Izolacje.com.pl

Zaawansowane wyszukiwanie

Diagnostyka techniczna budynku wielkopłytowego

Okresowa kontrola budynków według przepisów | Podstawowe cechy budownictwa wielkopłytowego | Specyfika konstrukcji | Rodzaje uszkodzeń | Uszkodzenia budynków wielkopłytowych | Bezpieczeństwo konstrukcji

Badany obiekt / Technical diagnostic of building structured with prefabricated large concrete panels
Archiwa autorów

Badany obiekt / Technical diagnostic of building structured with prefabricated large concrete panels


Archiwa autorów

Najczęściej stosowaną metodą w przeglądach obiektów budowlanych jest ocena wizualna. Taka ocena może być wystarczająca do sprawdzenia stanu technicznego niewielkich budynków o prostej konstrukcji. Natomiast w przypadku większych obiektów o konstrukcji bardziej złożonej, takich jak budynki wielkopłytowe, należy zastosować bardziej zaawansowane metody badawcze.

Zobacz także

M.B. Market Ltd. Sp. z o.o. Czy piana poliuretanowa jest palna?

Czy piana poliuretanowa jest palna? Czy piana poliuretanowa jest palna?

W artykule chcielibyśmy przyjrzeć się bliżej temu aspektowi i rozwiać wszelkie wątpliwości na temat palności pian poliuretanowych.

W artykule chcielibyśmy przyjrzeć się bliżej temu aspektowi i rozwiać wszelkie wątpliwości na temat palności pian poliuretanowych.

Ultrapur Sp. z o.o. Pianka poliuretanowa a szczelność budynku

Pianka poliuretanowa a szczelność budynku Pianka poliuretanowa a szczelność budynku

Wielu inwestorów, wybierając materiał do ocieplenia domu, kieruje się głównie parametrem lambda, czyli wartością współczynnika przewodzenia ciepła. Jest on jedynym zestandaryzowanym współczynnikiem, który...

Wielu inwestorów, wybierając materiał do ocieplenia domu, kieruje się głównie parametrem lambda, czyli wartością współczynnika przewodzenia ciepła. Jest on jedynym zestandaryzowanym współczynnikiem, który określa właściwości izolacyjne materiału. Jednocześnie jest współczynnikiem wysoce niedoskonałym – określa, jak dany materiał może opierać się utracie ciepła poprzez przewodzenie.

Rockwool Polska Termomodernizacja domu – na czym polega i jak ją zaplanować?

Termomodernizacja domu – na czym polega i jak ją zaplanować? Termomodernizacja domu – na czym polega i jak ją zaplanować?

Termomodernizacja to szereg działań mających na celu poprawę energochłonności Twojego domu. Niezależnie od zakresu inwestycji, kluczowa dla osiągnięcia spodziewanych efektów jest kolejność prac. Najpierw...

Termomodernizacja to szereg działań mających na celu poprawę energochłonności Twojego domu. Niezależnie od zakresu inwestycji, kluczowa dla osiągnięcia spodziewanych efektów jest kolejność prac. Najpierw należy docieplić ściany i dach, aby ograniczyć zużycie energii, a dopiero potem zmodernizować system grzewczy. Dzięki kompleksowej termomodernizacji domu prawidłowo wykonanej znacznie zmniejszysz koszty utrzymania budynku.

ABSTRAKT

W artykule opisano specyfikę konstrukcji oraz rodzaje uszkodzeń budynków wielkopłytowych. Omówiono rodzaje metod nieniszczących, które mogą być stosowane do diagnozowania stanu konstrukcji takich obiektów. Przedstawiono ponadto wyniki badania nieinwazyjnego przeprowadzonego w budynku wielkopłytowym. Celem badania było ustalenie występowania korozji zbrojenia w elementach płytowych.

The article describes the specifics of the structure and the types of damage to buildings structured with prefabricated large concrete panels. The types of non-destructive methods which can be used to diagnose the condition of such buildings were described. The results of non-invasive tests carried out in the building structured with prefabricated large concrete panels were presented. The aim of the study was to determine the presence of corrosion in reinforcement in the panel elements.

Do oceny budynków wielkopłytowych metoda wizualna jest niewystarczająca, ponieważ nie pozwala na dokonanie oceny stanu połączeń prefabrykatów (tzw. złączy) albo stanu wieszaków w ścianach zewnętrznych wielowarstwowych. Specyfika budownictwa wielkopłytowego, a zwłaszcza wpływ jakości złączy na stan bezpieczeństwa tego typu konstrukcji oraz konieczność zapewnienia ich bezpiecznego użytkowania wymagają zastosowania bardziej efektywnych sposobów i metod oceny ich stanu technicznego.

Budynki te są użytkowane (stanowią podstawowy składnik zasobów mieszkaniowych w Polsce), a więc, z uwagi na aspekty społeczne i psychologiczne, optymalne wydaje się wykorzystanie metod nieniszczących.

Jakie metody nieniszczące mogą ułatwić przeprowadzenie profesjonalnej i obiektywnej oceny stanu technicznego budynków wielkopłytowych? Przedstawiamy także wyniki jednego z badań nieniszczących wykonane w budynku wielkopłytowym.

Okresowa kontrola budynków według przepisów

Ustawa Prawo budowlane [1] nakłada na właściciela lub użytkownika budynku obowiązek utrzymywania obiektu w należytym stanie technicznym.

Według art. 61 właściciel lub zarządca obiektu budowlanego jest obowiązany utrzymywać i użytkować obiekt zgodnie z zasadami, o których mowa w art. 5 ust. 2 ustawy [1], tzn. użytkować go zgodnie z jego przeznaczeniem i wymaganiami ochrony środowiska oraz utrzymywać go w należytym stanie technicznym i estetycznym.

W art. 62 ust.1 pkt 1 ustawy [1] napisano, że obiekty budowlane powinny być w czasie użytkowania poddawane przez właściciela lub zarządcę okresowej kontroli co najmniej raz w roku.

Ocena ta polega na sprawdzeniu:

  • stanu technicznego elementów budynku, budowli i instalacji narażonych na szkodliwe wpływy atmosferyczne i niszczące działania czynników występujących podczas użytkowania obiektu,
  • instalacji i urządzeń służących ochronie środowiska,
  • instalacji gazowych oraz przewodów kominowych.

Art. 62 ust. 1 pkt 2 Prawa budowlanego [1] stanowi, iż przeprowadzanie okresowej kontroli polegającej na sprawdzeniu stanu technicznego, wartości użytkowej i estetyki całego obiektu budowlanego wymagane jest co najmniej raz na 5 lat. Badania mają umożliwić ustalenie pozostałego jeszcze okresu użytkowania obiektu.

