Izolacje.com.pl

Zaawansowane wyszukiwanie

Izolacja tarasu

Jak zaprojektować i wykonać taras z uszczelnieniem zespolonym?

Izohan

Izohan

Problemów związanych z przeciekaniem tarasów można uniknąć, jeśli w czasie budowy prace zostaną wykonane wyjątkowo starannie, a zastosowane materiały i technologia będą dopasowane do warunków użytkowania i konstrukcji tarasu.

Zobacz także

Prokostal Ładziński Sp. z o.o. Twój balkon na świat

Twój balkon na świat Twój balkon na świat

Wychodząc naprzeciw oczekiwaniom mieszkańców budynków wielolokalowych, dotyczącym poprawy komfortu życia oraz podniesienia standardu zamieszkiwania i większej swobody przestrzennej, stworzyliśmy możliwość...

Wychodząc naprzeciw oczekiwaniom mieszkańców budynków wielolokalowych, dotyczącym poprawy komfortu życia oraz podniesienia standardu zamieszkiwania i większej swobody przestrzennej, stworzyliśmy możliwość rozbudowy lub dobudowy balkonu do budynków wyposażonych w tzw. portfenetry (tzw. drzwi balkonowe z balustradą) oraz loggie przez powiększenie balkonu.

Bostik Bostik AQUASTOPP – szybkie i efektywne rozwiązanie problemu wilgoci napierającej

Bostik AQUASTOPP – szybkie i efektywne rozwiązanie problemu wilgoci napierającej Bostik AQUASTOPP – szybkie i efektywne rozwiązanie problemu wilgoci napierającej

Bostik to firma z wieloletnią tradycją, sięgającą 1889 roku, oferująca szeroką gamę produktów chemii budowlanej dla profesjonalistów i majsterkowiczów. Producent słynie z innowacyjnych rozwiązań i wysokiej...

Bostik to firma z wieloletnią tradycją, sięgającą 1889 roku, oferująca szeroką gamę produktów chemii budowlanej dla profesjonalistów i majsterkowiczów. Producent słynie z innowacyjnych rozwiązań i wysokiej jakości preparatów, które znajdują zastosowanie w budownictwie, przemyśle i renowacji.

Follmann Chemia Polska – Oddział Triflex Polska Renowacja balkonów i tarasów – na co zwracać uwagę?

Renowacja balkonów i tarasów – na co zwracać uwagę? Renowacja balkonów i tarasów – na co zwracać uwagę?

Wiele mieszkań i dachów posiada niewykorzystywane do tej pory tarasy lub balkony. W ostatnim czasie coraz więcej właścicieli mieszkań docenia ich urok i wartość. Zaniedbywane przez długi czas, przeważnie...

Wiele mieszkań i dachów posiada niewykorzystywane do tej pory tarasy lub balkony. W ostatnim czasie coraz więcej właścicieli mieszkań docenia ich urok i wartość. Zaniedbywane przez długi czas, przeważnie są w stanie nienadającym się do użytku i wymagają remontu. Jakich należy użyć materiałów, aby naprawa była prawidłowo wykonana, a efekt był trwały?

Taras może się znajdować bezpośrednio na ziemi, opierać się na słupach, ścianach, pod którymi znajduje się wolna przestrzeń, lub pokrywać pomieszczenia. Konstrukcyjnie tarasem będzie również dach płaski, jeśli zechcemy wykorzystać go do odpoczynku i rekreacji.

W artykule zostaną scharakteryzowane tarasy wykonane nad pomieszczeniami ogrzewanymi, jednak większość zaleceń będzie się odnosić także do tarasów nad pomieszczeniami nieogrzewanymi oraz do balkonów.

Wymagania dotyczące tarasów

Wymagania, jakie powinien spełniać każdy taras, są następujące:

  • całkowita szczelność o każdej porze roku, zapobiegająca penetracji opadów atmosferycznych w konstrukcję (w tym odporność na zalegający śnieg w obrębie cokołów i pasów nadrynnowych),
  • szybkie i skuteczne odprowadzenie opadów poza taras,
  • odpowiednie zamocowanie i uszczelnienie obróbek blacharskich, trwałe zakotwienie balustrad w sposób uniemożliwiający przeciekanie (należy unikać kotwień balustrad od góry, zalecane jest kotwienie do boku lub spodu płyty),
  • umożliwienie ruchów termicznych wierzchnim warstwom tarasu,
  • zapewnienie odpowiedniej ochrony cieplnej (pomieszczenia poniżej tarasu powinny być chronione warstwą termoizolacji o odpowiedniej grubości),
  • brak możliwości wnikania wilgoci od strony wnętrza pod tarasem (konieczne jest wykonanie warstwy paroizolacji, blokującej wnikanie pary wodnej w przegrodę).

