Izolacje.com.pl

Modernizacja poddaszy użytkowych

Modernization of habitable attics

Jak modernizować poddasza na potrzeby mieszkalne?
Fot. Siniat

Jak modernizować poddasza na potrzeby mieszkalne?


Fot. Siniat

Poddasze jest szczególną częścią budynku, w której kumulują się wszystkie wymagania dotyczące obiektów budowlanych.

Zobacz także

4 ECO Sp. z o.o. Co zrobić z niewystarczająco docieplonym budynkiem?

Co zrobić z niewystarczająco docieplonym budynkiem? Co zrobić z niewystarczająco docieplonym budynkiem?

Od lat 90. trwa w Polsce termomodernizacja wszelkich obiektów budowlanych, przejawiająca się m.in. docieplaniem ścian zewnętrznych styropianem. Zalecana grubość styropianu do izolacji zmienia się co kilka...

Od lat 90. trwa w Polsce termomodernizacja wszelkich obiektów budowlanych, przejawiająca się m.in. docieplaniem ścian zewnętrznych styropianem. Zalecana grubość styropianu do izolacji zmienia się co kilka lat. I tak pierwsze docieplenia były na styropianie o grubości 4 cm, obecnie to 20 cm styropianu grafitowego.

TRUTEK FASTENERS POLSKA Wzmacnianie bydynków wielkopłytowych w systemie TRUTEK TCM

Wzmacnianie bydynków wielkopłytowych w systemie TRUTEK TCM Wzmacnianie bydynków wielkopłytowych w systemie TRUTEK TCM

TRUTEK FASTENERS POLSKA jest firmą specjalizującą się w produkcji najwyższej jakości systemów zamocowań przeznaczonych do budownictwa lądowego, drogowego i przemysłu. W ofercie firmy znajdują się wyroby...

TRUTEK FASTENERS POLSKA jest firmą specjalizującą się w produkcji najwyższej jakości systemów zamocowań przeznaczonych do budownictwa lądowego, drogowego i przemysłu. W ofercie firmy znajdują się wyroby tradycyjne – od wielu lat stosowane w budownictwie, a także nowatorskie, zaawansowane technologicznie rozwiązania gwarantujące najwyższy poziom bezpieczeństwa.

TRUTEK FASTENERS POLSKA Innowacyjna technologia mocowania izolacji termicznej budynku

Innowacyjna technologia mocowania izolacji termicznej budynku Innowacyjna technologia mocowania izolacji termicznej budynku

Łączniki do mocowania izolacji termicznej obiektu to bardzo ważny element zapewniający bezpieczeństwo i stabilność warstwy docieplenia.

Łączniki do mocowania izolacji termicznej obiektu to bardzo ważny element zapewniający bezpieczeństwo i stabilność warstwy docieplenia.

 

O czym przeczytasz w artykule?

Abstrakt

  • Wymagania fizykalne dla przegród w poddaszach użytkowych
  • Wydzielenie przestrzeni ogrzewanej
  • Projektowanie układów materiałowych
  • Ograniczenie liniowych strat ciepła

Przedmiotem artykułu są poddasza i ich modernizowanie na potrzeby mieszkalne. Autorzy omawiają wymagania, jakim musi sprostać poddasze, by mogło odpowiadać funkcji mieszkalnej. Na początek przedstawiono wymagania fizykalne wobec tego typu obiektów dotyczące przede wszystkim ochrony cieplnej i szczelności powietrznej. Następnie omówiono zasady prawidłowego wydzielenia przestrzeni ogrzewanej, projektowanie układów materiałowych dachu wraz z ograniczeniem liniowych strat ciepła. Przeanalizowano udział mostków cieplnych i szczelności powietrznej poddasza w stratach ciepła.

Modernization of habitable attics

The subject of the article are attics and their modernization for residential purposes. The authors discuss requirements that an attic must meet in order to have a residential function. In the beginning, physical requirements for this type of object are presented, mainly concerning thermal protection and airtightness. Afterward, the principles of proper separation of heated space, design of roof material systems with limitations of linear heat losses are discussed. The share of thermal bridges and airtightness of the attic in heat losses were analyzed.

Wprowadzenie funkcji mieszkalnej jest możliwe, jeżeli spełnione są wymagania:

  • bezpieczeństwa konstrukcji (odpowiednia nośność stropu zapewniająca przeniesienie zwiększonych obciążeń użytkowych, odpowiednia nośność elementów konstrukcyjnych dachu umożliwiająca przeniesienie obciążeń dodatkowych warstw izolacji, zabezpieczeń przeciwwilgociowych i wykończenia),
  • bezpieczeństwa użytkowania (w tym wysokości pomieszczeń),
  • ochrony przed hałasem i bezpieczeństwa pożarowego,
  • fizykalne w zakresie właściwej izolacyjności cieplnej oraz uniknięcia zagrożenia w wyniku występowania wilgoci w elementach budowlanych lub na ich powierzchniach i niekontrolowanej infiltracji powietrza zewnętrznego.

Wymagania fizykalne

Podstawowe wymagania ochrony cieplnej są zdefiniowane w warunkach technicznych [1]. Jednocześnie w praktyce projektowej i wykonawczej funkcjonują dwa dodatkowe standardy (NF40 i NF15) jako pozostałość po zamkniętym w 2015 r. programie priorytetowym Poprawa efektywności energetycznej [2]. Zestawienie wymagań dla zdefiniowanych standardów przedstawiono w TAB. 1.

TABELA 1. Minimalne wymagania energetyczne dla budynków.

TABELA 1. Minimalne wymagania energetyczne dla budynków.

Co da się zauważyć, w warunkach technicznych nie sprecyzowano wymagań cieplnych dotyczących mostków termicznych. Zdefiniowano natomiast ogólne wymaganie ochrony wilgotnościowej - dotyczące ryzyka występowania kondensacji na wewnętrznej powierzchni przegrody.

Wg rozporządzenia [1] na wewnętrznej powierzchni nieprzezroczystej przegrody zewnętrznej nie może występować kondensacja pary wodnej umożliwiająca rozwój grzybów pleśniowych, co w praktyce oznacza, że w odniesieniu do przegród zewnętrznych budynków mieszkalnych, zamieszkania zbiorowego, użyteczności publicznej i produkcyjnych, magazynowych i gospodarczych rozwiązania przegród zewnętrznych i ich węzłów konstrukcyjnych powinny charakteryzować się współczynnikiem temperaturowym ƒRsi o wartości nie mniejszej niż wymagana wartość krytyczna, obliczona zgodnie z polską normą (PN-EN ISO 13788:2003 [3]) dotyczącą obliczania temperatury powierzchni wewnętrznej koniecznej do uniknięcia krytycznej wilgotności powierzchni i kondensacji międzywarstwowej. Wymaganą wartość krytyczną współczynnika temperaturowego ƒRsi w pomieszczeniach ogrzewanych do temperatury co najmniej 20°C należy określać według rozdziału 5 PN-EN ISO 13788:2003 [3], przy założeniu, że średnia miesięczna wartość wilgotności względnej powietrza wewnętrznego jest równa φ = 50%, przy czym dopuszcza się przyjmowanie wymaganej wartości tego współczynnika równej 0,72.

Wartość współczynnika temperaturowego charakteryzującego zastosowane rozwiązanie konstrukcyjno-materiałowe należy obliczać:

  • dla przegrody - według polskiej normy (PN-EN ISO 13788:2003 [3]);
  • dla mostków cieplnych przy zastosowaniu przestrzennego modelu przegrody - według polskiej normy dotyczącej obliczania strumieni cieplnych i temperatury powierzchni (PN-EN ISO 10211:2008 [5]).
TABELA 2. Wartości wskaźnika krotności wymiany powietrza (n50)

TABELA 2. Wartości wskaźnika krotności wymiany powietrza (n50)

Sprawdzenie warunku uniknięcia kondensacji wewnętrznej, należy przeprowadzić według rozdziałów 5 i 6 polskiej normy (PN-EN ISO 13788:2003 [3]).