Podstawowe cechy budownictwa wielkopłytowego

W latach 50. XX w. w Polsce pojawiło się budownictwo uprzemysłowione: wielkoblokowe i wielkopłytowe.  

Budownictwo wielkoblokowe polegało na zastosowaniu ścian zewnętrznych składających się z bloków międzyokiennych nośnych i podokiennych wypełniających oraz elementów nadproży.

Budownictwo wielkopłytowe charakteryzowało się natomiast ścianami zewnętrznymi składającymi się z płyt o wymiarach odpowiadających wymiarom ściany pomieszczenia, które obudowywały (rys. 1–2).

Konstrukcje wielkoblokowe i wielkopłytowe zaczęto powszechnie stosować w budownictwie mieszkaniowym, przy czym dominowało budownictwo wielkopłytowe. Obecnie oba systemy określa się jedną nazwą: budownictwo wielkopłytowe.

Specyfika konstrukcji

Konstrukcja budynku wielkopłytowego składała się ze ścian nośnych (konstrukcyjnych), stropów i fundamentów. W zależności od kierunku usytuowania ścian nośnych w stosunku do osi podłużnej budynku rozróżnia się trzy podstawowe układy konstrukcyjne:

  • podłużny, charakteryzujący się tym, że ściany nośne są równoległe do podłużnej osi budynku, a stropy są rozpięte prostopadle do tych osi; w tym układzie sztywność przestrzenną zapewniają ściany nośne podłużne (w kierunku podłużnym) oraz poprzeczne ściany ograniczające klatki schodowe (w kierunku poprzecznym) i stropy;
  • poprzeczny, charakteryzujący się tym, że ściany nośne są prostopadłe do osi podłużnej budynku, a stropy rozpięte równolegle do tej osi; w układzie tym sztywność poprzeczną zapewniają ściany nośne poprzeczne, ściany usztywniające usytuowane w kierunku podłużnym oraz stropy;
  • mieszany, który charakteryzuje się tym, że ma ściany nośne zarówno równoległe, jak i prostopadłe do podłużnej osi budynku, stropy oparte są na całym obwodzie i zbrojone krzyżowo; w tym układzie sztywność przestrzenną zapewnia dwukierunkowy układ ścian nośnych wraz ze stropami.

Ściany i stropy w budynkach wielkopłytowych stanowią sztywne tarcze pionowe i poziome wzajemnie powiązane w poziomie stropów, co pozwala na zintegrowanie przestrzenne całego ustroju nośnego budynku (rys. 3–5).

Podstawową cechą konstrukcji budynków wielkopłytowych, odróżniającą je od innych rodzajów budynków ze ścianami nośnymi, są złącza między prefabrykowanymi płytami ściennymi i stropowymi. Złącza te są newralgicznym punktem – łatwo w nim o mankamenty projektowe i wykonawcze.

Istotną cechą jest ponadto szczególnie duża rola wieńców żelbetowych obiegających ściany konstrukcyjne w poziomie stropów, w których zakotwione jest zbrojenie podporowe stropów.

Budynki mieszkalne wykonane metodami uprzemysłowionymi, a w szczególności w technologii wielkopłytowej, różnią się od budynków tradycyjnych. Różnice te mają następujące podstawy:

  • rodzaj zastosowanych materiałów i ich zestawienie odbiegało istotnie od wcześniejszych rozwiązań,
  • wymiary elementów składowych oraz sposób ich produkcji wyraźnie różniły się od dotychczas stosowanych,
  • połączenie elementów (złącza) i technologie montażu budynków nie miały w przeszłości odpowiedników.

Wymienione różnice muszą się przekładać na specyfikę konserwacji, napraw oraz modernizacji takich obiektów.

Rodzaje uszkodzeń

Uszkodzenia budynków wielkopłytowych można podzielić na dwie zasadnicze grupy [3]:

  • grupa I – uszkodzenia typowe występujące w każdym rodzaju budynku, niezależnie od zastosowanej technologii, użytych materiałów itp.; obejmują elementy wykończenia budynku, pokrycia dachów, obróbki blacharskie, izolacje przeciwwilgociowe lub/i izolacje przeciwwodne;
  • grupa II – wady i uszkodzenia charakterystyczne dla budownictwa wielkopłytowego, wynikające z zastosowanych materiałów, rodzajów elementów prefabrykowanych, rodzajów złączy itp. Wady i uszkodzenia należące do tej grupy dotyczą:
    – prefabrykatów ścian zewnętrznych (odpadanie warstwy fakturowej, zarysowania i spękania, przecieki wód opadowych przez fakturę, nadmierne zawilgocenia, przemarzanie itp.);
    – warstwy ocieplającej (obniżenie cech izolacyjnych wynikające z zawilgocenia lub/i zmiany struktury materiału termoizolacyjnego, odspajanie się tej warstwy od innych warstw ściany);
    – spoin (ubytki na krawędziach warstwy fakturowej, złe wyprofilowanie kanału dekompresji, zbyt duża rozwartość szczelin między elementami, brak uszczelnienia spoin itp.);
    – złączy, tj. połączeń prefabrykatów (źle wykonane połączenie, nieszczelności, korozja stali wywołana głównie zjawiskami karbonatyzacji itp.);
    – płyt stropowych (głównie tzw. klawiszowanie);
    – ściennych elementów wewnętrznych (rysy, spękania, oddzielenia itp.);
    – podłoży podposadzkowych (spękania, odspojenia, zapadania itp.);
    – stolarki (nieszczelności, niska izolacyjność cieplna, uszkodzenia mechaniczne);
    – instalacji centralnego ogrzewania, gazowej, elektrycznej i wodno-kanalizacyjnej;
    – wind i zsypów.

Bezpieczeństwo konstrukcji

Zapewnienie bezpieczeństwa konstrukcji budynków wielkopłytowych wymaga uwzględnienia:

  • specyfiki konstrukcji budynków wielkopłytowych,
  • wymagań formalno-prawnych i normowych,
  • specyficznych elementów wpływających na ocenę bezpieczeństwa konstrukcji budynku i jego niezawodność, trwałość itp.,
  • zagrożeń bezpieczeństwa konstrukcji.

Metody nieniszczące stosowane do diagnozowania stanu konstrukcji

Budynki wielkopłytowe są obecnie użytkowane, dlatego bardzo ważne jest, aby szczególnie intensywnie rozwijać i stosować metody nieniszczące.

