Energooszczędne rozwiązania stosowane przy wymianie lub renowacji okien
Energy efficient solutions used in replacement or modernization of windows
Jak poprawić efektywność energetyczną budynków w obrębie stolarki okiennej?
Aluplast
Ze względu na znacznie niższą izolacyjność termiczną w stosunku do przegród nieprzezroczystych przeszklenia stanowią słabe miejsce w okrywie budynków. Pełnią jednak w nim wiele ważnych funkcji.
Zobacz także
BREVIS S.C. Czy nawiewniki w oknach są obowiązkowe – najważniejsze Informacje
Potrzeba zapewnienia właściwej wentylacji domu czy mieszkania nie stanowi raczej zaskoczenia dla nikogo. Choć może nie zawsze mamy na uwadze utrzymanie odpowiedniej wilgotności powietrza i dzięki temu...
Potrzeba zapewnienia właściwej wentylacji domu czy mieszkania nie stanowi raczej zaskoczenia dla nikogo. Choć może nie zawsze mamy na uwadze utrzymanie odpowiedniej wilgotności powietrza i dzięki temu uniknięcia negatywnych skutków zbyt dużej wilgotności, to już dyskomfort siedzenia w dusznym i nieprzewietrzonym pomieszczeniu zna każdy. Oprócz wentylacji grawitacyjnej do niedawna odpowiednią cyrkulację powietrza zapewniały nieszczelności w oknach. Jednak rozwój technologiczny i zwiększenie szczelności...
DAKO Jak wybrać drzwi do nowoczesnego domu?
Wybór drzwi wejściowych nie jest łatwym zadaniem. Muszą one wpasowywać się w stylistykę budynku, a przy tym spełniać wszystkie wymagania dotyczące bezpieczeństwa i komfortu użytkowania. Zobacz, na jakie...
Wybór drzwi wejściowych nie jest łatwym zadaniem. Muszą one wpasowywać się w stylistykę budynku, a przy tym spełniać wszystkie wymagania dotyczące bezpieczeństwa i komfortu użytkowania. Zobacz, na jakie aspekty trzeba zwrócić szczególną uwagę, wybierając drzwi zewnętrzne!
RoletyAlu Sp. z o.o. Jak łatwo kupić rolety zewnętrzne przez internet?
Zamawiając rolety zewnętrzne przez internet, można skorzystać z bogatej oferty asortymentu, a dodatkowo zyskać pewność, że zostaną wykonane zgodnie z wymiarami podanymi przez klienta. Dodatkowo możliwość...
Zamawiając rolety zewnętrzne przez internet, można skorzystać z bogatej oferty asortymentu, a dodatkowo zyskać pewność, że zostaną wykonane zgodnie z wymiarami podanymi przez klienta. Dodatkowo możliwość złożenia zamówienia bezpośrednio u producenta rolet zewnętrznych pozwala wyeliminować pośredników, co skraca czas potrzeby na realizację zamówień i przekłada się na dużo niższe ceny.
Abstrakt |
---|
W artykule przedstawiono możliwości poprawy efektywności energetycznej budynków w obrębie stolarki okiennej. Zaprezentowano energooszczędne rozwiązania stosowane przy montażu nowych okien. Omówiono możliwości poprawy izolacyjności termicznej stolarki w budynkach zabytkowych. Zaproponowano rozwiązania zmniejszające przegrzewanie pomieszczeń w okresie letnim. Energy efficient solutions used in replacement or modernization of windowsThe article presents the options for improving energy efficiency of buildings within the scope of window joinery. There is a presentation of energy efficiency solutions applied in installation of new windows. Options for improving thermal insulation efficiency of window joinery in historical buildings are also discussed. Certain solutions are proposed to mitigate the problem of space overheating in summer. |
Okna umożliwiają oświetlenie wnętrz światłem dziennym, zapewniają odpowiednią ilość powietrza w pomieszczeniach oraz stwarzają poczucie łączności z otoczeniem. Z przeszkleniem elewacji wiąże się również wykorzystanie zysków ciepła od promieniowania słonecznego, tak ważne w budynkach niskoenergetycznych.
Zwiększony udział zysków w bilansie cieplnym budynków ma jednak miejsce w początkowych i końcowych miesiącach sezonu grzewczego oraz dla pomieszczeń z przeszkleniem w elewacji południowej. W trakcie eksploatacji budynków okna przyczyniają się do powstawania znacznych strat ciepła na przenikanie, co jest szczególnie istotne w budynkach, które charakteryzują się dużym przeszkleniem elewacji.
