Izolacje.com.pl

Elewacje wentylowane – porównanie numeryczne w zakresie termicznym

Ventilated façades – numerical comparison of thermal behaviour

Zobacz porównanie standardowej elewacji z elewacjami wentylowanymi

Zobacz porównanie standardowej elewacji z elewacjami wentylowanymi

Zwiększające się wymagania stawiane ochronie środowiska, wzmagają rozwój budownictwa zrównoważonego. Elewacje wentylowane mogą stanowić korzystną energetycznie alternatywę dla elewacji standardowych, tj. elewacji w systemie ETICS.

Zobacz także

PU Polska – Związek Producentów Płyt Warstwowych i Izolacji Płyty warstwowe PUR/PIR w aspekcie wymagań technicznych stawianych lekkiej obudowie

Płyty warstwowe PUR/PIR w aspekcie wymagań technicznych stawianych lekkiej obudowie Płyty warstwowe PUR/PIR w aspekcie wymagań technicznych stawianych lekkiej obudowie

Rozwój technologii budowlanej w ciągu ostatnich kilkudziesięciu lat zmienił oblicze branży w Polsce, umożliwiając szybszą, tańszą i ekologiczną realizację wznoszonych obiektów. Wprowadzając szeroko do...

Rozwój technologii budowlanej w ciągu ostatnich kilkudziesięciu lat zmienił oblicze branży w Polsce, umożliwiając szybszą, tańszą i ekologiczną realizację wznoszonych obiektów. Wprowadzając szeroko do branży rewolucyjny i rewelacyjny produkt, jakim jest płyta warstwowa, zmodernizowaliśmy de facto ideę prefabrykacji i zamianę tradycyjnych, mokrych i pracochłonnych technologii wznoszenia budynków z elementów małogabarytowych lub konstrukcji szalunkowych na szybki, suchy montaż gotowych elementów w...

Saint-Gobain Construction Products Polska/ Isover Nowe wełny ISOVER PRO na poddasza – bez komPROmisów, z mocą welonu

Nowe wełny ISOVER PRO na poddasza – bez komPROmisów, z mocą welonu Nowe wełny ISOVER PRO na poddasza – bez komPROmisów, z mocą welonu

ISOVER wprowadza na rynek nową linię produktów PRO do izolacji cieplnej i akustycznej poddaszy. Super-Mata PLUS PRO i Super-Mata PRO to wełny o bardzo dobrych parametrach termicznych, wyprodukowane w technologii...

ISOVER wprowadza na rynek nową linię produktów PRO do izolacji cieplnej i akustycznej poddaszy. Super-Mata PLUS PRO i Super-Mata PRO to wełny o bardzo dobrych parametrach termicznych, wyprodukowane w technologii Thermitar™ i pokryte jednostronnie welonem szklanym.

Saint-Gobain Construction Products Polska/ Isover Nowość ISOVER! Płyty zespolone EasyTherm – więcej powierzchni użytkowej i doskonały komfort cieplny

Nowość ISOVER! Płyty zespolone EasyTherm – więcej powierzchni użytkowej i doskonały komfort cieplny Nowość ISOVER! Płyty zespolone EasyTherm – więcej powierzchni użytkowej i doskonały komfort cieplny

W nowoczesnym budownictwie wielorodzinnym i komercyjnym nie brakuje wyzwań, a wśród nich ważna jest izolacja termiczna między ogrzewanymi i nieogrzewanymi częściami budynku, jak np. korytarze i klatki...

W nowoczesnym budownictwie wielorodzinnym i komercyjnym nie brakuje wyzwań, a wśród nich ważna jest izolacja termiczna między ogrzewanymi i nieogrzewanymi częściami budynku, jak np. korytarze i klatki schodowe. Kolejną istotną kwestią są oczekiwania inwestorów dotyczące wytrzymałości na uszkodzenia ścian wewnętrznych oraz optymalnego wykorzystania przestrzeni użytkowej. W odpowiedzi na te wszystkie potrzeby inżynierowie Saint-Gobain opracowali płyty zespolone EasyTherm.

O czym przeczytasz w artykule?

Abstrakt

  • Utworzenie modelu numerycznego i przyjęcie założeń dla symulacji
  • Założenia technologiczne, materiałowe i klimatyczne modelu numerycznego
  • Model numeryczny
  • Wyniki symulacji numerycznych

W artykule porównano elewację standardową z elewacjami wentylowanymi w dwóch wariantach: zamkniętych i otwartych złączy. Porównania dokonano za pomocą symulacji numerycznych CFD. Założenia środowiska zewnętrznego do obliczeń oparto o Eurokod, zakładając najbardziej niekorzystne warunki dla Polski w zakresie wysokich temperatur i dużego nasłonecznienia. Wyniki wykazały pozytywne rezultaty ze stosowania elewacji wentylowanych. Wybór wariantu technologicznego elewacji w zakresie zamkniętych lub otwartych złączy ma minimalny wpływ na efektywność termiczną całej przegrody.

Ventilated façades – numerical comparison of thermal behaviour

The article compares standard façade with ventilated façades in two variants: with closed and open connectors. The comparison has been made by means of the CFD numerical simulations. External environment assumptions for the purposes of the calculations have been made on the basis of Eurocode, considering the most unfavorable conditions for Poland in terms of high temperatures and high solar radiation. The results showed positive benefits of using ventilated façades. The choice of technological variants of ventilated façades (closed or open connector) has minimum impact on thermal efficiency of the entire partition.

Wiele światowych organizacji w związku z coraz to bardziej postępującymi zmianami w środowisku naturalnym dąży do ograniczania zużycia energii. Na podstawie danych z Eurostatu z 2017 r. [1] sektor budynków odpowiada za 24,8% konsumpcji energii całkowitej, a sektor usług za 13,5% konsumpcji energii całkowitej w Unii Europejskiej. Łącznie stanowi to 39,2% konsumpcji energii całkowitej w UE na sektor związany z budową oraz użytkowaniem budynków, co przedstawiono na RYS. 1.

RYS. 1. Procentowe zużycie energii w różnych sektorach gospodarki; rys.: [1]

RYS. 1. Procentowe zużycie energii w różnych sektorach gospodarki; rys.: [1]

Na potrzeby oceny budownictwa zrównoważonego powstały różne systemy oceny wielokryterialnej budynków, m.in. BREAAM i LEED. Certyfikacja wymienionych organizacji dotyczy etapu projektowania, realizacji i użytkowania obiektów budowlanych. Na RYS. 2 pokazano całkowitą konsumpcję energii w Unii Europejskiej w podziale na poszczególne lata.

RYS. 2. Ilościowe zużycie energii w różnych sektorach gospodarki w poszczególnych latach; rys.: [1]

RYS. 2. Ilościowe zużycie energii w różnych sektorach gospodarki w poszczególnych latach; rys.: [1]

Pomimo ciągłego rozwoju w Unii Europejskiej poziom konsumpcji energii w sektorze budownictwa waha się w obrębie kilku punktów procentowych. Jest to zasługą m.in. większej popularności budownictwa zrównoważonego propagowanego przez inwestorów i przyszłych użytkowników.

Bardzo ważnym elementem budownictwa zrównoważonego są elewacje budynków. Są to elementy, które mają największą powierzchnię „styku” ze środowiskiem naturalnym i powinny zabezpieczać budynek przed niskimi i wysokimi temperaturami, nasłonecznieniem, opadami oraz wiatrem. Bardzo korzystną formą elewacji, zapewniającą ochronę przed oddziaływaniami ze strony środowiska naturalnego, są elewacje używające kanałów wentylacyjnych, czyli pustek powietrznych pomiędzy zewnętrzną a wewnętrzną częścią przegrody pionowej. Elewacje te nazywane są elewacjami wentylowanymi.

Elewacje wentylowane (z ang. ventilated façade) pozwalają na kształtowanie zewnętrznych paneli z różnych materiałów, struktur, faktur czy kolorów.

Analizując kompletny system elewacji wentylowanej od strony środowiska naturalnego, pierwszą warstwę stanowi okładzina elewacyjna (nazywana również okładziną zewnętrzną), która to jest przymocowana za pomocą podkonstrukcji i łączników do części nośnej ściany. Pomiędzy warstwą zewnętrzną i warstwą nośną znajduje się pustka powietrzna, jej szerokość wynosi 20–50 mm [2–3], niektóre źródła podają również większe wartości, np. 40–100 mm [4].