Dolne warstwy tarasu znajdują się cały czas w tej samej temperaturze, bez względu na porę roku, górne zaś podlegają wahaniom temperatur od –20ºC czy –30ºC do nawet +70ºC, gdy taras znajduje się od południowej strony i jest wykończony ciemną okładziną ceramiczną. Amplituda temperatur może wynosić nawet 100ºC.

Górne warstwy tarasu muszą więc sprostać dużym wahaniom temperatur, dlatego tak ważne jest, by wszystkie warstwy ze sobą współpracowały. Wpływają one bowiem na szczelność tarasu, jego odporność na zmiany temperatur, zjawiska atmosferyczne i obciążenia użytkowe.

Poza tym w naszej strefie klimatycznej występuje od 150 do 200 przejść przez temperaturę 0ºC rocznie. Jest to bardzo niekorzystne zjawisko, ponieważ woda, przechodząc ze stanu ciekłego w stały, zwiększa swoją objętość i działa degradująco, szczególnie na układy cementowe.

Układ warstw tarasu

Na taras z powierzchniowym odprowadzeniem wody składają się następujące warstwy (rys. 1): płyta nośna tarasu z uformowanym spadkiem, a w razie braku spadku dodatkowy podkład spadkowy, paroizolacja, termoizolacja, warstwa dociskowa, hydroizolacja, górne warstwy wykończeniowe.

Płyta nośna tarasu

Przenosi ona ciężar własny, a także ułożonych na niej materiałów izolacyjnych, wykończeniowych oraz obciążenie użytkowe. Płyta nośna oraz sposób jej oparcia projektowane są przez uprawnionego projektanta z uwzględnieniem przewidywanych obciążeń. Samowolnie nie można dokonywać żadnych zmian.

Idealne rozwiązanie jest wtedy, gdy płyta konstrukcyjna ma spadek uformowany już na etapie układania mieszanki betonowej. W przypadku braku spadku na płytach konstrukcyjnych należy wykonać dodatkową wylewkę spadkową z betonu o takiej samej klasie co płyta konstrukcyjna. Minimalna grubość wylewki spadkowej powinna wynosić 3,5 cm (w najcieńszym miejscu przy krawędzi). Ze względu na tak cienką warstwę betonu trzeba zwrócić szczególną uwagę na jego zabezpieczenie przed zbyt szybkim wyschnięciem (przesuszeniem).

W celu zespolenia wylewki z podłożem zaleca się wykonanie warstwy sczepnej. Może ją stanowić modyfikowana polimerami zaprawa cementowa typu PCC (polymer cement concrete). Jest to produkt w postaci sypkiej, który bezpośrednio przed aplikacją miesza się ze ściśle odmierzoną ilością wody i tak przygotowaną mieszankę wciera pędzlem w podłoże. Warstwę spadkową należy układać na jeszcze niezwiązaną warstwę sczepną – metodą mokre na mokre.

W przypadku niezastosowania warstwy sczepnej może dojść do zerwania przyczepności pomiędzy płytą konstrukcyjną a wylewką spadkową w wyniku skurczu hydratacyjnego i pracy konstrukcji.

Jeżeli warstwa niwelacyjna musi mieć mniejszą grubość, nawet miejscowo, beton należy zastąpić zaprawami typu PCC wyższej jakości. W zależności od grubości warstwy spadkowej dobiera się drobno- lub gruboziarniste zaprawy. W przypadku zapraw typu PCC grubość warstwy niwelacyjnej w najcieńszym miejscu ograniczona jest grubością ziaren. Oczywiście, nie można zapominać o zastosowaniu warstwy sczepnej.

Po wykonaniu nadlewki z betonu prowadzenie dalszych prac jest wskazane dopiero po odczekaniu min. 21 dni, natomiast w przypadku mieszanki typu PCC czas odczekania wynosi ok. 7 dni. Zaleca się, aby spadek tarasu zapewniający niezakłócony spływ wody wynosił 1,5–2%. Większe nachylenie może być przyczyną zsuwania się warstw tarasu.