Niższa temperatura na wewnętrznej powierzchni okien oraz w ich pobliżu w okresie zimowym, a także nadmierne zyski w okresie letnim, mogą prowadzić do utraty komfortu cieplnego osób przebywających w pomieszczeniach. Problem stanowią tu zwłaszcza budynki stare, w których jakość stolarki, jej izolacyjność i szczelność jest w złym stanie, co pogłębia straty ciepła i jego zużycie.
Okna a oszczędność energii
Spośród ok. 6 mln budynków eksploatowanych na obszarze Polski mniej więcej 85% powstała przed 1991 r. i charakteryzuje się wysoką energochłonnością [1, 2].
Jednym z elementów racjonalizacji zużycia energii w budownictwie są przedsięwzięcia związane z termomodernizacją budynków. W obliczu stałego wzrostu zapotrzebowania na energię uważa się, że oszczędność i efektywne jej wykorzystanie stanie się alternatywnym i istotnym źródłem energii (RYS. 1).
RYS. 1. Wzrost światowego zapotrzebowania na energię i źródła jego pokrycia na przestrzeni lat; rys. na podstawie danych firmy Schüco [3]
Wprowadzanie innowacyjnych technologii i rozwiązań oraz stopniowe dostosowywanie istniejących zasobów do standardów budownictwa energooszczędnego łączy efekty energetyczne i ekonomiczne z dbałością o komfort użytkowników oraz ograniczaniem negatywnego wpływu budynków na środowisko. Szacuje się, że roczne oszczędności energii osiągnięte dzięki termomodernizacji mogą w 2030 r. osiągnąć ok. 26% zużycia z roku 2013 [4].
Potencjał możliwości wynikających z termomodernizacji budynków w ramach poszczególnych działań szacowany jest na:
- 33-60% dla oszczędności energii dzięki poprawie termoizolacyjności cieplnej ścian,
- 16-21% dla modernizacji systemu wentylacji,
- 14-20% dla poprawy termoizolacyjności przegród przezroczystych,
- 10-12% dla regularnych przeglądów i remontów kotłów c.o.,
- 50-80% dla modernizacji systemu przygotowania ciepłej wody użytkowej z wykorzystaniem OZE.
Izolacyjność cieplna stolarki w budynkach istniejących w znacznym stopniu odbiega od obecnych wymagań. Wymagania w zakresie izolacyjności stolarki zostały wprowadzone w Polsce dopiero w 1983 r. Maksymalna wartość współczynnika przenikania ciepła przyjmowana dla okna wynosiła wówczas 2,6 W/(m2·K). Stare drewniane okna pojedynczo szklone mogą mieć wartość współczynnika przenikania ciepła nawet na poziomie 5,0-6,0 W/(m²·K) i tu potencjał racjonalizacji zużycia ciepła w wyniku ich renowacji czy wymiany może sięgać 40-80% [5].
Obecnie okna nie powinny mieć wyższej wartości współczynnika przenikania ciepła niż 1,1 W/(m2·K), jednak docelową wartością w wymaganiach z zakresu izolacyjności cieplnej jest od stycznia 2021 r. Umax= 0,9 W/(m2·K) [6].
Zważywszy, że od 2021 r. budynki powinny być zeroenergetyczne, to wartości podane w warunkach technicznych są wyższe od tych proponowanych nawet dla budynków pasywnych (standard NF 15), natomiast dla budynków energooszczędnych (standard NF 40) odpowiadają obecnym wymaganiom [7] (TABELA 1).
Niska izolacyjność cieplna stolarki jest przyczyną znacznych strat ciepła z budynków. Straty ciepła przez okna mogą stanowić nawet do 45% w zależności od typu budynku, ich izolacyjności termicznej oraz powierzchni.
Ale nie tylko poziom izolacyjności cieplnej w przypadku okien ma decydujący wpływ na straty ciepła i wzrost jego zużycia. Duża nieszczelność w przypadku starych okien wpływa na obniżanie się temperatury powietrza we wnętrzach nie tylko w pobliżu okien, ale i z dala od nich, zwłaszcza w czasie wietrznej pogody.