Ogólnie metody nieniszczące stosowane w budownictwie dzieli się na metody [4]:

  • sklerometryczne,
  • akustyczne,
  • elektromagnetyczne,
  • elektryczne,
  • radiologiczne.

Do oceny wytrzymałości materiałów budowlanych wbudowanych w obiekt preferowane jest stosowanie metod sklerometrycznych i akustycznych (np. do oceny wytrzymałości betonu).

Do oceny wymiarów elementów oraz lokalizacji wad i uszkodzeń zalecane są metody akustyczne (ultradźwiękowa, echa, impact-echo, analiza spektralana fal powierzchniowych, impulse-response, radarowa, sejsmiczna, emisja akustyczna) i radiologiczne.

Do ustalenia lokalizacji zbrojenia i określenia zaawansowania korozyjnego stosuje się metody elektromagnetyczne, radiologiczne i elektryczne. Wreszcie do pomiaru wilgotności wykorzystuje się metody chemiczne i fizyczne.

W przypadku budynków wielkopłytowych wszystkie wymienione metody diagnostyczne wydają się optymalne, jednak należy je specjalnie ukierunkować na problemy występujące w tego typu budownictwie (np. opracować poradniki z procedurą prowadzenia badań i pomiarów, przykładową analizą ich rezultatów i wnioskowania).

Metoda sklerometryczna

Sklerometria (gr. sklērós ‘suchy’, ‘twardy’ oraz gr. metreín ‘mierzyć’) to nieniszcząca metoda badania wytrzymałości budowlanych elementów konstrukcyjnych. Jest ona jedną z najbardziej rozpowszechnionych na świecie. Stosowana od połowy XX w. do kontroli stanu betonu, obecnie znajduje zastosowanie także w badaniu ceramiki, zaprawy murarskiej, gipsu, a nawet drewna.

Przy wykorzystaniu sklerometru można ocenić cechy wytrzymałościowe betonu, z którego wykonano elementy ścienne, stropowe, klatki schodowe w konstrukcjach budynków wielkopłytowych.

Metoda akustyczna

Wykorzystuje ona fale akustyczne o wysokich częstotliwościach (30 kHz–25 MHz). Jedną z najczęściej stosowanych metod akustycznych w budownictwie jest metoda ultradźwiękowa, bazująca na pomiarze prędkości fal.

W celu określenia wytrzymałości badanego materiału, jego wymiarów, wad materiałowych i obserwacji ich powstawania wykorzystuje się zjawiska zachodzące podczas przepuszczania fali przez badany materiał, takie jak: odbicie, przenikanie, załamanie, transformacja, dyfrakcja, rozproszenie czy zmiana geometrii wiązki [4, 5].

Metoda radarowa (gpr – ground-penetrating radar)

Polega ona na emitowaniu do konstrukcji fali elektromagnetycznej, która częściowo przenika przez kolejne ośrodki o różnych właściwościach dielektrycznych, a częściowo ulega rozproszeniu bądź odbiciu [2]. Sygnały odbite są wychwytywane i rejestrowane przez antenę odbiorczą. Efektem badania jest falogram, który jest zapisem wszystkich odbitych impulsów zanotowanych podczas profilowania.

Metoda wykorzystywana jest do lokalizacji i wizualizacji zbrojenia, szacowania średnicy zbrojenia, wykrywania pustek i nieciągłości struktury betonu oraz do szacowania grubości i określania wilgotności betonu [4, 5].

Metoda radiograficzna

Jest najbardziej przydatna w budownictwie ze wszystkich metod radiologicznych. Stosowana jest przede wszystkim do lokalizacji i oceny zbrojenia w żelbecie.

Badania tą metodą polegają na rejestracji zjawiska osłabienia natężenia promieniowania, rozproszenia i tłumienia fal przechodzących przez element. Należy zauważyć, że badania radiograficzne potrzebują szczególnego zestawu zabezpieczeń przed promieniowaniem jonizującym, a ponadto aparatura pomiarowa jest dość skomplikowana [4, 5].

Metoda elektromagnetyczna

Polega na analizie zjawisk zachodzących w polu elektromagnetycznym emitowanym w głąb badanego elementu wytwarzanym przez sondę przy zbliżaniu do ferromagnetyku (np. pręta stali).

Wykorzystuje różne właściwości elektryczne i magnetyczne stali i betonu. Stosowana jest do lokalizacji zbrojenia, pomiaru średnicy i wielkości otuliny [4, 5].

Metoda elektrochemiczna

Wykorzystuje się ją do badania korozji w elementach żelbetowych. Polega na pomiarze różnicy potencjału elektrycznego między zbrojeniem a betonem. W tym celu do badanego elementu przykłada się półogniwo w postaci wydrążonej rurki z miedzianymi elektrodami zanurzonymi w roztworze siarczanu miedzi. Oprócz elektrody siarczanowej, używane są również elektrody z kalomelem lub chlorkiem srebra [5].

Z tak skonstruowaną elektrodą zintegrowany jest woltomierz podłączany do dostępnego fragmentu zbrojenia. Rolą półogniwa jest zapewnienie stałego potencjału odniesienia. Wysoka ujemna liczba napięcia (–350 mV) wskazuje na zajęcie elementu korozją. Jeżeli przyrząd pomiarowy wskazuje liczbę niższą niż –200 mV, korozja nie występuje.

Metoda termograficzna

Termografia, potocznie zwana termowizją, jest metodą, która polega na detekcji promieniowania w paśmie podczerwieni i przetwarzaniu go na obraz widzialny. W takim badaniu, przeprowadzonym w sposób bezdotykowy i bezinwazyjny, uzyskuje się mapę rozkładu temperatur na powierzchni badanego obiektu.

Jest to metoda szczególnie przydatna w ocenie stanu technicznego do oznaczania struktury wewnętrznej elementów nośnych budynków, tj. ścian, płyt stropowych, belek itp. Do badań stosuje się pirometry i kamery termowizyjne [4, 5].

W miarę rozwoju technologii zakres zastosowania termowizji w budownictwie nieustannie się poszerza. Umożliwia ona: wykrywanie zawilgoceń, badanie cieplne budynków, wykrywanie uszkodzeń i niejednorodności materiałów, identyfikację wad technologicznych przegród budynków, wyznaczanie współczynnika przenikania ciepła, wykrywanie przeciągów i prądów cieplnych.

Metody hybrydowe

Łączą one dwie metody (lub więcej), które wzajemnie się dopełniają i sprawdzają, dzięki czemu rozszerza się zakres ich zastosowania i jakość ogólnej analizy.

