Izolacje.com.pl

Zaawansowane wyszukiwanie

Współczynnik przenikania ciepła ściany osłonowej z oknem

Model matematyczny z uwzględnieniem powierzchni elementów składowych

W artykule zaprezentowano podejście do opracowania modelu matematycznego współczynnika przenikania ciepła ściany osłonowej z oknem, wykonanym z PVC w budynku mieszkalnym...
Fot. Warbud

W artykule zaprezentowano podejście do opracowania modelu matematycznego współczynnika przenikania ciepła ściany osłonowej z oknem, wykonanym z PVC w budynku mieszkalnym...


Fot. Warbud

Ściany osłonowe w budynkach mieszkalnych chronią pomieszczenia przed oddziaływaniem czynników klimatycznych i najczęściej składają się z dwóch różnorodnych odcinków - muru oraz okna złożonego z ramy i oszklenia.

Zobacz także

Austrotherm EPS na ściany, XPS na fundamenty – dlaczego ten duet to najlepszy wybór?

EPS na ściany, XPS na fundamenty – dlaczego ten duet to najlepszy wybór? EPS na ściany, XPS na fundamenty – dlaczego ten duet to najlepszy wybór?

Z roku na rok budownictwu stawia się coraz wyższe wymagania, które dotyczą nie tylko aspektów wizualnych, ale przede wszystkim efektywności energetycznej. Obowiązujące przepisy dotyczące izolacyjności...

Z roku na rok budownictwu stawia się coraz wyższe wymagania, które dotyczą nie tylko aspektów wizualnych, ale przede wszystkim efektywności energetycznej. Obowiązujące przepisy dotyczące izolacyjności termicznej budynków oraz zapewnienia komfortu ich użytkowania zgodnie z przeznaczeniem, przy jednoczesnym możliwie najniższym zużyciu energii, są coraz bardziej rygorystyczne. Aby je spełnić, konieczne jest stosowanie odpowiednich materiałów termoizolacyjnych.

JURGA spółka komandytowa Papa w płynie – hydroizolacja i dekoracja w jednym

Papa w płynie – hydroizolacja i dekoracja w jednym Papa w płynie – hydroizolacja i dekoracja w jednym

Uniwersalny produkt, który łączy w sobie właściwości hydroizolacyjne i dekoracyjne, jest przeznaczony do renowacji powierzchni, takich jak mury, przyziemia ścian zewnętrznych budynku, dachy, opierzenia,...

Uniwersalny produkt, który łączy w sobie właściwości hydroizolacyjne i dekoracyjne, jest przeznaczony do renowacji powierzchni, takich jak mury, przyziemia ścian zewnętrznych budynku, dachy, opierzenia, a także elementów architektury ogrodowej: altan, domków i skrzyń na narzędzia, wiat itp.

Fiberglass Fabrics sp. z o.o. Tynki i farby w dużych inwestycjach budowlanych

Tynki i farby w dużych inwestycjach budowlanych Tynki i farby w dużych inwestycjach budowlanych

Przy projektowaniu i realizacji dużych inwestycji, takich jak osiedla mieszkaniowe, biurowce czy obiekty użyteczności publicznej, kluczowe znaczenie ma wybór odpowiednich materiałów wykończeniowych. Nie...

Przy projektowaniu i realizacji dużych inwestycji, takich jak osiedla mieszkaniowe, biurowce czy obiekty użyteczności publicznej, kluczowe znaczenie ma wybór odpowiednich materiałów wykończeniowych. Nie do przecenienia jest rola tynków i farb, które wpływają na wygląd budynków, a także na ich trwałość i komfort użytkowania.

ABSTRAKT

W artykule zaprezentowano podejście do opracowania modelu matematycznego współczynnika przenikania ciepła ściany osłonowej z oknem, wykonanym z PVC w budynku mieszkalnym, w zależności od udziałów pól powierzchni elementów składowych (odcinków ściany pełnej, ramy okiennej i powierzchni szklonej). Przy realizacji eksperymentu obliczeniowego zastosowano lokalne planowanie sympleksowe w warunkach ograniczenia zakresu zmienności wybranych czynników. Analiza wykonana została na podstawie opracowanego deterministycznego modelu matematycznego opisującego tą zależność. Oszacowano efekty wpływu badanych czynników. Informacja może być przydatna dla naukowców, producentów i konsumentów stolarki okiennej. 

Mathematical model of the heat transfer coefficient for a curtain wall with a window, taking into account the surface areas of specific components

The article presents an approach to the development of a mathematical model of heat transfer coefficient for a curtain wall with a PVC window in a residential building, depending on the specific proportions of component surface areas (solid wall sections, window frames and glazed surfaces). In the course of implementation of the computational experiment, local simplex planning was used in the conditions of limited range of variability of selected factors. The analysis was made on the basis of the complete  deterministic mathematical model describing this relationship. The effects of the studied factors were estimated. The information can be useful for scientists, producers and consumers of window joinery.

Ściany osłonowe spełniają ważne role przy zapewnieniu komfortu cieplnego w pomieszczeniach oraz istotnie wpływają na zapotrzebowanie na energię do ogrzewania budynku. Odwołując się do wytycznych zawartych w Warunkach Technicznych [1], w Polsce od 1.01.2017 właściwości cieplne przegród w budynkach mieszkalnych ustalone zostały na poziomie:

  • dla ścian zewnętrznych Umax = 0,23 W/(m2·K),
  • dla okien Umax = 1,10 W/(m2·K)

oraz wprowadzono ograniczenie odnośnie pola powierzchni przegród przezroczystych w przypadku, gdy współczynnik przenikania ciepła Uw dla okna jest większy niż 0,9 W/(m2·K) [1].

Dobierając rozwiązanie ściany oraz rodzaj stolarki okiennej, należy porównywać ich parametry cieplne z powyższymi wartościami.

Niestety działanie to często ma charakter formalny, czasem jednak jest ono bezsensowne i nierealizowalne.

Wymagany poziom współczynnika przenikania ciepła można łatwo osiągać tylko przy projektowaniu i wykonaniu ścian budynków nowo wznoszonych. Można wówczas precyzyjnie dobrać odpowiednią grubość warstwy termoizolacyjnej, obniżającej końcową wartość współczynnika przenikania ciepła kompleksowej ściany osłonowej.

Dla współczesnej stolarki, która składa się z kilku elementów o deklarowanych przez producentów właściwościach cieplnych, dobór odpowiedniej wartości współczynnika U okna często jest problematyczny. Zdarza się, że producenci stolarki okiennej zatajają informacje na temat współczynnika przenikania ciepła dla całego okna.

Bezsensowność weryfikacji wartości współczynników przenikania ciepła elementów składowych związana jest z tym, że przy określeniu współczynnika U ściany osłonowej np. za pomocą metody składnikowej fragment przegrody dzieli się na pola powierzchni o różnych właściwościach cieplnych, a całkowity współczynnik przenikania ciepła oblicza się za pomocą ważonych powierzchniowo wartości U elementów składowych z dodatkowymi członami korekcyjnymi, uwzględniającymi wzajemne oddziaływania cieplne między tymi elementami [2].