Ze względów technologicznych wyróżnia się dwa typy elewacji wentylowanych:

  • z otwartymi złączami, określane jako nieprzezierne (z ang. close-joint ventilated façade/opaque ventilated façade)
  • zamkniętymi złączami (z ang. close-joint ventilated ­façade).

Przykłady takich elewacji wentylowanych zaprezentowano na RYS. 3–4 [4].

RYS. 3–4. Typy elewacji wentylowanych: z otwartymi (3) oraz z zamkniętymi złączami (4); rys.: [4]

RYS. 3–4. Typy elewacji wentylowanych: z otwartymi (3) oraz z zamkniętymi złączami (4); rys.: [4]

Pomimo wielu zalet elewacje wentylowane są mało znanym zestawem wyrobów budowlanych. Szczególnie słabo rozeznana i zbadana jest tematyka związana z zagadnieniami ich termodynamiki. Autorzy niniejszego artykułu podjęli próbę przybliżenia tego zagadnienia.

Przegląd literatury

Istnieją opracowania dotyczące elewacji z komorą wentylacyjną, lecz większość z nich odnosi się do tzw. double skin façade, czyli elewacji ze szklanymi przegrodami, stosowanych w znacznej większości w budynkach wysokościowych o przeznaczeniu usługowym lub biurowym.

Oczywiście część rozeznanych tam zagadnień, w tym niebezpieczeństwa rozwoju pożaru, przepływu powietrza w komorze wentylacyjnej, można adaptować do typowych elewacji wentylowanych w zakresie korzyści energetycznych, przewodnictwa materiałów i konstrukcji ścian.

Systemy elewacji double skin façade, znacząco różnią się od elewacji wentylowanych. Elewacje wentylowane w swojej tradycyjnej odmianie, tzn. z zamkniętymi złączami i z otwartymi złączami, stosowane są w większości w budynkach niskich i średnio wysokich o przeznaczeniu głównie mieszkalnym, a w mniejszości – usługowym i hotelowym.

Niewielka jest również liczba opracowań naukowych dla elewacji wentylowanych (z zamkniętymi złączami i z otwartymi złączami) odnoszących się wynikami do elewacji bez zastosowania pustki powietrznej. Opracowania naukowe Griffith (2006) [5], Naboni (2007) [6], González [7] prezentują sposoby analizy elewacji wentylowanych w sposób analityczny wraz z objaśnieniem ich wszystkich elementów. Dodatkowo Naboni [6] przedstawił opis zależności termodynamiki w modelu numerycznym elewacji wentylowanej.

Na podstawie badań eksperymentalnych dokonano walidacji z numerem numerycznym oraz porównano otrzymane wyniki z wynikami elewacji standardowej (elewacji bez pustki powietrznej). Symulacje numeryczne wykonane przez Naboni [6] były przeprowadzone dla włoskiego miasta Mediolan. Reprezentacyjna była ściana południowa. Wykazano, iż korzyści są zarówno w zimie (wyższa temperatura na wewnętrznej powierzchni ściany), jak i latem (niższa temperatura na wewnętrznej powierzchni ściany).

Z kolei Sanjuan [3] poddał analizie zagadnienia termodynamiczne elewacji wentylowanej, odnosząc je do ściany trójwarstwowej z pustką powietrzną. Wyniki przedstawione w [3] pokazują bardzo pozytywne funkcjonowanie elewacji wentylowanych w stosunku do ścian trójwarstwowych z pustką powietrzą, ale bez możliwości wymiany znajdującego się w niej powietrza. Oszczędności w okresie letnim z dużym nasłonecznieniem wynoszą około 26%, a straty ciepła w przypadku strony północnej w okresie zimowym w oddziaływaniu nocnym przekraczają 50%. Model prezentował oddziaływanie dobowe temperatury zewnętrznej na ścianę zewnętrzną w ciągu okresu letniego i zimowego dla rejonu Madrytu w Hiszpanii.

Z kolei autorzy pracy [8] dokonali weryfikacji w zakresie oddziaływania termicznego, wykonując badania eksperymentalne elewacji wentylowanych z zamkniętymi złączami z różnymi wariantami okładzin zewnętrznych.

Ze względu na niewielką ilość artykułów przedstawiających porównania zachowania termicznego elewacji wentylowanych ze elewacjami standardowymi (m.in. ETICS) autorzy niniejszego opracowania zdecydowali zająć się tym zagadnieniem i wykorzystać do tego celu symulacje numeryczne reprezentacyjnych elewacji.

Utworzenie modelu numerycznego i przyjęcie założeń dla symulacji

Analizę numeryczną wykonano wykorzystując oprogramowanie CFD (z ang. Computational Fluid Dynamic) i moduł Ansys Fluent bazujący na równaniach Navier-Stokesa. Zasadność wyboru takiego oprogramowania potwierdzają artykuły [9–12], w których przedstawiono podobne zagadnienia rozwiązywane za pomocą tego właśnie oprogramowania. Ponadto w artykule [11] zaprezentowano rezultaty otrzymane dla przeprowadzonej walidacji modelu numerycznego wykonanej również tym oprogramowaniem.

Otrzymane wyniki potwierdziły istotną zgodność z badaniem eksperymentalnym. Jako numeryczny model przepływu przyjęto k-ε (RNG), omówiony przez Launder w pracy [13].

Z kolei Chen [14] wykazał, iż dokładność przyjętego modelu przepływu jest dobra i znajduje zastosowanie przy tego typu zadaniach. Model promieniowania cieplnego na podstawie opracowania Chui [15] został przyjęty jako DO (Discrete Ordinates), przedstawiony jako szybki i dokładny.

Założenia technologiczne i materiałowe modelu numerycznego

Dla porównania efektowności energetycznej elewacji utworzono trzy modele numeryczne, odwzorowujące następujące typy elewacji:

  • elewację standardową ETICS (bez zastosowania pustki powietrznej),
  • elewację wentylowaną z zamkniętymi złączami,
  • elewację wentylowaną z otwartymi złączami.

Wszystkie modele zostały wykonane z jednakowych materiałów. Przyjęto, że ściana nośna została wykonana z bloczków silikatowych o grubości 240 mm, izolacja termiczna z poliuretanu o grubości 150 mm, a okładzina zewnętrzna z płyt włóknisto-cementowych w kolorystyce tzw. ciemnej o grubości 20 mm. Dla jak najlepszego odwzorowania globalnego działania wpływu temperatury zewnętrznej na wewnętrzną przyjęto model odpowiadający wysokości ściany równej 4 m. Charakterystyki wszystkich materiałów przedstawiono w TABELI.

TABELA. Termodynamiczne parametry materiałów

TABELA. Termodynamiczne parametry materiałów

Pierwszy model został przyjęty jako elewacja typu standardowego, gdzie płyty włóknisto-cementowe są umieszczone bezpośrednio na izolacji – ciała stykają się (oznaczone w pracy jako A), tak jak pokazano schematycznie na RYS. 5, RYS. 6 i RYS. 7.

RYS. 5. Przyjęty schemat elewacji do symulacji numerycznych: A – elewacja standardowa. Objaśnienia: 1 – ściana nośna, 2 – izolacja, 3 – okładzina zewnętrzna; rys.: K. Schabowicz, Ł. Zawiślak, P. Staniów

RYS. 5. Przyjęty schemat elewacji do symulacji numerycznych: A – elewacja standardowa. Objaśnienia: 1 – ściana nośna, 2 – izolacja, 3 – okładzina zewnętrzna; rys.: K. Schabowicz, Ł. Zawiślak, P. Staniów

RYS. 6. Przyjęty schemat elewacji do symulacji numerycznych: B – elewacja wentylowana z zamkniętymi złączami (6). Objaśnienia: 1 – ściana nośna, 2 – izolacja, 3 – okładzina zewnętrzna; rys.: K. Schabowicz, Ł. Zawiślak, P. Staniów

RYS. 6. Przyjęty schemat elewacji do symulacji numerycznych: B – elewacja wentylowana z zamkniętymi złączami (6). Objaśnienia: 1 – ściana nośna, 2 – izolacja, 3 – okładzina zewnętrzna; rys.: K. Schabowicz, Ł. Zawiślak, P. Staniów

