Izolacje.com.pl

Szklana fasada o podwójnym przepływie powietrza – aspekt energetyczny

Glass façade with counter-flow heat exchanger – energy aspect

Istota podwójnej fasady polega na zestawieniu dwóch przegród szklanych tworzących wolną przestrzeń buforową.
Fot.: B.Wilk-Słomka, J. Belok

Istota podwójnej fasady polega na zestawieniu dwóch przegród szklanych tworzących wolną przestrzeń buforową.


Fot.: B.Wilk-Słomka, J. Belok

We współczesnej architekturze bardzo często spotykamy się z budynkami o wysokim udziale powierzchni przezroczystych w obudowie zewnętrznej. W szczególności dotyczy to obiektów użyteczności publicznej, biurowców, ale także coraz częściej budynków jednorodzinnych. Przede wszystkim jest to związane z dużą estetyką takiego rozwiązania. Należy jednak pamiętać, że rosnące wymagania w zakresie efektywności energetycznej budynków narzucają konieczność stosowania rozwiązań energooszczędnych.

Zobacz także

PU Polska – Związek Producentów Płyt Warstwowych i Izolacji Płyty warstwowe PUR/PIR w aspekcie wymagań technicznych stawianych lekkiej obudowie

Płyty warstwowe PUR/PIR w aspekcie wymagań technicznych stawianych lekkiej obudowie Płyty warstwowe PUR/PIR w aspekcie wymagań technicznych stawianych lekkiej obudowie

Rozwój technologii budowlanej w ciągu ostatnich kilkudziesięciu lat zmienił oblicze branży w Polsce, umożliwiając szybszą, tańszą i ekologiczną realizację wznoszonych obiektów. Wprowadzając szeroko do...

Rozwój technologii budowlanej w ciągu ostatnich kilkudziesięciu lat zmienił oblicze branży w Polsce, umożliwiając szybszą, tańszą i ekologiczną realizację wznoszonych obiektów. Wprowadzając szeroko do branży rewolucyjny i rewelacyjny produkt, jakim jest płyta warstwowa, zmodernizowaliśmy de facto ideę prefabrykacji i zamianę tradycyjnych, mokrych i pracochłonnych technologii wznoszenia budynków z elementów małogabarytowych lub konstrukcji szalunkowych na szybki, suchy montaż gotowych elementów w...

Saint-Gobain Construction Products Polska/ Isover Nowe wełny ISOVER PRO na poddasza – bez komPROmisów, z mocą welonu

Nowe wełny ISOVER PRO na poddasza – bez komPROmisów, z mocą welonu Nowe wełny ISOVER PRO na poddasza – bez komPROmisów, z mocą welonu

ISOVER wprowadza na rynek nową linię produktów PRO do izolacji cieplnej i akustycznej poddaszy. Super-Mata PLUS PRO i Super-Mata PRO to wełny o bardzo dobrych parametrach termicznych, wyprodukowane w technologii...

ISOVER wprowadza na rynek nową linię produktów PRO do izolacji cieplnej i akustycznej poddaszy. Super-Mata PLUS PRO i Super-Mata PRO to wełny o bardzo dobrych parametrach termicznych, wyprodukowane w technologii Thermitar™ i pokryte jednostronnie welonem szklanym.

Saint-Gobain Construction Products Polska/ Isover Nowość ISOVER! Płyty zespolone EasyTherm – więcej powierzchni użytkowej i doskonały komfort cieplny

Nowość ISOVER! Płyty zespolone EasyTherm – więcej powierzchni użytkowej i doskonały komfort cieplny Nowość ISOVER! Płyty zespolone EasyTherm – więcej powierzchni użytkowej i doskonały komfort cieplny

W nowoczesnym budownictwie wielorodzinnym i komercyjnym nie brakuje wyzwań, a wśród nich ważna jest izolacja termiczna między ogrzewanymi i nieogrzewanymi częściami budynku, jak np. korytarze i klatki...

W nowoczesnym budownictwie wielorodzinnym i komercyjnym nie brakuje wyzwań, a wśród nich ważna jest izolacja termiczna między ogrzewanymi i nieogrzewanymi częściami budynku, jak np. korytarze i klatki schodowe. Kolejną istotną kwestią są oczekiwania inwestorów dotyczące wytrzymałości na uszkodzenia ścian wewnętrznych oraz optymalnego wykorzystania przestrzeni użytkowej. W odpowiedzi na te wszystkie potrzeby inżynierowie Saint-Gobain opracowali płyty zespolone EasyTherm.

 

Abstrakt

W artykule autorzy podjęli próbę określenia aspektu energetycznego szklanej fasady tworzącej przeciwprądowy wymiennik ciepła na przykładzie budynku biurowego 8-kondygnacyjnego. Przedmiotowa fasada została zorientowana w kierunku zachodnim. Model obliczeniowy budynku, w którym usytuowano fasadę, zbudowano jako układ pięciu stref cieplnych: dwie klatki schodowe, komunikacja pozioma, toalety oraz strefy pomieszczeń biurowych. Do szczegółowej analizy przyjęto strefę pomieszczeń biurowych zlokalizowaną na czwartej kondygnacji złożoną z 5 pomieszczeń biurowych o wymiarach 4,0×5,0×3,3 m. Jako metodę badawczą przyjęto badania numeryczne z wykorzystaniem programów ESP-r oraz Window. Analizy przeprowadzono dla rzeczywistych danych klimatycznych – stacja meteorologiczna Katowice. Rozważania obejmowały określenie zużycia energii na grzanie i chłodzenie, czasu pracy rozpatrywanych systemów instalacyjnych oraz temperatury powietrza w fasadzie – strefa zewnętrzna oraz wewnętrzna. Rozpatrywano trzy warianty analiz: W0 – bez obiegu powietrza, W1 – z obiegiem powietrza oraz W2 – z odwróconym obiegiem powietrza w miesiącu lipcu. W artykule zaprezentowano wyniki dla miesiąca stycznia i lipca jako reprezentatywnych z punktu widzenia celu badań.

Glass façade with counter-flow heat exchanger – energy aspect

In the article, the authors made an attempt to determine the energy aspect of the glass façade forming a counter-flow heat exchanger on the example of an 8-storey office building. The façade has been oriented westwards. A computational model of the building with the façade was created as a layout of five heat zones: two staircases, horizontal communication, toilets and office space. The office space on the 4th floor consisting of 5 office rooms with dimensions of 4.0×5.0×3.3 m analyzed in detail using the numerical tests as a research method with the help of ESP-r and Windows programs. Analyzes were carried out for real climate data – meteorological station in Katowice. The considerations included determining energy consumption for heating and cooling, operating time of the installation systems as well as air temperature in the façade - external and internal zones. Three analysis variants were considered: W0 – without air circulation, W1 – with air circulation and W2 – with reverse air circulation in July. The article presents the results obtained in January and July as the representative results – from the point of view of the research objective.

W pogoni za optymalizacją energetyczną nie należy zapominać o zachowaniu komfortu termicznego wewnątrz obiektów. Jest to szczególnie trudne w przypadku silnie przeszklonych elewacji, z dużymi powierzchniami przeszklonymi związane są bowiem intensywnie przebiegające procesy wymiany ciepła. Jednym z najprostszych sposobów rozwiązania tego problemu wydaje się zastosowanie wentylacji mechanicznej z odzyskiem ciepła i klimatyzacji.

Wadą takiego podejścia do rozwiązania problemu jest niepożądane zwiększenie zużycia energii elektrycznej zasilającej systemy HVAC oraz konieczność uwzględnienia rozwiązań instalacyjnych w projekcie architektonicznym. Estetyka obiektu budowlanego i efektywne wykorzystanie przestrzeni skłaniają do redukowania kubatury zajmowanej przez pomieszczenia techniczne i infrastrukturę wyposażenia technicznego. W związku z tym projektanci skłaniają się coraz częściej ku tzw. zdecentralizowanemu systemowi wentylacji przez fasadę budynku.