Na podstawie prowadzonych badań stwierdzono, że w przypadku nieszczelnych okien temperatura powietrza w środku pomieszczeń na wysokości 1,5 m od podłogi była od 2°C do 9°C niższa niż w przypadku szczelnych okien. Gradient temperatury kształtował się na poziomie 1,5-2,5°C/m i 4–6,5°C/m. Stwierdzono równocześnie zróżnicowanie temperatur i prędkości przepływu powietrza na głębokości pomieszczeń.
W pobliżu nieszczelnych okien notowane temperatury powietrza były od 1°C do 3°C niższe niż w środku pomieszczeń, a prędkość przepływu powietrza wzrastała ok. 4- do 6-krotnie. Obniżenie temperatur z powodu nieszczelnych okien potęgowało wyraźnie zużycie ciepła w badanych obiektach.
Ważnym problemem jest również sposób zamontowania okna w murze, które może tworzyć mostek cieplny o znacznym liniowym współczynniku przenikania ciepła i wydatnie zwiększać wartość całkowitego współczynnika przenikania ciepła ścian w stosunku do wartości współczynnika bez liniowych mostków cieplnych. Wartości liniowych współczynników przenikania ciepła przy różnych rodzajach umieszczenia okna w murze dwu- i trójwarstwowym przedstawiono na RYS. 2-7.
RYS. 2-7. Wartości liniowego współczynnika przenikania ciepła przy różnych sposobach montażu okna w murze; rys. opracowanie na podstawie PN-EN ISO 14683:2008 [8]
Zastosowanie nowych okien
Najprostszym sposobem poprawy izolacyjności cieplnej w obszarze stolarki budowlanej jest jej wymiana. Na polskim rynku istnieje wielu producentów nowoczesnych, energooszczędnych okien, którzy dostosowali swoją ofertę do zaostrzających się przepisów w zakresie izolacyjności termicznej.
Wartość współczynnika przenikania ciepła danego okna Uw wyznacza się na podstawie współczynników przenikania ciepła szyby Ug i ramy Uf, pola ich powierzchni oraz dodatku na liniowy mostek cieplny spowodowany łącznymi efektami cieplnymi oszklenia, ramki dystansowej i ramy. Ponieważ rama ma wyższą wartość współczynnika przenikania ramy od współczynnika przenikania ciepła szyby, więc wraz ze wzrostem wielkości okna maleje wartość jego współczynnika przenikania ciepła.
Stosowane powszechnie szyby zespolone mają konstrukcję jednokomorową. Wzrost izolacyjności termicznej pakietów szybowych można uzyskać przez zwiększenie ilości komór, zastosowanie powłok niskoemisyjnych oraz wypełnianie przestrzeni międzyszybowej gazami o niższej przewodności cieplnej od powietrza, a także użycie tzw. ciepłych ramek dystansowych. Na RYS. 8-10 przedstawiono schematy budowy pakietów szyb zespolonych jedno- dwu- i trzykomorowych.
Gazy stosowane w przestrzeniach międzyszybowych to zwykle argon, którego wartość współczynnika przewodzenia ciepła jest niższa o 32% od powietrza, rzadziej krypton o wartości współczynnika przewodzenia ciepła niższej o 64% od powietrza. Można wykorzystywać również ksenon, którego przewodność cieplna jest niższa od powietrza o 79%, jednak jego koszt jest znaczny. Zastosowanie gazu innego niż powietrze zmniejsza przepływ ciepła przez system szyby zespolonej.
RYS. 8-10. Schematy budowy pakietów szyb zespolonych jedno- (8), dwu- (9) i trzykomorowych (10); rys. www.oknotest.pl
W zależności od rodzaju gazu konwekcja w szybie zespolonej posiada wartość minimum dla określonego odstępu między szybami, np. powietrze - ok. 16 mm, argon - 15-18 mm, a krypton - 10-12 mm.
W nowoczesnych rozwiązaniach przynajmniej jedna szyba pokryta jest powłoką niskoemisyjną LE. Szkło takie charakteryzuje się kilkakrotnie niższą wartością współczynnika emisyjności < 0,2 niż szkło zwykłe o e = 0,837, ma zdolność do odbijania promieniowania niskotemperaturowego (długofalowego) oraz radykalnie wyższą izolacyjność termiczną dla zestawów szybowych. Współczynnik przepuszczalności światła jest zbliżony do zwykłego szkła bezbarwnego.