Oznacza to, że przy zastosowaniu okna małych rozmiarów nie ma dużego znaczenia, czy jego współczynnik przenikania ciepła będzie mniejszy czy większy od wymaganego, ponieważ najmocniejszy wkład w poziom izolacyjności cieplnej wnosi ściana.

I na odwrót, przy zastosowaniu powierzchni szklonych wielokrotnie przeważających nad przegrodami pełnymi (tak zwanych przegród przezroczystych) nie ma istotnego znaczenia co do wyboru wartości współczynnika przenikania ciepła odcinka ściany pełnej, ponieważ wtedy najmocniejszy wkład w poziom izolacyjności cieplnej ściany osłonowej wnosi powierzchnia szklona.

Jednakże niezależnie od tego, przepisy mówią jasno, że nowo wznoszone budynki muszą charakteryzować się współczynnikiem przenikania ciepła poszczególnych elementów konstrukcyjnych na poziomie nie wyższym niż maksymalny dopuszczalny.

Zdaniem autorów niejednoznaczność sytuacji z unormowaniem elementów składowych ścian osłonowych z oknami może być wyeliminowana tylko po zamianie tradycyjnej weryfikacji wartości współczynników przenikania ciepła elementów składowych z wartościami wymaganymi na unormowanie właściwości cieplnych całej ściany osłonowej z oknami czy z przegrodami przezroczystymi. W tym celu autorzy proponują wprowadzenie kategoryzacji cieplnej ścian osłonowych. Jednak najpierw trzeba wykryć i oszacować stopień wpływu pól powierzchni elementów składowych oraz parametrów fizykalnych na całkowity współczynnik przenikania ciepła ścian osłonowych.

Celem danego badania jest opracowanie modelu matematycznego współczynnika przenikania ciepła ściany osłonowej z oknem wykonanym z PVC w budynku mieszkalnym w zależności od udziałów pól powierzchni elementów składowych oraz przeprowadzenie analizy na uzyskanym modelu matematycznym z oszacowaniem efektów wpływu czynników na właściwości cieplne badanej ściany.

Opis obiektu badania

Ściana osłonowa każdego pomieszczenia w budynkach mieszkalnych najczęściej jest fragmentem składającym się z odcinka ściany pełnej i okna.

Z uwzględnieniem nowych technologii montażu okien z PVC, dopuszczających szerokie możliwości zastosowania różnych rozwiązań ramy i różnorodnych typów oszklenia, z bardzo zróżnicowanymi cechami fizykalnymi w odniesieniu do ściany osłonowej jak i samego okna, jako obiekt badania dla dalszej analizy przyjęto fragment ściany z trzema elementami:

RYS. 1. Przykładowe schematy badanego fragmentu ściany osłonowej z oknem

RYS. 1. Przykładowe schematy badanego fragmentu ściany osłonowej z oknem

  • ścianą pełną,
  • ramą
  • i powierzchnią szkloną.

Schematy takiego fragmentu pokazano na RYS. 1.

Rozmiary fragmentu ściany uwzględniają rozwiązania przestrzenne pomieszczeń mieszkalnych i przyjęte zostały następująco:

2,80×3,60 m (wysokość×szerokość) = 10,08 m2.

W ramach tej wartości w badaniu zmieniały się różne kombinacje pól powierzchni okien, od rozmiaru 0,675×0,90 m = 0,608 m2 do 2,20×3,00 m = 6,60 m2.

Wysokość okna w analizowanym fragmencie przyjęto od wartości najmniejszej 0,675 m do charakterystycznej wysokości przegród przezroczystych wynoszącej niemal tyle, co wysokość pomieszczenia.

Lokalizacja okna przyjęta została w granicach badanego fragmentu ściany z zapewnieniem po obwodzie okna odcinków ściany o szerokości nie mniejszej niż 0,30 m.

Metoda obliczania współczynnika przenikania ciepła

Do obliczania współczynnika przenikania ciepła fragmentu ściany osłonowej z oknem przydatna i oczywista jest wspomniana wcześniej metoda składnikowa [2]. Według tej metody współczynnik przenikania ciepła Uw fragmentu ściany osłonowej z oknem należy obliczać według wzoru:

model matematyczny wz1 1

Wzór 1

gdzie:

Ug, Uƒ, Up - współczynniki przenikania ciepła, odpowiednio: oszklenia, ramy, ściany pełnej,

ψg,ƒ, ψƒ,p - liniowe współczynniki przenikania ciepła spowodowane połączonymi efektami cieplnymi elementów, odpowiednio: szklącego i ramy, ramy i ściany pełnej,

lg,ƒ, lƒ,p - długość liniowego mostku cieplnego powstającego na styku, odpowiednio: szkła i ramy, ramy i ściany pełnej,

Ag, Aƒ, Ap, Aw - pole powierzchni, odpowiednio: oszklenia, ramy, ściany pełnej oraz fragmentu ściany osłonowej.

RYS. 2. Schemat blokowy obliczania współczynnika przenikania ciepła Uw fragmentu ściany osłonowej; rys. archiwa autorów

RYS. 2. Schemat blokowy obliczania współczynnika przenikania ciepła Uw fragmentu ściany osłonowej; rys. archiwa autorów


θ - proporcje okna, wyrażone stosunkiem ho/bo,


Ao = Ag + Aƒ - powierzchnia okna,


ho - wysokość okna,


bo - szerokość okna,


C - udział powierzchni szklonej do powierzchni okna,


bƒ - szerokość elementów ramy

Mimo prostego wyrazu wzór (1) jest bardzo złożoną zależnością dla przeprowadzenia analizy czynnikowej.

Nawet przy trzech elementach składowych wzór ten daje aż 10 czynników do przeanalizowania.

Każdy dodatkowy element składowy w zależności od lokalizacji zwiększa liczbę czynników od 4 do 6 parametrów.

Jednak najtrudniejszym zadaniem dla przeprowadzenia analizy był warunek, którym są powiązane trzy pierwsze zmienne:

model matematyczny wz2

Wzór 2

Odnosząc się do przedstawionego wzoru (1), autorzy stworzyli algorytm do wyliczania szukanego współczynnika przenikania ciepła okna Uw przy zmianie wartości wybranych czynników (RYS. 2). Ten algorytm posłużył jako podstawa do opracowania autorskiego programu komputerowego w Microsoft Excel.

Model matematyczny do określenia współczynnika przenoszenia ciepła

Wstępna analiza czynników pozwoliła wykryć, że oprócz zmiennych Ag, Aƒ, Ap oraz lg,ƒ, lƒ,p pozostałe zmienne są sterowalne, mierzalne, wzajemnie niezależne, niesprzeczne i odpowiadają podstawowym wymaganiom modelowania matematycznego [3].

Zmienne lg,ƒ, lƒ,p są zależne od Ag i Aƒ oraz niejednoznaczne.