Optymalnym rozwiązaniem byłyby fasady współpracujące z systemami ogrzewania i wentylacji w budynku, tworząc układ zapewniający pożądany mikroklimat w pomieszczeniach, przy możliwie najniższym zużyciu energii. Dlatego w ostatnich latach w budynkach wysokich o dużych przeszkleniach coraz chętniej stosuje się tak zwane fasady podwójne. Stanowią one „pogodzenie” trzech istotnych aspektów: architektonicznego, użytkowego i energetycznego.

Istota podwójnej fasady polega na zestawieniu dwóch przegród szklanych tworzących wolną przestrzeń buforową. Szerokość przestrzeni buforowej waha się w granicach od 10 cm do 2 m. Najczęściej od strony pomieszczenia stosuje się zestawy szybowe o podwójnym oszkleniu, natomiast fasada wykonywana jest ze wzmocnionego szkła pojedynczego. Konstrukcję taką często dodatkowo wyposaża się w systemy regulujące dopływ promieniowania słonecznego do pomieszczeń (rolety, żaluzje) [1–5]. Na FOT. 1-2 przedstawiono przykładowe fasady podwójne.

FOT. 1–2. Przykładowa fasada podwójna; fot.: B.Wilk-Słomka, J. Belok

FOT. 1–2. Przykładowa fasada podwójna; fot.: B.Wilk-Słomka, J. Belok

Powyższe rozwiązanie może być zmodyfikowane poprzez wprowadzenie przepływu powietrza przez przestrzeń buforową. Przepływ powietrza może być związany z wentylacją naturalną lub mechaniczną.

RYS. 1. Schemat krzyżowego wymiennika ciepła; rys.: B.Wilk-Słomka, J. Belok

RYS. 1. Schemat krzyżowego wymiennika ciepła; rys.: B.Wilk-Słomka, J. Belok

RYS. 2. Schemat przepływu powietrza przez szklaną fasadę tworzącą przeciwprądowy wymiennik ciepła; rys. B.Wilk-Słomka, J. Belok

RYS. 2. Schemat przepływu powietrza przez szklaną fasadę tworzącą przeciwprądowy wymiennik ciepła; rys. B.Wilk-Słomka, J. Belok

Dążąc do poprawy efektywności energetycznej podwójnej fasady, zaproponowano modyfikację sposobu przepływu powietrza w przestrzeni buforowej, przekształcając ją w wymiennik ciepła. Rozwiązanie takie nawiązuje do konstrukcji np. krzyżowego wymiennika ciepła stosowanego w systemach wentylacyjnych. W rozwiązaniu tym strumień powietrza wywiewanego z budynku, przepływając przez wymiennik, przekazuje energię cieplną strumieniowi powietrza nawiewanego, przez co do budynku zostaje wprowadzone powietrze o temperaturze wyższej od temperatury powietrza zewnętrznego. Wymiennik krzyżowy tworzą równolegle ułożone kanały, którymi strumienie powietrza zimnego i ciepłego przepływają obok siebie, nie mieszając się ze sobą [1–5]. Powyższa zasada została przedstawiona na RYS. 1.

Podobny efekt uzyskano wprowadzając do konstrukcji podwójnej fasady trzecią przegrodę przezroczystą. Dzięki temu przestrzeń buforowa zostaje rozdzielona na dwie niezależne części, którymi może przepływać powietrze wentylacyjne. Tym samym zachodzi możliwość rozdzielenia przepływającego strumienia powietrza na strumień nawiewany i wywiewany z pomieszczenia. W tym rozwiązaniu zostaje wytworzony układ podobny do płytowego wymiennika ciepła stosowanego w wentylacji mechanicznej. Schemat działania takiego rozwiązania przedstawia RYS. 2.

Modyfikacja taka powinna pozwolić na rozszerzenie możliwości w zakresie regulacji przepływu energii do i z budynku. W okresie grzewczym rozwiązanie to powinno jednocześnie zmniejszać straty ciepła przez przenikanie i wentylację, dodatkowo wprowadzając zyski ciepła od nasłonecznienia do ogólnego bilansu energetycznego budynku. W okresie letnim fasada powinna efektywnie chronić pomieszczenia przed zyskami ciepła od nasłonecznienia, równocześnie umożliwiając oświetlenie pomieszczeń światłem naturalnym oraz zapewnić, jeśli jest to możliwe, chłodzenie pomieszczeń powietrzem zewnętrznym [1–5].

W niniejszym artykule autorzy podjęli próbę określenia aspektu energetycznego szklanej fasady tworzącej przeciwprądowy wymiennik ciepła na przykładzie budynku biurowego.

Opis procedury badawczej

Założenia analiz

Metoda badawcza przyjęta w pracy to badania numeryczne z wykorzystaniem programu ESP-r [7]. Obliczenia były prowadzone z 60-minutowym krokiem czasowym na bazie rzeczywistych danych klimatycznych (Katowice, uśrednione dla okresu lat 2003–2017).

Baza klimatyczna [8] została zaimplementowana do programu ESP-r. Współczynnik przenikania ciepła okien i fasady został wyznaczony w programie Window [9] (por. TABELA 1).

Analizy obejmowały określenie zużycia energii na grzanie i chłodzenie, czasu pracy rozpatrywanych systemów instalacyjnych oraz temperatury powietrza w fasadzie – strefa zewnętrzna oraz wewnętrzna. Do szczegółowej analizy wybrano strefę pomieszczeń biurowych zlokalizowaną na czwartej kondygnacji w budynku 8-piętrowym. Parametry cieplne oraz wymagania wentylacyjne przyjęto zgodnie z charakterem obiektu [6]:

  • temperatura powietrza pomieszczeń biurowych i komunikacja pozioma t= 20°C, tL = 26°C,
  • temperatura powietrza klatki schodowej 12°C,
  • ilość powietrza w pomieszczeniach = 20 m3/osobę,
  • liczba osób = 10,
  • ciepło jawne 95 W/osobę,
  • ciepło utajone 45 W/osobę.
TABELA 1. Współczynniki przenikania ciepła przegród nieprzezroczystych

TABELA 1. Współczynniki przenikania ciepła przegród nieprzezroczystych

RYS. 6. Schemat rzutu piętra analizowanego budynku; rys.: B.Wilk-Słomka, J. Belok

RYS. 6. Schemat rzutu piętra analizowanego budynku; rys.: B.Wilk-Słomka, J. Belok

Dodatkowo przyjęto zróżnicowane harmonogramy generowania wewnętrznych zysków ciepła od ludzi, wyposażenia elektrycznego oraz instalacji oświetleniowej (RYS. 3, RYS. 4 i RYS. 5).

