym dla środowiska i mieszkańców, a jego jakość i wysoki parametr termoizolacyjny zagwarantują nie tylko cieplejszy dom zimą, ale i chłodniejszy latem.

Ocieplenie poddasza – energooszczędność i komfort

Ocieplenie poddasza – energooszczędność i komfort Ocieplenie poddasza – energooszczędność i komfort

Od nowoczesnego domu oczekujemy komfortu mieszkania i niskich rachunków za eksploatację. Jeden z kluczowych elementów, który wpływa na realizację powyższych oczekiwań, to skuteczna izolacja poddasza.

Od nowoczesnego domu oczekujemy komfortu mieszkania i niskich rachunków za eksploatację. Jeden z kluczowych elementów, który wpływa na realizację powyższych oczekiwań, to skuteczna izolacja poddasza.

Platforma merXu.com – jak z niej korzystać?

Platforma merXu.com – jak z niej korzystać? Platforma merXu.com – jak z niej korzystać?

Na uruchomionej niedawno platformie www.merXu.com, na której firmy mogą handlować pomiędzy sobą towarami przemysłowymi i okołobudowlanymi, znajdziemy już kilkaset tysięcy ofert dotyczących m.in. materiałów...

Na uruchomionej niedawno platformie www.merXu.com, na której firmy mogą handlować pomiędzy sobą towarami przemysłowymi i okołobudowlanymi, znajdziemy już kilkaset tysięcy ofert dotyczących m.in. materiałów budowlanych, instalacji, izolacji czy artykułów elektrotechnicznych i oświetleniowych. Warto przyjrzeć się temu marketplace’owi, który wielu polskim firmom może dać szansę na znaczne poszerzenie grona kontrahentów – nie tylko w Polsce, ale i za granicą. Jakie funkcjonalności pomocne w prowadzeniu...

Iniekcja uszczelniająca żelem akrylowym KÖSTER Injektion Gel G4 żelbetowej płyty fundamentowej podziemnej hali pieca do wytopu szkła

Iniekcja uszczelniająca żelem akrylowym KÖSTER Injektion Gel G4 żelbetowej płyty fundamentowej podziemnej hali pieca do wytopu szkła Iniekcja uszczelniająca żelem akrylowym KÖSTER Injektion Gel G4 żelbetowej płyty fundamentowej podziemnej hali pieca do wytopu szkła

W ramach prowadzonych prac modernizacyjnych i okresowej wymiany pieca do wytopu szkła podjęto decyzję o usunięciu powstałych podczas dotychczasowej eksploatacji nieszczelności płyty fundamentowej. Płyta...

W ramach prowadzonych prac modernizacyjnych i okresowej wymiany pieca do wytopu szkła podjęto decyzję o usunięciu powstałych podczas dotychczasowej eksploatacji nieszczelności płyty fundamentowej. Płyta o wymiarach w świetle ścian 35,50x36,27 m i grubości 1,60 m wykazywała liczne i okresowo intensywne przecieki, które powodowały konieczność tymczasowego odprowadzania przenikających wód gruntowych systemem rowków powierzchniowych wyciętych w płycie do studzienek zbiorczych i odpompowywania. Powierzchnia...

Copyright © 2004-2019 Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Spółka komandytowa, nr KRS: 0000537655. Wszelkie prawa, w tym Autora, Wydawcy i Producenta bazy danych zastrzeżone. Jakiekolwiek dalsze rozpowszechnianie artykułów zabronione. Korzystanie z serwisu i zamieszczonych w nim utworów i danych wyłącznie na zasadach określonych w Zasadach korzystania z serwisu.
Portal Budowlany - Elektro.Info.pl

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim urządzeniu końcowym. W każdym momencie możesz dokonać zmiany ustawień przeglądarki dotyczących cookies. Nim Państwo zaczną korzystać z naszego serwisu prosimy o zapoznanie się z naszą polityką prywatności oraz Informacją o Cookies. Więcej szczegółów w naszej Polityce Prywatności oraz Informacji o Cookies. Administratorem Państwa danych osobowych jest Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Sp.K., nr KRS: 0000537655, z siedzibą w 04-112 Warszawa, ul. Karczewska 18, tel. +48 22 810-21-24, właściciel strony www.izolacje.com.pl. Twoje Dane Osobowe będą chronione zgodnie z wytycznymi polityki prywatności www.izolacje.com.pl oraz zgodnie z Rozporządzeniem Parlamentu Europejskiego i Rady (UE) 2016/679 z dnia 27 kwietnia 2016r i z Ustawą o ochronie danych osobowych Dz.U. 2018 poz. 1000 z dnia 10 maja 2018r.