Zapewnienie jednoznaczności lg,ƒ ,lƒ,p możliwe jest poprzez przyjęcie wysokości okna jako wartości stałej lub poprzez wprowadzenie dodatkowego parametru θ charakteryzującego proporcje okna i wyrażonego stosunkiem ho/bo.

W niniejszym badaniu w celu zapewnienia jednoznaczności długości liniowych mostków cieplnych wprowadzono parametr θ, co pozwoliło zbadać wpływ udziałów powierzchni oszklenia i ramy na współczynnik Uw w znacznie większym zakresie ich zmienności.

Przy obliczeniach wartość parametru θ okien przyjęto równą 0,75, co jest bliskie proporcji samego fragmentu ściany.

Zgodnie z przyjętym celem badania, współczynnik przenikania ciepła Uw fragmentu ściany (funkcja celu Y) postanowiono zbadać w zależności od trzech czynników geometrycznych: udziałów powierzchni szklonej (czynnik z1), powierzchni ramy (czynnik z2) i powierzchni ściany pełnej (czynnik z3). Pozostałe parametry przyjęto na stałym poziomie.

Ponieważ czynniki geometryczne z1, z2, z3 są związane warunkiem (2), to do zbadania ich wpływu zastosowano planowanie sympleksowe dla trzech zmiennych w układzie „skład–własność”, zawierającego N = 7 prób (TABELA 1) [4].

To podejście tradycyjnie stosuje się do opisu właściwości mieszanek w zależności od składu komponentów.

Autorzy wykryli formalne podobieństwo do rozpatrywanego zagadnienia i podjęli próbę zastosowania go do rozwiązania zagadnienia z fizyki budowli.

Plan sympleksowy przewiduje określony układ realizacji obliczeń przy spełnieniu warunku z1+ z2 + z3 = 1 i opracowanie modelu w postaci niepełnego wielomianu trzeciego stopnia dla trzech zmiennych:

model matematyczny wz3

Wzór 3

Przy wykonywaniu obliczeń, wartości parametrów stałych przejęto na poziomie współczesnych wymagań ochrony cieplnej:

Ug = 0,70 W/(m2·K),

Uƒ = 1,10 W/(m2·K),

Up = 0,23 W/(m2·K).

Wartości liniowych współczynników przenikania ciepła na granice szkło–rama oraz rama–ściana przyjęto jednakowe na poziomie 0,080 W/(m·K) [5].

Według planu (TABELA 1, kolumny 2-4) każdy z czynników z1, z2, z3 należy rozpatrywać na czterech poziomach:

a) 0,00

b) 0,333

c) 0,50

d) 1,00.

Ten warunek nie odpowiadał przyjętemu celowi, ponieważ nie miało sensu wykonywać badania w całym zakresie zmiany udziałów wybranych czynników (od 0 do 1).

Praktyczne znaczenie miały jedynie takie zakresy zmienności czynników, które odpowiadały realnym układam fragmentu ściany z oknem. W związku z tym w badaniu zastosowano lokalne planowanie sympleksowe w warunkach ograniczenia zakresu zmienności wszystkich czynników [6].

Na podstawie wstępnej analizy wybranego fragmentu ściany osłonowej został wybrany podobszar, obejmujący preferowane udziały elementów składowych:

  • powierzchni szklonej (χ1) od 0,048 do 0,524,
  • ramy (χ2) od 0,012 do 0,176,
  • ściany (χ3) od 0,364 do 0,940.

Wartości udziałów składników określały współrzędne wierzchołków wybranego do badania podobszaru:

  • A1 (χ1 = 0,524, χ2 = 0,112, χ3 = 0,364),
  • A2 (χ1 = 0,254, χ2 = 0,176, χ3 = 0,570),
  • A3 (χ1 = 0,048, χ2 = 0,012, χ3 = 0,940).

Wyżej wymieniony podobszar został transformowany do pełnego planu sympleksowego poprzez wprowadzenie pseudo składników z1, z2, z3, które w każdym u-tym układzie planu są związane z czynnikami rzeczywistymi χ1, χ2, χ3 zależnością [6]:

model matematyczny wz4

Wzór 4

Poziomy zmienności czynników z1, z2, z3 oraz odpowiadające im naturalne wartości χ1, χ2, χ3 przedstawiono w TABELI 1 (kolumny 2-6).

Po przeprowadzeniu niezbędnych obliczeń możliwie było opracowanie modeli badanej cechy w zależności od pseudo składników (z1, z2, z3).

Chcąc otrzymać modele matematyczne z czynnikami w postaci naturalnej (χ1, χ2, χ3), należało odkodować je przez podstawienie odpowiednich zależności.

Za pomocą wzorów, podanych w [4] opracowano zależności Y = ƒ  (z1, z2, z3):

model matematyczny wz5

Wzór 5

Po określeniu współczynników równania regresji należało sprawdzić adekwatność opracowanego modelu (5). Ponieważ w eksperymencie obliczeniowym zastosowano plan nasycony i brakowało stopni swobody do przeprowadzenia tradycyjnej procedury testowania, to do oceny adekwatności wykonano obliczenia w dodatkowych (poza planem) dziewięciu punktach (TABELA 2).

Z drugiej strony uwzględniono, że modele deterministyczne charakteryzują się wzajemnie jednoznaczną zgodnością pomiędzy oddziaływaniem zewnętrznym a reakcją na to oddziaływanie. Z tego powodu w każdym punkcie planu wykonano tylko jedno doświadczenie. Przy braku powtórzeń i wariancji niedokładności pomiarów, adekwatność uzyskanego równania można ocenić, porównując wariancje średniej oraz wariancję resztkową obliczonych według wzorów [7]:

model matematyczny wz6

Wzór 6

model matematyczny wz7

Wzór 7

gdzie:

N - liczba wykonanych obliczeń,

Nb - liczba współczynników w równaniu regresji.

Do testowania zastosowano kryterium Fiszera, który pokazuje, o ile razy zmniejsza się rozsiew odnośnie równania regresji w porównaniu z rozsiewem odnośnie średniego [7]:

model matematyczny wz8

Wzór 8

gdzie:

ƒ1, ƒ2 - liczby stopni swobody,

ƒ1 = (N – 1) = 9 – 1 = 8;

ƒ2 = (N – Nb) = 9 – 7 = 2.

Równanie regresji opisuje wyniki obliczeń adekwatnie, jeżeli wartość F jest większa od wartości tabelarycznej Ft przy poziomie istotności p oraz stopniach swobody ƒ1 i ƒ2.

Jak wynika z obliczeń:

F = 0,0061/0,000042 = 145,4967,

wartość tabelaryczna: Ft = F0,05; 8; 2 = 19,4 [7].

To że F wielokrotnie przekracza Ft, oznacza, że model jest adekwatny i przydatny do dalszej analizy. Jego wysoką jakość potwierdza również współczynnik determinacji R2 = 0,998.

W celu praktycznego zastosowania uzyskanych modeli może być wykonane odkodowanie przez podstawienie w nich zależności między naturalnymi wielkościami i pseudo składnikami. W tym celu opracowano formuły związku pomiędzy naturalnymi współrzędnymi χi a współrzędnymi zi.