RYS. 7. Przyjęty schemat elewacji do symulacji numerycznych: C – elewacja wentylowana z otwartymi złączami (7). Objaśnienia: 1 – ściana nośna, 2 – izolacja, 3 – okładzina zewnętrzna, 4 – przepływ powietrza, 5 – szczeliny wentylacyjne; rys.: K. Schabowicz, Ł. Zawiślak, P. Staniów

RYS. 7. Przyjęty schemat elewacji do symulacji numerycznych: C – elewacja wentylowana z otwartymi złączami (7). Objaśnienia: 1 – ściana nośna, 2 – izolacja, 3 – okładzina zewnętrzna, 4 – przepływ powietrza, 5 – szczeliny wentylacyjne; rys.: K. Schabowicz, Ł. Zawiślak, P. Staniów

RYS. 8. Schemat przyjętego modelu numerycznego dla elewacji typu B; rys.: K. Schabowicz, Ł. Zawiślak, P. Staniów

RYS. 8. Schemat przyjętego modelu numerycznego dla elewacji typu B; rys.: K. Schabowicz, Ł. Zawiślak, P. Staniów

Kolejne dwa modele zostały przyjęte jako elewacje wentylowane, w dwóch wariantach wykonania:

  • elewacja wentylowana z zamkniętymi złączami (z ang. close-joint ventilated façade/opaque ventilated façade), oznaczona w pracy jako B,
  • elewacja wentylowana z otwartymi złączami (z ang. open-joint ventilated façade), oznaczona w pracy jako C.

Modele elewacji wentylowanych (B i C) mają pustkę powietrzną o szerokości 50 mm pomiędzy izolacją a okładziną zewnętrzną płyty włóknisto-cementowej. W przypadku modelu z zamkniętymi złączami (model B) powietrze dostaje się do pustki powietrznej przez dwie szczeliny: na dole i na górze okładziny zewnętrznej, każda o szerokości 30 mm. W przypadku modelu z otwartymi złączami powietrze może dostawać się nie tylko wcześniej wspomnianymi szczelinami, lecz także przez szczeliny dodatkowe, odwzorowujące montaż płyt elewacyjnych, o szerokości 20 mm. Wszystkie przyjęte schematy pokazano na RYS. 5, RYS. 6 i RYS. 7.

Założenia klimatyczne modelu numerycznego

Założenia klimatyczne modelu numerycznego wykonano stosując normę PN-EN 1991-1-5:2005: Eurokod 1, „Oddziaływania na konstrukcje. Część 1–5. Oddziaływania ogólne. Oddziaływania termiczne” [2].

Przyjęto najbardziej niekorzystną sytuację obliczeniową związaną z oddziaływaniem temperatury i nasłonecznienia w trakcie okresu letniego.

Elewację zlokalizowano w Polsce i usytuowano ją na stronę południową ze względu na największe nasłonecznienie. Założono, że elewacja ta zostanie wykonana w tzw. kolorystyce ciemnej ze względu na największą pochłanialność promieni słonecznych. Parametry związane z takimi założeniami są następujące:

  • temperatura na zewnątrz 38°C (311,15 K),
  • temperatura wewnątrz 20°C (293,15 K),
  • dodatkowa różnica temperatur spowodowana nasłonecznieniem 42°C,
  • sumaryczna temperatura działająca na elewację w szczycie 38°C + 42°C = 80°C (353,15 K).

Model numeryczny

Symulacje numeryczne wykonano dwuwymiarowo (2D) w programie Ansys Fluent, module Ansys Workbench.

  • W celu odwzorowania globalnych warunków przepływów i wymiany powietrza oraz przenikania ciepła przyjęto rozmiar modelu o wymiarach: szerokość 2390 mm i wysokość 4000 mm.
  • W środkowym planie modelu zamodelowano ścianę, tak aby po jej prawej i lewej stronie znajdowała się przestrzeń na powietrze. Szczegóły przyjętych parametrów modelu przedstawiono na RYS. 8.
RYS. 9–11. Mapy rozkładu temperatur elewacji uzyskane podczas symulacji numerycznej: A – elewacja standardowa (9), B – elewacja wentylowana z zamkniętymi złączami (10), C – elewacja wentylowana z otwartymi złączami (11); rys.: K. Schabowicz, Ł. Zawiślak, P. Staniów

RYS. 9–11. Mapy rozkładu temperatur elewacji uzyskane podczas symulacji numerycznej: A – elewacja standardowa (9), B – elewacja wentylowana z zamkniętymi złączami (10), C – elewacja wentylowana z otwartymi złączami (11); rys.: K. Schabowicz, Ł. Zawiślak, P. Staniów

Zdaniem autorów tak przyjęty model umożliwia odtworzenie globalnych warunków przepływu powietrze (na zewnątrz) i wymiany ciepła. Napływ powietrza o zadanym parametrze prędkości równym 2,5 m/s i temperaturze 38°C symuluje wiatr. Dodatkowo zadano odpowiedną temperaturę równą 80°C na zewnętrznej krawędzi płyty włóknisto-cementowej, symulującą nasłonecznienie. Początkowa prędkość powietrza umożliwia odprowadzanie ciepłego powietrza z pustki powietrznej.

Przyjęto, iż warunki wewnątrz budynku są stałe, powietrze wewnątrz ma temperaturę wyjściową 20°C i nie ulega wymianie ani ochładzaniu. Do utworzenia siatki elementów skończonych użyto elementów trójkątnych 3-węzłowych, wymiary poszczególnych elementów skończonych dobrano w zależności od lokalizacji o wielkości 1–50 mm; szczegóły wskazano na RYS. 8. Schematy dla elewacji standardowej oraz elewacji wentylowanej z otwartymi złączami przyjęto analogicznie do przedstawionego schematu elewacji wentylowanej z zamkniętymi złączami na RYS. 8.

Wyniki symulacji numerycznych

Wyniki symulacji numerycznych zaprezentowano w postaci rozkładu map temperatur pokazanych na RYS. 9, RYS. 10 i RYS. 11. Na mapach temperatur wszystkich elewacji widać izolinie w różnych kolorach przedstawiające temperatury w ciałach stałych i gazach. Zewnętrzna część paneli okładzinowych w przypadku wszystkich elewacji A, B i C ma zbliżoną temperaturę, wywołaną głównie promieniowaniem cieplnym.

Jak można zaobserwować na rys. RYS. 9, RYS. 10 i RYS. 11, zastosowanie elewacji w technologii elewacji wentylowanych znacznie redukuje temperaturę po stronie wewnętrznej (chłodniejszy odcień kolorów na mapach temperatur). Spowodowane jest to ograniczeniem transportu ciepła w sposób bezpośredniego kontaktu ciał stałych i związane jest z ich przewodnictwem. W przypadku elewacji wentylowanej ciepło ze strony zewnętrznej jest przekazywane głównie przez promieniowanie cieplne.

W elewacji wentylowanej z otwartymi złączami zauważalne są aberracje w miejscach dodatkowych szczelni pozwalających na dostawanie się powietrza do pustki powietrznej.

Modele celowo nie uwzględniają pobierania energii przez wewnętrzną krawędź ściany i ochładzania jej przez zimniejsze powietrze znajdujące się wewnątrz pomieszczenia.

W celu dokładniejszego porównania otrzymanych wartości wyniki pokazane na RYS. 9, RYS. 10 i RYS. 11 przedstawiono po kolei w postaci wykresu. Należy wyjaśnić, że temperatura była kontrolowana w następujących miejscach:

  • wewnątrz pomieszczenia – 6 punktów kontrolnych,
  • wewnętrzna krawędź ściany nośnej,
  • krawędź ściana nośna–izolacja,
  • krawędź izolacja–okładzina zewnętrzna w przypadku elewacji standardowej,
  • zewnętrzna krawędź izolacji w przypadku elewacji C,
  • pustka powietrzna w przypadku elewacji C,
  • zewnętrzna krawędź okładziny zewnętrznej.

Wysokość, na jakiej kontrolowana była temperatura, to 2000 mm od podłogi, z kilkoma wyjątkami dla elewacji wentylowanej z zamkniętymi złączami. Aberracje wywołane przepływem powietrza w miejscach szczelin dodatkowych wymusiły kontrolę temperatury dla punków po stronie zewnętrznej i pustki powietrznej na wysokości 1505 mm. Punkty pomiarowe zilustrowano na RYS. 12, RYS. 13 i RYS. 14.