Przepisy dopuszczają kondensację pary wodnej wewnątrz przegrody w okresie zimowym, o ile struktura przegrody umożliwi wyparowanie kondensatu w okresie letnim i nie nastąpi przy tym degradacja materiałów budowlanych przegrody na skutek tej kondensacji. Jednak w przypadku materiałów wrażliwych na wilgoć, do których należy drewno i materiały drewnopochodne, takie zjawisko należy wykluczyć.

Zgodnie z warunkami technicznymi zalecane jest, by po zakończeniu budowy budynek mieszkalny, zamieszkania zbiorowego, użyteczności publicznej i produkcyjny został poddany próbie szczelności. Dla standardu energooszczędnego i pasywnego jest ona obligatoryjna. Wartości wskaźnika krotności wymiany powietrza zestawiono w TAB 2.

Badanie szczelności jest wykonywane przed wykończeniem finalnym. W przypadku konstrukcji szkieletowych (w tym również dachu) – po ułożeniu paroizolacji i rusztu pod podsufitkę. Z uwagi na łączenie folii technikami klejenia w próbie szczelności stosuje się tylko nadciśnienie [6].

Wydzielenie przestrzeni ogrzewanej

Wydzielenie przestrzeni ogrzewanej jest jednym z pierwszych działań w procesie modernizacji poddasza. W tym celu należy jednoznacznie wskazać kubatury ogrzewane i zdefiniować wymagane temperatury. Wskazane jest, aby ze względu na znikomą izolacyjność termiczną nieocieplonego dachu wszystkie przegrody wydzielające przestrzeń ogrzewaną (stropy na jętkach, ścianki kolankowe) spełniały wymagania dla przegród zewnętrznych (RYS. 1-3 i RYS. 4-6).

RYS. 1-3. Izolowanie termiczne przestrzeni ogrzewanych na poddaszu - wydzielenie przestrzeni ogrzewanej stropem na jętkach: rozwiązanie niepoprawne (1), rozwiązania poprawne (2-3). Objaśnienia: 1 - strop na jętkach, 2 - ocieplenie między krokwiami, θi - przestrzenie ogrzewane, θu - przestrzenie nieogrzewane; rys.: M. Wesołowska, K. Pawłowski i P. Rożek

RYS. 1-3. Izolowanie termiczne przestrzeni ogrzewanych na poddaszu - wydzielenie przestrzeni ogrzewanej stropem na jętkach: rozwiązanie niepoprawne (1), rozwiązania poprawne (2-3). Objaśnienia: 1 - strop na jętkach, 2 - ocieplenie między krokwiami, θi - przestrzenie ogrzewane, θu - przestrzenie nieogrzewane; rys.: M. Wesołowska, K. Pawłowski i P. Rożek

RYS. 4-6. Izolowanie termiczne przestrzeni ogrzewanych na poddaszu - wydzielenie przestrzeni ogrzewanej stropem na jętkach i ściankami kolankowymi: rozwiązanie niepoprawne (4), rozwiązania poprawne (5-6). Objaśnienia: 1 - strop na jętkach, 2 - ocieplenie między krokwiami, 3 - ścianka kolankowa, θi - przestrzenie ogrzewane, θu - przestrzenie nieogrzewane; rys.: M. Wesołowska, K. Pawłowski i P. Rożek

RYS. 4-6. Izolowanie termiczne przestrzeni ogrzewanych na poddaszu - wydzielenie przestrzeni ogrzewanej stropem na jętkach i ściankami kolankowymi: rozwiązanie niepoprawne (4), rozwiązania poprawne (5-6). Objaśnienia: 1 - strop na jętkach, 2 - ocieplenie między krokwiami, 3 - ścianka kolankowa, θi - przestrzenie ogrzewane, θu - przestrzenie nieogrzewane; rys.: M. Wesołowska, K. Pawłowski i P. Rożek

W powstałych nieogrzewanych przestrzeniach należy zapewnić wentylację. Izolowanie dachu nad nieogrzewanymi przestrzeniami jest dodatkowym zabiegiem poprawiającym komfort cieplny w pomieszczeniach poddasza zarówno w okresie zimowym, jak i letnim.

Projektowanie układów materiałowych

Stropodach drewniany to złożona konstrukcja składająca się z kilku warstw. Współtworzą one kompatybilny system chroniący przed utratą ciepła zimą i nadmiernym nagrzewaniem latem. Przede wszystkim jednak stropodach stanowi zabezpieczenie przed szkodliwym wpływem warunków atmosferycznych, takich jak deszcz i wiatr.

Do ocieplania dachów drewnianych wg [7-8] najczęściej stosowane są następujące materiały termoizolacyjne: płyty drzewne, płyty z wełny owczej, płyty z wełny mineralnej, pianka poliuretanowa (PUR/PIR), płyty korkowe.

Z punktu widzenia zagadnień cieplno-wilgotnościowych istotne znaczenie ma określenie grubości izolacji cieplnej i odpowiednie jej usytuowanie oraz zabezpieczenie przed ryzykiem występowania kondensacji powierzchniowej i międzywarstwowej. Grubość materiałów termoizolacyjnych w zależności od wymaganej wartości współczynnika przenikania ciepła U przedstawiono w TAB. 3.

TABELA 3. Minimalna grubość materiałów termoizolacyjnych dla dachów drewnianych [14]

TABELA 3. Minimalna grubość materiałów termoizolacyjnych dla dachów drewnianych [14]

Rozwiązania konstrukcyjno-materiałowe stropodachów drewnianych różnią się od siebie sposobem ułożenia warstwy izolacji termicznej oraz sposobem wentylowania. Występuje kilka możliwości mocowania termoizolacji (RYS. 7, RYS. 8 i RYS. 9):

  • między krokwiami,
  • między krokwiami i nad lub pod nimi,
  • nad krokwiami.
RYS. 7. Układy warstw materiałowych stropodachów drewnianych - izolacja cieplna między krokwiami. Objaśnienia: 1 - dachówka ceramiczna, 2 - łata, 3 - kontrłata, 4 - szczelina dobrze wentylowana, 5 - folia wysokoparoprzepuszczalna, 6 - krokiew, 7 - izolacja cieplna (wełna mineralna), 8 - folia paroizolacyjna, 9 - płyta gipsowo­‑kartonowa; rys.: [9]

RYS. 7. Układy warstw materiałowych stropodachów drewnianych - izolacja cieplna między krokwiami. Objaśnienia: 1 - dachówka ceramiczna, 2 - łata, 3 - kontrłata, 4 - szczelina dobrze wentylowana, 5 - folia wysokoparoprzepuszczalna, 6 - krokiew, 7 - izolacja cieplna (wełna mineralna), 8 - folia paroizolacyjna, 9 - płyta gipsowo­‑kartonowa; rys.: [9]

RYS. 8. Układy warstw materiałowych stropodachów drewnianych - izolacja cieplna między i pod krokwiami. Objaśnienia: 1 - dachówka ceramiczna, 2 - łata, 3 - kontrłata, 4 - szczelina dobrze wentylowana, 5 - folia wysokoparoprzepuszczalna, 6 - krokiew, 7 - izolacja cieplna (wełna mineralna), 8 - dodatkowa warstwa izolacji cieplnej (wełna mineralna), 9 - folia paroizolacyjna, 10 - płyta gipsowo­‑kartonowa; rys.: [9]

RYS. 8. Układy warstw materiałowych stropodachów drewnianych - izolacja cieplna między i pod krokwiami. Objaśnienia: 1 - dachówka ceramiczna, 2 - łata, 3 - kontrłata, 4 - szczelina dobrze wentylowana, 5 - folia wysokoparoprzepuszczalna, 6 - krokiew, 7 - izolacja cieplna (wełna mineralna), 8 - dodatkowa warstwa izolacji cieplnej (wełna mineralna), 9 - folia paroizolacyjna, 10 - płyta gipsowo­‑kartonowa; rys.: [9]

RYS. 9. Układy warstw materiałowych stropodachów drewnianych - izolacja cieplna nad krokwiami. Objaśnienia: 1 - dachówka ceramiczna, 2 - łata, 3 - kontrłata lub deskowanie, 4 - szczelina dobrze wentylowana, 5 - folia, 6 - izolacja cieplna (płyty z pianki poliuretanowej), 7 - folia paroizolacyjna, 8 - deskowanie, 9 - krokiew; rys.: [9]

RYS. 9. Układy warstw materiałowych stropodachów drewnianych - izolacja cieplna nad krokwiami. Objaśnienia: 1 - dachówka ceramiczna, 2 - łata, 3 - kontrłata lub deskowanie, 4 - szczelina dobrze wentylowana, 5 - folia, 6 - izolacja cieplna (płyty z pianki poliuretanowej), 7 - folia paroizolacyjna, 8 - deskowanie, 9 - krokiew; rys.: [9]

W dachach z poddaszem ogrzewanym ocieplenie jest najczęściej układane między i pod krokwiami. Jego grubość zależna jest od wysokości krokwi i wykonywane jest z płyt, mat lub w postaci luźnego materiału wdmuchiwanego.