Takie zespoły pomiarowe można podzielić na dwie zasadnicze grupy, z których jedna łączy metody wykorzystujące to samo zjawisko fizyczne, druga natomiast działa na zasadzie uzupełniania się poszczególnych badań.

Badania stanu technicznego budynku z wielkiej płyty oraz ich wyniki

W celu określenia stanu technicznego budynku wielkopłytowego (fot.) wybudowanego w systemie szczecińskim w 1976 r. przeprowadzono badania nieniszczące (np. badanie rozstawu zbrojenia w płytach, badanie wytrzymałości betonu płyt, oględziny elementów konstrukcyjnych).

Poniżej zostaną przedstawione wyniki badań mających na celu ustalenie występowania korozji zbrojenia w elementach płytowych.

Do pomiaru wybrano 15 miejsc. Do sporządzenia mapy zniszczenia konieczne było przyjęcie potencjałów granicznych (tabela).

W wyniku badań uzyskano kolejno: mapę potencjałów, wykres częstotliwości względnej, wykres częstotliwości skumulowanej oraz mapę zniszczenia służącą do syntetycznej analizy badania. Na podstawie analizy mapy potencjałów i mapy zniszczenia węzła W3 (węzeł między ścianami wewnętrznymi w piwnicy) można zauważyć, że duże prawdopodobieństwo wystąpienia korozji znajduje się w dolnych częściach węzła (kolor czerwony), pozostałe miejsca można uznać za wolne od korozji (rys. 6–7).

Ściana Z1 to zewnętrzna płyta nośna w piwnicy drugiej klatki – ściana południowa, a ściana Z2 to zewnętrzna płyta nośna w piwnicy drugiej klatki – ściana wschodnia. Potencjalny obszar wystąpienia korozji zbrojenia w obydwu ścianach ustala się na podstawie mapy zniszczenia (rys. 8–9).

Szacuje się, że korozja zbrojenia może wystąpić niemal na całej wysokości ścian (kolor czerwony i fioletowy na rys. 8–9). Wystąpienie korozji z prawdopodobieństwem 95% ustalono natomiast na wysokości 70 cm od poziomu posadzki (kolor fioletowy na rys. 8–9).

Przyczyny występowania obszarów niebezpiecznych upatruje się w kontakcie bocznej powierzchni ścian z zalegającym gruntem od zewnątrz oraz kontaktem części ścian z posadzką na gruncie. Pomiar wilgotności w tym obszarze sygnalizował zawilgocenie betonu na wysokości występowania zagrożenia korozyjnego.

Przeprowadzone badania piętnastu elementów pozwalają na stwierdzenie, że w wewnętrznych ścianach nośnych piwnic korozja zbrojenia wystąpiła w dolnej części płyty, 20–25 cm od powierzchni posadzki. Wynika to prawdopodobnie z zawilgocenia betonu na tej wysokości. Podobnie kształtują się wyniki badania węzłów między płytami piwnic. Część górna jest wolna od korozji, na dole natomiast znajdują się obszary zagrożone.

Zbadane elementy ścian zewnętrznych pokazują, że korozja zbrojenia wystąpiła praktycznie na całej wysokości płyty. Przebadane elementy ścienne i węzły kondygnacji nadziemnej są całkowicie wolne od korozji zbrojenia.

Podsumowanie

Specyfika konstrukcji budynków wielkopłytowych, jakość robót budowlanych, dyscyplina eksploatacyjna i konserwacyjna powodują, że obecnie budynki te nie są w najlepszym stanie technicznym. Istnieje więc poważny i aktualny problem dotyczący diagnozowania tych obiektów oraz napraw, modernizacji i przystosowania do aktualnych standardów (rewitalizacja).

Przeprowadzone badania pilotażowe wybranego budynku wielkopłytowego pozwoliły sformułować wnioski dotyczące zniszczeń w konstrukcji tego obiektu. Obecnie podejmowane są próby ustalenia rzeczywistego stopnia skorodowania prętów zbrojeniowych w zlokalizowanych obszarach. Jednocześnie ważnym zagadnieniem jest stworzenie modelu numerycznego budynku wielkopłytowego, do którego będą wprowadzane dane z przeprowadzonych badań (głównie z użyciem metod nieniszczących) i pomiarów.

Literatura

  1. Ustawa z dnia 7 lipca 1994 r. – Prawo budowlane (DzU z 1994 r. nr 89, poz. 414, ze zm.).
  2. S. Pyrak, „Konstrukcje z betonu”, Część 2: „Elementy i ustroje”, Wydawnictwa Szkolne i Pedagogiczne, Warszawa 1979.
  3. A. Podhorecki, J. Sobczak-Piąstka, E. Makowski, „Wybrane aspekty systemowej eliminacji zagrożenia bezpieczeństwa użytkowania budynków wielkopłytowych”, [w:] „Ochrona przed skutkami nadzwyczajnych zagrożeń”, t. 2, pod red. Z. Mierczyka i R. Ostrowskiego, Wojskowa Akademia Techniczna, Warszawa 2011, s. 511–521.
  4. J. Hoła, K. Schabowicz, „Nieniszcząca diagnostyka obiektów budowlanych – przegląd wybranych najnowszych metod wraz z przykładami zastosowań”, [w:] materiały 56. Konf. Nauk. Komitetu Inżynierii Lądowej i Wodnej PAN oraz Komitetu Nauki PZITB, Krynica 2010, s. 189–206.
  5. A. Podhorecki, J. Sobczak-Piąstka, „Diagnostyka konstrukcji budynków wielkopłytowych przy wykorzystaniu metod nieniszczących”, [w:] materiały XXXVI Międzynarodowej Konf. Nauk.-Tech. EKOMILITARIS 2012: „Inżynieria bezpieczeństwa – ochrona przed skutkami nadzwyczajnych zagrożeń”, Zakopane 2012, s. 506–513.
  6. A. Zybura, M. Jaśniok, T. Jaśniok, „Diagnostyka konstrukcji żelbetowych”, t. 2: „Badania korozji zbrojenia i właściwości ochronnych betonu”, Wydawnictwo Naukowe PWN, Warszawa 2011.
  7. W. Stanisławski, „Studium techniczne budynku mieszkalnego wielorodzinnego zlokalizowanego przy ulicy Ku Wiatrakom 9 w Bydgoszczy”, praca dyplomowa napisana na Wydziale Budownictwa i Inżynierii Środowiska UTP w Bydgoszczy, Bydgoszcz 2012.

Chcesz być na bieżąco? Zapisz się do naszego newslettera!