Warstwa paroizolacji

Jest to bariera zapobiegająca przedostawaniu się pary wodnej z pomieszczeń wewnątrz budynku do strefy punktu rosy – strefy temperatury, przy której następuje skraplanie się pary wodnej. Brak paroizolacji jest częstą przyczyną zawilgocenia sufitów w wyniku kondensacji pary wodnej pod warstwą wodoszczelną, co tworzy wrażenie nieszczelności tarasu. Warstwa paroizolacji układana jest bezpośrednio na wylewce spadkowej lub płycie konstrukcyjnej wykonanej ze spadkiem.

Funkcję paroizolacji mogą pełnić materiały rolowe lub bezspoinowe masy bitumiczne. Elastyczne wyroby wodochronne z tworzyw sztucznych i kauczuku, np. folie PE, PVC, EPDM, powinny spełniać wymagania zawarte w normie PN-EN 13984:2006/A1:2007 (U) [8], a papy paroizolacyjne – wymagania zawarte w normie PN-EN 13970:2006/A1:2007 [9]. Ważne jest, by materiały rolowe były zgrzane lub sklejone na zakładach za pomocą specjalnych klejów wskazanych przez producenta.

Warstwa paroizolacji wykonywana z mas bitumicznych grubowarstwowych (KMB) jest powłoką bezspoinową, ciągłą na całej powierzchni. Ważne jest, by stosować masy dyspersyjne wodorozcieńczalne, ponieważ warstwa ta ma bezpośredni kontakt z polistyrenowymi płytami ocieplającymi. Wybór i rodzaj warstwy paroizolacyjnej należy dobierać na podstawie obliczeń cieplno-wilgotnościowych.

Warstwa termoizolacyjna

Izolacja termiczna przeciwdziała wykraplaniu się pary wodnej pod paroizolacją (przenosi punkt rosy powyżej paroizolacji), ogranicza ruchy konstrukcji nośnej z ukształtowanym spadkiem, zimą zmniejsza straty ciepła z pomieszczeń usytuowanych pod tarasem, a latem nadmierne ich ogrzewanie, powinna też mieć zdolność do przenoszenia obciążeń przewidzianych przy użytkowaniu tarasu, dlatego zalecane jest stosowanie płyt ocieplających o wytrzymałości na ściskanie co najmniej 200 kPa (przy odkształceniu 10%).

Grubość warstwy termoizolacyjnej należy ustalać na podstawie obliczeń izolacyjności cieplnej zgodnie z normą PN-EN ISO 6946:2008 [10]. Polistyren ekspandowany (EPS) powinien spełniać wymagania zawarte w normie PN-EN 13163:2004/AC:2006 [5], polistyren ekstrudowany (XPS) – zawarte w normie PN-EN 13164:2009 [6].

Zaleca się, aby grubość warstwy ocieplającej nad pomieszczeniem ogrzewanym wykonana z polistyrenu, i to zarówno ze styropianu, jak i z polistyrenu ekstrudowanego, wynosiła przynajmniej (jeśli z obliczeń nie wynika inaczej) 12 cm.

Jeśli z jakichś powodów warstwa musi być cieńsza, można zastosować płyty ocieplające z pianki PUR. Wtedy przy zachowaniu współczynnika przenikania ciepła U = 0,30 W/(m²·K) grubość warstwy termoizolacyjnej może wynosić już 7 cm (o ile z obliczeń nie wynika inaczej). Sztywne pianki poliuretanowe powinny spełniać wymagania zawarte w normie PN-EN 13165:2009 [7].

Na obrzeżu tarasu należy zamocować drewnianą listwę zabezpieczoną przed korozją biologiczną, np. przez zaimpregnowanie, i dostosowaną do grubości ocieplenia. Listwę przytwierdza się do podłoża za pomocą nierdzewnych kotew rozporowych. Do listwy mocowane będzie później orynnowanie.

Warstwa termoizolacyjna powinna być zarówno nienasiąkliwa, jak i odporna na obciążenia mechaniczne. Jeżeli nie jest stosowany polistyren ekstrudowany (XPS), to należy stosować polistyren ekspandowany (styropian) o wytrzymałości na ściskanie (przy 10% naprężeniu względnym) 200 kPa i o zmniejszonej nasiąkliwości (EPS 200). Najlepiej by było, gdyby płyty ocieplające miały frezowane obrzeża, co eliminuje możliwość powstawania mostków termicznych oraz tworzy jednolitą, gładką powierzchnię bez wybrzuszeń, uskoków i ubytków.