Powłoki z emisyjnością do 0,01 (1%) są w stanie odbijać do 99% padającego na nie długofalowego promieniowania cieplnego. Pozwala to na niemal całkowitą eliminację strat ciepła w wyniku promieniowania.
Obecnie w większości szyb zespolonych stosuje się ramki dystansowe z aluminium. Alternatywę stanowią cieniutkie profile ze stali szlachetnej charakteryzujące się znacząco niższą przewodnością cieplną niż aluminium. Wytrzymałość mechaniczna i dyfuzyjność tych profili jest porównywalna do parametrów profili aluminiowych.
Inne rozwiązanie stanowią ramki dystansowe z tworzyw sztucznych. Wprowadzono też ramki z tworzywa sztucznego i folii ze stali szlachetnej. Profil metalowy może też być zastąpiony specjalną wytłaczaną substancją plastyczną, która w procesie produkcji umieszczana jest między szybami, a po ostygnięciu gwarantuje wymaganą wytrzymałość mechaniczną i szczelność na dyfuzję gazów.
Decydujące dla tej wartości współczynnika przenikania ciepła danego oszklenia Ug są emisyjność powłoki, szerokość przestrzeni międzyszybowej, a także rodzaj oraz stopień wypełnienia gazem szlachetnym.
W TABELI 2 zaprezentowano podstawowe parametry dla kilku przykładowych zestawów szyb zespolonych
- gn - współczynnik całkowitej przepuszczalności energii promieniowania słonecznego dla danego typu oszklenia,
- LR - współczynnik odbicia promieniowania widzialnego,
- LT - współczynnik przepuszczania promieniowania widzialnego
- oraz Ug - współczynnik przenikania ciepła szyby w oparciu o dane zaczerpnięte z wybranych stron internetowych producentów.
Zastosowanie gazu innego niż powietrze zmniejsza przepływ ciepła przez system szyby zespolonej.
Firmy deklarują posiadanie w swojej ofercie trzykomorowych zestawów szyb zespolonych osiągających współczynnik Ug na poziomie 0,4 W/(m2·K) przy wypełnieniu argonem oraz 0,3 W/(m2·K) przy wypełnieniu kryptonem.
Istotny udział w kształtowaniu się współczynnika przenikania ciepła dla okien mają ich ramy.
Wielokomorowe profile i wkładki termoizolacyjne wydatnie redukują przenikanie ciepła. Ważna jest konstrukcja i liczba komór profilu okiennego, a także materiał wkładki.
Obecnie standardem jest wykonywanie profili 3-, 4-, 5- oraz 6-komorowych, choć dostępne są również 7- i 8-komorowe.
Na RYS. 11-12 zaprezentowano budowę 5-komorowego profilu z PVC o współczynniku Uf = 1 W/(m2·K) wraz z przebiegiem izoterm.
Jako wkładki termoizolacyjne w komorach profili najczęściej stosuje się kształtki styropianowe oraz wypełnienie komór pianą poliuretanową, co pozwala wydatnie obniżyć wartość współczynnika przenikania ciepła okna.
W zastosowanym na RYS. 13–14 rozwiązaniu z ramą aluminiową wartość współczynnika przenikania ciepła okna wynosi 0,52 W/(m2·K) z zestawem trójkomorowym o Ug= 0,3 W/(m2·K).
Do niedawna jedynym usztywnieniem konstrukcji okiennych były stalowe wzmocnienia. Obecnie stosuje się termoplastyczne wkładki wzmocnione włóknem szklanym z tworzywa Ultradur High Speed. Uszczelki gumowe zastąpiono materiałami o wyższej odporności na warunki atmosferyczne czy działanie wody.
Niewłaściwe osadzenie okna w murze może zmniejszyć korzyści wynikające z zastosowania okien o bardzo dobrych własnościach izolacyjnych, poprzez znaczną wartość dodatku na liniowy mostek cieplny.
Utrzymanie odpowiedniej wartość temperatury na wewnętrznej powierzchni ramy i ściany jest istotne również ze względu na możliwość rozwoju pleśni czy wystąpienia kondensacji pary wodnej.
RYS. 15-16. Usytuowanie okna w warstwie izolacji w ścianie dwuwarstwowej (15) i trójwarstwowej (16); rys. illbruck.com
Z krzywej punktu rosy wynika, że aby nie dochodziło do niepożądanych zjawisk, temperatura nie może spaść poniżej 12,6°C. Najlepszym rozwiązaniem jest usytuowanie okien w warstwie izolacji, tak aby całkowicie wyeliminować ten mostek cieplny.