RYS. 3. Harmonogramy generowania wewnętrznych zysków ciepła od ludzi, wyposażenia elektrycznego oraz instalacji oświetleniowej od poniedziałku do piątku; rys.: B.Wilk-Słomka, J. Belok

RYS. 3. Harmonogramy generowania wewnętrznych zysków ciepła od ludzi, wyposażenia elektrycznego oraz instalacji oświetleniowej od poniedziałku do piątku; rys.: B.Wilk-Słomka, J. Belok

RYS. 4. Harmonogramy generowania wewnętrznych zysków ciepła od ludzi, wyposażenia elektrycznego oraz instalacji oświetleniowej w soboty; rys.: B.Wilk-Słomka, J. Belok

RYS. 4. Harmonogramy generowania wewnętrznych zysków ciepła od ludzi, wyposażenia elektrycznego oraz instalacji oświetleniowej w soboty; rys.: B.Wilk-Słomka, J. Belok

RYS. 5. Harmonogramy generowania wewnętrznych zysków ciepła od ludzi, wyposażenia elektrycznego oraz instalacji oświetleniowej w niedziele i święta; rys.: B.Wilk-Słomka, J. Belok

RYS. 5. Harmonogramy generowania wewnętrznych zysków ciepła od ludzi, wyposażenia elektrycznego oraz instalacji oświetleniowej w niedziele i święta; rys.: B.Wilk-Słomka, J. Belok

Przedmiot analiz

Przedmiotem pracy jest fasada przezroczysta w budynku biurowym 8-kondygnacyjnym. Model obliczeniowy budynku, w którym usytuowano fasadę, zbudowano jako układ pięciu stref cieplnych: dwie klatki schodowe, komunikacja pozioma, toalety oraz strefy pomieszczeń biurowych (RYS. 6).

W TABELI 2 zestawiono współczynniki przenikania ciepła przegród nieprzezroczystych.

Przedmiotowa fasada została zorientowana w kierunku zachodnim. Jej odwzorowanie obliczeniowe zrealizowano za pomocą układu dwóch stref (nawiewnej i wywiewnej) – RYS. 7.

RYS. 7. Model budynku wykonany w programie ESP-r; rys.: B.Wilk-Słomka, J. Belok

RYS. 7. Model budynku wykonany w programie ESP-r; rys.: B.Wilk-Słomka, J. Belok

RYS. 8. Ogólny model szklanej fasady wentylowanej; rys.: B.Wilk-Słomka, J. Belok

RYS. 8. Ogólny model szklanej fasady wentylowanej; rys.: B.Wilk-Słomka, J. Belok

Strefa nawiewna wydzielona jest przegrodami ze szkła wzmocnionego grubości 8 mm, które tworzą elewację zewnętrzną oraz przegrodą rozdzielającą, przez którą następuje wymiana ciepła. Strefę wywiewną tworzą przegroda rozdzielająca oraz przegroda wewnętrzna (RYS. 8).

Przegrodę wewnętrzną tworzy typowy układ przeszklenia zespolonego złożonego z 2 tafli szkła grubości 6 mm, i przestrzeni wypełnionej argonem grubości 16 mm.

Rozpatrywano trzy warianty analiz, W0 – bez obiegu powietrza, W1 – z obiegiem powietrza oraz W2 – z odwróconym obiegiem powietrza w miesiącu lipcu (RYS. 9–10).

RYS. 9–10. Schemat przepływu powietrza w szklanej fasadzie wentylowanej: wariant W1 w miesiącu styczniu i lipcu (9), wariant W2 w miesiącu lipcu (10). Oznaczenia: faw – fasada wewnętrzna, faz – fasada zewnętrzna; rys.: B.Wilk-Słomka, J. Belok

RYS. 9–10. Schemat przepływu powietrza w szklanej fasadzie wentylowanej: wariant W1 w miesiącu styczniu i lipcu (9), wariant W2 w miesiącu lipcu (10). Oznaczenia: faw – fasada wewnętrzna, faz – fasada zewnętrzna; rys.: B.Wilk-Słomka, J. Belok

RYS. 11. Zużycie energii na grzanie i chłodzenie w analizowanym pomieszczeniu; rys.: B.Wilk-Słomka, J. Belok

RYS. 11. Zużycie energii na grzanie i chłodzenie w analizowanym pomieszczeniu; rys.: B.Wilk-Słomka, J. Belok

RYS. 12. Wskaźnik zapotrzebowania na energię do ogrzewania i chłodzenia w analizowanym pomieszczeniu; rys.: B.Wilk-Słomka, J. Belok

RYS. 12. Wskaźnik zapotrzebowania na energię do ogrzewania i chłodzenia w analizowanym pomieszczeniu; rys.: B.Wilk-Słomka, J. Belok

Wyniki badań i ich analiza

W artykule zaprezentowano wyniki dla stycznia i lipca jako reprezentatywnych z punktu widzenia celu badań.

Na RYS. 11 i RYS. 12 przedstawiono wyniki zużycia energii na chłodzenie i grzanie w przedmiotowym pomieszczeniu.

Na podstawie uzyskanych wyników analiz można stwierdzić, iż zużycie energii przez system ogrzewania w styczniu jest prawie o 25% niższe dla wariantu z przepływem powietrza (W1) niż bez obiegu powietrza (W0). Natomiast w przypadku systemu chłodzenia sytuacja jest odwrotna.

TABELA 2. Charakterystyka przeszkleń fasady wentylowanej

TABELA 2. Charakterystyka przeszkleń fasady wentylowanej

W wariancie W1 zużycie energii jest wyższe o ok. 25% niż w wariancie W0. Jest to bezpośrednio związane z uzyskiwanymi temperaturami w poszczególnych strefach szklanej fasady (RYS. 13, RYS. 14, RYS. 15, RYS. 16, RYS. 17 i RYS. 18), dlatego Autorzy postanowili przeanalizować w miesiącu lipcu wariant z odwróconym obiegiem przepływu powietrza w stosunku do wariantu W1 (rys. 9–10). W tym rozwiązaniu zużycie energii na chłodzenie uzyskano niższe o 2% niż dla wariantu W1.

RYS. 13. Wartości temperatury powietrza dla wariantów W0, W1 oraz W2 dla lipca; rys.: B.Wilk-Słomka, J. Belok

RYS. 13. Wartości temperatury powietrza dla wariantów W0, W1 oraz W2 dla lipca; rys.: B.Wilk-Słomka, J. Belok

RYS. 14. Wartości temperatury powietrza dla wariantów W1 oraz W2 dla lipca; rys.: B.Wilk-Słomka, J. Belok

RYS. 14. Wartości temperatury powietrza dla wariantów W1 oraz W2 dla lipca; rys.: B.Wilk-Słomka, J. Belok

RYS. 15. Wartości temperatury powietrza dla wariantów W1 oraz W2 w okresie od 1 do 8 lipca; rys.: B.Wilk-Słomka, J. Belok

RYS. 15. Wartości temperatury powietrza dla wariantów W1 oraz W2 w okresie od 1 do 8 lipca; rys.: B.Wilk-Słomka, J. Belok

RYS. 16. Wartości temperatury powietrza dla wariantów W1 oraz W2 w okresie od 9 do 16 lipca; rys.: B.Wilk-Słomka, J. Belok

RYS. 16. Wartości temperatury powietrza dla wariantów W1 oraz W2 w okresie od 9 do 16 lipca; rys.: B.Wilk-Słomka, J. Belok

RYS. 17. Wartości temperatury powietrza dla wariantów W1 oraz W2 w okresie od 17 do 24 lipca; rys.: B.Wilk-Słomka, J. Belok

RYS. 17. Wartości temperatury powietrza dla wariantów W1 oraz W2 w okresie od 17 do 24 lipca; rys.: B.Wilk-Słomka, J. Belok

RYS. 18. Wartości temperatury powietrza dla wariantów W1 oraz W2 w okresie od 25 do 31 lipca; rys.: B.Wilk-Słomka, J. Belok

RYS. 18. Wartości temperatury powietrza dla wariantów W1 oraz W2 w okresie od 25 do 31 lipca; rys.: B.Wilk-Słomka, J. Belok

Rozpatrując czas pracy przez systemy instalacyjne, można zauważyć, że w przypadku grzania dla wariantu W1 jest on niższy o 67 godzin niż dla W0. Natomiast dla systemu chłodzenia dla wariantu W1 odnotowano czas pracy dłuższy o 38 godzin niż dla W0. W wariancie W2 z odwróconym obiegiem przepływu powietrza czas pracy systemu chłodzenia uległ zmniejszeniu o 24 godziny w porównaniu z wariantem W1.