Aby materiały termoizolacyjne spełniały swoje zadania prawidłowo, muszą być odpowiednio zabezpieczone przed działaniem wilgoci. Zawilgocony materiał izolacyjny jest nieskuteczny, co łączy się ze stratami ciepła. Zabezpieczenia przeciwwilgociowe stanowią:

  • właściwe pokrycie dachowe na odpowiednim poszyciu,
  • warstwa wstępnego krycia, której rozwiązanie jest zależne od występującego poszycia,
  • wentylacja połaci dachowej,
  • paroizolacja, ułożona po wewnętrznej stronie izolacji termicznej.

Warstwę wstępnego krycia może stanowić:

  • Papa mocowana mechanicznie na pełnym poszyciu (z desek, sklejki, płyty OSB). Jej najważniejszą funkcją jest ochrona termoizolacji i konstrukcji dachu przed wilgocią z zewnątrz. Para wodna z wnętrza przegrody jest odprowadzana przez dobrze wentylowaną warstwę powietrza powstałą z odsunięcia materiału termoizolacyjnego od poszycia na minimum 2,5 cm.
  • Membrana dachowa rozpięta na krokwiach i mocowana kontrłatami. Najważniejszą funkcją membran dachowych jest ochrona termoizolacji i konstrukcji dachu przed wilgocią z zewnątrz, a także odprowadzenie jej z ocieplenia i więźby. Membrana dachowa jest materiałem składającym się z trzech warstw: głównej warstwy funkcyjnej, którą jest "film funkcyjny" (przepuszczający cząsteczki pary wodnej) oraz dwóch warstw włóknin zewnętrznych (najczęściej wykonanych z polipropylenu) chroniących "film" przed uszkodzeniem.

Parametrem określającym paroprzepuszczalność membrany dachowej jest Sd - dyfuzyjnie równoważna grubość warstwy powietrza. Cecha ta decyduje o podziale membran na dwie grupy:

  • wysokoparoprzepuszczalne Sd <  0,10 m (przeważnie Sd =  0,02-0,03 m) pozwalające na układanie materiału termoizolacyjnego bezpośrednio pod nimi (RYS. 7RYS. 8 i RYS. 9),
  • niskoparoprzepuszczalne Sd  ≥  0,10 m, które wymagają dwukanałowej wentylacji dachu (dodatkowa wentylowana szczelina pod membraną).

Zgodnie z PN EN ISO 6946 [10] szczeliny muszą posiadać połączenie ze środowiskiem zewnętrznym otworami o sumarycznym przekroju (nawiew i wywiew) > 1500 mm2/1 m2 wentylowanej połaci dachu.

Ograniczenie liniowych strat ciepła

Złącza budowlane, nazywane także mostkami cielnymi (termicznymi), powstają w wyniku połączenia przegród budynku. Generują one dodatkowe straty ciepła przez przegrody budowlane. Dobór materiałów konstrukcyjnych i izolacyjnych złączy nie powinien być przypadkowy, lecz opierać się na szczegółowych obliczeniach i analizach. Szczególne znaczenie ma poprawne zaprojektowanie złączy przegród zewnętrznych w zakresie zminimalizowania strat ciepła oraz wyeliminowania ryzyka kondensacji na wewnętrznej powierzchni przegrody.

Ze względu na konsekwencje występowania mostków cieplnych warto wysunąć następujące postulaty:

  • należy dążyć do ograniczenia wartości niekorzystnego wpływu na straty ciepła i ryzyko kondensacji,
  • wszystkie mostki termiczne, których można uniknąć, należy wyeliminować na etapie projektowania lub podczas realizacji budynku,
  • wszystkie miejsca występowania mostków, które nie mogą zostać usunięte, lub istniejących mostków cieplnych powinny być tak skonstruowane lub ocieplone, aby ich wpływ na straty ciepła oraz na kondensację był minimalny.

Jednym z podstawowych detali dachu jest połączenie ze ścianą zewnętrzną w przekroju przez murłatę. Poprawne ukształtowanie warstw materiałowych złącza pozwala na ograniczenie dodatkowych strat ciepła oraz uniknięcie ryzyka występowania kondensacji powierzchniowej. Przykłady poprawnie skonstruowanych detali przedstawiono na RYS. 10 i RYS. 11.

RYS. 10. Przykładowe rozwiązania materiałowe połączenia ściany zewnętrznej z stropodachem drewnianym w przekroju przez murłatę

RYS. 10. Przykładowe rozwiązania materiałowe połączenia ściany zewnętrznej z stropodachem drewnianym w przekroju przez murłatę.


Objaśnienia: 1 - dachówka, 2 - łata 4×5 cm, 3 - pustka powietrzna/kontrłata 4×5 cm, 4 - wysokoparoprzepuszczalna membrana dachowa, 5 - deski sosnowe 2,5 cm z przerwą 2 cm, 6 - termoizolacja 20 cm/krokiew 10×20 cm, 7 - termoizolacja 5 cm, 8 - folia paroizolacyjna, 9 - płyta gipsowo­‑kartonowa 1,25 cm, 10 - pianka montażowa, 11 - murłata 15×15 cm, 12 - kotew galwanizowana gwintowana M12, 13 - wieniec 20×24 cm, 14 - tynk zewnętrzny akrylowy 1 cm, 15 - styropian grafitowy 12 cm, 16 - pustak ceramiczny 24 cm ; rys.: [11]

RYS. 11. Przykładowe rozwiązania materiałowe połączenia ściany zewnętrznej z stropodachem drewnianym w przekroju przez murłatę

RYS. 11. Przykładowe rozwiązania materiałowe połączenia ściany zewnętrznej z stropodachem drewnianym w przekroju przez murłatę.


Objaśnienia: 1 - dachówka, 2 - łata 4×5 cm, 3 - pustka powietrzna/kontrłata 4×5 cm, 4 - termoizolacja 18 cm płyta PIR z powłoką ALU, 5 - folia paroizolacyjna, 6 - płyta OSB 2,2 cm, 7 - tynk gipsowy 1 cm, 8 - krokiew 10×20 cm, 9 - murłata 15×15 cm, 10 - kotew galwanizowana gwintowana M12, 11 - wieniec 20×24 cm, 12 - tynk zewnętrzny akrylowy 1 cm, 13 - styropian grafitowy 12 cm, 14 - pustak ceramiczny 24 cm, 15 - płyta gipsowo­‑kartonowa 1,25 cm; rys.: [11]

W detalach budowlanych często pomijane są połączenia dachu ze ścianą szczytową. Poniżej przedstawiono analizę dwóch newralgicznych węzłów i ich wariantów:

  • połączenie z połacią dachową [(1) rozwiązanie podstawowe i (2) z przekładką termoizolacyjną na ścianie szczytowej],
  • połączenie ze stropem na jętkach [(1) rozwiązanie podstawowe, (2) ocieplenie stropu wywinięte na ścianę szczytową, (3) z izolowaną termicznie przestrzenią dachową].

Przyjęto następujące rozwiązania materiałowe przegród:

  • Ściana dwuwarstwowa:
    - tynk c-w 1,5 cm, λ = 0,84 W/(m∙K),
    - mur z cegły pełnej 25 cm, λ = 0,77 W/(m∙K),
    - EPS 033 15 cm.

Współczynnik przenikania ciepła U = 0,198 W/(m2∙K).