Dla przeniesienia współrzędnych z jednego systemu afinicznego do drugiego zastosowano wzory z pracy [6]:

model matematyczny wz9

Wzór 9

model matematyczny wz10

Wzór 10

model matematyczny wz11

Wzór 11

Ponieważ przeniesienie współrzędnych jest możliwe tylko dla niezależnych zmiennych, tj. niezwiązanych warunkiem (2), to równanie (5) należało przekształcić, pomijając jedną zmienną, np. z3. Dlatego wartości zi(j) wyliczono poprzez rozwiązanie dwóch układów równań:

model matematyczny wz12

Wzór 12

wzor13

Wzór 13

W wyniku rozwiązania układów równań (12) i (13) uzyskano wartości zi(j) i po podstawieniu ich w (9), (10) otrzymano formuły związku pomiędzy współrzędnymi naturalnymi χi a systemem współrzędnych zi:

model matematyczny wz14

Wzór 14

model matematyczny wz15

Wzór 15

model matematyczny wz16

Wzór 16

Po podstawieniu zależności (14), (15), (16) do wzoru (5) można uzyskać równanie regresji w naturalnych współrzędnych. Jednak do interpretacji wyników badania zastosowano model (5). Ten model pozwolił badany podobszar powiększyć do pełnego trójkąta sympleksowego, znacznie ułatwiając interpretację wyników.

Analiza wyników badania

Do analizy wyników badania za pomocą modelu (5) opracowano wykres w postaci izolinii badanej zależności od rozpatrywanych czynników we współrzędnych pseudo składników z1, z2, z3 (RYS. 3). Natomiast merytoryczną interpretację wykonano w oparciu o dane z TABELI 1 i TABELI 2, przy zastosowaniu naturalnych współrzędnych χ1, χ2, χ3.

Jak widać z RYS. 3:

  • najwyższą wartość 0,729 W/(m2·K) współczynnika przenikania ciepła Y fragmentu ściany z oknem uzyskano w wierzchołku Z1(punkt 1) przy χ1 = 0,524, χ2 = 0,112, χ3 = 0,364 (TABELA 1),
  • natomiast najniższą 0,310 W/(m2·K) w wierzchołku Z3 (punkt 3) przy χ1 = 0,048; χ2 = 0,012, χ3 = 0,940.

W sensie praktycznym oznacza to, że w badanym fragmencie zamiana okna z powierzchnią Ao3 = 0,674×0,898 = 0,605 m2 (co odpowiada pkt. 3) na okno z powierzchnią Ao1 = 2,193×2,924 = 6,411 m2 (co odpowiada pkt. 1) spowoduje wzrost współczynnika przenikania ciepła Y fragmentu ściany z oknem o 135,2%. Udział powierzchni ściany pełnej wtedy zmaleje od 0,94 do 0,364.

Dla wykrytych punktów ekstremalnych przeprowadzono symulację funkcji Y przy wahaniach na ±30% współczynników przenikania ciepła oszklenia, ramy oraz ściany pełnej.

Tak dla punktu 3 przy powierzchni okna Ao3 = 0,605 m2 wahania współczynnika Ug [0,490, 0,910 W/(m2·K)] powodują zmianę:

  • funkcji Y odpowiednio do 0,300 i 0,320 W/(m2·K) (±3,2%),
  • współczynnika Uf [0,770, 1,430 W/(m2·K)] - Y odpowiednio do 0,306 i 0,314 W/(m2·K) (±1,3%),
  • współczynnika Up [0,161, 0,299 W/(m2·K)] - Y odpowiednio do 0,246 i 0,375 W/(m2·K) (±21,0%).
RYS. 3. Zależność współczynnika przenikania ciepła Y fragmentu ściany z oknem od udziałów elementów składowych

RYS. 3. Zależność współczynnika przenikania ciepła Y fragmentu ściany z oknem od udziałów elementów składowych: z1 - powierzchni oszklenia, z2 - powierzchni ramy, z3 - powierzchni ściany; rys. archiwum autorów (W. Jezierski, J. Borowska)

Podobna symulacja dla punktu 1 przy powierzchni okna Ao3 = 6,411 m2 wykryła inne zmiany Y.

Wahania:

  • współczynnika Ug [0,490, 0,910 W/(m2·K)] dały wartości Y odpowiednio 0,619 i 0,839 W/(m2·K) (±15,1%),
  • współczynnika Uf [0,770, 1,430 W/(m2·K)] - Y odpowiednio 0,692 i 0,766 W/(m2·K) (±5,1%),
  • współczynnika Up [0,161, 0,299 W/(m2·K)] - Y odpowiednio 0,704 i 0,754 W/(m2·K) (±3,4%).

Wyniki tej symulacji wzmocniły przekonanie autorów odnośnie celowości zmiany w zakresie normowania przegród budowlanych - od weryfikacji do kategoryzacji.

Najmniejszy rozmiar okna Ao3 = 0,605 m2 został wybrany przez autorów w celu badawczym. Ale punktem odniesienia może być zastosowanie w tym samym fragmencie okna standardowego z powierzchnią Aos = 1,48×1,23 = 1,820 m2 [8].

Prowadzone poza planem obliczenia wykazały, że przy niezmiennych parametrach fizykalnych takie okno (przy udziale powierzchni szklonej 0,126, udziale powierzchni ramy 0,054) daje wartość współczynnika przenikania ciepła fragmentu ściany osłonowej z tym oknem Y = 0,416 W/(m2·K).

Według autorów wartość Uw= 0,416 W/(m2·K) może być przyjęta jako wartość graniczna dla ściany osłonowej z oknem pierwszej kategorii cieplnej.

Dla okna standardowego wahania:

  • współczynnika Ug [0,490, 0,910 W/(m2·K)] dały wartości Y odpowiednio 0,389 i 0,442 W/(m2·K) (±6,3%),
  • współczynnika Uf[0,770, 1,430 W/(m2·K)] - Y odpowiednio 0,398 i 0,434 W/(m2·K) (±4,3%),
  • współczynnika Up [0,161; 0,299 W/(m2·K)] - Y odpowiednio 0,359 i 0,472 W/(m2·K) (±13,5%).

Wnioski

Opracowano model matematyczny zależności współczynnika przenikania ciepła fragmentu ściany osłonowej z oknem w budynku mieszkalnym od udziałów pól powierzchni oszklenia, ramy i ściany pełnej, za pomocą którego oszacowano efekty wpływu wybranych czynników.

Przy niezmiennych parametrach fizykalnych, wahania pól powierzchni oszklenia, ramy i ściany spowodowały wzrost współczynnika przenikania ciepła przyjętego do badania fragmentu o 135,2%.

Zmiana udziałów pól powierzchni oszklenia, ramy i ściany pełnej mocno koryguje wpływ współczynników przenikania ciepła elementów składowych na całkowity współczynnik przenikania ciepła fragmentu ściany z oknem.