Na podstawie uzyskanych wyników dotyczących chwilowych wartości temperatury powietrza (TABELA 3) można stwierdzić, iż w styczniu uzyskano wyższe wartości temperatury minimalnej w wariancie W1 niż w W0 w obu strefach fasady – tj. fasadzie zewnętrznej i wewnętrznej.

TABELA 3. Wartości temperatury powietrza dla analizowanych wariantów

TABELA 3. Wartości temperatury powietrza dla analizowanych wariantów

RYS. 19. Czas pracy systemu instalacyjnego w analizowanym pomieszczeniu; rys.: B.Wilk-Słomka, J. Belok

RYS. 19. Czas pracy systemu instalacyjnego w analizowanym pomieszczeniu; rys.: B.Wilk-Słomka, J. Belok

Takie wartości mają odzwierciedlenie w niższym zapotrzebowaniu na energię grzewczą (RYS. 11) czy krótszym czasie pracy instalacji (RYS. 19). Pomimo niższych chwilowych maksymalnych wartości temperatury powietrza w wariancie W1 niż w W0 nie wpływa to w sposób negatywny na aspekt energetyczny – ogrzewanie. Temperatura powietrza zewnętrznego w styczniu wynosi teS = –16,5–11,9°C, przy średniej teśrS = –1,7°C.

W miesiącu lipcu dla wariantu W1 uzyskano niższe wartości temperatury powietrza w obu strefach fasady w porównaniu do wariantu W0. Zatem można wnioskować, że powietrze wywiewane z pomieszczenia chłodzi powietrze do niego nawiewane. Natomiast widać znaczące różnice w chwilowych maksymalnych temperaturach powietrza. Dla wariantu W0 są one wyższe o ok. 7–8°C niż dla W1. Dla wariantu W2 i W1 wartości te zostały zminimalizowane do 0,5°C.

Zatem odwrócenie obiegu powietrza nie przyniosło znaczących zmian. Zmiany te uwidoczniły się natomiast w wartościach minimalnych – dla wariantu W2 są niższe niż dla W1 o ok. 2,5°C. Spowodowało to zmniejszenie zużycia energii na chłodzenie o ok. 2%. Temperatura powietrza zewnętrznego w lipcu wynosi teL = 6,5–32,1°C, przy średniej teśrL =19,4°C.

Dla lepszego zobrazowania uzyskanych wyników dla wariantu W1 oraz W2 wybrano fragment przebiegu temperatur w analizowanej fasadzie (RYS. 15, RYS. 16, RYS. 17 i RYS. 18).

Podsumowanie

W artykule zostały przeanalizowane trzy warianty szklanej fasady podwójnej:

  • W0 – bez obiegu powietrza,
  • W1 – z obiegiem powietrza i strefą nawiewną w części wewnętrznej fasady
  • oraz W2 – z obiegiem powietrza i strefą nawiewną w części zewnętrznej fasady.

Na podstawie analizy uzyskanych wyników stwierdzono, iż zastosowanie szklanej fasady tworzącej przeciwprądowy wymiennik ciepła powoduje zwiększenie zużycia energii dla chłodzenia w miesiącu lipcu, natomiast zmniejszenie zużycia energii na ogrzewanie w miesiącu styczniu. Różnica w obu przypadkach wynosi 25%.

Zaobserwowano zmniejszenie czasu pracy systemu grzewczego dla wariantu W1 o 67 godzin w porównaniu do wariantu W0. Jednak czas pracy systemu chłodniczego uległ zwiększeniu o 38 godzin w wariancie W1.

Po wprowadzeniu odwróconego obiegu przepływu powietrza dla miesiąca lipca uzyskano nieznaczne zmniejszenie zużycia energii na chłodzenie oraz czasu pracy systemu chłodniczego w porównaniu do wariantu W1.

Wypadkowa efektywność energetyczna tego typu rozwiązań jest trudna do określenia bez przeprowadzenia badań symulacyjnych. Zatem należy zalecać ich wykonywanie w trakcie projektowania obiektu, aby nie narażać inwestora na powiększone koszty realizacji obiektu, które nie przyniosą spodziewanych efektów energetycznych.

Otrzymane wyniki zachęcają do dalszych analiz w zakresie przyjęcia innych parametrów optyczno-energetycznych oszklenia, a także rozpatrzenia nie tylko fasady skierowanej na zachód, ale również o innej orientacji.

Literatura

  1. A. Bugaj, „Podwójna fasada – efektywny element systemu wentylacji budynku”, „Rynek Instalacyjny” 11/2013.
  2. A. Bugaj, „Praktyczne zastosowanie podwójnej fasady w systemie wentylacji budynku”, „Rynek Instalacyjny” 12/2013.
  3. A. Charkowska, „Wentylacja fasadowa”, „Rynek Instalacyjny” 1–2/2013.
  4. „Fasady ze skórą podwójną: wybór odpowiedniego zestawienia szkła dla optymalizacji płynących z ich zastosowania korzyści”, https://www.swiat-szkła.pl, dostęp z dnia 15.08.2019 r.
  5. „Elewacje dwupowłokowe: zaawansowane okrycia budynków. Charakterystyka i wyzwania”, https://www.swiat-szkla.pl; dostęp z dnia 15.08.2019 r.
  6. Rozporządzenie Ministra Infrastruktury z dnia 12 kwietnia 2002 r. w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie (DzU Nr 75/2002, poz. 690, z późniejszymi zmianami).
  7. https://www.esru.strath.ac.uk/programs, dostęp z dnia 05.09.2019 r.
  8. https://openstudio.net, dostęp z dnia 05.09.2019 r.
  9. https://windows.lbl.gov/software/window, dostęp z dnia 05.09.2019 r.

Chcesz być na bieżąco? Zapisz się do naszego newslettera!

Galeria zdjęć

Tytuł
przejdź do galerii

Komentarze

Powiązane

dr inż. Iwona Kata , mgr Zofia Stasica , mgr inż. Witold Charyasz, mgr inż. Krzysztof Szafran Korozja biologiczna i problem degradacji środków biobójczych stosowanych w materiałach budowlanych

Korozja biologiczna i problem degradacji środków biobójczych stosowanych w materiałach budowlanych Korozja biologiczna i problem degradacji środków biobójczych stosowanych w materiałach budowlanych

Biokorozja materiałów budowlanych to powszechne zjawisko, występujące zarówno na elewacjach budynków, jak i wewnątrz pomieszczeń. Skuteczne zabezpieczenie przed biokorozją jest dość trudne. Rozwiązaniem...

Biokorozja materiałów budowlanych to powszechne zjawisko, występujące zarówno na elewacjach budynków, jak i wewnątrz pomieszczeń. Skuteczne zabezpieczenie przed biokorozją jest dość trudne. Rozwiązaniem jest stosowanie środków ochrony powłok, które zawierają substancje czynne, aktywnie hamujące rozrost mikroorganizmów.

dr inż. Andrzej Konarzewski Materiałowe współczynniki bezpieczeństwa płyt warstwowych

Materiałowe współczynniki bezpieczeństwa płyt warstwowych Materiałowe współczynniki bezpieczeństwa płyt warstwowych

Materiałowe współczynniki bezpieczeństwa ɣM powinny odzwierciedlać zmienność właściwości mechanicznych płyt warstwowych, na co wskazują wyniki badań typu i zakładowej kontroli produkcji. Autor publikacji...