Można też układać termoizolację dwuwarstwowo, z przesunięciem styków. W przypadku, gdyby mogło dojść do zawilgocenia termoizolacji przy wykonywaniu jastrychu, należy zastosować dodatkową warstwę zabezpieczającą, np. z folii PE. 

Warstwa dociskowa

Zadaniem warstwy dociskowej jest utworzenie podłoża pod izolację wodoszczelną oraz warstwy nawierzchniowe. Warstwa ta powinna mieć stałą grubość i kompensować odkształcenia konstrukcji oraz odkształcenia termiczne.

Przy zróżnicowanych grubościach proces wysychania płyty jest nierówny i w wyniku tego skurcz wiązania jest różny w różnych miejscach. Dlatego warstw dociskowych nie powinno się używać do tworzenia spadków.

Jako minimalną grubość jastrychu o wytrzymałości na ściskanie min. 20 MPa należy przyjąć 4 cm, w praktyce najczęściej stosuje się 5–6-centymetrowe warstwy. Podkłady tarasów z uwagi na skurcz i charakter obciążeń zbrojone są siatkami i/lub zbrojeniem rozproszonym.

Warstwa dociskowa podlega oddziaływaniu skurczu, a wpływ na niego ma długość elementu, dobowe i roczne różnice temperatur oraz współczynnik wydłużalności termicznej materiału. Konieczne jest więc wykonanie prawidłowych dylatacji. Ogólnie rzecz biorąc, można wyróżnić następujące typy dylatacji występujących w obrębie tarasów:

  • konstrukcyjne, które oddzielają poszczególne części budynku,
  • obwodowe, na pełną grubość podkładu i warstw wierzchnich,
  • strefowe, dzielące jastrych na niezależne części,
  • na połączeniach nawierzchni tarasu z elementami o innym współczynniku wydłużalności termicznej,
  • kontrolne (pozorne) – wykonywane w warstwach cementowych. Mają one za zadanie ograniczyć rysy tworzące się w wyniku naprężeń skurczowych tylko do tej przerwy dylatacyjnej. Można je wykonać, nacinając szczeliny w świeżo związanej warstwie wylewki na głębokość 1/3–1/2 grubości.

Dylatacje obwodowe (rys. 2) (skrajne) oddzielają podkład i wykładziny od wszelkich na stałe wbudowanych elementów: wokół ścian, słupów, schodów itp. Mają one za zadanie przeciwdziałać oddziaływaniom pracy termicznej jastrychu na jego zewnętrzną obudowę.

Dylatacje strefowe dzielą jastrych na niezależne części. Muszą mieć odpowiednią szerokość dobraną w oparciu o wielkość pól dylatacyjnych i sprężystość materiału wypełniającego. Dobrym rozwiązaniem przy wykonywaniu dylatacji strefowych jest też korzystanie z gotowych profili dylatacyjnych, które mocuje się na etapie wykonywania jastrychu.

Wytyczne opracowane przez ITB [10, 11] mówią o polach dylatacyjnych wielkości 4 m², wytyczne niemieckie [16] z kolei mówią o rozstawie dylatacji 2–5 m. Na tarasach do ok. 30 m2 można wykonywać pola dylatacyjne mniejsze (ok. 5 m2); przy większych tarasach można zwiększyć powierzchnie pól dylatacyjnych, ale przy jednoczesnym zwiększeniu szerokości dylatacji.

W dobraniu szerokości dylatacji pomaga wzór:

b = Δl · 100/ s,

gdzie:

b – szerokość dylatacji,

Δl – wydłużenie elementu [mm],

s – powrót elastyczny, czyli zdolność do przenoszenia odkształceń materiału wypełniającego dylatacje [%].

Δl = α · Δt · l,

gdzie:

α – współczynnik rozszerzalności liniowej [10–6/K],

Δt – zmiana temperatury podłoża [K],

l – długość elementu.

I tak np. dla elementu betonowego o długości boku 2 m (dla betonu α = 11), gdy zdolność do przenoszenia odkształceń materiału wypełniającego dylatacje wynosi 25%, przy założonej zmianie temperatur od –20ºC (243,15 K) do +60ºC (333,15 K) szerokość dylatacji oblicza się następująco:

Δl = 11 [10-6/K] · 80 · 2 = 0,00176 [m] = 1,76 mm,

b = 1,76 · 100 / 25 = 7,04 mm.