Oferowane na rynku rozwiązania systemowe umożliwiają wysunięcie okna poza obrys muru. Zasada usytuowania okien w izolacji odnosi się także do ich montażu w ścianie trójwarstwowej (RYS. 15-16).
Usytuowanie okna w warstwie izolacji zabezpiecza także izolację montażową okna oraz zapewnia odpowiednie warunki cieplno-wilgotnościowe na wewnętrznej powierzchni ściany i ramy.
Przebieg izoterm przy usytuowaniu okna w warstwie izolacji w przypadku ściany o konstrukcji dwuwarstwowej i trójwarstwowej przedstawiono na RYS. 17-18.
W przypadku umieszczenia okna w murze ważnym elementem jest wykonanie ocieplenia tak, aby jak najwięcej zakrywało ono ramę okna.
Na RYS. 19-20 przedstawiono przebieg izoterm dla połączenia okna ze ścianą w przypadku, gdy okno ma całkowicie odkrytą ramę oraz gdy rama okna jest zasłonięta ociepleniem o gr. 5,5 cm.
Przy ocieplonej ramie następuje wzrost temperatury w ścianie w obszarze jej styku z oknem. Dobrym rozwiązaniem byłoby tu także zastosowanie podkładu podparapetowego, np. z twardego styropianu.
RYS. 17-18. Przebieg izoterm w ścianie dwuwarstwowej (17) i trójwarstwowej (18) przy usytuowaniu okna w warstwie izolacji; rys. www.oknagalio.pl
RYS. 19-20. Przebieg izoterm dla połączenia okna ze ścianą przy ramie odsłoniętej (19) i ocieplonej (20); rys. oknagalio.pl
Renowacja okien w budynkach zabytkowych
W budynkach zabytkowych, gdzie wymiana okien wiąże się z utratą wartości historycznej budowli, idealnym rozwiązaniem jest ich renowacja. Jednak okna pojedynczo szklone po renowacji, pomimo zwiększenia ich szczelności, nadal będą charakteryzowały się niską izolacyjnością cieplną.
Można ją poprawić bez ingerencji w zabytkową strukturę okna przez montaż skrzydeł lub paneli szklonych od strony pomieszczenia - ewentualnie tylko na sezon grzewczy. Stosunkowo tanim rozwiązaniem jest zastosowanie panelu z tworzywa sztucznego mocowanego za pomocą pasków magnetycznych.
Zadanie poprawy izolacyjności cieplnej jest ułatwione w przypadku okien z dwoma skrzydłami - wówczas skrzydło wewnętrzne można wymienić na skrzydło jednoramowe z szybą zespoloną.
Zabezpieczenia przeciwsłoneczne
Okna w budynkach to nie tylko problem strat ciepła w sezonie grzewczym. Nadmierne przeszklenia są często przyczyną uciążliwego przegrzewania pomieszczeń w okresie letnim i strat energii w przypadku ich chłodzenia. Zgodnie z wymaganiami dotyczącymi oszczędności energii należy ograniczać jej dopływ do pomieszczeń w tym czasie.
Przepisy regulują tu wartość współczynnika przepuszczalności energii całkowitej okna, przegród szklanych i przezroczystych g, który powinien być nie większy niż 0,35. Przegrzewanie pomieszczeń można ograniczyć poprzez zastosowanie szkła refleksyjnego lub absorpcyjnego.
Szkło refleksyjne powstaje na bazie szkła float po poddaniu go obróbce polegającej na napyleniu selektywnej powłoki z twardych tlenków metali. Warstwa jest częściowo wtopiona w szło, co zapewnia jej dużą trwałość. Powłoka posiada wysoki współczynnik odbicia promieniowania długofalowego, przez co ogranicza przedostawanie się go do wnętrza.
Zastosowanie szyb ze szkłem refleksyjnym chroni pomieszczenia przed zbytnim przegrzewaniem, szczególnie w okresie letnim, a w zimie ogranicza wypromieniowanie ciepła z wnętrza pomieszczenia, zmniejsza jednak zyski ciepła.
Szyby ze szkłem refleksyjnym mogą zapewnić odpowiednią ilość dziennego światła, gdyż cechuje je przepuszczalność promieniowania widzialnego w przedziale 40–70%, a refleksyjność szyb utrzymuje się na poziomie 15-45%.