Galeria zdjęć

Tytuł
przejdź do galerii

Komentarze

Powiązane

Sebastian Malinowski Izolacje akustyczne w biurach

Izolacje akustyczne w biurach Izolacje akustyczne w biurach

Ekonomia pracy wymaga obecnie otwartych, ułatwiających komunikację środowisk biurowych. Odpowiednia akustyka w pomieszczeniach typu open space tworzy atmosferę, która sprzyja zarówno swobodnej wymianie...

Ekonomia pracy wymaga obecnie otwartych, ułatwiających komunikację środowisk biurowych. Odpowiednia akustyka w pomieszczeniach typu open space tworzy atmosferę, która sprzyja zarówno swobodnej wymianie informacji pomiędzy pracownikami, jak i ich koncentracji. Nie każdy jednak wie, że bardzo duży wpływ ma na to konstrukcja sufitu.

dr inż. Beata Anwajler, mgr inż. Anna Piwowar Bioniczny kompozyt komórkowy o właściwościach izolacyjnych

Bioniczny kompozyt komórkowy o właściwościach izolacyjnych Bioniczny kompozyt komórkowy o właściwościach izolacyjnych

Współcześnie uwaga badaczy oraz polityków z całego świata została zwrócona na globalny problem negatywnego oddziaływania energetyki na środowisko naturalne. Szczególnym zagadnieniem stało się zjawisko...

Współcześnie uwaga badaczy oraz polityków z całego świata została zwrócona na globalny problem negatywnego oddziaływania energetyki na środowisko naturalne. Szczególnym zagadnieniem stało się zjawisko zwiększania efektu cieplarnianego, które jest wskazywane jako skutek działalności człowieka. Za nadrzędną przyczynę tego zjawiska uznaje się emisję gazów cieplarnianych (głównie dwutlenku węgla) związaną ze spalaniem paliw kopalnych oraz ubóstwem, które powoduje trudności w zaspakajaniu podstawowych...

Fiberglass Fabrics s.c. Wiele zastosowań siatki z włókna szklanego

Wiele zastosowań siatki z włókna szklanego Wiele zastosowań siatki z włókna szklanego

Siatka z włókna szklanego jest wykorzystywana w systemach ociepleniowych jako warstwa zbrojąca tynków zewnętrznych. Ma za zadanie zapobiec ich pękaniu oraz powstawaniu rys podczas użytkowania. Siatka z...

Siatka z włókna szklanego jest wykorzystywana w systemach ociepleniowych jako warstwa zbrojąca tynków zewnętrznych. Ma za zadanie zapobiec ich pękaniu oraz powstawaniu rys podczas użytkowania. Siatka z włókna szklanego pozwala na przedłużenie żywotności całego systemu ociepleniowego w danym budynku. W sklepie internetowym FFBudowlany.pl oferujemy szeroki wybór różnych gramatur oraz sposobów aplikacji tego produktu.

dr inż. Krzysztof Pawłowski prof. PBŚ Całkowite przenikanie ciepła przez elementy obudowy budynku (cz. 7)

Całkowite przenikanie ciepła przez elementy obudowy budynku (cz. 7) Całkowite przenikanie ciepła przez elementy obudowy budynku (cz. 7)

W celu ustalenia bilansu energetycznego budynku niezbędna jest znajomość określania współczynnika strat ciepła przez przenikanie przez elementy obudowy budynku z uwzględnieniem przepływu ciepła w polu...

W celu ustalenia bilansu energetycznego budynku niezbędna jest znajomość określania współczynnika strat ciepła przez przenikanie przez elementy obudowy budynku z uwzględnieniem przepływu ciepła w polu jednowymiarowym (1D), dwuwymiarowym (2D) oraz trójwymiarowym (3D).

Redakcja miesięcznika IZOLACJE Fasady wentylowane w budynkach wysokich i wysokościowych

Fasady wentylowane w budynkach wysokich i wysokościowych Fasady wentylowane w budynkach wysokich i wysokościowych

Projektowanie obiektów wielopiętrowych wiąże się z większymi wyzwaniami w zakresie ochrony przed ogniem, wiatrem oraz stratami cieplnymi – szczególnie, jeśli pod uwagę weźmiemy popularny typ konstrukcji...

Projektowanie obiektów wielopiętrowych wiąże się z większymi wyzwaniami w zakresie ochrony przed ogniem, wiatrem oraz stratami cieplnymi – szczególnie, jeśli pod uwagę weźmiemy popularny typ konstrukcji ścian zewnętrznych wykańczanych fasadą wentylowaną. O jakich zjawiskach fizycznych i obciążeniach mowa? W jaki sposób determinują one dobór odpowiedniej izolacji budynku?

inż. Izabela Dziedzic-Polańska Fibrobeton – kompozyt cementowy do zadań specjalnych

Fibrobeton – kompozyt cementowy do zadań specjalnych Fibrobeton – kompozyt cementowy do zadań specjalnych

Beton jest najczęściej używanym materiałem budowlanym na świecie i jest stosowany w prawie każdym typie konstrukcji. Beton jest niezbędnym materiałem budowlanym ze względu na swoją trwałość, wytrzymałość...

Beton jest najczęściej używanym materiałem budowlanym na świecie i jest stosowany w prawie każdym typie konstrukcji. Beton jest niezbędnym materiałem budowlanym ze względu na swoją trwałość, wytrzymałość i wyjątkową długowieczność. Może wytrzymać naprężenia ściskające i rozciągające oraz trudne warunki pogodowe bez uszczerbku dla stabilności architektonicznej. Wytrzymałość betonu na ściskanie w połączeniu z wytrzymałością materiału wzmacniającego na rozciąganie poprawia ogólną jego trwałość. Beton...

prof. dr hab. inż. Łukasz Drobiec Projektowanie wzmocnień konstrukcji murowych z użyciem systemu FRCM (cz. 1)

Projektowanie wzmocnień konstrukcji murowych z użyciem systemu FRCM (cz. 1) Projektowanie wzmocnień konstrukcji murowych z użyciem systemu FRCM (cz. 1)

Wzmocnienie systemem FRCM polega na utworzeniu konstrukcji zespolonej: muru lub żelbetu ze wzmocnieniem, czyli kilkumilimetrową warstwą zaprawy z dodatkowym zbrojeniem. Jako zbrojenie stosuje się siatki...