Materiałowe współczynniki bezpieczeństwa ɣM powinny odzwierciedlać zmienność właściwości mechanicznych płyt warstwowych, na co wskazują wyniki badań typu i zakładowej kontroli produkcji. Autor publikacji objaśnia jak je wyznaczać.

dr inż. Paweł Sulik Bezpieczeństwo pożarowe pasów międzykondygnacyjnych

Bezpieczeństwo pożarowe pasów międzykondygnacyjnych Bezpieczeństwo pożarowe pasów międzykondygnacyjnych

Pasy międzykondygnacyjne stanowią naturalnie ukształtowaną część ścian zewnętrznych budynków, co oznacza, że muszą one przede wszystkim spełnić wymagania jak dla ścian zewnętrznych.

Pasy międzykondygnacyjne stanowią naturalnie ukształtowaną część ścian zewnętrznych budynków, co oznacza, że muszą one przede wszystkim spełnić wymagania jak dla ścian zewnętrznych.

dr hab. inż. prof. PŚ Łukasz Drobiec, dr inż. Wojciech Mazur , mgr inż. Remigiusz Jokiel Badania wpływu wzmocnienia powierzchniowego systemem FRCM na wytrzymałość na ściskanie murów z autoklawizowanego betonu komórkowego

Badania wpływu wzmocnienia powierzchniowego systemem FRCM na wytrzymałość na ściskanie murów z autoklawizowanego betonu komórkowego Badania wpływu wzmocnienia powierzchniowego systemem FRCM na wytrzymałość na ściskanie murów z autoklawizowanego betonu komórkowego

Celem badań przedstawionych w artykule jest określenie wpływu wzmocnienia powierzchniowego systemem FRCM na wytrzymałość na ściskanie murów wykonanych z autoklawizowanego betonu komórkowego.

Celem badań przedstawionych w artykule jest określenie wpływu wzmocnienia powierzchniowego systemem FRCM na wytrzymałość na ściskanie murów wykonanych z autoklawizowanego betonu komórkowego.

dr inż. Paweł Krause, dr inż. Agnieszka Szymanowska-Gwiżdż, dr inż. Bożena Orlik-Kożdoń, dr inż. Tomasz Steidl Stan ochrony cieplnej elementów przyziemia w budownictwie jednorodzinnym

Stan ochrony cieplnej elementów przyziemia w budownictwie jednorodzinnym Stan ochrony cieplnej elementów przyziemia w budownictwie jednorodzinnym

Stan ochrony cieplnej elementów przyziemia w niepodpiwniczonych budynkach jednorodzinnych w istotnym stopniu zależy od izolacyjności cieplnej ściany fundamentowej i podłogi na gruncie. Rozwiązania projektowe...

Stan ochrony cieplnej elementów przyziemia w niepodpiwniczonych budynkach jednorodzinnych w istotnym stopniu zależy od izolacyjności cieplnej ściany fundamentowej i podłogi na gruncie. Rozwiązania projektowe ścian przyziemia w budynkach nieposiadających podpiwniczenia, posadowionych na ławach fundamentowych, są realizowane w zróżnicowany sposób.

mgr inż. Bartłomiej Monczyński Ochrona budynków przed naturalnymi źródłami promieniowania jonizującego

Ochrona budynków przed naturalnymi źródłami promieniowania jonizującego Ochrona budynków przed naturalnymi źródłami promieniowania jonizującego

Pojęcie promieniotwórczości (radioaktywności) w percepcji społecznej wiąże się przede wszystkim z zagrożeniem wynikającym z wykorzystywania energii jądrowej do celów wojskowych, energetycznych lub medycznych...

Pojęcie promieniotwórczości (radioaktywności) w percepcji społecznej wiąże się przede wszystkim z zagrożeniem wynikającym z wykorzystywania energii jądrowej do celów wojskowych, energetycznych lub medycznych [1]. Wciąż mało kto zdaje sobie sprawę, że niemal 3/4 dawki promieniowania jonizującego, jaką otrzymuje w ciągu roku przeciętny Polak, pochodzi ze źródeł naturalnych [2].

Nicola Hariasz Sufity podwieszane o podwyższonych właściwościach akustycznych

Sufity podwieszane o podwyższonych właściwościach akustycznych Sufity podwieszane o podwyższonych właściwościach akustycznych

Sufity podwieszane mogą stanowić ciekawy i nowoczesny element aranżacji wnętrza. Choć najczęściej kojarzą się z białymi klasycznymi modułami, są dostępne niemal w każdym kolorze i różnej stylistyce.

Sufity podwieszane mogą stanowić ciekawy i nowoczesny element aranżacji wnętrza. Choć najczęściej kojarzą się z białymi klasycznymi modułami, są dostępne niemal w każdym kolorze i różnej stylistyce.

mgr inż. Ismena Gawęda Wymagania techniczne wobec obiektów rolniczych o konstrukcji stalowej

Wymagania techniczne wobec obiektów rolniczych o konstrukcji stalowej Wymagania techniczne wobec obiektów rolniczych o konstrukcji stalowej

Popularne ostatnimi czasy w rolnictwie hale o konstrukcji stalowej (RYS. 1, FOT. 1) sprawdzają się jako specjalistyczne powierzchnie magazynowe pasz i przechowalnie płodów rolnych (w tym również w warunkach...

Popularne ostatnimi czasy w rolnictwie hale o konstrukcji stalowej (RYS. 1, FOT. 1) sprawdzają się jako specjalistyczne powierzchnie magazynowe pasz i przechowalnie płodów rolnych (w tym również w warunkach chłodni czy mroźni) oraz powierzchnie przetwórcze.

mgr inż. Bartosz Witkowski, prof. dr hab. inż. Krzysztof Schabowicz Izolacje a współczesna prefabrykacja w budynkach kubaturowych

Izolacje a współczesna prefabrykacja w budynkach kubaturowych Izolacje a współczesna prefabrykacja w budynkach kubaturowych

Prefabrykacja, w szczególności ta stosowana w budownictwie mieszkaniowym, znana jest w Polsce już od początku lat 50. ubiegłego wieku, kiedy to po drugiej wojnie światowej rozpoczęła się odbudowa miast...

Prefabrykacja, w szczególności ta stosowana w budownictwie mieszkaniowym, znana jest w Polsce już od początku lat 50. ubiegłego wieku, kiedy to po drugiej wojnie światowej rozpoczęła się odbudowa miast i znacząco wzrósł popyt na nowe mieszkania. To, co w świadomości może najbardziej być kojarzone z prefabrykacją zastosowaną w budynkach to tzw. wielka płyta, czyli połączenie żelbetowych ścian konstrukcyjnych ze ścianami osłonowymi z gazobetonu.

dr inż. Marcin Górski, dr inż. Bernard Kotala, mgr inż. Rafał Białozor Rodzaje i właściwości zbrojeń niemetalicznych

Rodzaje i właściwości zbrojeń niemetalicznych Rodzaje i właściwości zbrojeń niemetalicznych

Kompozyty włókniste, również w Polsce nazywane z angielskiego FRP (Fibre Reinforced Polymers), śmiało wkroczyły w świat konstrukcji budowlanych na początku lat 90. ubiegłego wieku, głównie w krajach Europy...

Kompozyty włókniste, również w Polsce nazywane z angielskiego FRP (Fibre Reinforced Polymers), śmiało wkroczyły w świat konstrukcji budowlanych na początku lat 90. ubiegłego wieku, głównie w krajach Europy Zachodniej, a także w Japonii, Stanach Zjednoczonych i Kanadzie. Pojawiły się niemal równocześnie dwie grupy produktów – materiały do wzmocnień konstrukcji oraz pręty do zbrojenia betonu.

Monika Hyjek Pożar ściany z barierami ogniowymi

Pożar ściany z barierami ogniowymi Pożar ściany z barierami ogniowymi

Od lat 80. XX wieku ilość materiałów ociepleniowych na ścianach zewnętrznych budynku stale rośnie. Grubość izolacji w jednej z popularniejszych w Europie metod ocieplania (ETICS) przez ten okres zwiększyła...