RYS. 12. Lokalizacja punktów pomiaru temperatury: A – elewacja standardowa; rys.: K. Schabowicz, Ł. Zawiślak, P. Staniów

RYS. 12. Lokalizacja punktów pomiaru temperatury: A – elewacja standardowa; rys.: K. Schabowicz, Ł. Zawiślak, P. Staniów

RYS. 13. Lokalizacja punktów pomiaru temperatury: B – elewacja wentylowana z zamkniętymi złączami; rys.: K. Schabowicz, Ł. Zawiślak, P. Staniów

RYS. 13. Lokalizacja punktów pomiaru temperatury: B – elewacja wentylowana z zamkniętymi złączami; rys.: K. Schabowicz, Ł. Zawiślak, P. Staniów

RYS. 14. Zestawienie temperatur dla punktów kontrolnych poszczególnych typów przyjętych elewacji; rys.: K. Schabowicz, Ł. Zawiślak, P. Staniów

RYS. 14. Zestawienie temperatur dla punktów kontrolnych poszczególnych typów przyjętych elewacji; rys.: K. Schabowicz, Ł. Zawiślak, P. Staniów

Na RYS. 15 pokazano wyniki dotyczące kontroli temperatury w danych punktach kontrolnych dla elewacji A, B i C.

  • Linia wykresu elewacji standardowej znacząco się różni – wartości są dużo większe.
  • Linie wykresu dla elewacji wentylowanych z otwartymi i zamkniętymi złączami typu prezentują podobne wartości, z wyjątkiem temperatury wewnątrz pustki powietrznej.

Temperatura w pustce powietrznej pomiędzy izolacją a okładziną zewnętrzną w przypadku elewacji wentylowanych z otwartymi złączami jest większa o około 3°C. Spowodowane jest to prawdopodobnie większą liczbą szczelin wentylacyjnych, którymi dostarczane i odprowadzane jest powietrze.

Analiza krawędzi wewnętrznej ściany wykazuje, że temperatura w elewacji standardowej wynosi 69,6°C, co stanowi temperaturę o 46,92°C większą niż wewnątrz pomieszczenia, gdzie wynosi ona 20°C. W elewacjach wentylowanych jest to odpowiednio temperatura 41,6°C w przypadku elewacji z zamkniętymi złączami i 40,8°C w przypadku elewacji z otwartymi złączami. Różnica temperatur, jako korzystniejsze wskazująca stosowanie elewacji wentylowanych, wynosi około 28°C, co stanowi wartość o około 44% mniejszą niż temperatura w przypadku elewacji standardowej.

Można również zauważyć, iż pomimo wyższej temperatury w pustce powietrznej, w przypadku elewacji wentylowanej o otwartych złączach temperatura na wewnętrznej ścianie nośnej jest niższa, co prawdopodobnie spowodowane jest lepszym odprowadzaniem ciepła w pobliżu izolacji.

Wnioski

Elewacje wentylowane bardzo dobrze wpisują się we wzrastające wymagania stawiane budynkom w zakresie komfortu cieplnego i wygodny ich użytkowania. Elewacje te można stosować nie tylko w regionach świata z wysokimi temperaturami, lecz także w regionach z tzw. klimatem umiarkowanym.

Na podstawie przedstawionych w niniejszym artykule symulacji numerycznych wykazano, że temperatura na wewnętrznej krawędzi ściany jest niższa o około 28°C dla elewacji wentylowanych, czyli o około 44% niższa niż w przypadku elewacji standardowej. Wybór technologii elewacji wentylowanej w układzie zamkniętych czy otwartych złączy ma minimalny wpływ na efektywność termiczną całej przegrody – różnica wynosi niecałe 0,85°C.

RYS. 15. Zestawienie temperatur dla punktów kontrolnych poszczególnych typów przyjętych elewacji; rys.: K. Schabowicz, Ł. Zawiślak, P. Staniów

RYS. 15. Zestawienie temperatur dla punktów kontrolnych poszczególnych typów przyjętych elewacji; rys.: K. Schabowicz, Ł. Zawiślak, P. Staniów

Symulacje numeryczne stanowią bardzo dobrą i tanią metodę badań doświadczalnych i pozwalają kierunkować tendencje dla badanych elementów. Kierunek kolejnych symulacji numerycznych elewacji wentylowanych powinien zdaniem autorów zmierzać w kierunku badania wpływu prędkości przepływu powietrza w pustce powietrznej i wyjaśnienia aberracji w miejscach szczelin dodatkowych.

Literatura

  1. Strona internetowa: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Energy_statistics_-_an_overview#Final_energy_consumption (date of issue 17-02-2020).
  2. EN 1991-1-5: Eurocode 1, „Actions onstructures. Part 1–5. General actions – Thermal actions”.
  3. C. Sanjuan, M.J. Suárez, M. González, J. Pistono, E. Blanco, „Energy performance of an open-joint ventilated façade compared with a conventional sealed cavity façade”, „Solar Energy” 85/2011, p. 1851–1863, DOI:10.1016/j.solener.2011.04.028.
  4. M. Ibañez-Puy, M. Vidaurre-Arbizu, J.A. Sacristán-Fernández, C. Martín-Gómez, „Opaque Ventilated Façades: Thermal and energy performance review”, „Renewable and Sustainable Energy Reviews”, 2017, vol. 79, p. 180–191, DOI: 10.1016/j.rser.2017.05.059.
  5. B. Griffith, „A model for naturally ventilated cavities on the exteriors of opaque building envelopes”, Presented at Simbuild 2006 Conference, Cambridge-Massachusetts, USA.
  6. E. Naboni, „Ventilated opaque walls – A performance simulation method and assessment of simulated performance”, „Seminar Notes at Lawrence Berkeley National Laboratory Environmental Energy Technologies Division Berkeley”, May 28 2007, California, USA.
  7. M. González, E. Blanco, J.L. Río, J. Pistono, C. San Juan, „Numerical study on thermal and fluid dynamic behaviour of an open-joint ventilated façade”, PLEA 2008 – 25th Conference on Passive and Low Energy Architecture, 22–24 October 2008, Dublin, Ireland.
  8. M.J. Suárez, C. Sanjuan, A.J. Gutiérrez, J. Pistono, E. Blanco, „Energy evaluation of an horizontal open joint ventilated façade”, „Applied Thermal Engineering” 37/2012, p. 302–313.
  9. M. Chereches, N.C. Chereches, S. Hudisteanu, „Numerical modeling of solar radiation inside ventilated double-skin façades”, „International Journal of Heat and Technology” 2015, vol. 33, No. 4, p. 246–254.
  10. M. Chereches, N.C. Chereches, S. Hudisteanu, „The influence of different flow velocities on the heat transfer inside a ventilated façade”, „Revista Romana de Inginerie Civila” 2014, Volumul 5, Numeral 1.
  11. L. Cirillo, D. Di Ronza, V. Fardella, O. Manca, S. Nardini, „Numerical and experimental investigations on a solar chimney integrated in a building façade”, „International Journal of Heat and Technology” 2015, vol. 33, No. 4, p. 246–254, DOI: 10.18280/ijht.330433.
  12. A. Gagliano, F. Nocera, S. Aneli, „Thermodynamic analysis of ventilated façades under different wind conditions in summer period”, Energy and Buildings” 122/2016, p. 131–139.
  13. B.E. Launder, D.B. Spalding, „The numerical computation of turbulent flows. Computer Methods”, „Computer Methods in Applied Mechanics and Engineering” 3/1974, p. 269–289, DOI: 10.1016/0045-7825(74)90029-2.
  14. Q. Chen, „Comparison of different κ-ε models for indoor airflow computations”, „Numerical Heat Transfer”, Part B, 28/1995, p. 353–369.
  15. E.H. Chui, G.D. Raithby, „Computation of radiant heat transfer on a non-orthogonal mesh using the finite-volume method”, „Numerical Heat Transfer” 1993, Part B 23, p. 269–288.
  16. ANSYS Fluent Theory Guide.
  17. ANSYS Fluent User’s Guide.
  18. EOTA ETAG 034 Part 2: Cladding Kits comprising Cladding components, associated fixings, subframe and possible insulation layer.
  19. M. Mahdavinejad, S. Mohammadi, „Ecological analysis of natural ventilated facade system and its performance in Tehran’s climate”, „Ukrainian Journal of Ecology” 8(1)/2018, p. 273–281, DOI: 10.15421/2018_212.
  20. K. Schabowicz, „Elewacje wentylowane. Technologia Produkcji i metody badania płyt włóknisto-cementowych”, Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław 2018.
  21. F. Stazi, G. Ulpiani, M. Pergolini, D. Magni, C. Di Perna, „Experimental Comparison Between Three Types of Opaque Ventilated Facades”, „The Open Construction and Building Technology Journal” 12/2018, p. 296–308. DOI: 10.2174/1874836801812010296.