Wzmocnienie systemem FRCM polega na utworzeniu konstrukcji zespolonej: muru lub żelbetu ze wzmocnieniem, czyli kilkumilimetrową warstwą zaprawy z dodatkowym zbrojeniem. Jako zbrojenie stosuje się siatki z włókien węglowych, siatki PBO (poliparafenilen-benzobisoxazol), siatki z włóknami szklanymi, aramidowymi, bazaltowymi oraz stalowymi o wysokiej wytrzymałości (UHTSS – Ultra High Tensile Strength Steel). Zbrojenie to jest osadzane w tzw. mineralnej matrycy cementowej, w której dopuszcza się niewielką...

mgr inż. Cezariusz Magott, mgr inż. Maciej Rokiel Analiza dokumentacji technicznej prac renowacyjnych (cz.3). Przykłady realizacji

Analiza dokumentacji technicznej prac renowacyjnych (cz.3). Przykłady realizacji Analiza dokumentacji technicznej prac renowacyjnych (cz.3). Przykłady realizacji

W artykule opisano szczegóły poprawnego wykonywania iniekcji w kontekście jakości prac renowacyjnych. Kiedy należy wykonać ocenę przegrody pod kątem możliwości wykonania iniekcji?

W artykule opisano szczegóły poprawnego wykonywania iniekcji w kontekście jakości prac renowacyjnych. Kiedy należy wykonać ocenę przegrody pod kątem możliwości wykonania iniekcji?

Paweł Siemieniuk Rodzaje stropów w budynkach jednorodzinnych

Rodzaje stropów w budynkach jednorodzinnych Rodzaje stropów w budynkach jednorodzinnych

Zadaniem stropu jest przede wszystkim podział budynku na kondygnacje. Ponieważ jednak nie jest to jego jedyna funkcja, rodzaj tej poziomej przegrody musi być dobrze przemyślany, i to już na etapie projektowania...

Zadaniem stropu jest przede wszystkim podział budynku na kondygnacje. Ponieważ jednak nie jest to jego jedyna funkcja, rodzaj tej poziomej przegrody musi być dobrze przemyślany, i to już na etapie projektowania domu. Taka decyzja jest praktycznie nieodwracalna, gdyż po wybudowaniu domu trudno ją zmienić.

inż. Izabela Dziedzic-Polańska Ekologiczne i ekonomiczne ujęcie termomodernizacji budynków mieszkalnych

Ekologiczne i ekonomiczne ujęcie termomodernizacji budynków mieszkalnych Ekologiczne i ekonomiczne ujęcie termomodernizacji budynków mieszkalnych

Termomodernizacja budynku jest ważna ze względu na jej korzyści dla środowiska i ekonomii. Właściwie wykonana termomodernizacja może znacznie zmniejszyć zapotrzebowanie budynku na energię i zmniejszyć...

Termomodernizacja budynku jest ważna ze względu na jej korzyści dla środowiska i ekonomii. Właściwie wykonana termomodernizacja może znacznie zmniejszyć zapotrzebowanie budynku na energię i zmniejszyć emisję gazów cieplarnianych związanych z ogrzewaniem i chłodzeniem. Ponadto, zmniejszenie kosztów ogrzewania i chłodzenia może przyczynić się do zmniejszenia kosztów eksploatacyjnych budynku, co może przełożyć się na zwiększenie jego wartości.

prof. dr hab. inż. Łukasz Drobiec Projektowanie wzmocnień konstrukcji murowych z wykorzystaniem systemu FRCM (cz. 2)

Projektowanie wzmocnień konstrukcji murowych z wykorzystaniem systemu FRCM (cz. 2) Projektowanie wzmocnień konstrukcji murowych z wykorzystaniem systemu FRCM (cz. 2)

Artykuł jest kontynuacją tekstu opublikowanego w numerze 2/2023 miesięcznika IZOLACJE.

Artykuł jest kontynuacją tekstu opublikowanego w numerze 2/2023 miesięcznika IZOLACJE.

dr inż. Gerard Brzózka Propozycja modyfikacji projektowania rezonansowych układów pochłaniających

Propozycja modyfikacji projektowania rezonansowych układów pochłaniających Propozycja modyfikacji projektowania rezonansowych układów pochłaniających

Podstawy do projektowania rezonansowych układów pochłaniających zostały zaproponowane w odniesieniu do rezonatorów komorowych perforowanych i szczelinowych przez Smithsa i Kostena już w 1951 r. [1]. Jej...

Podstawy do projektowania rezonansowych układów pochłaniających zostały zaproponowane w odniesieniu do rezonatorów komorowych perforowanych i szczelinowych przez Smithsa i Kostena już w 1951 r. [1]. Jej szeroką interpretację w polskiej literaturze przedstawili profesorowie Sadowski i Żyszkowski [2, 3]. Pewną uciążliwość tej propozycji stanowiła konieczność korzystania z nomogramów, co determinuje stosunkowo małą dokładność.

Adrian Hołub Uszkodzenia stropów – monitoring przemieszczeń, ugięć i spękań

Uszkodzenia stropów – monitoring przemieszczeń, ugięć i spękań Uszkodzenia stropów – monitoring przemieszczeń, ugięć i spękań

Corocznie słyszymy o katastrofach budowlanych związanych z zawaleniem stropów w budynkach o różnej funkcjonalności. Przed wystąpieniem o roszczenia do wykonawcy w odniesieniu do uszkodzeń stropu niezbędne...

Corocznie słyszymy o katastrofach budowlanych związanych z zawaleniem stropów w budynkach o różnej funkcjonalności. Przed wystąpieniem o roszczenia do wykonawcy w odniesieniu do uszkodzeń stropu niezbędne jest określenie, co było przyczyną destrukcji. Często jest to nie jeden, a zespół czynników nakładających się na siebie. Ważne jest zbadanie, czy błędy powstały na etapie projektowania, wykonawstwa czy nieprawidłowego użytkowania.

mgr inż. Cezariusz Magott, mgr inż. Maciej Rokiel Analiza dokumentacji technicznej prac renowacyjnych (cz. 4). Uszczelnienia typu wannowego

Analiza dokumentacji technicznej prac renowacyjnych (cz. 4). Uszczelnienia typu wannowego Analiza dokumentacji technicznej prac renowacyjnych (cz. 4). Uszczelnienia typu wannowego

W przypadku izolacji typu wannowego trzeba zwrócić szczególną uwagę na stan przegród. Chodzi o stan powierzchni oraz wilgotność. Jeżeli do budowy ścian fundamentowych piwnic nie zastosowano materiałów...

W przypadku izolacji typu wannowego trzeba zwrócić szczególną uwagę na stan przegród. Chodzi o stan powierzchni oraz wilgotność. Jeżeli do budowy ścian fundamentowych piwnic nie zastosowano materiałów całkowicie nieodpornych na wilgoć (np. beton komórkowy), to nie powinno być problemów związanych z bezpieczeństwem budynku, chociaż rozwiązanie z zewnętrzną powłoką uszczelniającą jest o wiele bardziej korzystne.