Od lat 80. XX wieku ilość materiałów ociepleniowych na ścianach zewnętrznych budynku stale rośnie. Grubość izolacji w jednej z popularniejszych w Europie metod ocieplania (ETICS) przez ten okres zwiększyła się 3–4-krotnie. W przypadku stosowania palnych izolacji cieplnych jest to równoznaczne ze wzrostem zagrożenia pożarowego.

mgr inż. Bartłomiej Monczyński Tynki stosowane na zawilgoconych przegrodach – tynki regulujące zawilgocenie

Tynki stosowane na zawilgoconych przegrodach – tynki regulujące zawilgocenie Tynki stosowane na zawilgoconych przegrodach – tynki regulujące zawilgocenie

Jednym z ostatnich, ale zazwyczaj nieodzownym elementem prac renowacyjnych w uszkodzonych przez wilgoć i sole obiektach budowlanych jest wykonanie nowych tynków wewnętrznych i/lub zewnętrznych.

Jednym z ostatnich, ale zazwyczaj nieodzownym elementem prac renowacyjnych w uszkodzonych przez wilgoć i sole obiektach budowlanych jest wykonanie nowych tynków wewnętrznych i/lub zewnętrznych.

Röben Polska Sp. z o.o. i Wspólnicy Sp. K. Ekoceramika na dachy i elewacje

Ekoceramika na dachy i elewacje Ekoceramika na dachy i elewacje

Wyjątkowo trwała, a na dodatek bezpieczna dla środowiska i naszego zdrowia. Znamy ją od tysięcy lat, należy do najbardziej ekologicznych materiałów budowlanych – po prostu ceramika!

Wyjątkowo trwała, a na dodatek bezpieczna dla środowiska i naszego zdrowia. Znamy ją od tysięcy lat, należy do najbardziej ekologicznych materiałów budowlanych – po prostu ceramika!

Nicola Hariasz Ściany podwyższające komfort akustyczny w pomieszczeniu

Ściany podwyższające komfort akustyczny w pomieszczeniu Ściany podwyższające komfort akustyczny w pomieszczeniu

Hałas jest powszechnym problemem obniżającym komfort życia nie tylko w domu, ale także w pracy. O tym, czy może być niebezpieczny, decyduje nie tylko jego natężenie, ale również czas jego trwania. Szkodliwe...

Hałas jest powszechnym problemem obniżającym komfort życia nie tylko w domu, ale także w pracy. O tym, czy może być niebezpieczny, decyduje nie tylko jego natężenie, ale również czas jego trwania. Szkodliwe dla zdrowia mogą być nawet gwar i szum towarzyszące nam na co dzień w biurze czy w centrum handlowym.

dr inż. Paweł Krause, dr inż. Rosita Norvaišienė Rozkład temperatury systemu ETICS z zastosowaniem styropianu i wełny – badania laboratoryjne

Rozkład temperatury systemu ETICS z zastosowaniem styropianu i wełny – badania laboratoryjne Rozkład temperatury systemu ETICS z zastosowaniem styropianu i wełny – badania laboratoryjne

Ochrona cieplna ścian zewnętrznych jest nie tylko jednym z podstawowych zagadnień związanych z oszczędnością energii, ale wiąże się również z komfortem użytkowania pomieszczeń przeznaczonych na pobyt ludzi....

Ochrona cieplna ścian zewnętrznych jest nie tylko jednym z podstawowych zagadnień związanych z oszczędnością energii, ale wiąże się również z komfortem użytkowania pomieszczeń przeznaczonych na pobyt ludzi. Zapewnienie odpowiedniego komfortu cieplnego pomieszczeń, nieposiadających w większości przypadków instalacji chłodzenia, dotyczy całego roku, a nie tylko okresu ogrzewczego.

mgr Kamil Kiejna Bezpieczeństwo pożarowe w aspekcie stosowania tzw. barier ogniowych w ociepleniach ze styropianu – artykuł polemiczny

Bezpieczeństwo pożarowe w aspekcie stosowania tzw. barier ogniowych w ociepleniach ze styropianu – artykuł polemiczny Bezpieczeństwo pożarowe w aspekcie stosowania tzw. barier ogniowych w ociepleniach ze styropianu – artykuł polemiczny

Niniejszy artykuł jest polemiką do tekstu M. Hyjek „Pożar ściany z barierami ogniowymi”, opublikowanego w styczniowym numerze „IZOLACJI” (nr 1/2021), który w ocenie Polskiego Stowarzyszenia Producentów...

Niniejszy artykuł jest polemiką do tekstu M. Hyjek „Pożar ściany z barierami ogniowymi”, opublikowanego w styczniowym numerze „IZOLACJI” (nr 1/2021), który w ocenie Polskiego Stowarzyszenia Producentów Styropianu, wskutek tendencyjnego i wybiórczego przedstawienia wyników badań przeprowadzonych przez Łukasiewicz – Instytut Ceramiki i Materiałów Budowlanych (ICiMB), może wprowadzać w błąd co do rzeczywistego poziomu bezpieczeństwa pożarowego systemów ETICS z płytami styropianowymi oraz rzekomych korzyści...

dr inż. Marcin Górski, dr inż. Bernard Kotala, mgr inż. Rafał Białozor Zbrojenia niemetaliczne – zbrojenia tekstylne i pręty kompozytowe

Zbrojenia niemetaliczne – zbrojenia tekstylne i pręty kompozytowe Zbrojenia niemetaliczne – zbrojenia tekstylne i pręty kompozytowe

Zbrojenie niemetaliczne jest odporne na korozję, nie ulega degradacji pod wpływem czynników atmosferycznych. Wykazuje także odporność na chlorki, kwasy, agresję chemiczną środowiska.

Zbrojenie niemetaliczne jest odporne na korozję, nie ulega degradacji pod wpływem czynników atmosferycznych. Wykazuje także odporność na chlorki, kwasy, agresję chemiczną środowiska.

mgr inż. Bartłomiej Monczyński Redukcja zasolenia przegród budowlanych za pomocą kompresów

Redukcja zasolenia przegród budowlanych za pomocą kompresów Redukcja zasolenia przegród budowlanych za pomocą kompresów

Jednym z najbardziej niekorzystnych zjawisk związanych z obecnością soli i wilgoci w układzie porów materiałów budowlanych jest krystalizacja soli [1–2] (FOT. 1).

Jednym z najbardziej niekorzystnych zjawisk związanych z obecnością soli i wilgoci w układzie porów materiałów budowlanych jest krystalizacja soli [1–2] (FOT. 1).

dr inż. Krzysztof Pawłowski, prof. uczelni Termomodernizacja budynków – ocieplenie i docieplenie elementów obudowy budynków

Termomodernizacja budynków – ocieplenie i docieplenie elementów obudowy budynków Termomodernizacja budynków – ocieplenie i docieplenie elementów obudowy budynków

Termomodernizacja dotyczy dostosowania budynku do nowych wymagań ochrony cieplnej i oszczędności energii. Ponadto stanowi zbiór zabiegów mających na celu wyeliminowanie lub znaczne ograniczenie strat ciepła...