Warstwę dociskową dzieli się na fragmenty zbliżone do kwadratu. Wzajemne proporcje boków powinny zawierać się w stosunku 1:1–1:1,5. W przypadku wąskich i długich warstw dociskowych odstęp między szczelinami nie powinien przekraczać 2–2,5-krotnej szerokości. Dylatacje w warstwie dociskowej należy przenieść na wykładzinę (dobór układu dylatacyjnego na podstawie wymiarów płytek).

Warstwa izolacji wodoszczelnej

Powinna zabezpieczać warstwy spodnie przed migracją wilgoci, a dzięki swej elastyczności kompensować ruchy podłoża wywołane odkształceniami termicznymi. Wykonuje się ją z dwuskładnikowych (lub rzadziej jednoskładnikowych) mikrozapraw uszczelniających, do których bezpośrednio mogą być klejone okładziny ceramiczne. Mikrozaprawa składa się z dwóch komponentów: proszkowego i płynnego, które należy ze sobą wymieszać, przestrzegając ściśle instrukcji producenta (proporcje składników, czas mieszania).

Podłoże musi być matowo-wilgotne, wolne od substancji antyadhezyjnych. Większość producentów zaleca, aby pierwsza cienka warstwa była wcierana pędzlem w podłoże. Taki sposób aplikacji zapewni należyte zespolenie hydroizolacji z podłożem. Przy układaniu mikrozapraw uszczelniających należy zwrócić uwagę na grubość jednorazowo nakładanej warstwy. Zazwyczaj nie powinna ona przekraczać 1 mm. Wymagana grubość hydroizolacji podpłytowej zalecana przez większość producentów wynosi 2 mm (po wyschnięciu). Nanoszenie kolejnych warstw może się odbywać za pomocą pędzla, pac stalowych lub urządzeń natryskowych.

Dobierając hydroizolację mineralną, należy przede wszystkim kierować się parametrem przyczepności do podłoża oraz zdolnością mostkowania rys. Szczególnej uwagi wymaga przygotowanie podłoża na złączach elementów pionowych z powierzchnią tarasów. Powierzchnie te różnie pracują względem siebie i naprężenia powstające pomiędzy tymi płaszczyznami koncentrują się w narożnikach.

Z tego względu we wszystkich przejściach pion–poziom powinny być wtopione taśmy uszczelniające. W pierwszą warstwę hydroizolacji wtapia się taśmy, umieszczając je w taki sposób, by połowa szerokości zachodziła na element pionowy, a połowa na poziomy. Przy aplikacji drugiej warstwy mikrozaprawy taśmy pokrywa się izolacją analogicznie jak przy wtapianiu siatki w zaprawę klejową podczas wykonywania ociepleń elewacji. Układanie płytek ceramicznych możliwe jest po 24–72 godz. od wykonania hydroizolacji.

Większość z producentów deklaruje zgodność tego rodzaju wyrobów z aprobatami technicznymi ITB, ale od niedawna można też wprowadzać wyrobów do powszechnego stosowania w budownictwie na podstawie deklaracji zgodności z normą PN-EN 14891:2009 [1]. Norma ta określa trzy rodzaje wyrobów hydroizolacyjnych, w tym właśnie wyroby cementowe nieprzepuszczające wody stosowane w postaci ciekłej (oznaczenie CM) [1].

Wyrób spełniający wymagania dodatkowe można oznaczać, oprócz określenia rodzaju, np. CM, określając jego klasę. I tak: klasa O oznacza zdolność mostkowania pęknięć w niskiej temperaturze, a klasa P – odporność na działanie wody chlorowanej.

Wykładziny tarasu

Występuje tu duża różnorodność, najczęściej jednak stosuje się wykładziny z płytek ceramicznych. Płytki te powinny być dobrane do warunków użytkowania przede wszystkim z uwagi na nasiąkliwość, a w dalszej kolejności ze względu na odporność na ścieranie oraz na klasę antypoślizgowości. Na tarasie należy stosować płytki ceramiczne o klasie nasiąkliwości z I grupy.

Według normy PN-EN 14411:2009 [3] oznaczone są one jako:

  • A I (płytki ciągnione) o nasiąkliwości E ≤ 3%,
  • B Ia (płytki prasowane) o nasiąkliwości E ≤ 0,5%,
  • B Ib o nasiąkliwości 0,5% ≤ E ≤ 3%.