Niniejszy artykuł ukazał się w miesięczniku IZOLACJE nr 1/2018 (s.50-54) pod tytułem „Model matematyczny współczynnika przenikania ciepła ściany osłonowej z oknem z uwzględnieniem powierzchni elementów składowych”

Literatura

  1. Obwieszczenie Ministra Infrastruktury i Rozwoju z dnia 17 lipca 2015 r. w sprawie ogłoszenia jednolitego tekstu rozporządzenia Ministra Infrastruktury w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie (DzU 2015, poz. 1422).
  2. PN-EN ISO 12631:2013-03, „Cieplne właściwości użytkowe ścian osłonowych. Obliczanie współczynnika przenikania ciepła”.
  3. J. Gutenbaum, „Modelowanie matematyczne systemów”, Wyd. EXIT, Warszawa 2003.
  4. V.Z. Brodskiy i in., „Tablicy planov eksperimenta dla faktornyh i polinomial’nyh modelej”, „Metalurgiâ”, Moskwa 1982.
  5. PN-EN ISO 14683:2008, „Mostki cieplne w budynkach. Liniowy współczynnik przenikania ciepła. Metody uproszczone i wartości orientacyjne”.
  6. I.G. Zedginidze, „Matematićeskoe planirovanie eksperymenta dla issledovaniâ i optimizacii svoistv smesej”, „Mecniereba” Tbilisi 1986.
  7. K. Hartmann, E. Lezki, W. Schär, „Statistische Versuchsplanung und – auswertung in der Stoffwirtschaft”, VEB, Leipzig 1977.
  8. PN-EN 14351-1+A2:2016-10, „Okna i drzwi cz. 1: Okna i drzwi zewnętrzne bez właściwości dotyczących odporności ogniowej i/lub dymoszczelności”.

Chcesz być na bieżąco? Zapisz się do naszego newslettera!


PLIKI DO POBRANIA


TABELA 1. Plan eksperymentu (zob. opis pod tabelką)
TABELA 2. Wyniki obliczeń współczynnika przenikania ciepła fragmentu ściany osłonowej do oceny adekwatności modelu (zob. opis pod tabelką)

Galeria zdjęć

Tytuł
przejdź do galerii

Komentarze

Powiązane

dr hab. Inż. Zbigniew Suchorab, Krzysztof Tabiś, mgr inż. Tomasz Rogala, dr hab. Zenon Szczepaniak, dr hab. Waldemar Susek, mgr inż. Magdalena Paśnikowska-Łukaszuk Bezinwazyjne pomiary wilgotności materiałów budowlanych za pomocą technik reflektometrycznej i mikrofalowej

Bezinwazyjne pomiary wilgotności materiałów budowlanych za pomocą technik reflektometrycznej i mikrofalowej Bezinwazyjne pomiary wilgotności materiałów budowlanych za pomocą technik reflektometrycznej i mikrofalowej

Badania zawilgocenia murów stanowią ważny element oceny stanu technicznego obiektów budowlanych. W wyniku nadmiernego zawilgocenia następuje destrukcja murów, ale również tworzą się niekorzystne warunki...

Badania zawilgocenia murów stanowią ważny element oceny stanu technicznego obiektów budowlanych. W wyniku nadmiernego zawilgocenia następuje destrukcja murów, ale również tworzą się niekorzystne warunki dla zdrowia użytkowników obiektu. W celu powstrzymania procesu destrukcji konieczne jest wykonanie izolacji wtórnych, a do prawidłowego ich wykonania niezbędna jest znajomość stopnia zawilgocenia murów, a także rozkładu wilgotności na grubości i wysokości ścian.

dr inż. Szymon Swierczyna Badanie nośności i sztywności ścinanych połączeń na wkręty samowiercące

Badanie nośności i sztywności ścinanych połączeń na wkręty samowiercące Badanie nośności i sztywności ścinanych połączeń na wkręty samowiercące

Wkręty samowiercące stosuje się w konstrukcjach stalowych m.in. do zakładkowego łączenia prętów kratownic z kształtowników giętych. W tym przypadku łączniki są obciążone siłą poprzeczną i podczas projektowania...

Wkręty samowiercące stosuje się w konstrukcjach stalowych m.in. do zakładkowego łączenia prętów kratownic z kształtowników giętych. W tym przypadku łączniki są obciążone siłą poprzeczną i podczas projektowania należy zweryfikować ich nośność na docisk oraz na ścinanie, a także uwzględnić wpływ sztywności połączeń na stan deformacji konstrukcji.

mgr inż. Monika Hyjek Dobór prawidłowych rozwiązań ścian zewnętrznych na granicy stref pożarowych

Dobór prawidłowych rozwiązań ścian zewnętrznych na granicy stref pożarowych Dobór prawidłowych rozwiązań ścian zewnętrznych na granicy stref pożarowych

Przy projektowaniu ścian zewnętrznych należy wziąć pod uwagę wiele aspektów: wymagania techniczne, obowiązujące przepisy oraz wymogi narzucone przez ubezpieczyciela czy inwestora. Należy uwzględnić właściwości...

Przy projektowaniu ścian zewnętrznych należy wziąć pod uwagę wiele aspektów: wymagania techniczne, obowiązujące przepisy oraz wymogi narzucone przez ubezpieczyciela czy inwestora. Należy uwzględnić właściwości wytrzymałościowe, a jednocześnie cieplne, akustyczne i ogniowe.

mgr inż. Klaudiusz Borkowicz, mgr inż. Szymon Kasprzyk Ocena stopnia rozprzestrzeniania ognia przez ściany zewnętrzne w Polsce oraz w Wielkiej Brytanii

Ocena stopnia rozprzestrzeniania ognia przez ściany zewnętrzne w Polsce oraz w Wielkiej Brytanii Ocena stopnia rozprzestrzeniania ognia przez ściany zewnętrzne w Polsce oraz w Wielkiej Brytanii

W ostatniej dekadzie coraz większą uwagę zwraca się na bezpieczeństwo pożarowe budynków. Przyczyniło się do tego m.in. kilka incydentów związanych z pożarami, gdzie przez użycie nieodpowiednich materiałów...

W ostatniej dekadzie coraz większą uwagę zwraca się na bezpieczeństwo pożarowe budynków. Przyczyniło się do tego m.in. kilka incydentów związanych z pożarami, gdzie przez użycie nieodpowiednich materiałów budowlanych pożar rozwijał się w wysokim tempie, zagrażając życiu i zdrowiu wielu ludzi.

dr inż. Krzysztof Pawłowski prof. PBŚ Charakterystyka energetyczna budynku (cz. 8)

Charakterystyka energetyczna budynku (cz. 8) Charakterystyka energetyczna budynku (cz. 8)

Opracowanie świadectwa charakterystyki energetycznej budynku lub części budynku wymaga znajomości wielu zagadnień, m.in. lokalizacji budynku, parametrów geometrycznych budynku, parametrów cieplnych elementów...