  • Dach o konstrukcji drewnianej ocieplony wełną mineralną:
    - międzykrokwiowo 16 cm λ = 0,045 W/(m∙K),
    - podkrokwiowo 12 cm, λ = 0,033 W/(m∙K),
    - podstufitka z płyty gipsowo-kartonowej 1,25 cm, λ = 0,23 W/(m∙K),

Współczynnik przenikania ciepła U = 0,127 W/(m2∙K).

  • Strop na jętkach o konstrukcji drewnianej ocieplony wełną mineralną:
    - między jętkami 16 cm λ = 0,045 W/(m∙K),
    - na jętkach 12 cm, λ = 0,033 W/(m∙K),
    - podstufitka z płyty gipsowo-kartonowej 1,25 cm, λ = 0,23 W/(m∙K).

Współczynnik przenikania ciepła U = 0,127 W/(m2∙K).Warunki brzegowe:

  • temperatura wewnętrzna Θi = +20˚C (na podstawie [1]),
  • temperatura zewnętrzna Θe   =   –18˚C (II strefa klimatyczna wg PN-EN 12831 [12],
  • temperatura przestrzeni dachowej
    -    nieocieplonej Θu = –16˚C (na podstawie PN-82/B-02403 [4],
    -    izolowanej termicznie ocieplonej międzykrokwiowo wełną ­mineralną o gr. 16 cm, Θu = +4˚C (bilansowa temperatura, obliczona wg PN-EN ISO 13789 [13]),
  • Opory przejmowania ciepła - wg TAB. 4.
TABELA 4. Opory przejmowania ciepła [3, 10]

TABELA 4. Opory przejmowania ciepła [3, 10]

Wartość krytyczna współczynnika temperaturowego wg PN-EN ISO 13788 dla Bydgoszczy i 3 klasy warunków wilgotnościowych [14] ƒRsi,min = 0,783.

Wyniki obliczeń przedstawiono w TAB. 5 i TAB. 6.

TABELA 5. Analiza cieplno-wilgotnościowa węzła połączenia ściany szczytowej z połacią dachową (opracowanie własne)

TABELA 5. Analiza cieplno-wilgotnościowa węzła połączenia ściany szczytowej z połacią dachową (opracowanie własne)

TABELA 6. Analiza cieplno-wilgotnościowa węzła połączenia ściany szczytowej ze stropem na jętkach (opracowanie własne)

TABELA 6. Analiza cieplno-wilgotnościowa węzła połączenia ściany szczytowej ze stropem na jętkach (opracowanie własne)

Wpływ rozwiązania węzłów ściany szczytowej na straty ciepła przez dach przeanalizowano na podstawie połaci dachowej o geometrii wg RYS. 12.

RYS. 12. Model połaci przyjęty do obliczeń energetycznych; rys.: M. Wesołowska, K. Pawłowski i P. Rożek

RYS. 12. Model połaci przyjęty do obliczeń energetycznych; rys.: M. Wesołowska, K. Pawłowski i P. Rożek

Przyjęto trzy warianty:

  • A - rozwiązania węzłów w wariancie 1 wg TAB. 5 i TAB. 6,
  • B - rozwiązania węzłów w wariancie 2 wg TAB. 5 i TAB. 6,
  • C - rozwiązania węzłów w wariancie 2 wg TAB. 5 i wariancie 3 wg TAB. 6

Wyniki zestawiono w TAB. 7.

TABELA 7. Sezonowe straty ciepła przez połać dachową

TABELA 7. Sezonowe straty ciepła przez połać dachową

Na podstawie przeprowadzonych obliczeń cieplnych i energetycznych należy jednoznacznie zdyskwalifikować rozwiązania zdefiniowane w wariancie A.

Węzły są zagrożone ryzykiem rozwoju pleśni i generują dodatkowe straty ciepła na poziomie 6,5%. Uciąglenie izolacji na szczycie przekładką termoizolacyjną o grubości minimum 4 cm oraz wywiniecie izolacji stropu na jętkach na ścianę szczytową (5 cm grubości na wysokość minimum 50 cm) niweluje te straty. Docieplenie połaci dachowej nad przestrzenią nieogrzewaną pozwala na dalsze ograniczenie strat ciepła.

Mostki powietrzne i szczelność powietrzna poddasza

Nieodłącznym elementem bilansu są straty przez wentylację. Ich wielkość w dużej mierze zależy od infiltracji, która jest efektem nieszczelności w obudowie budynku. Przyjmując dane zestawione w TAB 2, otrzymuje się dodatkowe straty ciepła (TAB. 6), których wartość może być wyższa od wartości wynikających z przenikania. W zależności od szczelności dachu zapotrzebowanie na ciepło poddasza może wzrosnąć nawet dwukrotnie (TAB. 8).

TABELA 8. Straty ciepła dla poddasza w zależności od szczelności rozwiązania (opracowanie własne)

TABELA 8. Straty ciepła dla poddasza w zależności od szczelności rozwiązania (opracowanie własne)

W drewnianej konstrukcji dachu szczelność jest zapewniana na wewnętrznej powierzchni dachu. Kreują ją folie parolizolacyjne klasyczne, aktywne lub z warstwą refleksyjną.

Należy jednak zwrócić uwagę, że wysoka wartość Sd wyrobu nie jest tożsama ze szczelnością warstwy [15]. Poza stykami arkuszy folii należy zabezpieczyć styki z sąsiednimi przegrodami oraz przejścia wszelkich instalacji. Każde mocowanie folii do konstrukcji musi zostać uszczelnione. W dachu jest to jedyna powłoka, która odpowiada za szczelność powietrzną. Nie dopuszcza się dodawania kolejnych warstw szczelnych przed lub za nią, np. płyt gipsowo-kartonowych. Przykładowe rozwiązania przedstawiono na RYS. 13.

RYS. 13. Zapewnienie szczelności w potencjalnych mostkach powietrznych połaci dachowej. Objaśnienia: 1 - taśma uszczelniająca, 2 - listwa dociskowa, 3 - mocowanie rusztu, uszczelnione, 4 - paroizolacja; rys.: M. Wesołowska, K. Pawłowski i P. Rożek

RYS. 13. Zapewnienie szczelności w potencjalnych mostkach powietrznych połaci dachowej. Objaśnienia: 1 - taśma uszczelniająca, 2 - listwa dociskowa, 3 - mocowanie rusztu, uszczelnione, 4 - paroizolacja; rys.: M. Wesołowska, K. Pawłowski i P. Rożek

Literatura

  1. Rozporządzenie Ministra Infrastruktury z dnia 12 kwietnia 2002 r. w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie (DzU 2017, poz. 2285).
  2. Program priorytetowy: "Poprawa efektywności energetycznej. Dopłaty do kredytów na budowę domów energooszczędnych", Narodowy Fundusz Ochrony Środowiska i Gospodarki Wodnej w Warszawie.
  3. PN-EN ISO 13788:2003, "Cieplno-wilgotnościowe właściwości komponentów budowlanych i elementów budynku. Temperatura powierzchni wewnętrznej konieczna do uniknięcia krytycznej wilgotności powierzchni i kondensacja międzywarstwowa. Metody obliczania".
  4. PN-82/B-02403, "Ogrzewnictwo. Temperatury obliczeniowe zewnętrzne".
  5. PN- EN 10211: 2008, "Mostki cieplne w budynkach. Strumienie ciepła i temperatury powierzchni. Obliczenia szczegółowe".
  6. PN-EN ISO 9972:2015-10, "Cieplne właściwości użytkowe budynków. Określanie przepuszczalności powietrznej budynków. Metoda pomiaru ciśnieniowego z użyciem wentylatora".
  7. K. Pawłowski, "Innowacyjne rozwiązania materiałów termoizolacyjnych w aspekcie modernizacji budynków w Polsce", "Izolacje" 3/2018, s. 48-64.
  8. M. Wesołowska, K. Pawłowski, "Aspekty związane z dostosowaniem obiektów istniejących do standardów budownictwa energooszczędnego", Agencja Reklamowa TOP, Włocławek 2016. Praca wydana w ramach projektu finansowanego ze środków funduszy norweskich i środków krajowych.
  9. M. Maciaszek, "Studium projektowe przegród zewnętrznych i ich złączy z zastosowaniem nowoczesnych materiałów izolacyjnych", Praca dyplomowa inżynierska napisana pod kierunkiem dr. inż. K. Pawłowskiego, UTP w Bydgoszczy, Bydgoszcz 2016.
  10. PN-EN ISO 6946:2008, "Komponenty budowlane i elementy budynku. Opór cieplny i współczynnik przenikania ciepła. Metoda obliczania".
  11. K. Maciąg, "Współczesne rozwiązania materiałowe stropodachów drewnianych i ich złączy w aspekcie cieplno­‑wilgotnościowym", Praca dyplomowa inżynierska napisana pod kierunkiem dr. inż. K. Pawłowskiego, UTP w Bydgoszczy, Bydgoszcz 2018.
  12. PN-EN 12831:2006, "Instalacje ogrzewcze w budynkach. Metoda obliczania projektowego obciążenia cieplnego".
  13. PN-EN ISO 13789: 2008, "Cieplne właściwości użytkowe budynków. Współczynniki przenoszenia ciepła przez przenikanie i wentylację. Metoda obliczania".
  14. "Domy energooszczędne. Poradnik dobrych praktyk", KAPE 2012.
  15. M. Wesołowska, P. Szczepaniak, "Nowe wymagania w ocenie wilgotnościowej przegród", "Izolacje" 3/2009, s. 34-37.
  16. A. Dylla, "Praktyczna fizyka cieplna budowli", Wydawnictwo uczelniane UTP, Bydgoszcz 2009.