Szyby absorpcyjne produkuje się przez dodanie do stopionego wsadu szklanego tlenków metali, które nadają mu zabarwienie. Szkło to ogranicza i pochłania promieniowanie cieplne, cechuje je jednak niska refleksyjność i słabe odbicie światła. Działanie składników barwy światła białego powoduje powstanie w pomieszczeniach charakterystycznych barwnych refleksów.
Podobnie jak szyby refleksyjne, szyby absorpcyjne służą do ograniczenia przedostawania się do wnętrz budynków promieniowania słonecznego i w efekcie nadmiernego ich nagrzewania. W wyniku absorpcji energii dochodzi do nagrzewania szkła i emisji zredukowanej ilości ciepła do otoczenia i pomieszczenia. Szkło to absorbuje również pewną część promieniowania widzialnego, przez co warunki świetlne w pomieszczeniu ulegają pogorszeniu.
Polecanym rozwiązaniem, szczególnie w budynkach o dużych przeszkleniach, jest zastosowanie osłon przeciwsłonecznych. Osłony nie są, jak powłoki, elementem trwałym, więc można w ich przypadku regulować napływ promieniowania słonecznego do budynku w ciągu roku, nie ograniczając zysków ciepła w sezonie grzewczym i nie powodując nadmiernego przegrzewania pomieszczeń w okresie letnim.
Można zastosować osłony zewnętrzne lub wewnętrzne. Wewnątrz stosuje się zwykłe zasłony, rolety lub żaluzje. Materiałem na rolety mogą być maty, tkaniny, bambus czy papier. Całkowicie zaciemniające rolety pokryte są od strony okna materiałem odbijającym promieniowanie słoneczne.
Rolety z prowadnicami nawija się na wałki schowane w kasetach, które mocuje się do listew przyszybowych, ościeżnic, ścian czy sufitów. Rolety wolnowiszące zamiast kasety mają niezabudowaną rolkę, na którą nawija się materiał z zastosowaniem żyłek napinających, biegnących od rolki do dolnej części okna. Rolety plisowane także nie mają kasety, a dzięki dwóm poziomym belkom można przesuwać splisowaną tkaninę w górę i w dół i zasłaniać dowolny fragment okna.
W roletach rzymskich materiał jest poprzedzielany równolegle biegnącymi listewkami, które podczas podciągania unoszą się i układają materiał w harmonijkę. Rolety dzień-noc składają się z dwóch rodzajów tkanin, grubszej zacieniającej i cieńszej przepuszczającej światło.
Żaluzje, które dokładniej zaciemniają wnętrza w stosunku do rolet, składają się z szeregu równoległych lameli aluminiowych, drewnianych bądź z tworzywa sztucznego, zwisających swobodnie lub w prowadnicach, połączonych ze sobą linkami. Żaluzje z bocznymi prowadnicami zwiększają efekt zaciemnienia po zamknięciu lameli.
Wertikale pełnią podobną funkcję jak żaluzje, lecz ich lamele są szersze i ustawione pionowo. Od dołu obciążone, poruszają się po szynie zamocowanej do sufitu. Lamelami steruje się za pomocą sznurka lub plastikowego łańcuszka, można obracać je 180° wokół osi.
Rolety zewnętrzne chronią pomieszczenia przed przegrzaniem, a jednocześnie ograniczają straty ciepła przez okna w sezonie grzewczym.
Markizy, tak jak rolety zewnętrzne, odbijają promieniowanie słoneczne. Główną ich zaletą jest to, że nie zasłaniają całego okna, a zapewniają lepsze oświetlenie wnętrz światłem dziennym.
Markizolety są rodzajem rolet zewnętrznych ze specjalnie odchylaną poprzeczką, która po uruchomieniu tworzy mały daszek nad częścią okna.
Na RYS. 21 przedstawiono wpływ zastosowania osłon przeciwsłonecznych lub powłok na kształtowanie się wartości temperatury powietrza w pomieszczeniu.
Przedstawione wyniki badań wskazują, że zewnętrzne osłony, tj. rolety czy markizy, najlepiej regulują przenikanie promieniowania słonecznego do pomieszczeń i ograniczają tym samym ich przegrzewanie. W badaniach najlepiej wypadła markiza zewnętrzna, która do ośmiu razy skuteczniej niż roleta wewnętrzna zaciemniająca chroniła wnętrze poddasza przed nagrzaniem.