Opracowanie świadectwa charakterystyki energetycznej budynku lub części budynku wymaga znajomości wielu zagadnień, m.in. lokalizacji budynku, parametrów geometrycznych budynku, parametrów cieplnych elementów obudowy budynku (przegrody zewnętrzne i złącza budowlane), danych technicznych instalacji c.o., c.w.u., systemu wentylacji i innych systemów technicznych.

mgr inż. Cezariusz Magott, mgr inż. Maciej Rokiel Analiza dokumentacji technicznej prac renowacyjnych (cz. 5)

Analiza dokumentacji technicznej prac renowacyjnych (cz. 5) Analiza dokumentacji technicznej prac renowacyjnych (cz. 5)

Do prac renowacyjnych zalicza się także tzw. środki flankujące. Będą to przede wszystkim różnego rodzaju tynki specjalistyczne i wymalowania (farby), a także tynki tradycyjne. Błędem jest traktowanie tynku...

Do prac renowacyjnych zalicza się także tzw. środki flankujące. Będą to przede wszystkim różnego rodzaju tynki specjalistyczne i wymalowania (farby), a także tynki tradycyjne. Błędem jest traktowanie tynku (jak również farby) jako osobnego elementu, w oderwaniu od konstrukcji ściany oraz rodzaju i właściwości podłoża.

Filip Ryczywolski Pomiar pionowości budynków i budowli

Pomiar pionowości budynków i budowli Pomiar pionowości budynków i budowli

Odchylenia, przemieszczenia, skręcenia i odkształcenia to niestety codzienny widok na wielu inwestycjach – również tych nowych. Poza kontrolą ścian czy szachtów w budynkach, badania pionowości dotyczą...

Odchylenia, przemieszczenia, skręcenia i odkształcenia to niestety codzienny widok na wielu inwestycjach – również tych nowych. Poza kontrolą ścian czy szachtów w budynkach, badania pionowości dotyczą też słupów, kominów, masztów widokowych, latarni morskich oraz różnego rodzaju mostów, wiaduktów, masztów stalowych: radiowych, telewizyjnych, sieci komórkowych czy oświetleniowych. Ogólnie rzecz ujmując, pomiary pionowości stosuje się do obiektów wysmukłych, czyli takich, których wysokość przewyższa...

PPHU POLSTYR Zbigniew Święszek Jak wybrać system ociepleń?

Jak wybrać system ociepleń? Jak wybrać system ociepleń?

Prawidłowo zaprojektowane i wykonane ocieplenie przegród w budynku pozwala zmniejszyć zużycie energii, a co za tym idzie obniżyć koszty eksploatacji i domowe rachunki.

Prawidłowo zaprojektowane i wykonane ocieplenie przegród w budynku pozwala zmniejszyć zużycie energii, a co za tym idzie obniżyć koszty eksploatacji i domowe rachunki.

Krzysztof Kros Zakrętarki akumulatorowe

Zakrętarki akumulatorowe Zakrętarki akumulatorowe

Wkrętarki akumulatorowe czy wiertarko-wkrętarki od dawna są powszechnie znane i użytkowane zarówno przez amatorów, jak i profesjonalistów. Zakrętarki natomiast są mniej znanym i popularnym typem narzędzia...

Wkrętarki akumulatorowe czy wiertarko-wkrętarki od dawna są powszechnie znane i użytkowane zarówno przez amatorów, jak i profesjonalistów. Zakrętarki natomiast są mniej znanym i popularnym typem narzędzia akumulatorowego, spokrewnionego z wkrętarką czy wiertarką. Jednak w ostatnim czasie zyskują coraz większą popularność, między innymi dzięki łączonym ofertom producentów – zestawy wkrętarka i zakrętarka. Czym zatem jest zakrętarka i do czego służy?

mgr inż. Wojciech Rogala, mgr inż. Marcin Mateja Wymagania dla zapraw murarskich cienkowarstwowych stosowanych do murowania z elementów silikatowych

Wymagania dla zapraw murarskich cienkowarstwowych stosowanych do murowania z elementów silikatowych Wymagania dla zapraw murarskich cienkowarstwowych stosowanych do murowania z elementów silikatowych

Wielu uczestników procesu budowlanego utożsamia parametry muru jedynie z użytymi bloczkami. Tymczasem zgodnie z definicją z PN-EN 1996-1-1 [1] mur to materiał konstrukcyjny utworzony z elementów murowych...

Wielu uczestników procesu budowlanego utożsamia parametry muru jedynie z użytymi bloczkami. Tymczasem zgodnie z definicją z PN-EN 1996-1-1 [1] mur to materiał konstrukcyjny utworzony z elementów murowych ułożonych w określony sposób i trwale połączonych ze sobą zaprawą murarską. Zaprawa stanowi nieodłączny element konstrukcji, a jej parametry wpływają nie tylko na sam proces murowania, ale także na trwałość i parametry konstrukcji.

inż. Joanna Nowaczyk Energooszczędne i pasywne rozwiązania w budownictwie z wykorzystaniem silikatów

Energooszczędne i pasywne rozwiązania w budownictwie z wykorzystaniem silikatów Energooszczędne i pasywne rozwiązania w budownictwie z wykorzystaniem silikatów

Zgodnie z szacunkami Komisji Europejskiej sektor budowlany odpowiada za 40% zużycia energii oraz ok. 36% emisji gazów cieplarnianych w Europie. To bardzo wysokie wartości, ich ograniczenie wiąże się z...

Zgodnie z szacunkami Komisji Europejskiej sektor budowlany odpowiada za 40% zużycia energii oraz ok. 36% emisji gazów cieplarnianych w Europie. To bardzo wysokie wartości, ich ograniczenie wiąże się z głębokimi zmianami, modernizacjami, a także często z zupełną zmianą obecnie stosowanych rozwiązań. Jeśli dodamy do tego wszystkiego czynnik kosztowy związany z adaptacjami, powstaje gotowy przepis na pojawienie się skrajnych ocen wdrażanych planów czy też zobowiązań państw członkowskich. Jednakże ścieżka...

prof. dr hab. inż. Łukasz Drobiec, mgr inż. Jan Biernacki Wzmacnianie konstrukcji murowanych przy pomocy siatek kompozytowych PBO

Wzmacnianie konstrukcji murowanych przy pomocy siatek kompozytowych PBO Wzmacnianie konstrukcji murowanych przy pomocy siatek kompozytowych PBO

Wzmacnianie konstrukcji zabytkowych stanowi istotną gałąź budownictwa, która powstała w odpowiedzi na potrzebę ochrony i zachowania historycznych budowli. Historia wzmacniania konstrukcji zabytkowych sięga...

Wzmacnianie konstrukcji zabytkowych stanowi istotną gałąź budownictwa, która powstała w odpowiedzi na potrzebę ochrony i zachowania historycznych budowli. Historia wzmacniania konstrukcji zabytkowych sięga daleko wstecz i przeplata się z rozwojem technologii i inżynierii.

dr inż. Szymon Swierczyna Kratownica z kształtowników giętych

Kratownica z kształtowników giętych Kratownica z kształtowników giętych

Elementy z kształtowników giętych można stosować na konstrukcje o małej i średniej rozpiętości, które są obciążone w sposób przeważająco statyczny, m.in. jednokondygnacyjne budynki halowe bez transportu...