Chcesz być na bieżąco? Zapisz się do naszego newslettera!

Galeria zdjęć

Tytuł
przejdź do galerii

Komentarze

Powiązane

dr inż. Iwona Kata , mgr Zofia Stasica , mgr inż. Witold Charyasz, mgr inż. Krzysztof Szafran Korozja biologiczna i problem degradacji środków biobójczych stosowanych w materiałach budowlanych

Korozja biologiczna i problem degradacji środków biobójczych stosowanych w materiałach budowlanych Korozja biologiczna i problem degradacji środków biobójczych stosowanych w materiałach budowlanych

Biokorozja materiałów budowlanych to powszechne zjawisko, występujące zarówno na elewacjach budynków, jak i wewnątrz pomieszczeń. Skuteczne zabezpieczenie przed biokorozją jest dość trudne. Rozwiązaniem...

Biokorozja materiałów budowlanych to powszechne zjawisko, występujące zarówno na elewacjach budynków, jak i wewnątrz pomieszczeń. Skuteczne zabezpieczenie przed biokorozją jest dość trudne. Rozwiązaniem jest stosowanie środków ochrony powłok, które zawierają substancje czynne, aktywnie hamujące rozrost mikroorganizmów.

dr inż. Andrzej Konarzewski Materiałowe współczynniki bezpieczeństwa płyt warstwowych

Materiałowe współczynniki bezpieczeństwa płyt warstwowych Materiałowe współczynniki bezpieczeństwa płyt warstwowych

Materiałowe współczynniki bezpieczeństwa ɣM powinny odzwierciedlać zmienność właściwości mechanicznych płyt warstwowych, na co wskazują wyniki badań typu i zakładowej kontroli produkcji. Autor publikacji...

Materiałowe współczynniki bezpieczeństwa ɣM powinny odzwierciedlać zmienność właściwości mechanicznych płyt warstwowych, na co wskazują wyniki badań typu i zakładowej kontroli produkcji. Autor publikacji objaśnia jak je wyznaczać.

dr inż. Paweł Sulik Bezpieczeństwo pożarowe pasów międzykondygnacyjnych

Bezpieczeństwo pożarowe pasów międzykondygnacyjnych Bezpieczeństwo pożarowe pasów międzykondygnacyjnych

Pasy międzykondygnacyjne stanowią naturalnie ukształtowaną część ścian zewnętrznych budynków, co oznacza, że muszą one przede wszystkim spełnić wymagania jak dla ścian zewnętrznych.

Pasy międzykondygnacyjne stanowią naturalnie ukształtowaną część ścian zewnętrznych budynków, co oznacza, że muszą one przede wszystkim spełnić wymagania jak dla ścian zewnętrznych.

dr hab. inż. prof. PŚ Łukasz Drobiec, dr inż. Wojciech Mazur , mgr inż. Remigiusz Jokiel Badania wpływu wzmocnienia powierzchniowego systemem FRCM na wytrzymałość na ściskanie murów z autoklawizowanego betonu komórkowego

Badania wpływu wzmocnienia powierzchniowego systemem FRCM na wytrzymałość na ściskanie murów z autoklawizowanego betonu komórkowego Badania wpływu wzmocnienia powierzchniowego systemem FRCM na wytrzymałość na ściskanie murów z autoklawizowanego betonu komórkowego

Celem badań przedstawionych w artykule jest określenie wpływu wzmocnienia powierzchniowego systemem FRCM na wytrzymałość na ściskanie murów wykonanych z autoklawizowanego betonu komórkowego.

Celem badań przedstawionych w artykule jest określenie wpływu wzmocnienia powierzchniowego systemem FRCM na wytrzymałość na ściskanie murów wykonanych z autoklawizowanego betonu komórkowego.

dr inż. Paweł Krause, dr inż. Agnieszka Szymanowska-Gwiżdż, dr inż. Bożena Orlik-Kożdoń, dr inż. Tomasz Steidl Stan ochrony cieplnej elementów przyziemia w budownictwie jednorodzinnym

Stan ochrony cieplnej elementów przyziemia w budownictwie jednorodzinnym Stan ochrony cieplnej elementów przyziemia w budownictwie jednorodzinnym

Stan ochrony cieplnej elementów przyziemia w niepodpiwniczonych budynkach jednorodzinnych w istotnym stopniu zależy od izolacyjności cieplnej ściany fundamentowej i podłogi na gruncie. Rozwiązania projektowe...

Stan ochrony cieplnej elementów przyziemia w niepodpiwniczonych budynkach jednorodzinnych w istotnym stopniu zależy od izolacyjności cieplnej ściany fundamentowej i podłogi na gruncie. Rozwiązania projektowe ścian przyziemia w budynkach nieposiadających podpiwniczenia, posadowionych na ławach fundamentowych, są realizowane w zróżnicowany sposób.

mgr inż. Bartłomiej Monczyński Ochrona budynków przed naturalnymi źródłami promieniowania jonizującego

Ochrona budynków przed naturalnymi źródłami promieniowania jonizującego Ochrona budynków przed naturalnymi źródłami promieniowania jonizującego

Pojęcie promieniotwórczości (radioaktywności) w percepcji społecznej wiąże się przede wszystkim z zagrożeniem wynikającym z wykorzystywania energii jądrowej do celów wojskowych, energetycznych lub medycznych...

Pojęcie promieniotwórczości (radioaktywności) w percepcji społecznej wiąże się przede wszystkim z zagrożeniem wynikającym z wykorzystywania energii jądrowej do celów wojskowych, energetycznych lub medycznych [1]. Wciąż mało kto zdaje sobie sprawę, że niemal 3/4 dawki promieniowania jonizującego, jaką otrzymuje w ciągu roku przeciętny Polak, pochodzi ze źródeł naturalnych [2].

Nicola Hariasz Sufity podwieszane o podwyższonych właściwościach akustycznych

Sufity podwieszane o podwyższonych właściwościach akustycznych Sufity podwieszane o podwyższonych właściwościach akustycznych

Sufity podwieszane mogą stanowić ciekawy i nowoczesny element aranżacji wnętrza. Choć najczęściej kojarzą się z białymi klasycznymi modułami, są dostępne niemal w każdym kolorze i różnej stylistyce.

Sufity podwieszane mogą stanowić ciekawy i nowoczesny element aranżacji wnętrza. Choć najczęściej kojarzą się z białymi klasycznymi modułami, są dostępne niemal w każdym kolorze i różnej stylistyce.

mgr inż. Ismena Gawęda Wymagania techniczne wobec obiektów rolniczych o konstrukcji stalowej

Wymagania techniczne wobec obiektów rolniczych o konstrukcji stalowej Wymagania techniczne wobec obiektów rolniczych o konstrukcji stalowej

Popularne ostatnimi czasy w rolnictwie hale o konstrukcji stalowej (RYS. 1, FOT. 1) sprawdzają się jako specjalistyczne powierzchnie magazynowe pasz i przechowalnie płodów rolnych (w tym również w warunkach...

Popularne ostatnimi czasy w rolnictwie hale o konstrukcji stalowej (RYS. 1, FOT. 1) sprawdzają się jako specjalistyczne powierzchnie magazynowe pasz i przechowalnie płodów rolnych (w tym również w warunkach chłodni czy mroźni) oraz powierzchnie przetwórcze.

mgr inż. Bartosz Witkowski, prof. dr hab. inż. Krzysztof Schabowicz Izolacje a współczesna prefabrykacja w budynkach kubaturowych

Izolacje a współczesna prefabrykacja w budynkach kubaturowych Izolacje a współczesna prefabrykacja w budynkach kubaturowych

Prefabrykacja, w szczególności ta stosowana w budownictwie mieszkaniowym, znana jest w Polsce już od początku lat 50. ubiegłego wieku, kiedy to po drugiej wojnie światowej rozpoczęła się odbudowa miast...