Z uwagi na wysoką elastyczność powłoki hydroizolacyjnej do przyklejania okładziny ceramicznej wymaga się stosowania klejów o podwyższonych parametrach (oznaczonych C2). Dodatkowo nowa wersja normy PN-EN 12004:2008 [2] wprowadziła jako wymóg dodatkowy (opcjonalny) badanie odkształcalności, czyli podatności utwardzonego kleju na deformację pod wpływem działania naprężeń między płytką ceramiczną a powierzchnią układania, bez uszkodzenia powierzchni zainstalowania [2].

Jest to parametr, dzięki któremu można zweryfikować, czy zaprawa klejowa naprawdę jest elastyczna. Cytowana norma określa dwie klasy odkształcalności: S1 – kleje odkształcalne (odkształcenie poprzeczne ≥ 2,5 mm i < 5 mm) i S2 – kleje o wysokiej odkształcalności (odkształcenie poprzeczne ≥ 5 mm).

Jeśli nie stosujemy zapraw klejowych upłynnionych (stosowanych tylko na powierzchniach poziomych), to klej należy nanosić metodą kombinowaną, rozprowadzając go na powierzchni układania zębatą stroną pacy oraz gładką stroną pacy na spodniej, montażowej stronie płytki. Technika ta zapewnia wymagane 100-proc. pokrycie płytek klejem, co zapobiega wnikaniu i gromadzeniu się wody między nimi a izolacją.

Po całkowitym wyschnięciu kleju można przystąpić do wypełniania szczelin masą fugową spełniającą wymagania normy PN-EN 13888:2009 [4]. Szerokość spoin między płytkami powinna wynosić min. 5 mm. Dylatacje, przeniesione na okładzinę z warstwy dociskowej, wypełnia się uszczelniaczem trwale elastycznym, odpornym na korozję biologiczną, starzenie oraz agresję chemiczną, np. na bazie poliuretanów.

Aby praca materiału wypełniającego, przenoszącego głównie siły poziome, była poprawna, należy odseparować jego poziomą (spodnią) powierzchnię od podłoża (powinien mieć dobrą przyczepność tylko do brzegów szczeliny). W tym celu oraz w celu uzyskania prawidłowej głębokości wypełnienia stosowane są sznury dylatacyjne wykonane z materiału o zamkniętych porach. Sznur dylatacyjny powinien mieć średnicę o 20% większą od szerokości szczeliny dylatacyjnej.  Zagłębia się go w szczelinie na taką głębokość, by uzyskać poprawny przekrój wypełnienia.

Przy szczelinach dylatacyjnych o szerokości do 12 mm głębokość wypełnienia równa jest szerokości wypełnienia, przy szerokości szczeliny ≥ 12 mm głębokość wypełnienia równa jest połowie szerokości wypełnienia (rys. 3).

Literatura

  1. PN-EN 14891:2009 „Wyroby nieprzepuszczające wody stosowane w postaci ciekłej pod płytki ceramiczne mocowane klejami. Wymagania, metody badań, ocena zgodności, klasyfikacja i oznaczenie”.
  2. PN-EN 12004:2008 „Kleje do płytek. Wymagania, ocena zgodności, klasyfikacja i oznaczenie”.
  3. PN-EN 14411:2009 „Płytki ceramiczne. Definicje, klasyfikacja, właściwości i znakowanie”.
  4. PN-EN 13888:2009 „Zaprawy do spoinowania płytek. Wymagania, ocena zgodności, klasyfikacja i oznaczenie”.
  5. PN-EN 13163:2009 „Wyroby do izolacji cieplnej w budownictwie. Wyroby ze styropianu (EPS) produkowane fabrycznie. Specyfikacja”.
  6. PN-EN 13164:2009 „Wyroby do izolacji cieplnej w budownictwie. Wyroby z polistyrenu ekstrudowanego (XPS) produkowane fabrycznie. Specyfikacja”.
  7. PN-EN 13165:2009 „Wyroby do izolacji cieplnej w budownictwie. Wyroby ze sztywnej pianki poliuretanowej (PUR) produkowane fabrycznie. Specyfikacja”.
  8. PN-EN 13984:2006/A1:2007 „Elastyczne wyroby wodochronne. Wyroby z tworzyw sztucznych i kauczuku do regulacji przenikania pary wodnej. Definicje i właściwości”.
  9. PN-EN 13970:2006/A1:2007 „Elastyczne wyroby wodochronne. Wyroby asfaltowe do regulacji przenikania pary wodnej. Definicje i właściwości”.
  10. PN-EN ISO 6946:2008 „Komponenty budowlane i elementy budynku. Opór cieplny i współczynnik przenikania ciepła. Metoda obliczania”.
  11. Instrukcja ITB nr 344/2007 „Zabezpieczenia wodochronne tarasów i balkonów”, „Instrukcje, wytyczne, poradniki”, ITB, Warszawa 2007.
  12. Instrukcja ITB nr 344/1997 „Zabezpieczenia wodochronne tarasów. Dobór materiałów i technologia wykonania”, ITB, Warszawa 1997.
  13. Instrukcja ITB nr 404/2004 „Warunki techniczne wykonania i odbioru robót budowlanych”, cześć C: „Zabezpieczenia i izolacje”, zeszyt 4: „Izolacje wodochronne tarasów”, „Instrukcje, wytyczne, poradniki”, ITB, Warszawa 2004.
  14. Materiały informacyjne firmy IZOHAN.
  15. Materiały informacyjne firmy MC Bauchemie.
  16. ZDB Merkblatt, „Belagkonstruktionen mit Fliesen und Platten ausserhalb von Gebäuden”, VIII 2002.