Elementy z kształtowników giętych można stosować na konstrukcje o małej i średniej rozpiętości, które są obciążone w sposób przeważająco statyczny, m.in. jednokondygnacyjne budynki halowe bez transportu wewnętrznego, stropy i podesty. Odpowiednią nośność i sztywność można w tym wypadku zapewnić, przyjmując ustrój kratowy (FOT.). Konstrukcje tego typu cechuje niewielkie zużycie stali, a w przypadku, gdy w połączeniach stosuje się łączniki mechaniczne (np. wkręty samowiercące), można niemal całkowicie...

Iwona Sobczak Normy akustyczne w budownictwie

Normy akustyczne w budownictwie Normy akustyczne w budownictwie

Normy akustyczne w budownictwie, takie jak PN-B-02151-4:2015-06 [1], nie powstały bez powodu. Skutki ekspozycji na hałas nie są natychmiastowe, ale za to bardzo poważne. Narażenie na głośne dźwięki może...

Normy akustyczne w budownictwie, takie jak PN-B-02151-4:2015-06 [1], nie powstały bez powodu. Skutki ekspozycji na hałas nie są natychmiastowe, ale za to bardzo poważne. Narażenie na głośne dźwięki może prowadzić do trwałego uszkodzenia słuchu, ale nie wolno też zapominać o znacznie powszechniejszym zagrożeniu – mianowicie pozasłuchowym wpływie hałasu na zdrowie. Będąc silnym stresorem, jest przyczyną m.in. zaburzeń snu, przyspieszonego zmęczenia, rozdrażnienia, kłopotów z koncentracją, a nawet chorób...

mgr inż. Cezariusz Magott, mgr inż. Maciej Rokiel Dokumentacja techniczna prac renowacyjnych – tynki specjalne (cz.6)

Dokumentacja techniczna prac renowacyjnych – tynki specjalne (cz.6) Dokumentacja techniczna prac renowacyjnych – tynki specjalne (cz.6)

Kontynuując zagadnienia związane z doborem tynków, tym razem omówimy zagadnienia związane z tynkami specjalnymi.

Kontynuując zagadnienia związane z doborem tynków, tym razem omówimy zagadnienia związane z tynkami specjalnymi.

dr inż. Michał Wieczorek, mgr inż. Klaudiusz Borkowicz Zrównoważone budownictwo w odniesieniu do złożonych systemów izolacji cieplnych

Zrównoważone budownictwo w odniesieniu do złożonych systemów izolacji cieplnych Zrównoważone budownictwo w odniesieniu do złożonych systemów izolacji cieplnych

Komisja Europejska, formułując nową strategię w postaci Europejskiego Zielonego Ładu [1], zintensyfikowała działania mające na celu przeciwdziałanie negatywnemu wpływowi człowieka na środowisko jako jednemu...

Komisja Europejska, formułując nową strategię w postaci Europejskiego Zielonego Ładu [1], zintensyfikowała działania mające na celu przeciwdziałanie negatywnemu wpływowi człowieka na środowisko jako jednemu z najważniejszych wyzwań współczesnego świata. Celem tej polityki jest osiągnięcie zerowej emisji netto gazów cieplarnianych w Unii Europejskiej (UE) w 2050 r. Realizacja tego celu zakłada jednocześnie oddzielenie wzrostu gospodarczego od wykorzystania zasobów naturalnych.

dr inż. Krzysztof Pawłowski prof. PBŚ Zasady opracowania katalogu złączy budowlanych (mostków cieplnych) (cz.10)

Zasady opracowania katalogu złączy budowlanych (mostków cieplnych) (cz.10) Zasady opracowania katalogu złączy budowlanych (mostków cieplnych) (cz.10)

Złącza budowlane (mostki cieplne) stanowią integralną część elementów obudowy budynku. Dobór ich warstw materiałowych nie powinien być przypadkowy, lecz oparty na obliczeniach analiz parametrów fizykalnych.

Złącza budowlane (mostki cieplne) stanowią integralną część elementów obudowy budynku. Dobór ich warstw materiałowych nie powinien być przypadkowy, lecz oparty na obliczeniach analiz parametrów fizykalnych.

PU Polska – Związek Producentów Płyt Warstwowych i Izolacji Montaż płyt warstwowych do ścian murowanych

Montaż płyt warstwowych do ścian murowanych Montaż płyt warstwowych do ścian murowanych

Płyty warstwowe posiadają liczne zalety, dzięki którym stały się materiałem powszechnie używanym w budownictwie przemysłowym i coraz częściej również w sektorze budownictwa mieszkaniowego. Są jednak takie...

Płyty warstwowe posiadają liczne zalety, dzięki którym stały się materiałem powszechnie używanym w budownictwie przemysłowym i coraz częściej również w sektorze budownictwa mieszkaniowego. Są jednak takie aplikacje, gdzie zastosowanie tego typu produktów nie wydaje się trafnym pomysłem, jak choćby montaż do ściany pełnej, np. murowanej. Jak zamontować płyty poprawnie? Wystarczy trzymać się pewnych reguł.

dr inż. Krzysztof Pawłowski prof. PBŚ, mgr inż. Robert Małkowski Budownictwo zrównoważone – wybrane aspekty (cz. 11)

Budownictwo zrównoważone – wybrane aspekty (cz. 11) Budownictwo zrównoważone – wybrane aspekty (cz. 11)

W myśl idei budownictwa zrównoważonego zaprojektowanie budynku wymaga podejścia kompleksowego, które uwzględnia wszystkie aspekty związane z procesem budowlanym, tj. projektowanie, budowę, użytkowanie...

W myśl idei budownictwa zrównoważonego zaprojektowanie budynku wymaga podejścia kompleksowego, które uwzględnia wszystkie aspekty związane z procesem budowlanym, tj. projektowanie, budowę, użytkowanie budynku zgodnie z jego przeznaczeniem i utrzymanie obiektu budowlanego. Wymaga to wykorzystania najlepszych dostępnych rozwiązań technologicznych, materiałowych i architektonicznych.

Redakcja Technologia wdmuchiwania izolacji i Przemysł 4.0

Technologia wdmuchiwania izolacji i Przemysł 4.0 Technologia wdmuchiwania izolacji i Przemysł 4.0

Budownictwo drewniane stale ewoluuje, przynosząc innowacyjne rozwiązania, które nie tylko zwiększają efektywność procesów, ale również zmniejszają negatywny wpływ na środowisko.

Budownictwo drewniane stale ewoluuje, przynosząc innowacyjne rozwiązania, które nie tylko zwiększają efektywność procesów, ale również zmniejszają negatywny wpływ na środowisko.

dr inż. Szymon Swierczyna Połączenia sprężane według PN-EN 1090-2:2018

Połączenia sprężane według PN-EN 1090-2:2018 Połączenia sprężane według PN-EN 1090-2:2018

Łączenie za pomocą śrub to jedna z najbardziej popularnych metod scalania konstrukcji stalowych. Ze względu na stosunkową łatwość tej operacji stosuje się ją przede wszystkim podczas montażu elementów...