Prefabrykacja, w szczególności ta stosowana w budownictwie mieszkaniowym, znana jest w Polsce już od początku lat 50. ubiegłego wieku, kiedy to po drugiej wojnie światowej rozpoczęła się odbudowa miast i znacząco wzrósł popyt na nowe mieszkania. To, co w świadomości może najbardziej być kojarzone z prefabrykacją zastosowaną w budynkach to tzw. wielka płyta, czyli połączenie żelbetowych ścian konstrukcyjnych ze ścianami osłonowymi z gazobetonu.

dr inż. Marcin Górski, dr inż. Bernard Kotala, mgr inż. Rafał Białozor Rodzaje i właściwości zbrojeń niemetalicznych

Rodzaje i właściwości zbrojeń niemetalicznych Rodzaje i właściwości zbrojeń niemetalicznych

Kompozyty włókniste, również w Polsce nazywane z angielskiego FRP (Fibre Reinforced Polymers), śmiało wkroczyły w świat konstrukcji budowlanych na początku lat 90. ubiegłego wieku, głównie w krajach Europy...

Kompozyty włókniste, również w Polsce nazywane z angielskiego FRP (Fibre Reinforced Polymers), śmiało wkroczyły w świat konstrukcji budowlanych na początku lat 90. ubiegłego wieku, głównie w krajach Europy Zachodniej, a także w Japonii, Stanach Zjednoczonych i Kanadzie. Pojawiły się niemal równocześnie dwie grupy produktów – materiały do wzmocnień konstrukcji oraz pręty do zbrojenia betonu.

Monika Hyjek Pożar ściany z barierami ogniowymi

Pożar ściany z barierami ogniowymi Pożar ściany z barierami ogniowymi

Od lat 80. XX wieku ilość materiałów ociepleniowych na ścianach zewnętrznych budynku stale rośnie. Grubość izolacji w jednej z popularniejszych w Europie metod ocieplania (ETICS) przez ten okres zwiększyła...

Od lat 80. XX wieku ilość materiałów ociepleniowych na ścianach zewnętrznych budynku stale rośnie. Grubość izolacji w jednej z popularniejszych w Europie metod ocieplania (ETICS) przez ten okres zwiększyła się 3–4-krotnie. W przypadku stosowania palnych izolacji cieplnych jest to równoznaczne ze wzrostem zagrożenia pożarowego.

mgr inż. Bartłomiej Monczyński Tynki stosowane na zawilgoconych przegrodach – tynki regulujące zawilgocenie

Tynki stosowane na zawilgoconych przegrodach – tynki regulujące zawilgocenie Tynki stosowane na zawilgoconych przegrodach – tynki regulujące zawilgocenie

Jednym z ostatnich, ale zazwyczaj nieodzownym elementem prac renowacyjnych w uszkodzonych przez wilgoć i sole obiektach budowlanych jest wykonanie nowych tynków wewnętrznych i/lub zewnętrznych.

Jednym z ostatnich, ale zazwyczaj nieodzownym elementem prac renowacyjnych w uszkodzonych przez wilgoć i sole obiektach budowlanych jest wykonanie nowych tynków wewnętrznych i/lub zewnętrznych.

Röben Polska Sp. z o.o. i Wspólnicy Sp. K. Ekoceramika na dachy i elewacje

Ekoceramika na dachy i elewacje Ekoceramika na dachy i elewacje

Wyjątkowo trwała, a na dodatek bezpieczna dla środowiska i naszego zdrowia. Znamy ją od tysięcy lat, należy do najbardziej ekologicznych materiałów budowlanych – po prostu ceramika!

Wyjątkowo trwała, a na dodatek bezpieczna dla środowiska i naszego zdrowia. Znamy ją od tysięcy lat, należy do najbardziej ekologicznych materiałów budowlanych – po prostu ceramika!

Nicola Hariasz Ściany podwyższające komfort akustyczny w pomieszczeniu

Ściany podwyższające komfort akustyczny w pomieszczeniu Ściany podwyższające komfort akustyczny w pomieszczeniu

Hałas jest powszechnym problemem obniżającym komfort życia nie tylko w domu, ale także w pracy. O tym, czy może być niebezpieczny, decyduje nie tylko jego natężenie, ale również czas jego trwania. Szkodliwe...

Hałas jest powszechnym problemem obniżającym komfort życia nie tylko w domu, ale także w pracy. O tym, czy może być niebezpieczny, decyduje nie tylko jego natężenie, ale również czas jego trwania. Szkodliwe dla zdrowia mogą być nawet gwar i szum towarzyszące nam na co dzień w biurze czy w centrum handlowym.

dr inż. Paweł Krause, dr inż. Rosita Norvaišienė Rozkład temperatury systemu ETICS z zastosowaniem styropianu i wełny – badania laboratoryjne

Rozkład temperatury systemu ETICS z zastosowaniem styropianu i wełny – badania laboratoryjne Rozkład temperatury systemu ETICS z zastosowaniem styropianu i wełny – badania laboratoryjne

Ochrona cieplna ścian zewnętrznych jest nie tylko jednym z podstawowych zagadnień związanych z oszczędnością energii, ale wiąże się również z komfortem użytkowania pomieszczeń przeznaczonych na pobyt ludzi....

Ochrona cieplna ścian zewnętrznych jest nie tylko jednym z podstawowych zagadnień związanych z oszczędnością energii, ale wiąże się również z komfortem użytkowania pomieszczeń przeznaczonych na pobyt ludzi. Zapewnienie odpowiedniego komfortu cieplnego pomieszczeń, nieposiadających w większości przypadków instalacji chłodzenia, dotyczy całego roku, a nie tylko okresu ogrzewczego.

mgr Kamil Kiejna Bezpieczeństwo pożarowe w aspekcie stosowania tzw. barier ogniowych w ociepleniach ze styropianu – artykuł polemiczny

Bezpieczeństwo pożarowe w aspekcie stosowania tzw. barier ogniowych w ociepleniach ze styropianu – artykuł polemiczny Bezpieczeństwo pożarowe w aspekcie stosowania tzw. barier ogniowych w ociepleniach ze styropianu – artykuł polemiczny

Niniejszy artykuł jest polemiką do tekstu M. Hyjek „Pożar ściany z barierami ogniowymi”, opublikowanego w styczniowym numerze „IZOLACJI” (nr 1/2021), który w ocenie Polskiego Stowarzyszenia Producentów...

Niniejszy artykuł jest polemiką do tekstu M. Hyjek „Pożar ściany z barierami ogniowymi”, opublikowanego w styczniowym numerze „IZOLACJI” (nr 1/2021), który w ocenie Polskiego Stowarzyszenia Producentów Styropianu, wskutek tendencyjnego i wybiórczego przedstawienia wyników badań przeprowadzonych przez Łukasiewicz – Instytut Ceramiki i Materiałów Budowlanych (ICiMB), może wprowadzać w błąd co do rzeczywistego poziomu bezpieczeństwa pożarowego systemów ETICS z płytami styropianowymi oraz rzekomych korzyści...

dr inż. Marcin Górski, dr inż. Bernard Kotala, mgr inż. Rafał Białozor Zbrojenia niemetaliczne – zbrojenia tekstylne i pręty kompozytowe

Zbrojenia niemetaliczne – zbrojenia tekstylne i pręty kompozytowe Zbrojenia niemetaliczne – zbrojenia tekstylne i pręty kompozytowe

Zbrojenie niemetaliczne jest odporne na korozję, nie ulega degradacji pod wpływem czynników atmosferycznych. Wykazuje także odporność na chlorki, kwasy, agresję chemiczną środowiska.

Zbrojenie niemetaliczne jest odporne na korozję, nie ulega degradacji pod wpływem czynników atmosferycznych. Wykazuje także odporność na chlorki, kwasy, agresję chemiczną środowiska.

mgr inż. Bartłomiej Monczyński Redukcja zasolenia przegród budowlanych za pomocą kompresów

Redukcja zasolenia przegród budowlanych za pomocą kompresów Redukcja zasolenia przegród budowlanych za pomocą kompresów

Jednym z najbardziej niekorzystnych zjawisk związanych z obecnością soli i wilgoci w układzie porów materiałów budowlanych jest krystalizacja soli [1–2] (FOT. 1).