Termomodernizacja dotyczy dostosowania budynku do nowych wymagań ochrony cieplnej i oszczędności energii. Ponadto stanowi zbiór zabiegów mających na celu wyeliminowanie lub znaczne ograniczenie strat ciepła w istniejącym budynku. Jest jednym z elementów modernizacji budynku, który przynosi korzyści finansowe i pokrycie kosztów innych działań.

dr inż. Artur Miszczuk Ocieplenie podłóg na gruncie i stropów nad nieogrzewanymi piwnicami

Ocieplenie podłóg na gruncie i stropów nad nieogrzewanymi piwnicami Ocieplenie podłóg na gruncie i stropów nad nieogrzewanymi piwnicami

Od 1 stycznia 2021 r. obowiązują zaostrzone Warunki Techniczne (WT 2021) dla nowo budowanych obiektów, a także budynków zaprojektowanych według wcześniej obowiązującego standardu WT 2017 – zgodnie z wymaganiami...

Od 1 stycznia 2021 r. obowiązują zaostrzone Warunki Techniczne (WT 2021) dla nowo budowanych obiektów, a także budynków zaprojektowanych według wcześniej obowiązującego standardu WT 2017 – zgodnie z wymaganiami proekologicznej polityki UE. Graniczne wartości współczynnika przenikania ciepła dla podłóg na gruncie i stropów nad pomieszczeniami nieogrzewanymi nie zostały jednak (w WT 2021) zmienione.

dr inż. arch. Karolina Kurtz-Orecka Ściany zewnętrzne według zaostrzonych wymagań izolacyjności termicznej

Ściany zewnętrzne według zaostrzonych wymagań izolacyjności termicznej Ściany zewnętrzne według zaostrzonych wymagań izolacyjności termicznej

Początek roku 2021 w branży budowlanej przyniósł kolejne zaostrzenie przepisów techniczno-budowlanych, ostatnie z planowanych, które wynikało z implementacji zapisów dyrektywy unijnej w sprawie charakterystyki...

Początek roku 2021 w branży budowlanej przyniósł kolejne zaostrzenie przepisów techniczno-budowlanych, ostatnie z planowanych, które wynikało z implementacji zapisów dyrektywy unijnej w sprawie charakterystyki energetycznej budynków [1, 2], potocznie zwanej dyrektywą EPBD.

dr inż. Adam Ujma Ściany zewnętrzne z elewacjami wentylowanymi i ich izolacyjność cieplna

Ściany zewnętrzne z elewacjami wentylowanymi i ich izolacyjność cieplna Ściany zewnętrzne z elewacjami wentylowanymi i ich izolacyjność cieplna

Ściany zewnętrzne z elewacjami wykonanymi w formie konstrukcji z warstwami wentylowanymi coraz częściej znajdują zastosowanie w nowych budynków, ale również z powodzeniem mogą być wykorzystane przy modernizacji...

Ściany zewnętrzne z elewacjami wykonanymi w formie konstrukcji z warstwami wentylowanymi coraz częściej znajdują zastosowanie w nowych budynków, ale również z powodzeniem mogą być wykorzystane przy modernizacji istniejących obiektów. Dają one szerokie możliwości dowolnego kształtowania materiałowego elewacji, z wykorzystaniem elementów metalowych, z tworzywa sztucznego, szkła, kamienia naturalnego, drewna i innych. Pewną niedogodnością tego rozwiązania jest konieczność uwzględnienia w obliczeniach...

mgr inż. arch. Tomasz Rybarczyk Ściany jednowarstwowe według WT 2021

Ściany jednowarstwowe według WT 2021 Ściany jednowarstwowe według WT 2021

Elementom zewnętrznym budynków, a więc również ścianom, stawiane są coraz wyższe wymagania, m.in. pod względem izolacyjności cieplnej. Zmiany obowiązujące od 1 stycznia 2021 roku dotyczą wymagań w zakresie...

Elementom zewnętrznym budynków, a więc również ścianom, stawiane są coraz wyższe wymagania, m.in. pod względem izolacyjności cieplnej. Zmiany obowiązujące od 1 stycznia 2021 roku dotyczą wymagań w zakresie izolacyjności cieplnej, a wynikające z rozporządzenia w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie powodują, że odtąd trzeba budować budynki ze ścianami o wyższej termoizolacyjności niż budowano dotychczas.

dr inż. Bożena Orlik-Kożdoń, dr inż. Tomasz Steidl Docieplanie budynków od wewnątrz – wymagania prawne i zalecenia do projektowania

Docieplanie budynków od wewnątrz – wymagania prawne i zalecenia do projektowania Docieplanie budynków od wewnątrz – wymagania prawne i zalecenia do projektowania

Obowiązujące w Polsce wymagania prawne związane z docieplaniem budynków od wewnątrz obejmują zarówno przepisy podstawowe zdefiniowane w dokumentach unijnych, jak i wymagania szczegółowe, zawarte w dokumentach...

Obowiązujące w Polsce wymagania prawne związane z docieplaniem budynków od wewnątrz obejmują zarówno przepisy podstawowe zdefiniowane w dokumentach unijnych, jak i wymagania szczegółowe, zawarte w dokumentach krajowych. A ich realizację umożliwiają dostępne na rynku rozwiązania technologiczno-materiałowe.

Najnowsze produkty i technologie

MediaMarkt Laptop na raty – czy warto wybrać tę opcję?

Laptop na raty – czy warto wybrać tę opcję? Laptop na raty – czy warto wybrać tę opcję?

Zakup nowego laptopa to spory wydatek. Może się zdarzyć, że staniemy przed dylematem: tańszy sprzęt, mniej odpowiadający naszym potrzebom, czy droższy, lepiej je spełniający, ale na raty? Często wybór...

Zakup nowego laptopa to spory wydatek. Może się zdarzyć, że staniemy przed dylematem: tańszy sprzęt, mniej odpowiadający naszym potrzebom, czy droższy, lepiej je spełniający, ale na raty? Często wybór tańszego rozwiązania, jest pozorną oszczędnością. Niższa efektywność pracy, mniejsza żywotność, nie mówiąc już o ograniczonych parametrach technicznych. Jeśli szukamy sprzętu, który posłuży nam naprawdę długo, dobrze do zakupu laptopa podejść jak do inwestycji - niezależnie, czy kupujemy go przede wszystkim...

PU Polska – Związek Producentów Płyt Warstwowych i Izolacji Płyty warstwowe PUR/PIR w aspekcie wymagań technicznych stawianych lekkiej obudowie

Płyty warstwowe PUR/PIR w aspekcie wymagań technicznych stawianych lekkiej obudowie Płyty warstwowe PUR/PIR w aspekcie wymagań technicznych stawianych lekkiej obudowie

Rozwój technologii budowlanej w ciągu ostatnich kilkudziesięciu lat zmienił oblicze branży w Polsce, umożliwiając szybszą, tańszą i ekologiczną realizację wznoszonych obiektów. Wprowadzając szeroko do...

Rozwój technologii budowlanej w ciągu ostatnich kilkudziesięciu lat zmienił oblicze branży w Polsce, umożliwiając szybszą, tańszą i ekologiczną realizację wznoszonych obiektów. Wprowadzając szeroko do branży rewolucyjny i rewelacyjny produkt, jakim jest płyta warstwowa, zmodernizowaliśmy de facto ideę prefabrykacji i zamianę tradycyjnych, mokrych i pracochłonnych technologii wznoszenia budynków z elementów małogabarytowych lub konstrukcji szalunkowych na szybki, suchy montaż gotowych elementów w...

Balex Metal Sp. z o. o. System rynnowy Zenit – orynnowanie premium

System rynnowy Zenit – orynnowanie premium System rynnowy Zenit – orynnowanie premium

Wielu inwestorów, wybierając orynnowanie, zwraca wyłącznie uwagę na kolor czy kształt rynien i rur spustowych. Oczywiście estetyka jest ważna, ale nie to jest głównym zadaniem systemu rynnowego. Ma on...