Chcesz być na bieżąco? Zapisz się do naszego newslettera!

Komentarze

Powiązane

dr inż. Adam Ujma Ściany zewnętrzne z elewacjami wentylowanymi i ich izolacyjność cieplna

Ściany zewnętrzne z elewacjami wentylowanymi i ich izolacyjność cieplna Ściany zewnętrzne z elewacjami wentylowanymi i ich izolacyjność cieplna

Ściany zewnętrzne z elewacjami wykonanymi w formie konstrukcji z warstwami wentylowanymi coraz częściej znajdują zastosowanie w nowych budynków, ale również z powodzeniem mogą być wykorzystane przy modernizacji...

Ściany zewnętrzne z elewacjami wykonanymi w formie konstrukcji z warstwami wentylowanymi coraz częściej znajdują zastosowanie w nowych budynków, ale również z powodzeniem mogą być wykorzystane przy modernizacji istniejących obiektów. Dają one szerokie możliwości dowolnego kształtowania materiałowego elewacji, z wykorzystaniem elementów metalowych, z tworzywa sztucznego, szkła, kamienia naturalnego, drewna i innych. Pewną niedogodnością tego rozwiązania jest konieczność uwzględnienia w obliczeniach...

mgr inż. arch. Tomasz Rybarczyk Ściany jednowarstwowe według WT 2021

Ściany jednowarstwowe według WT 2021 Ściany jednowarstwowe według WT 2021

Elementom zewnętrznym budynków, a więc również ścianom, stawiane są coraz wyższe wymagania, m.in. pod względem izolacyjności cieplnej. Zmiany obowiązujące od 1 stycznia 2021 roku dotyczą wymagań w zakresie...

Elementom zewnętrznym budynków, a więc również ścianom, stawiane są coraz wyższe wymagania, m.in. pod względem izolacyjności cieplnej. Zmiany obowiązujące od 1 stycznia 2021 roku dotyczą wymagań w zakresie izolacyjności cieplnej, a wynikające z rozporządzenia w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie powodują, że odtąd trzeba budować budynki ze ścianami o wyższej termoizolacyjności niż budowano dotychczas.

dr inż. Bożena Orlik-Kożdoń, dr inż. Tomasz Steidl Docieplanie budynków od wewnątrz – wymagania prawne i zalecenia do projektowania

Docieplanie budynków od wewnątrz – wymagania prawne i zalecenia do projektowania Docieplanie budynków od wewnątrz – wymagania prawne i zalecenia do projektowania

Obowiązujące w Polsce wymagania prawne związane z docieplaniem budynków od wewnątrz obejmują zarówno przepisy podstawowe zdefiniowane w dokumentach unijnych, jak i wymagania szczegółowe, zawarte w dokumentach...

Obowiązujące w Polsce wymagania prawne związane z docieplaniem budynków od wewnątrz obejmują zarówno przepisy podstawowe zdefiniowane w dokumentach unijnych, jak i wymagania szczegółowe, zawarte w dokumentach krajowych. A ich realizację umożliwiają dostępne na rynku rozwiązania technologiczno-materiałowe.

Festool Polska Sp. z o. o. Pilarka do materiałów izolacyjnych

Pilarka do materiałów izolacyjnych Pilarka do materiałów izolacyjnych

Czy pilarka może być precyzyjna, szybka, lekka i jednocześnie wielozadaniowa? Właśnie takie cechy posiada pilarka do materiałów izolacyjnych ISC 240.

Czy pilarka może być precyzyjna, szybka, lekka i jednocześnie wielozadaniowa? Właśnie takie cechy posiada pilarka do materiałów izolacyjnych ISC 240.

dr inż. Szymon Świerczyna Wprowadzenie do projektowania lekkich kratownic stalowych z kształtowników giętych

Wprowadzenie do projektowania lekkich kratownic stalowych z kształtowników giętych Wprowadzenie do projektowania lekkich kratownic stalowych z kształtowników giętych

W nowoczesnym budownictwie stalowym poszukuje się rozwiązań pozwalających na projektowanie konstrukcji lekkich, łatwych w wytwarzaniu, transporcie i montażu. Kryteria te mogą spełniać lekkie konstrukcje...

W nowoczesnym budownictwie stalowym poszukuje się rozwiązań pozwalających na projektowanie konstrukcji lekkich, łatwych w wytwarzaniu, transporcie i montażu. Kryteria te mogą spełniać lekkie konstrukcje stalowe z kształtowników giętych. Ich korzystne parametry geometryczne sprawiają, że mogą być interesującą alternatywą dla znacznie cięższych kształtowników walcowanych na gorąco [1].

dr inż. Andrzej Konarzewski Kompleksowe określanie trwałości eksploatacyjnej płyt warstwowych

Kompleksowe określanie trwałości eksploatacyjnej płyt warstwowych Kompleksowe określanie trwałości eksploatacyjnej płyt warstwowych

Testami wykorzystywanymi do kompleksowego badania trwałości płyt warstwowych w obustronnej okładzinie stalowej z rdzeniem izolacyjnym ze sztywnej pianki poliuretanowej PUR/PIR, tzw. paneli, może być test...

Testami wykorzystywanymi do kompleksowego badania trwałości płyt warstwowych w obustronnej okładzinie stalowej z rdzeniem izolacyjnym ze sztywnej pianki poliuretanowej PUR/PIR, tzw. paneli, może być test DUR 2 oraz test autoklawu.

dr inż. Krzysztof Pawłowski, prof. PBŚ Systemy ociepleń ścian zewnętrznych w świetle wymagań obowiązujących od 1 stycznia 2021 r.

Systemy ociepleń ścian zewnętrznych w świetle wymagań obowiązujących od 1 stycznia 2021 r. Systemy ociepleń ścian zewnętrznych w świetle wymagań obowiązujących od 1 stycznia 2021 r.

Termomodernizacja istniejących budynków dotyczy ich dostosowania do nowych wymagań (obowiązujących od 1 stycznia 2021 r.) w zakresie oszczędności energii i ochrony cieplno-wilgotnościowej. Ponadto stanowi...

Termomodernizacja istniejących budynków dotyczy ich dostosowania do nowych wymagań (obowiązujących od 1 stycznia 2021 r.) w zakresie oszczędności energii i ochrony cieplno-wilgotnościowej. Ponadto stanowi zbiór zabiegów mających na celu wyeliminowanie lub znaczne ograniczenie strat ciepła w istniejącym budynku. Jest jednym z elementów modernizacji budynku, który przynosi korzyści finansowe na pokrycie kosztów innych działań.

mgr inż. Waldemar Bogusz Wtórne ocieplenia budynków z wielkiej płyty – wymagania i zagrożenia

Wtórne ocieplenia budynków z wielkiej płyty – wymagania i zagrożenia Wtórne ocieplenia budynków z wielkiej płyty – wymagania i zagrożenia

Zgodnie z prawem budowlanym [1] docieplenie bloku z płyt prefabrykowanych wysokości do 25 m można zrealizować bez projektu budowlanego, stosując uproszczoną procedurę zgłoszenia bez uzyskiwania pozwolenia...