Jednym z najbardziej niekorzystnych zjawisk związanych z obecnością soli i wilgoci w układzie porów materiałów budowlanych jest krystalizacja soli [1–2] (FOT. 1).

dr inż. Krzysztof Pawłowski, prof. uczelni Termomodernizacja budynków – ocieplenie i docieplenie elementów obudowy budynków

Termomodernizacja budynków – ocieplenie i docieplenie elementów obudowy budynków Termomodernizacja budynków – ocieplenie i docieplenie elementów obudowy budynków

Termomodernizacja dotyczy dostosowania budynku do nowych wymagań ochrony cieplnej i oszczędności energii. Ponadto stanowi zbiór zabiegów mających na celu wyeliminowanie lub znaczne ograniczenie strat ciepła...

Termomodernizacja dotyczy dostosowania budynku do nowych wymagań ochrony cieplnej i oszczędności energii. Ponadto stanowi zbiór zabiegów mających na celu wyeliminowanie lub znaczne ograniczenie strat ciepła w istniejącym budynku. Jest jednym z elementów modernizacji budynku, który przynosi korzyści finansowe i pokrycie kosztów innych działań.

dr inż. Artur Miszczuk Ocieplenie podłóg na gruncie i stropów nad nieogrzewanymi piwnicami

Ocieplenie podłóg na gruncie i stropów nad nieogrzewanymi piwnicami Ocieplenie podłóg na gruncie i stropów nad nieogrzewanymi piwnicami

Od 1 stycznia 2021 r. obowiązują zaostrzone Warunki Techniczne (WT 2021) dla nowo budowanych obiektów, a także budynków zaprojektowanych według wcześniej obowiązującego standardu WT 2017 – zgodnie z wymaganiami...

Od 1 stycznia 2021 r. obowiązują zaostrzone Warunki Techniczne (WT 2021) dla nowo budowanych obiektów, a także budynków zaprojektowanych według wcześniej obowiązującego standardu WT 2017 – zgodnie z wymaganiami proekologicznej polityki UE. Graniczne wartości współczynnika przenikania ciepła dla podłóg na gruncie i stropów nad pomieszczeniami nieogrzewanymi nie zostały jednak (w WT 2021) zmienione.

dr inż. arch. Karolina Kurtz-Orecka Ściany zewnętrzne według zaostrzonych wymagań izolacyjności termicznej

Ściany zewnętrzne według zaostrzonych wymagań izolacyjności termicznej Ściany zewnętrzne według zaostrzonych wymagań izolacyjności termicznej

Początek roku 2021 w branży budowlanej przyniósł kolejne zaostrzenie przepisów techniczno-budowlanych, ostatnie z planowanych, które wynikało z implementacji zapisów dyrektywy unijnej w sprawie charakterystyki...

Początek roku 2021 w branży budowlanej przyniósł kolejne zaostrzenie przepisów techniczno-budowlanych, ostatnie z planowanych, które wynikało z implementacji zapisów dyrektywy unijnej w sprawie charakterystyki energetycznej budynków [1, 2], potocznie zwanej dyrektywą EPBD.

dr inż. Adam Ujma Ściany zewnętrzne z elewacjami wentylowanymi i ich izolacyjność cieplna

Ściany zewnętrzne z elewacjami wentylowanymi i ich izolacyjność cieplna Ściany zewnętrzne z elewacjami wentylowanymi i ich izolacyjność cieplna

Ściany zewnętrzne z elewacjami wykonanymi w formie konstrukcji z warstwami wentylowanymi coraz częściej znajdują zastosowanie w nowych budynków, ale również z powodzeniem mogą być wykorzystane przy modernizacji...

Ściany zewnętrzne z elewacjami wykonanymi w formie konstrukcji z warstwami wentylowanymi coraz częściej znajdują zastosowanie w nowych budynków, ale również z powodzeniem mogą być wykorzystane przy modernizacji istniejących obiektów. Dają one szerokie możliwości dowolnego kształtowania materiałowego elewacji, z wykorzystaniem elementów metalowych, z tworzywa sztucznego, szkła, kamienia naturalnego, drewna i innych. Pewną niedogodnością tego rozwiązania jest konieczność uwzględnienia w obliczeniach...

mgr inż. arch. Tomasz Rybarczyk Ściany jednowarstwowe według WT 2021

Ściany jednowarstwowe według WT 2021 Ściany jednowarstwowe według WT 2021

Elementom zewnętrznym budynków, a więc również ścianom, stawiane są coraz wyższe wymagania, m.in. pod względem izolacyjności cieplnej. Zmiany obowiązujące od 1 stycznia 2021 roku dotyczą wymagań w zakresie...

Elementom zewnętrznym budynków, a więc również ścianom, stawiane są coraz wyższe wymagania, m.in. pod względem izolacyjności cieplnej. Zmiany obowiązujące od 1 stycznia 2021 roku dotyczą wymagań w zakresie izolacyjności cieplnej, a wynikające z rozporządzenia w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie powodują, że odtąd trzeba budować budynki ze ścianami o wyższej termoizolacyjności niż budowano dotychczas.

dr inż. Bożena Orlik-Kożdoń, dr inż. Tomasz Steidl Docieplanie budynków od wewnątrz – wymagania prawne i zalecenia do projektowania

Docieplanie budynków od wewnątrz – wymagania prawne i zalecenia do projektowania Docieplanie budynków od wewnątrz – wymagania prawne i zalecenia do projektowania

Obowiązujące w Polsce wymagania prawne związane z docieplaniem budynków od wewnątrz obejmują zarówno przepisy podstawowe zdefiniowane w dokumentach unijnych, jak i wymagania szczegółowe, zawarte w dokumentach...

Obowiązujące w Polsce wymagania prawne związane z docieplaniem budynków od wewnątrz obejmują zarówno przepisy podstawowe zdefiniowane w dokumentach unijnych, jak i wymagania szczegółowe, zawarte w dokumentach krajowych. A ich realizację umożliwiają dostępne na rynku rozwiązania technologiczno-materiałowe.

Najnowsze produkty i technologie

MediaMarkt Laptop na raty – czy warto wybrać tę opcję?

Laptop na raty – czy warto wybrać tę opcję? Laptop na raty – czy warto wybrać tę opcję?

Zakup nowego laptopa to spory wydatek. Może się zdarzyć, że staniemy przed dylematem: tańszy sprzęt, mniej odpowiadający naszym potrzebom, czy droższy, lepiej je spełniający, ale na raty? Często wybór...

Zakup nowego laptopa to spory wydatek. Może się zdarzyć, że staniemy przed dylematem: tańszy sprzęt, mniej odpowiadający naszym potrzebom, czy droższy, lepiej je spełniający, ale na raty? Często wybór tańszego rozwiązania, jest pozorną oszczędnością. Niższa efektywność pracy, mniejsza żywotność, nie mówiąc już o ograniczonych parametrach technicznych. Jeśli szukamy sprzętu, który posłuży nam naprawdę długo, dobrze do zakupu laptopa podejść jak do inwestycji - niezależnie, czy kupujemy go przede wszystkim...

PU Polska – Związek Producentów Płyt Warstwowych i Izolacji Płyty warstwowe PUR/PIR w aspekcie wymagań technicznych stawianych lekkiej obudowie

Płyty warstwowe PUR/PIR w aspekcie wymagań technicznych stawianych lekkiej obudowie Płyty warstwowe PUR/PIR w aspekcie wymagań technicznych stawianych lekkiej obudowie

Rozwój technologii budowlanej w ciągu ostatnich kilkudziesięciu lat zmienił oblicze branży w Polsce, umożliwiając szybszą, tańszą i ekologiczną realizację wznoszonych obiektów. Wprowadzając szeroko do...

Rozwój technologii budowlanej w ciągu ostatnich kilkudziesięciu lat zmienił oblicze branży w Polsce, umożliwiając szybszą, tańszą i ekologiczną realizację wznoszonych obiektów. Wprowadzając szeroko do branży rewolucyjny i rewelacyjny produkt, jakim jest płyta warstwowa, zmodernizowaliśmy de facto ideę prefabrykacji i zamianę tradycyjnych, mokrych i pracochłonnych technologii wznoszenia budynków z elementów małogabarytowych lub konstrukcji szalunkowych na szybki, suchy montaż gotowych elementów w...