Podsumowanie
Przez okna traci się więcej ciepła niż przez pozostałą część obudowy ze względu na ich niższe parametry termoizolacyjne. Dobór okien realizowany jest według wymagań kładących nacisk na dostarczenie odpowiedniej ilości światła dziennego oraz wymagań związanych z oszczędnością energii.
Izolacyjność cieplna stolarki okiennej w istniejących budynkach w znacznym stopniu odbiega od obecnych wymagań, które w ostatnim czasie uległy znacznemu zaostrzeniu. W dostosowaniu okien do obowiązujących wymagań tkwi znaczny potencjał, jednak działania, które nierzadko należy podjąć, są kosztowne, trudne w realizacji i wykazują długi czas zwrotu poniesionych nakładów.
Istnieje wiele sposobów poprawy izolacyjności termicznej stolarki okiennej, a co za tym idzie obniżenia energochłonności budynków. Oczywistym sposobem wydaje się wymiana okien na nowe. Nowoczesne zestawy szyb zespolonych z powłokami niskoemisyjnymi, wielokomorowe profile z wkładkami termoizolacyjnymi oraz zastosowane w przestrzeniach międzyszybowych gazy szlachetne zapewniają niski współczynnik przenikania ciepła takich konstrukcji nawet na poziomie 0,5 W/(m2·K).
W budynkach niskoenergetycznych ważny jest prawidłowy montaż okna i jego właściwe usytuowanie w murze. Dopuszczenie do nieprawidłowości w tym zakresie może zniwelować korzyści wynikające z zastosowania energooszczędnych rozwiązań gwarantujących jego wysoką izolacyjność cieplną.
W przypadku okien w budynkach zabytkowych ich wymiana jest raczej niezalecana z uwagi na utratę wartości historycznej danego budynku. Sama renowacja istniejącej stolarki okiennej nie zapewni jej jednak właściwego poziomu izolacyjności cieplnej. Dlatego też dobrym rozwiązaniem jest tu ewentualny montaż dodatkowego skrzydła czy panelu od strony wewnętrznej.
Zyski ciepła tak pożądane w sezonie grzewczym stanowią poważny problem w okresie letnim, kiedy dochodzi do uciążliwego przegrzewania pomieszczeń i utraty komfortu ciepłego oraz zwiększenia zapotrzebowania na energię w przypadku chłodzenia pomieszczeń. Prostym sposobem na wyeliminowanie tego problemu jest zastosowanie osłon przeciwsłonecznych, np. rolet zewnętrznych, które w okresie letnim w największym stopniu chronią pomieszczenia przed przegrzaniem, ale jednocześnie mogą ograniczać straty ciepła w zimie i nie uszczuplać zysków ciepła od promieniowania słonecznego.
Literatura
- Gospodarka mieszkaniowa w 2015 r., Informacje i opracowania statystyczne, GUS, Warszawa 2016.
- Zamieszkane budynki, Narodowy Spis Powszechny Ludności i Mieszkań, GUS, Warszawa 2013.
- Materiały reklamowe firmy Schüco, www.schueco.com.
- A. Guła i in., "Strategia modernizacji budynków. Mapa drogowa 2050", Instytut Ekonomii Środowiska, Kraków 2014.
- R. Geryło, J. Żurawski, "Techniczne możliwości poprawy efektywności energetycznej budynków historycznych wprowadzenie" [w:] "Materiały Konferencji Naukowo‑Technicznej 11. Dni Oszczędzania Energii, Poprawa efektywności energetycznej budynków objętych ochroną konserwatorską", Dolnośląska Agencja Energii i Środowiska, Wrocław 2014 (tekst na CD-ROM).
- Rozporządzenie Ministra Infrastruktury z dnia 12 kwietnia 2002 r. w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie (DzU z 2002 r., nr 75 poz. 690 ze zmianami, tekst jednolity DzU z 2015 r., poz. 1422).
- Wytyczne do weryfikacji projektów budynków mieszkalnych, zgodnych ze standardem NFOŚiGW, http://www.nfosigw.gov.pl.
- PN-EN ISO 14683:2008, "Mostki cieplne w budynkach. Liniowy współczynnik przenikania ciepła. Metody uproszczone i wartości orientacyjne".