Zgodnie z prawem budowlanym [1] docieplenie bloku z płyt prefabrykowanych wysokości do 25 m można zrealizować bez projektu budowlanego, stosując uproszczoną procedurę zgłoszenia bez uzyskiwania pozwolenia na budowę. Takich robót dla budynków wysokości do 12 m nawet nie potrzeba zgłaszać.

Recticel Insulation Płyty termoizolacyjne EUROTHANE G – efektywne docieplenie budynku od wewnątrz

Płyty termoizolacyjne EUROTHANE G – efektywne docieplenie budynku od wewnątrz Płyty termoizolacyjne EUROTHANE G – efektywne docieplenie budynku od wewnątrz

Termomodernizacja jest jednym z podstawowych zadań podejmowanych w ramach modernizacji budynków. W odniesieniu do ścian docieplenie wykonuje się od zewnątrz, zgodnie z podstawowymi zasadami fizyki budowli....

Termomodernizacja jest jednym z podstawowych zadań podejmowanych w ramach modernizacji budynków. W odniesieniu do ścian docieplenie wykonuje się od zewnątrz, zgodnie z podstawowymi zasadami fizyki budowli. Czasami jednak nie ma możliwości wykonania docieplenia na fasadach, np. na budynkach zabytkowych, obiektach z utrudnionym dostępem do elewacji czy na budynkach usytuowanych w granicy. W wielu takich przypadkach jest jednak możliwe wykonanie docieplenia ścian od wewnątrz.

Jarosław Guzal Kingspan na rynku nowoczesnych fasad

Kingspan na rynku nowoczesnych fasad Kingspan na rynku nowoczesnych fasad

Michał Pieczyski, Dyrektor Zarządzający Kingspan Fasady, o kierunku rozwoju rozwiązań fasadowych oraz specyfice rynku fasadowego w Polsce.

Michał Pieczyski, Dyrektor Zarządzający Kingspan Fasady, o kierunku rozwoju rozwiązań fasadowych oraz specyfice rynku fasadowego w Polsce.

Józef Macech Ściany wewnętrzne w budownictwie mieszkaniowym – rodzaje i wymagania na podstawie rozwiązań z wykorzystaniem elementów murowych

Ściany wewnętrzne w budownictwie mieszkaniowym – rodzaje i wymagania na podstawie rozwiązań z wykorzystaniem elementów murowych Ściany wewnętrzne w budownictwie mieszkaniowym – rodzaje i wymagania na podstawie rozwiązań z wykorzystaniem elementów murowych

Ściany wewnętrzne są przegrodami, których podstawowym zadaniem jest podział przestrzeni wewnątrz budynku.

Ściany wewnętrzne są przegrodami, których podstawowym zadaniem jest podział przestrzeni wewnątrz budynku.

mgr inż. arch. Tomasz Rybarczyk Zaprawy murarskie – rodzaje, porównanie, zastosowanie

Zaprawy murarskie – rodzaje, porównanie, zastosowanie Zaprawy murarskie – rodzaje, porównanie, zastosowanie

Przed rozpoczęciem robót murarskich nie tylko należy skompletować materiały murowe, ale również dobrać do nich odpowiednią zaprawę murarską i inne akcesoria, które będą potrzebne w trakcie murowania ścian.

Przed rozpoczęciem robót murarskich nie tylko należy skompletować materiały murowe, ale również dobrać do nich odpowiednią zaprawę murarską i inne akcesoria, które będą potrzebne w trakcie murowania ścian.

dr hab. inż. prof. PŚ Łukasz Drobiec, mgr inż. Julia Blazy Badanie właściwości mechanicznych betonu ze zbrojeniem rozproszonym z włókien syntetycznych

Badanie właściwości mechanicznych betonu ze zbrojeniem rozproszonym z włókien syntetycznych Badanie właściwości mechanicznych betonu ze zbrojeniem rozproszonym z włókien syntetycznych

Beton zbrojony włóknami tzw. fibrobeton, otrzymywany jest przez dodanie do mieszanki betonowej włókien stalowych lub niemetalicznych np. syntetycznych.

Beton zbrojony włóknami tzw. fibrobeton, otrzymywany jest przez dodanie do mieszanki betonowej włókien stalowych lub niemetalicznych np. syntetycznych.

mgr inż. Bartłomiej Monczyński Metody iniekcyjnego uszczelniania rys i złączy

Metody iniekcyjnego uszczelniania rys i złączy Metody iniekcyjnego uszczelniania rys i złączy

Iniekcje uszczelniające wykonywane są w przegrodach budowlanych wykonanych z betonu i żelbetu, jak również w konstrukcjach murowych, jako zabezpieczenie przed wodą pod ciśnieniem, niewywierającą ciśnienia...

Iniekcje uszczelniające wykonywane są w przegrodach budowlanych wykonanych z betonu i żelbetu, jak również w konstrukcjach murowych, jako zabezpieczenie przed wodą pod ciśnieniem, niewywierającą ciśnienia oraz wilgotnością gruntu [1].

dr inż. Mariusz Gaczek, mgr inż. Paweł Gaciek, dr inż. Mariusz Garecki Mechaniczne mocowanie systemów ocieplania ścian ETICS – wpływ oddziaływania wiatru na ocieplenie

Mechaniczne mocowanie systemów ocieplania ścian ETICS – wpływ oddziaływania wiatru na ocieplenie Mechaniczne mocowanie systemów ocieplania ścian ETICS – wpływ oddziaływania wiatru na ocieplenie

Jednym z podstawowych sposobów mocowania ociepleń ETICS do podłoży nośnych jest mocowanie mechaniczne, w którym do przytwierdzania termoizolacji stosuje się łączniki mechaniczne, zawsze jednak z dodatkowym...

Jednym z podstawowych sposobów mocowania ociepleń ETICS do podłoży nośnych jest mocowanie mechaniczne, w którym do przytwierdzania termoizolacji stosuje się łączniki mechaniczne, zawsze jednak z dodatkowym udziałem klejenia płyt izolacji termicznej do ocieplanej powierzchni. Ten sposób mocowania systemów wymaga wykonania obliczeń uzasadniających przyjętą liczbę i rodzaj łączników.

dr inż. Paweł Krause Transport wilgoci w ścianach z ociepleniem ETICS na styku zróżnicowanych materiałów termoizolacyjnych

Transport wilgoci w ścianach z ociepleniem ETICS na styku zróżnicowanych materiałów termoizolacyjnych Transport wilgoci w ścianach z ociepleniem ETICS na styku zróżnicowanych materiałów termoizolacyjnych

W większości przypadków ociepleń ścian zewnętrznych przy wykorzystaniu systemu ETICS stosuje się wyłącznie jeden rodzaj izolacji termicznej. Używanie zróżnicowanych materiałów termoizolacyjnych w obrębie...

W większości przypadków ociepleń ścian zewnętrznych przy wykorzystaniu systemu ETICS stosuje się wyłącznie jeden rodzaj izolacji termicznej. Używanie zróżnicowanych materiałów termoizolacyjnych w obrębie jednej ściany zewnętrznej może spowodować lokalne zaburzenie stanu ochrony cieplno­‑wilgotnościowej. Jest to związane z odmiennymi właściwościami fizycznymi poszczególnych materiałów.

dr inż. Ołeksij Kopyłow Właściwości mechaniczne podkonstrukcji elewacji wentylowanych z elementami polimerowymi – propozycje zakresu oceny

Właściwości mechaniczne podkonstrukcji elewacji wentylowanych z elementami polimerowymi – propozycje zakresu oceny Właściwości mechaniczne podkonstrukcji elewacji wentylowanych z elementami polimerowymi – propozycje zakresu oceny

Od wielu lat elewacje wentylowane stosowane są w krajowym budownictwie. W przypadku wbudowania poprawnie zaprojektowanego systemu elewacyjnego (na podstawie określonych w Krajowych lub Europejskich Ocenach...