Chcesz być na bieżąco? Zapisz się do naszego newslettera!

Galeria zdjęć

Tytuł
przejdź do galerii

Komentarze

Powiązane

Magdalena Wrona Warunki szczelności tarasu

Warunki szczelności tarasu Warunki szczelności tarasu

Tarasy wpisały się na stałe w obraz współczesnych domów i mieszkań. Są miejscem idealnym do wypoczynku i swoistym łącznikiem wnętrza z otaczającym środowiskiem. Niestety, błędy popełniane podczas wykonywania...

Tarasy wpisały się na stałe w obraz współczesnych domów i mieszkań. Są miejscem idealnym do wypoczynku i swoistym łącznikiem wnętrza z otaczającym środowiskiem. Niestety, błędy popełniane podczas wykonywania warstw tarasowych bywają przyczyną usterek ograniczających funkcje użytkowe zarówno tarasu, jak i pomieszczeń znajdujących się pod nim. Do najczęściej spotykanych uszkodzeń należą przecieki wód opadowych, przemarzanie i zawilgocenie stropów oraz uszkodzenia posadzek. U podstaw większości z nich...

mgr inż. Maciej Rokiel Okładziny z kamieni naturalnych na balkonach i tarasach

Okładziny z kamieni naturalnych na balkonach i tarasach Okładziny z kamieni naturalnych na balkonach i tarasach

Balkon to element architektoniczny w postaci płyty wysuniętej poza lico ściany, połączony drzwiami z pomieszczeniem za ścianą oraz zabezpieczony balustradą. Loggia zaś to wnęka w elewacji budynku powstała...

Balkon to element architektoniczny w postaci płyty wysuniętej poza lico ściany, połączony drzwiami z pomieszczeniem za ścianą oraz zabezpieczony balustradą. Loggia zaś to wnęka w elewacji budynku powstała na skutek cofnięcia ściany (ścian), zabezpieczona od zewnątrz balustradą i dostępna z jednego lub kilku pomieszczeń. Istotą tarasu nadziemnego jest natomiast obecność pod płytą pomieszczenia użytkowego. Taras nadziemny zatem to nic innego, jak rodzaj stropodachu nad częścią budynku, zaprojektowaną...

mgr inż. Maciej Rokiel Projektowanie tarasów nadziemnych nad pomieszczeniami ogrzewanymi

Projektowanie tarasów nadziemnych nad pomieszczeniami ogrzewanymi Projektowanie tarasów nadziemnych nad pomieszczeniami ogrzewanymi

Punktem wyjścia do prawidłowego zaprojektowania konstrukcji tarasu jest precyzyjne określenie funkcji, jaką ma on pełnić w przyszłości, analiza schematu konstrukcyjnego, określenie obciążeń i czynników...

Punktem wyjścia do prawidłowego zaprojektowania konstrukcji tarasu jest precyzyjne określenie funkcji, jaką ma on pełnić w przyszłości, analiza schematu konstrukcyjnego, określenie obciążeń i czynników destrukcyjnych, a na tej podstawie przyjęcie poprawnych technicznie rozwiązań materiałowo-konstrukcyjnych.

mgr inż. Maciej Rokiel Jak projektować tarasy nadziemne nad pomieszczeniami ogrzewanymi?

Jak projektować tarasy nadziemne nad pomieszczeniami ogrzewanymi?