Łączenie za pomocą śrub to jedna z najbardziej popularnych metod scalania konstrukcji stalowych. Ze względu na stosunkową łatwość tej operacji stosuje się ją przede wszystkim podczas montażu elementów wysyłkowych na placu budowy.

prof. dr hab. inż. Łukasz Drobiec, mgr inż. Jan Biernacki Zastosowanie wzmocnień kompozytowych w istniejących konstrukcjach

Zastosowanie wzmocnień kompozytowych w istniejących konstrukcjach Zastosowanie wzmocnień kompozytowych w istniejących konstrukcjach

Z biegiem czasu obiekty budowlane ulegają procesom starzenia i awariom [1, 2]. Aby zminimalizować skutki negatywnych oddziaływań lub przywrócić stan pierwotny budowli, stosowane są różne materiały i technologie...

Z biegiem czasu obiekty budowlane ulegają procesom starzenia i awariom [1, 2]. Aby zminimalizować skutki negatywnych oddziaływań lub przywrócić stan pierwotny budowli, stosowane są różne materiały i technologie [3]. Na przestrzeni ostatnich lat pojawiło się wiele innowacyjnych rozwiązań technologicznych związanych ze wzmacnianiem konstrukcji. Materiały kompozytowe są stosowane nie tylko w przypadku starych obiektów budowlanych. Można je spotkać również w nowych budynkach przechodzących zmiany projektowe...

mgr inż. Maciej Rokiel, mgr inż. Ryszard Koć Parkingi podziemne – przyczyny i skutki zawilgoceń cz. 1. Wybrane zagadnienia

Parkingi podziemne – przyczyny i skutki zawilgoceń cz. 1. Wybrane zagadnienia Parkingi podziemne – przyczyny i skutki zawilgoceń cz. 1. Wybrane zagadnienia

Poprawne (zgodne ze sztuką budowlaną) zaprojektowanie i wykonanie budynku to bezwzględny wymóg bezproblemowej, długoletniej eksploatacji. Podstawą jest odpowiednie rozwiązanie konstrukcyjne części zagłębionej...

Poprawne (zgodne ze sztuką budowlaną) zaprojektowanie i wykonanie budynku to bezwzględny wymóg bezproblemowej, długoletniej eksploatacji. Podstawą jest odpowiednie rozwiązanie konstrukcyjne części zagłębionej w gruncie. Doświadczenie pokazuje, że znaczącą liczbę problemów związanych z eksploatacją stanowią problemy z wilgocią. Woda jest niestety takim medium, które bezlitośnie wykorzystuje wszelkie usterki i nieciągłości w warstwach hydroizolacyjnych, wnikając do wnętrza konstrukcji.

Marian Bober, Michał Kowalski, mgr inż. Mariusz Pawlak, Tomasz Petras, Jacek Stankiewicz Dobór łączników do montażu płyt warstwowych

Dobór łączników do montażu płyt warstwowych Dobór łączników do montażu płyt warstwowych

Podstawę artykułu stanowi opracowanie „DAFA M 3.01 Wytyczne doboru łączników do montażu płyt warstwowych”. Ma ono stanowić daleko idącą pomoc i punkt odniesienia dla wszystkich osób uczestniczących w procesach...

Podstawę artykułu stanowi opracowanie „DAFA M 3.01 Wytyczne doboru łączników do montażu płyt warstwowych”. Ma ono stanowić daleko idącą pomoc i punkt odniesienia dla wszystkich osób uczestniczących w procesach projektowania, realizacji i odbiorów inwestycji budowlanych wykonanych z płyt warstwowych.

Wybrane dla Ciebie

50% dopłaty na nowe źródło OZE »

50% dopłaty na nowe źródło OZE » 50% dopłaty na nowe źródło OZE »

Łatwa hydroizolacja skomplikowanych powierzchni dachowych »

Łatwa hydroizolacja skomplikowanych powierzchni dachowych » Łatwa hydroizolacja skomplikowanych powierzchni dachowych »

Docieplanie budynków to nie problem »

Docieplanie budynków to nie problem » Docieplanie budynków to nie problem »

Ochrona powierzchni betonowych i żelbetowych »

Ochrona powierzchni betonowych i żelbetowych » Ochrona powierzchni betonowych i żelbetowych »

Łatwe ocieplanie ścian »

Łatwe ocieplanie ścian » Łatwe ocieplanie ścian »

Trwały dach to dobra inwestycja »

Trwały dach to dobra inwestycja » Trwały dach to dobra inwestycja »

OZE dofinansowaniem nawet 50% »

OZE dofinansowaniem nawet 50% » OZE dofinansowaniem nawet 50% »

Dom pasywny to ciepły dom - jak go zbudować? »

Dom pasywny to ciepły dom - jak go zbudować? » Dom pasywny to ciepły dom - jak go zbudować? »

Wypróbuj profile do elewacji »

Wypróbuj profile do elewacji » Wypróbuj profile do elewacji »

Oszczędzanie przez ocieplanie »

Oszczędzanie przez ocieplanie » Oszczędzanie przez ocieplanie »

Trwała ochrona betonu »

Trwała ochrona betonu » Trwała ochrona betonu »

Dbaj o narzędzia, serwisuj je! »

Dbaj o narzędzia, serwisuj je! » Dbaj o narzędzia, serwisuj je! »

Copyright © 2004-2019 Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Spółka komandytowa, nr KRS: 0000537655. Wszelkie prawa, w tym Autora, Wydawcy i Producenta bazy danych zastrzeżone. Jakiekolwiek dalsze rozpowszechnianie artykułów zabronione. Korzystanie z serwisu i zamieszczonych w nim utworów i danych wyłącznie na zasadach określonych w Zasadach korzystania z serwisu.
Portal Budowlany - Izolacje.com.pl

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim urządzeniu końcowym. W każdym momencie możesz dokonać zmiany ustawień przeglądarki dotyczących cookies. Nim Państwo zaczną korzystać z naszego serwisu prosimy o zapoznanie się z naszą polityką prywatności oraz Informacją o Cookies. Więcej szczegółów w naszej Polityce Prywatności oraz Informacji o Cookies. Administratorem Państwa danych osobowych jest Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Sp.K., nr KRS: 0000537655, z siedzibą w 04-112 Warszawa, ul. Karczewska 18, tel. +48 22 810-21-24, właściciel strony www.izolacje.com.pl. Twoje Dane Osobowe będą chronione zgodnie z wytycznymi polityki prywatności www.izolacje.com.pl oraz zgodnie z Rozporządzeniem Parlamentu Europejskiego i Rady (UE) 2016/679 z dnia 27 kwietnia 2016r i z Ustawą o ochronie danych osobowych Dz.U. 2018 poz. 1000 z dnia 10 maja 2018r.