Od wielu lat elewacje wentylowane stosowane są w krajowym budownictwie. W przypadku wbudowania poprawnie zaprojektowanego systemu elewacyjnego (na podstawie określonych w Krajowych lub Europejskich Ocenach Technicznych właściwości techniczno-użytkowych) oraz właściwego wykonania (zasady wykonania i odbioru elewacji wentylowanych zostały określone w [1]) elewacje wentylowane charakteryzują się trwałością, bezpieczeństwem użytkowania oraz dużą skutecznością termoenergetyczną.

mgr inż. Bartosz Witkowski, prof. dr hab. inż. Krzysztof Schabowicz, mgr inż. Mateusz Moczko Izolacje we współczesnej prefabrykacji betonowej

Izolacje we współczesnej prefabrykacji betonowej Izolacje we współczesnej prefabrykacji betonowej

Idea prefabrykacji w budownictwie sięga czasów rzymskich, kiedy to przy wykorzystaniu wapna, gipsu, wody, kamiennego kruszywa oraz popiołu wulkanicznego produkowano kompozyt przypominający dzisiejszy beton....

Idea prefabrykacji w budownictwie sięga czasów rzymskich, kiedy to przy wykorzystaniu wapna, gipsu, wody, kamiennego kruszywa oraz popiołu wulkanicznego produkowano kompozyt przypominający dzisiejszy beton. Kolejnym krokiem w historii nawiązującym do prefabrykacji było wynalezienie współczesnego betonu z cementu portlandzkiego w 1824 r. i początki stosowania żelbetu do produkcji siatkobetonowych donic [1].

dr hab. inż. Danuta Barnat-Hunek, prof. ucz., mgr inż. Małgorzata Szafraniec Biodegradowalne środki antyadhezyjne do uwalniania wyrobów betonowych z form

Biodegradowalne środki antyadhezyjne do uwalniania wyrobów betonowych z form Biodegradowalne środki antyadhezyjne do uwalniania wyrobów betonowych z form

Beton, oprócz funkcji konstrukcyjnej, ma coraz częściej istotny wpływ na kreowanie wartości architektonicznych obiektów budowlanych. Prefabrykowane elewacje betonowe stają się w Polsce zjawiskiem coraz...

Beton, oprócz funkcji konstrukcyjnej, ma coraz częściej istotny wpływ na kreowanie wartości architektonicznych obiektów budowlanych. Prefabrykowane elewacje betonowe stają się w Polsce zjawiskiem coraz bardziej popularnym. W związku z ciągłym rozwojem budownictwa betonowego, w tym także betonu architektonicznego, pojawia się konieczność używania nowych, coraz lepszych preparatów antyadhezyjnych.

dr hab. inż. Jacek Szafran, mgr inż. Artur Matusiak Polimocznik jako nowoczesny materiał zabezpieczający konstrukcje stalowe przed korozją

Polimocznik jako nowoczesny materiał zabezpieczający konstrukcje stalowe przed korozją Polimocznik jako nowoczesny materiał zabezpieczający konstrukcje stalowe przed korozją

Polimocznik jest nowoczesnym materiałem o ponadprzeciętnych właściwościach, dla którego w zasadzie nie określono jeszcze granic stosowalności. Może on być zdefiniowany jako materiał powstały w wyniku reakcji...

Polimocznik jest nowoczesnym materiałem o ponadprzeciętnych właściwościach, dla którego w zasadzie nie określono jeszcze granic stosowalności. Może on być zdefiniowany jako materiał powstały w wyniku reakcji poliaminy oraz poliizocyjanianu, w wyniku której powstaje produkt o budowie łańcuchowej, składającej się z n liczby cząsteczek silnie połączonych z sobą. Silnie usieciowana budowa łańcuchowa materiału powoduje, iż jest to produkt bardzo wytrzymały i elastyczny, dzięki czemu znajduje stosunkowo...

Nicola Hariasz Zaprawy naprawcze do betonu

Zaprawy naprawcze do betonu Zaprawy naprawcze do betonu

Wady w konstrukcjach betonowych mogą mieć bardzo różne przyczyny. Mogą to być zniszczenia spowodowane oddziaływaniem naturalnych czynników środowiska zewnętrznego, wadami materiałowymi, błędami projektowymi...

Wady w konstrukcjach betonowych mogą mieć bardzo różne przyczyny. Mogą to być zniszczenia spowodowane oddziaływaniem naturalnych czynników środowiska zewnętrznego, wadami materiałowymi, błędami projektowymi lub wykonawczymi czy eksploatacją konstrukcji.

STYRMANN Sp. z o. o. Ocieplenia dla nowoczesnego budownictwa

Ocieplenia dla nowoczesnego budownictwa Ocieplenia dla nowoczesnego budownictwa

Styropian grafitowy jako materiał do ociepleń jest w ostatnich latach coraz bardziej popularny na polskim rynku – zarówno wśród inwestorów, jak i wykonawców – jego zastosowanie niesie bowiem wiele korzyści.

Styropian grafitowy jako materiał do ociepleń jest w ostatnich latach coraz bardziej popularny na polskim rynku – zarówno wśród inwestorów, jak i wykonawców – jego zastosowanie niesie bowiem wiele korzyści.

mgr inż. Bartłomiej Monczyński Zasady projektowania docieplania budynków od wewnątrz

Zasady projektowania docieplania budynków od wewnątrz Zasady projektowania docieplania budynków od wewnątrz

W myśl podstawowych kanonów fizyki budowli, przy zachowaniu swobody kształtowania oraz umiejscowienia warstw termoizolacyjnych, poprawnie zaprojektowana przegroda powinna charakteryzować się oporem cieplnym...

W myśl podstawowych kanonów fizyki budowli, przy zachowaniu swobody kształtowania oraz umiejscowienia warstw termoizolacyjnych, poprawnie zaprojektowana przegroda powinna charakteryzować się oporem cieplnym wzrastającym w kierunku zewnętrznym, a jednocześnie malejącym w tym samym kierunku oporze dyfuzyjnym pary wodnej [1].

dr inż. Krzysztof Pawłowski, prof. PBŚ Jakość cieplna wybranych złączy budowlanych budynków w standardzie niskoenergetycznym

Jakość cieplna wybranych złączy budowlanych budynków w standardzie niskoenergetycznym Jakość cieplna wybranych złączy budowlanych budynków w standardzie niskoenergetycznym

Budynek składa się z wielu przegród budowlanych oraz ich złączy o indywidualnym charakterze fizykalnym i poddany jest oddziaływaniu zmiennego środowiska zewnętrznego i wewnętrznego. W wielu przypadkach...

Budynek składa się z wielu przegród budowlanych oraz ich złączy o indywidualnym charakterze fizykalnym i poddany jest oddziaływaniu zmiennego środowiska zewnętrznego i wewnętrznego. W wielu przypadkach analiza przegród i złączy budowlanych w aspekcie konstrukcyjno-materiałowym i technologii wykonania nie budzi zastrzeżeń na etapie projektowania.

Najnowsze produkty i technologie

Sika Poland sp. z o.o. Jak zabezpieczyć balkon na lata?

Jak zabezpieczyć balkon na lata? Jak zabezpieczyć balkon na lata?

Efekt końcowy prac związanych z remontem lub nowym balkonem to nie tylko umiejętności fachowców, którym powierzamy to zadanie. Bardzo duże znaczenie ma stosowane przez nich materiały, takie jak: zaprawa...

Efekt końcowy prac związanych z remontem lub nowym balkonem to nie tylko umiejętności fachowców, którym powierzamy to zadanie. Bardzo duże znaczenie ma stosowane przez nich materiały, takie jak: zaprawa hydroizolacyjna, klej do płytek itp. Jakie wybrać produkty na zewnątrz? Na jakie parametry zwrócić uwagę?

merXu Handel z zagranicznymi kontrahentami bez znajomości języka obcego? Na merXu to możliwe!

Handel z zagranicznymi kontrahentami bez znajomości języka obcego? Na merXu to możliwe! Handel z zagranicznymi kontrahentami bez znajomości języka obcego? Na merXu to możliwe!