Balex Metal Sp. z o. o. System rynnowy Zenit – orynnowanie premium

System rynnowy Zenit – orynnowanie premium System rynnowy Zenit – orynnowanie premium

Wielu inwestorów, wybierając orynnowanie, zwraca wyłącznie uwagę na kolor czy kształt rynien i rur spustowych. Oczywiście estetyka jest ważna, ale nie to jest głównym zadaniem systemu rynnowego. Ma on...

Wielu inwestorów, wybierając orynnowanie, zwraca wyłącznie uwagę na kolor czy kształt rynien i rur spustowych. Oczywiście estetyka jest ważna, ale nie to jest głównym zadaniem systemu rynnowego. Ma on przede wszystkim bezpiecznie odprowadzać wodę deszczową i roztopową z dachu, a o tym decydują detale. Zadbała o nie firma Balex Metal. System rynnowy Zenit jest dopracowany do perfekcji. Równie świetnie się prezentuje.

BREVIS S.C. Insolio - nawiewnik montowany bez konieczności frezowania szczelin

Insolio - nawiewnik montowany bez konieczności frezowania szczelin Insolio - nawiewnik montowany bez konieczności frezowania szczelin

Nawiewniki okienne to urządzenia mechaniczne zapewniające stały, a zarazem regulowany dopływ świeżego powietrza bez potrzeby otwierania okien. Ich montaż to jedna z najprostszych metod zapewnienia prawidłowego...

Nawiewniki okienne to urządzenia mechaniczne zapewniające stały, a zarazem regulowany dopływ świeżego powietrza bez potrzeby otwierania okien. Ich montaż to jedna z najprostszych metod zapewnienia prawidłowego działania wentylacji grawitacyjnej, mechanicznej wywiewnej i hybrydowej (połączenie obu poprzednich typów). Wiele osób rezygnowało z ich instalacji z powodu konieczności ingerencji w konstrukcję ramy okna. Na szczęście to już przeszłość - od kilku lat na rynku dostępne są modele montowane na...

PETRALANA Zastosowanie przeciwogniowe, termiczne, akustyczne – płyty PETRATOP i PETRALAMELA-FG

Zastosowanie przeciwogniowe, termiczne, akustyczne – płyty PETRATOP i PETRALAMELA-FG Zastosowanie przeciwogniowe, termiczne, akustyczne – płyty PETRATOP i PETRALAMELA-FG

PETRATOP i PETRALAMELA-FG to produkty stworzone z myślą o efektywnej izolacji termicznej oraz akustycznej oraz bezpieczeństwie pożarowym garaży i piwnic. Rozwiązanie to zapobiega wymianie wysokiej temperatury...

PETRATOP i PETRALAMELA-FG to produkty stworzone z myślą o efektywnej izolacji termicznej oraz akustycznej oraz bezpieczeństwie pożarowym garaży i piwnic. Rozwiązanie to zapobiega wymianie wysokiej temperatury z górnych kondygnacji budynków z niską temperaturą, która panuje bliżej gruntu.

VITCAS Polska Sp. z o.o. Jakich materiałów użyć do izolacji cieplnej kominka?

Jakich materiałów użyć do izolacji cieplnej kominka? Jakich materiałów użyć do izolacji cieplnej kominka?

Kominek to od lat znany i ceniony element wyposażenia domu. Nie tylko daje ciepło w chłodne wieczory, ale również stwarza niepowtarzalny klimat w pomieszczeniu. Obserwowanie pomarańczowych płomieni pozwala...

Kominek to od lat znany i ceniony element wyposażenia domu. Nie tylko daje ciepło w chłodne wieczory, ale również stwarza niepowtarzalny klimat w pomieszczeniu. Obserwowanie pomarańczowych płomieni pozwala zrelaksować się po ciężkim dniu pracy. Taka aura sprzyja również długim rozmowom w gronie najbliższych. Aby kominek był bezpieczny w użytkowaniu, należy zadbać o jego odpowiednią izolację termiczną. Dlaczego zabezpieczenie kominka jest tak ważne i jakich materiałów izolacyjnych użyć? Na te pytania...

Recticel Insulation Płyty termoizolacyjne EUROTHANE G – efektywne docieplenie budynku od wewnątrz

Płyty termoizolacyjne EUROTHANE G – efektywne docieplenie budynku od wewnątrz Płyty termoizolacyjne EUROTHANE G – efektywne docieplenie budynku od wewnątrz

Termomodernizacja jest jednym z podstawowych zadań podejmowanych w ramach modernizacji budynków. W odniesieniu do ścian docieplenie wykonuje się od zewnątrz, zgodnie z podstawowymi zasadami fizyki budowli....

Termomodernizacja jest jednym z podstawowych zadań podejmowanych w ramach modernizacji budynków. W odniesieniu do ścian docieplenie wykonuje się od zewnątrz, zgodnie z podstawowymi zasadami fizyki budowli. Czasami jednak nie ma możliwości wykonania docieplenia na fasadach, np. na budynkach zabytkowych, obiektach z utrudnionym dostępem do elewacji czy na budynkach usytuowanych w granicy. W wielu takich przypadkach jest jednak możliwe wykonanie docieplenia ścian od wewnątrz.

Ocmer Jak wygląda budowa hali magazynowej?

Jak wygląda budowa hali magazynowej? Jak wygląda budowa hali magazynowej?

Budowa obiektu halowego to wieloetapowy proces, w którym każdy krok musi zostać precyzyjnie zaplanowany i umiejscowiony w czasie. Jak wyglądają kolejne fazy takiego przedsięwzięcia? Wyjaśniamy, jak przebiega...

Budowa obiektu halowego to wieloetapowy proces, w którym każdy krok musi zostać precyzyjnie zaplanowany i umiejscowiony w czasie. Jak wyglądają kolejne fazy takiego przedsięwzięcia? Wyjaśniamy, jak przebiega budowa hali magazynowej i z jakich etapów składa się cały proces.

Parati Płyta fundamentowa i jej zalety – wszystko, co trzeba wiedzieć

Płyta fundamentowa i jej zalety – wszystko, co trzeba wiedzieć Płyta fundamentowa i jej zalety – wszystko, co trzeba wiedzieć

Budowa domu jest zadaniem niezwykle trudnym, wymagającym od inwestora podjęcia wielu decyzji, bezpośrednio przekładających się na efekt. Dokłada on wszelkich starań, żeby budynek był w pełni funkcjonalny,...

Budowa domu jest zadaniem niezwykle trudnym, wymagającym od inwestora podjęcia wielu decyzji, bezpośrednio przekładających się na efekt. Dokłada on wszelkich starań, żeby budynek był w pełni funkcjonalny, wygodny oraz wytrzymały. A jak pokazuje praktyka, aby osiągnąć ten cel, należy rozpocząć od podstaw. Właśnie to zagwarantuje nam solidna płyta fundamentowa.

Copyright © 2004-2019 Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Spółka komandytowa, nr KRS: 0000537655. Wszelkie prawa, w tym Autora, Wydawcy i Producenta bazy danych zastrzeżone. Jakiekolwiek dalsze rozpowszechnianie artykułów zabronione. Korzystanie z serwisu i zamieszczonych w nim utworów i danych wyłącznie na zasadach określonych w Zasadach korzystania z serwisu.
Portal Budowlany - Izolacje.com.pl

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim urządzeniu końcowym. W każdym momencie możesz dokonać zmiany ustawień przeglądarki dotyczących cookies. Nim Państwo zaczną korzystać z naszego serwisu prosimy o zapoznanie się z naszą polityką prywatności oraz Informacją o Cookies. Więcej szczegółów w naszej Polityce Prywatności oraz Informacji o Cookies. Administratorem Państwa danych osobowych jest Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Sp.K., nr KRS: 0000537655, z siedzibą w 04-112 Warszawa, ul. Karczewska 18, tel. +48 22 810-21-24, właściciel strony www.izolacje.com.pl. Twoje Dane Osobowe będą chronione zgodnie z wytycznymi polityki prywatności www.izolacje.com.pl oraz zgodnie z Rozporządzeniem Parlamentu Europejskiego i Rady (UE) 2016/679 z dnia 27 kwietnia 2016r i z Ustawą o ochronie danych osobowych Dz.U. 2018 poz. 1000 z dnia 10 maja 2018r.