Wielu inwestorów, wybierając orynnowanie, zwraca wyłącznie uwagę na kolor czy kształt rynien i rur spustowych. Oczywiście estetyka jest ważna, ale nie to jest głównym zadaniem systemu rynnowego. Ma on przede wszystkim bezpiecznie odprowadzać wodę deszczową i roztopową z dachu, a o tym decydują detale. Zadbała o nie firma Balex Metal. System rynnowy Zenit jest dopracowany do perfekcji. Równie świetnie się prezentuje.

BREVIS S.C. Insolio - nawiewnik montowany bez konieczności frezowania szczelin

Insolio - nawiewnik montowany bez konieczności frezowania szczelin Insolio - nawiewnik montowany bez konieczności frezowania szczelin

Nawiewniki okienne to urządzenia mechaniczne zapewniające stały, a zarazem regulowany dopływ świeżego powietrza bez potrzeby otwierania okien. Ich montaż to jedna z najprostszych metod zapewnienia prawidłowego...

Nawiewniki okienne to urządzenia mechaniczne zapewniające stały, a zarazem regulowany dopływ świeżego powietrza bez potrzeby otwierania okien. Ich montaż to jedna z najprostszych metod zapewnienia prawidłowego działania wentylacji grawitacyjnej, mechanicznej wywiewnej i hybrydowej (połączenie obu poprzednich typów). Wiele osób rezygnowało z ich instalacji z powodu konieczności ingerencji w konstrukcję ramy okna. Na szczęście to już przeszłość - od kilku lat na rynku dostępne są modele montowane na...

PETRALANA Zastosowanie przeciwogniowe, termiczne, akustyczne – płyty PETRATOP i PETRALAMELA-FG

Zastosowanie przeciwogniowe, termiczne, akustyczne – płyty PETRATOP i PETRALAMELA-FG Zastosowanie przeciwogniowe, termiczne, akustyczne – płyty PETRATOP i PETRALAMELA-FG

PETRATOP i PETRALAMELA-FG to produkty stworzone z myślą o efektywnej izolacji termicznej oraz akustycznej oraz bezpieczeństwie pożarowym garaży i piwnic. Rozwiązanie to zapobiega wymianie wysokiej temperatury...

PETRATOP i PETRALAMELA-FG to produkty stworzone z myślą o efektywnej izolacji termicznej oraz akustycznej oraz bezpieczeństwie pożarowym garaży i piwnic. Rozwiązanie to zapobiega wymianie wysokiej temperatury z górnych kondygnacji budynków z niską temperaturą, która panuje bliżej gruntu.

VITCAS Polska Sp. z o.o. Jakich materiałów użyć do izolacji cieplnej kominka?

Jakich materiałów użyć do izolacji cieplnej kominka? Jakich materiałów użyć do izolacji cieplnej kominka?

Kominek to od lat znany i ceniony element wyposażenia domu. Nie tylko daje ciepło w chłodne wieczory, ale również stwarza niepowtarzalny klimat w pomieszczeniu. Obserwowanie pomarańczowych płomieni pozwala...

Kominek to od lat znany i ceniony element wyposażenia domu. Nie tylko daje ciepło w chłodne wieczory, ale również stwarza niepowtarzalny klimat w pomieszczeniu. Obserwowanie pomarańczowych płomieni pozwala zrelaksować się po ciężkim dniu pracy. Taka aura sprzyja również długim rozmowom w gronie najbliższych. Aby kominek był bezpieczny w użytkowaniu, należy zadbać o jego odpowiednią izolację termiczną. Dlaczego zabezpieczenie kominka jest tak ważne i jakich materiałów izolacyjnych użyć? Na te pytania...

Recticel Insulation Płyty termoizolacyjne EUROTHANE G – efektywne docieplenie budynku od wewnątrz

Płyty termoizolacyjne EUROTHANE G – efektywne docieplenie budynku od wewnątrz Płyty termoizolacyjne EUROTHANE G – efektywne docieplenie budynku od wewnątrz

Termomodernizacja jest jednym z podstawowych zadań podejmowanych w ramach modernizacji budynków. W odniesieniu do ścian docieplenie wykonuje się od zewnątrz, zgodnie z podstawowymi zasadami fizyki budowli....

Termomodernizacja jest jednym z podstawowych zadań podejmowanych w ramach modernizacji budynków. W odniesieniu do ścian docieplenie wykonuje się od zewnątrz, zgodnie z podstawowymi zasadami fizyki budowli. Czasami jednak nie ma możliwości wykonania docieplenia na fasadach, np. na budynkach zabytkowych, obiektach z utrudnionym dostępem do elewacji czy na budynkach usytuowanych w granicy. W wielu takich przypadkach jest jednak możliwe wykonanie docieplenia ścian od wewnątrz.

Ocmer Jak wygląda budowa hali magazynowej?

Jak wygląda budowa hali magazynowej? Jak wygląda budowa hali magazynowej?

Budowa obiektu halowego to wieloetapowy proces, w którym każdy krok musi zostać precyzyjnie zaplanowany i umiejscowiony w czasie. Jak wyglądają kolejne fazy takiego przedsięwzięcia? Wyjaśniamy, jak przebiega...

Budowa obiektu halowego to wieloetapowy proces, w którym każdy krok musi zostać precyzyjnie zaplanowany i umiejscowiony w czasie. Jak wyglądają kolejne fazy takiego przedsięwzięcia? Wyjaśniamy, jak przebiega budowa hali magazynowej i z jakich etapów składa się cały proces.

Parati Płyta fundamentowa i jej zalety – wszystko, co trzeba wiedzieć

Płyta fundamentowa i jej zalety – wszystko, co trzeba wiedzieć Płyta fundamentowa i jej zalety – wszystko, co trzeba wiedzieć

Budowa domu jest zadaniem niezwykle trudnym, wymagającym od inwestora podjęcia wielu decyzji, bezpośrednio przekładających się na efekt. Dokłada on wszelkich starań, żeby budynek był w pełni funkcjonalny,...

Budowa domu jest zadaniem niezwykle trudnym, wymagającym od inwestora podjęcia wielu decyzji, bezpośrednio przekładających się na efekt. Dokłada on wszelkich starań, żeby budynek był w pełni funkcjonalny, wygodny oraz wytrzymały. A jak pokazuje praktyka, aby osiągnąć ten cel, należy rozpocząć od podstaw. Właśnie to zagwarantuje nam solidna płyta fundamentowa.

Copyright © 2004-2019 Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Spółka komandytowa, nr KRS: 0000537655. Wszelkie prawa, w tym Autora, Wydawcy i Producenta bazy danych zastrzeżone. Jakiekolwiek dalsze rozpowszechnianie artykułów zabronione. Korzystanie z serwisu i zamieszczonych w nim utworów i danych wyłącznie na zasadach określonych w Zasadach korzystania z serwisu.
Portal Budowlany - Izolacje.com.pl

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim urządzeniu końcowym. W każdym momencie możesz dokonać zmiany ustawień przeglądarki dotyczących cookies. Nim Państwo zaczną korzystać z naszego serwisu prosimy o zapoznanie się z naszą polityką prywatności oraz Informacją o Cookies. Więcej szczegółów w naszej Polityce Prywatności oraz Informacji o Cookies. Administratorem Państwa danych osobowych jest Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Sp.K., nr KRS: 0000537655, z siedzibą w 04-112 Warszawa, ul. Karczewska 18, tel. +48 22 810-21-24, właściciel strony www.izolacje.com.pl. Twoje Dane Osobowe będą chronione zgodnie z wytycznymi polityki prywatności www.izolacje.com.pl oraz zgodnie z Rozporządzeniem Parlamentu Europejskiego i Rady (UE) 2016/679 z dnia 27 kwietnia 2016r i z Ustawą o ochronie danych osobowych Dz.U. 2018 poz. 1000 z dnia 10 maja 2018r.