Farby KABE Nowoczesne systemy ociepleń KABE THERM z tynkami natryskowymi AKORD

Nowoczesne systemy ociepleń KABE THERM z tynkami natryskowymi AKORD Nowoczesne systemy ociepleń KABE THERM  z tynkami natryskowymi AKORD

Bogata oferta systemów ociepleń KABE THERM zawiera kompletny zestaw systemów ociepleń z tynkami do natryskowego (mechanicznego) wykonywania ochronno-dekoracyjnych, cienkowarstwowych wypraw tynkarskich....

Bogata oferta systemów ociepleń KABE THERM zawiera kompletny zestaw systemów ociepleń z tynkami do natryskowego (mechanicznego) wykonywania ochronno-dekoracyjnych, cienkowarstwowych wypraw tynkarskich. Natryskowe tynki cienkowarstwowe AKORD firmy Farby KABE, w stosunku do tynków wykonywanych ręcznie, wyróżniają się łatwą aplikacją, wysoką wydajnością, a przede wszystkim wyjątkowo równomierną i wyraźną fakturą.

dr hab. Inż. Zbigniew Suchorab, Krzysztof Tabiś, mgr inż. Tomasz Rogala, dr hab. Zenon Szczepaniak, dr hab. Waldemar Susek, mgr inż. Magdalena Paśnikowska-Łukaszuk Bezinwazyjne pomiary wilgotności materiałów budowlanych za pomocą technik reflektometrycznej i mikrofalowej

Bezinwazyjne pomiary wilgotności materiałów budowlanych za pomocą technik reflektometrycznej i mikrofalowej Bezinwazyjne pomiary wilgotności materiałów budowlanych za pomocą technik reflektometrycznej i mikrofalowej

Badania zawilgocenia murów stanowią ważny element oceny stanu technicznego obiektów budowlanych. W wyniku nadmiernego zawilgocenia następuje destrukcja murów, ale również tworzą się niekorzystne warunki...

Badania zawilgocenia murów stanowią ważny element oceny stanu technicznego obiektów budowlanych. W wyniku nadmiernego zawilgocenia następuje destrukcja murów, ale również tworzą się niekorzystne warunki dla zdrowia użytkowników obiektu. W celu powstrzymania procesu destrukcji konieczne jest wykonanie izolacji wtórnych, a do prawidłowego ich wykonania niezbędna jest znajomość stopnia zawilgocenia murów, a także rozkładu wilgotności na grubości i wysokości ścian.

dr inż. Szymon Swierczyna Badanie nośności i sztywności ścinanych połączeń na wkręty samowiercące

Badanie nośności i sztywności ścinanych połączeń na wkręty samowiercące Badanie nośności i sztywności ścinanych połączeń na wkręty samowiercące

Wkręty samowiercące stosuje się w konstrukcjach stalowych m.in. do zakładkowego łączenia prętów kratownic z kształtowników giętych. W tym przypadku łączniki są obciążone siłą poprzeczną i podczas projektowania...

Wkręty samowiercące stosuje się w konstrukcjach stalowych m.in. do zakładkowego łączenia prętów kratownic z kształtowników giętych. W tym przypadku łączniki są obciążone siłą poprzeczną i podczas projektowania należy zweryfikować ich nośność na docisk oraz na ścinanie, a także uwzględnić wpływ sztywności połączeń na stan deformacji konstrukcji.

mgr inż. Monika Hyjek Dobór prawidłowych rozwiązań ścian zewnętrznych na granicy stref pożarowych

Dobór prawidłowych rozwiązań ścian zewnętrznych na granicy stref pożarowych Dobór prawidłowych rozwiązań ścian zewnętrznych na granicy stref pożarowych

Przy projektowaniu ścian zewnętrznych należy wziąć pod uwagę wiele aspektów: wymagania techniczne, obowiązujące przepisy oraz wymogi narzucone przez ubezpieczyciela czy inwestora. Należy uwzględnić właściwości...

Przy projektowaniu ścian zewnętrznych należy wziąć pod uwagę wiele aspektów: wymagania techniczne, obowiązujące przepisy oraz wymogi narzucone przez ubezpieczyciela czy inwestora. Należy uwzględnić właściwości wytrzymałościowe, a jednocześnie cieplne, akustyczne i ogniowe.

mgr inż. Klaudiusz Borkowicz, mgr inż. Szymon Kasprzyk Ocena stopnia rozprzestrzeniania ognia przez ściany zewnętrzne w Polsce oraz w Wielkiej Brytanii

Ocena stopnia rozprzestrzeniania ognia przez ściany zewnętrzne w Polsce oraz w Wielkiej Brytanii Ocena stopnia rozprzestrzeniania ognia przez ściany zewnętrzne w Polsce oraz w Wielkiej Brytanii

W ostatniej dekadzie coraz większą uwagę zwraca się na bezpieczeństwo pożarowe budynków. Przyczyniło się do tego m.in. kilka incydentów związanych z pożarami, gdzie przez użycie nieodpowiednich materiałów...

W ostatniej dekadzie coraz większą uwagę zwraca się na bezpieczeństwo pożarowe budynków. Przyczyniło się do tego m.in. kilka incydentów związanych z pożarami, gdzie przez użycie nieodpowiednich materiałów budowlanych pożar rozwijał się w wysokim tempie, zagrażając życiu i zdrowiu wielu ludzi.

dr inż. Krzysztof Pawłowski prof. PBŚ Charakterystyka energetyczna budynku (cz. 8)

Charakterystyka energetyczna budynku (cz. 8) Charakterystyka energetyczna budynku (cz. 8)

Opracowanie świadectwa charakterystyki energetycznej budynku lub części budynku wymaga znajomości wielu zagadnień, m.in. lokalizacji budynku, parametrów geometrycznych budynku, parametrów cieplnych elementów...

Opracowanie świadectwa charakterystyki energetycznej budynku lub części budynku wymaga znajomości wielu zagadnień, m.in. lokalizacji budynku, parametrów geometrycznych budynku, parametrów cieplnych elementów obudowy budynku (przegrody zewnętrzne i złącza budowlane), danych technicznych instalacji c.o., c.w.u., systemu wentylacji i innych systemów technicznych.

mgr inż. Cezariusz Magott, mgr inż. Maciej Rokiel Analiza dokumentacji technicznej prac renowacyjnych (cz. 5)

Analiza dokumentacji technicznej prac renowacyjnych (cz. 5) Analiza dokumentacji technicznej prac renowacyjnych (cz. 5)

Do prac renowacyjnych zalicza się także tzw. środki flankujące. Będą to przede wszystkim różnego rodzaju tynki specjalistyczne i wymalowania (farby), a także tynki tradycyjne. Błędem jest traktowanie tynku...