Brak znajomości języków obcych potrafi być sporą przeszkodą w rozwoju polskich firm z branży przemysłowej. Na szczęście istnieje darmowe rozwiązanie, które znacząco ułatwia handel z międzynarodowymi kontrahentami...

Brak znajomości języków obcych potrafi być sporą przeszkodą w rozwoju polskich firm z branży przemysłowej. Na szczęście istnieje darmowe rozwiązanie, które znacząco ułatwia handel z międzynarodowymi kontrahentami i całkowicie eliminuje problem bariery językowej. Przedsiębiorcy znajdą je na merXu – europejskiej platformie B2B.

Ecolak Membrana PWP 100 – szybki sposób na skuteczną hydroizolację dachu, tarasu, balkonu

Membrana PWP 100 – szybki sposób na skuteczną hydroizolację dachu, tarasu, balkonu Membrana PWP 100 – szybki sposób na skuteczną hydroizolację dachu, tarasu, balkonu

ECOLAK to producent wysokiej jakości membrany hydroizolacyjnej PWP 100.

ECOLAK to producent wysokiej jakości membrany hydroizolacyjnej PWP 100.

Tremco CPG Poland Sp. z o.o. Niskoemisyjne posadzki żywiczne Flowcrete – skuteczna ochrona betonowego podłoża w zielonych budynkach

Niskoemisyjne posadzki żywiczne Flowcrete – skuteczna ochrona betonowego podłoża w zielonych budynkach Niskoemisyjne posadzki żywiczne Flowcrete – skuteczna ochrona betonowego podłoża w zielonych budynkach

Bezspoinowe posadzki żywiczne mają za zadanie chronić betonowe podłoże i elementy konstrukcyjne budynku przed niszczącym działaniem czynników zewnętrznych. W zależności od panujących w pomieszczeniu warunków...

Bezspoinowe posadzki żywiczne mają za zadanie chronić betonowe podłoże i elementy konstrukcyjne budynku przed niszczącym działaniem czynników zewnętrznych. W zależności od panujących w pomieszczeniu warunków i obciążeń użytkowych systemy posadzkowe powinny spełniać określone wymagania. Dotyczą one m.in. wytrzymałości mechanicznej, w tym odporności na ścieranie i związanej z nią odporności na intensywny ruch pieszy lub ruch pojazdów, wytrzymałości chemicznej i termicznej, stopnia antypoślizgu, łatwego...

merXu Premia w gotówce, darmowa dostawa, program poleceń – merXu przedłuża promocje do 31 sierpnia

Premia w gotówce, darmowa dostawa, program poleceń – merXu przedłuża promocje do 31 sierpnia Premia w gotówce, darmowa dostawa, program poleceń – merXu przedłuża promocje do 31 sierpnia

Firmy z branży przemysłowej szukające oszczędności w kosztach prowadzenia działalności wciąż mogą skorzystać z promocji oferowanych przez europejską platformę handlową merXu. Do 31.08 czeka na nie premia...

Firmy z branży przemysłowej szukające oszczędności w kosztach prowadzenia działalności wciąż mogą skorzystać z promocji oferowanych przez europejską platformę handlową merXu. Do 31.08 czeka na nie premia w gotówce do 700 zł, darmowa dostawa do 1300 zł oraz atrakcyjny program poleceń.

Sika Poland sp. z o.o. Sika o wyznaczaniu kierunku w budownictwie ekologicznym

Sika o wyznaczaniu kierunku w budownictwie ekologicznym Sika o wyznaczaniu kierunku w budownictwie ekologicznym

Zrównoważony rozwój to jedna z najważniejszych idei, jakie w tej chwili determinują działania całej branży budowlanej. Procesy dostosowywane są do wiodących norm ochrony środowiska i mają na celu ograniczenie...

Zrównoważony rozwój to jedna z najważniejszych idei, jakie w tej chwili determinują działania całej branży budowlanej. Procesy dostosowywane są do wiodących norm ochrony środowiska i mają na celu ograniczenie zużycia zasobów naturalnych. Warto podkreślić, że zrównoważony rozwój ma nie tylko wymiar ekonomiczny i środowiskowy, ale także społeczny, który powinien obejmować działania na rzecz społeczności lokalnych.

EUROFIRANY B.B. Choczyńscy Sp.J. 3 sposoby na zatrzymanie ciepła w domu

3 sposoby na zatrzymanie ciepła w domu 3 sposoby na zatrzymanie ciepła w domu

Jeśli szukasz odpowiedniej izolacji dla swojego budynku, która zatrzyma ciepło i zapewni Ci spokojną zimę, zapoznaj się z podstawowymi trzema metodami dociepleń. Dlaczego prawidłowa izolacja jest tak istotna?...

Jeśli szukasz odpowiedniej izolacji dla swojego budynku, która zatrzyma ciepło i zapewni Ci spokojną zimę, zapoznaj się z podstawowymi trzema metodami dociepleń. Dlaczego prawidłowa izolacja jest tak istotna? Przy rosnących cenach paliw i energii elektrycznej oraz rosnących kosztach, jakie musimy przeznaczyć na ogrzewanie budynków, izolacja jest nieunikniona. Warto więc zainwestować w izolację budynku dobrej jakości, by przynajmniej w jakiejś części uchronić swój budżet. Oto trzy sposoby, jak to...

4 ECO Sp. z o.o. Bądź eko i oszczędzaj z 4 ECO

Bądź eko i oszczędzaj z 4 ECO Bądź eko i oszczędzaj z 4 ECO

Polska ma optymalne warunki do produkcji energii elektrycznej z instalacji fotowoltaicznych. Pod tym względem poziomem dorównuje Niemcom, u których technologia PV rozwija się od przeszło 20 lat.

Polska ma optymalne warunki do produkcji energii elektrycznej z instalacji fotowoltaicznych. Pod tym względem poziomem dorównuje Niemcom, u których technologia PV rozwija się od przeszło 20 lat.

4 ECO Sp. z o.o. Co zrobić z niewystarczająco docieplonym budynkiem?

Co zrobić z niewystarczająco docieplonym budynkiem? Co zrobić z niewystarczająco docieplonym budynkiem?

Od lat 90. trwa w Polsce termomodernizacja wszelkich obiektów budowlanych, przejawiająca się m.in. docieplaniem ścian zewnętrznych styropianem. Zalecana grubość styropianu do izolacji zmienia się co kilka...

Od lat 90. trwa w Polsce termomodernizacja wszelkich obiektów budowlanych, przejawiająca się m.in. docieplaniem ścian zewnętrznych styropianem. Zalecana grubość styropianu do izolacji zmienia się co kilka lat. I tak pierwsze docieplenia były na styropianie o grubości 4 cm, obecnie to 20 cm styropianu grafitowego.

Copyright © 2004-2019 Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Spółka komandytowa, nr KRS: 0000537655. Wszelkie prawa, w tym Autora, Wydawcy i Producenta bazy danych zastrzeżone. Jakiekolwiek dalsze rozpowszechnianie artykułów zabronione. Korzystanie z serwisu i zamieszczonych w nim utworów i danych wyłącznie na zasadach określonych w Zasadach korzystania z serwisu.
Portal Budowlany - Izolacje.com.pl

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim urządzeniu końcowym. W każdym momencie możesz dokonać zmiany ustawień przeglądarki dotyczących cookies. Nim Państwo zaczną korzystać z naszego serwisu prosimy o zapoznanie się z naszą polityką prywatności oraz Informacją o Cookies. Więcej szczegółów w naszej Polityce Prywatności oraz Informacji o Cookies. Administratorem Państwa danych osobowych jest Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Sp.K., nr KRS: 0000537655, z siedzibą w 04-112 Warszawa, ul. Karczewska 18, tel. +48 22 810-21-24, właściciel strony www.izolacje.com.pl. Twoje Dane Osobowe będą chronione zgodnie z wytycznymi polityki prywatności www.izolacje.com.pl oraz zgodnie z Rozporządzeniem Parlamentu Europejskiego i Rady (UE) 2016/679 z dnia 27 kwietnia 2016r i z Ustawą o ochronie danych osobowych Dz.U. 2018 poz. 1000 z dnia 10 maja 2018r.