Do prac renowacyjnych zalicza się także tzw. środki flankujące. Będą to przede wszystkim różnego rodzaju tynki specjalistyczne i wymalowania (farby), a także tynki tradycyjne. Błędem jest traktowanie tynku (jak również farby) jako osobnego elementu, w oderwaniu od konstrukcji ściany oraz rodzaju i właściwości podłoża.

Filip Ryczywolski Pomiar pionowości budynków i budowli

Pomiar pionowości budynków i budowli Pomiar pionowości budynków i budowli

Odchylenia, przemieszczenia, skręcenia i odkształcenia to niestety codzienny widok na wielu inwestycjach – również tych nowych. Poza kontrolą ścian czy szachtów w budynkach, badania pionowości dotyczą...

Odchylenia, przemieszczenia, skręcenia i odkształcenia to niestety codzienny widok na wielu inwestycjach – również tych nowych. Poza kontrolą ścian czy szachtów w budynkach, badania pionowości dotyczą też słupów, kominów, masztów widokowych, latarni morskich oraz różnego rodzaju mostów, wiaduktów, masztów stalowych: radiowych, telewizyjnych, sieci komórkowych czy oświetleniowych. Ogólnie rzecz ujmując, pomiary pionowości stosuje się do obiektów wysmukłych, czyli takich, których wysokość przewyższa...

PPHU POLSTYR Zbigniew Święszek Jak wybrać system ociepleń?

Jak wybrać system ociepleń? Jak wybrać system ociepleń?

Prawidłowo zaprojektowane i wykonane ocieplenie przegród w budynku pozwala zmniejszyć zużycie energii, a co za tym idzie obniżyć koszty eksploatacji i domowe rachunki.

Prawidłowo zaprojektowane i wykonane ocieplenie przegród w budynku pozwala zmniejszyć zużycie energii, a co za tym idzie obniżyć koszty eksploatacji i domowe rachunki.

Krzysztof Kros Zakrętarki akumulatorowe

Zakrętarki akumulatorowe Zakrętarki akumulatorowe

Wkrętarki akumulatorowe czy wiertarko-wkrętarki od dawna są powszechnie znane i użytkowane zarówno przez amatorów, jak i profesjonalistów. Zakrętarki natomiast są mniej znanym i popularnym typem narzędzia...

Wkrętarki akumulatorowe czy wiertarko-wkrętarki od dawna są powszechnie znane i użytkowane zarówno przez amatorów, jak i profesjonalistów. Zakrętarki natomiast są mniej znanym i popularnym typem narzędzia akumulatorowego, spokrewnionego z wkrętarką czy wiertarką. Jednak w ostatnim czasie zyskują coraz większą popularność, między innymi dzięki łączonym ofertom producentów – zestawy wkrętarka i zakrętarka. Czym zatem jest zakrętarka i do czego służy?

Wybrane dla Ciebie

Pokrycia ceramiczne na każdy dach »

Pokrycia ceramiczne na każdy dach » Pokrycia ceramiczne na każdy dach »

Jak zrobić szczelną hydroizolację? »

Jak zrobić szczelną hydroizolację? » Jak zrobić szczelną hydroizolację? »

Styropian na wiele sposobów »

Styropian na wiele sposobów » Styropian na wiele sposobów »

Wełna kamienna – izolacja bezpieczna od ognia »

Wełna kamienna – izolacja bezpieczna od ognia » Wełna kamienna – izolacja bezpieczna od ognia »

Profile do montażu metodą „lekką-mokrą »

Profile do montażu metodą „lekką-mokrą » Profile do montażu metodą „lekką-mokrą »

Zanim zaczniesz budowę, zrób ekspertyzę »

Zanim zaczniesz budowę, zrób ekspertyzę » Zanim zaczniesz budowę, zrób ekspertyzę »

Panele grzewcze do ścian i sufitów »

Panele grzewcze do ścian i sufitów » Panele grzewcze do ścian i sufitów »

Skuteczna walka z wilgocią w ścianach »

Skuteczna walka z wilgocią w ścianach » Skuteczna walka z wilgocią w ścianach »

Termomodernizacja na krokwiach dachowych »

Termomodernizacja na krokwiach dachowych » Termomodernizacja na krokwiach dachowych »

Podpowiadamy, jak wybrać system ociepleń

Podpowiadamy, jak wybrać system ociepleń Podpowiadamy, jak wybrać system ociepleń

Uszczelnianie fundamentów »

Uszczelnianie fundamentów » Uszczelnianie fundamentów »

Prawidłowe wykonanie elewacji w systemie ETICS to jakość, żywotność i estetyka »

Prawidłowe wykonanie elewacji w systemie ETICS to jakość, żywotność i estetyka » Prawidłowe wykonanie elewacji w systemie ETICS to jakość, żywotność i estetyka »

Copyright © 2004-2019 Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Spółka komandytowa, nr KRS: 0000537655. Wszelkie prawa, w tym Autora, Wydawcy i Producenta bazy danych zastrzeżone. Jakiekolwiek dalsze rozpowszechnianie artykułów zabronione. Korzystanie z serwisu i zamieszczonych w nim utworów i danych wyłącznie na zasadach określonych w Zasadach korzystania z serwisu.
Portal Budowlany - Izolacje.com.pl

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim urządzeniu końcowym. W każdym momencie możesz dokonać zmiany ustawień przeglądarki dotyczących cookies. Nim Państwo zaczną korzystać z naszego serwisu prosimy o zapoznanie się z naszą polityką prywatności oraz Informacją o Cookies. Więcej szczegółów w naszej Polityce Prywatności oraz Informacji o Cookies. Administratorem Państwa danych osobowych jest Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Sp.K., nr KRS: 0000537655, z siedzibą w 04-112 Warszawa, ul. Karczewska 18, tel. +48 22 810-21-24, właściciel strony www.izolacje.com.pl. Twoje Dane Osobowe będą chronione zgodnie z wytycznymi polityki prywatności www.izolacje.com.pl oraz zgodnie z Rozporządzeniem Parlamentu Europejskiego i Rady (UE) 2016/679 z dnia 27 kwietnia 2016r i z Ustawą o ochronie danych osobowych Dz.U. 2018 poz. 1000 z dnia 10 maja 2018r.