Drenażowy sposób odprowadzenia wody zakłada możliwość wnikania wody opadowej w warstwy wierzchnie konstrukcji tarasu. Polega na odprowadzeniu wody opadowej zarówno po powierzchni użytkowej, jak i przez...

Drenażowy sposób odprowadzenia wody zakłada możliwość wnikania wody opadowej w warstwy wierzchnie konstrukcji tarasu. Polega na odprowadzeniu wody opadowej zarówno po powierzchni użytkowej, jak i przez specjalną warstwę drenującą.

mgr inż. Maciej Rokiel Jak wykonać szczelny taras i balkon?

Jak wykonać szczelny taras i balkon? Jak wykonać szczelny taras i balkon?

Tarasy i balkony to elementy bardzo chętnie wykorzystywane w architekturze. Dobrze umiejscowione dodają charakteru budynkowi. Niestety, ich hydroizolacje są często projektowane i wykonywane z błędami,...

Tarasy i balkony to elementy bardzo chętnie wykorzystywane w architekturze. Dobrze umiejscowione dodają charakteru budynkowi. Niestety, ich hydroizolacje są często projektowane i wykonywane z błędami, czego skutki...

dr inż. Magdalena Grudzińska Balkony o różnej konstrukcji

Balkony o różnej konstrukcji Balkony o różnej konstrukcji

Konstrukcja balkonów może być bardzo różna – najczęściej spotykane są balkony wspornikowe, nieco rzadziej balkony na niezależnej konstrukcji wsporczej, oddylatowane od budynku. Sposób powiązania balkonu...

Konstrukcja balkonów może być bardzo różna – najczęściej spotykane są balkony wspornikowe, nieco rzadziej balkony na niezależnej konstrukcji wsporczej, oddylatowane od budynku. Sposób powiązania balkonu z budynkiem ma zasadnicze znaczenie dla przepływu ciepła i możliwości kondensacji wilgoci na powierzchni przegród budowlanych.

mgr inż. Maciej Rokiel Taras nadziemny – między teorią a praktyką

Taras nadziemny – między teorią a praktyką Taras nadziemny – między teorią a praktyką

Taras nadziemny (nad pomieszczeniem) to element konstrukcyjny budynku zwiększający niewątpliwie jego wartość użytkową. Możliwości jego wykorzystania są ogromne. Aby jednak ten modny obecnie element nie...

Taras nadziemny (nad pomieszczeniem) to element konstrukcyjny budynku zwiększający niewątpliwie jego wartość użytkową. Możliwości jego wykorzystania są ogromne. Aby jednak ten modny obecnie element nie był przyczyną kłopotów w użytkowaniu budynku, projektant i wykonawca powinni rozwiązać kilka niełatwych problemów.

mgr inż. Maciej Rokiel Tarasy i balkony. Projektowanie i warunki techniczne wykonania i odbioru robót

Tarasy i balkony. Projektowanie i warunki techniczne wykonania i odbioru robót Tarasy i balkony. Projektowanie i warunki techniczne wykonania i odbioru robót

Praktyczny poradnik umożliwia sprawne poruszanie się po nowoczesnych rozwiązaniach dotyczących tarasów i balkonów. Zawiera liczne schematy i rysunki oraz tabele ułatwiające dotarcie do poszczególnych punktów...

Praktyczny poradnik umożliwia sprawne poruszanie się po nowoczesnych rozwiązaniach dotyczących tarasów i balkonów. Zawiera liczne schematy i rysunki oraz tabele ułatwiające dotarcie do poszczególnych punktów tematycznych.

prof. dr hab. eur. inż. Tomasz Z. Błaszczyński, dr inż. Aldona Łowińska-Kluge Trwałość balkonów i loggii - błędy projektowe i wykonawcze

Trwałość balkonów i loggii - błędy projektowe i wykonawcze Trwałość balkonów i loggii - błędy projektowe i wykonawcze

Często już po kilku latach od skończenia budowy lub wykonania prac remontowych w budynkach mieszkalnych, w strefie balkonów i loggii pojawiają się oznaki zniszczenia materiałów. Na podstawie badań przeprowadzonych...

Często już po kilku latach od skończenia budowy lub wykonania prac remontowych w budynkach mieszkalnych, w strefie balkonów i loggii pojawiają się oznaki zniszczenia materiałów. Na podstawie badań przeprowadzonych w obiektach, badań laboratoryjnych próbek pobranych z tych obiektów, a także ich badań strukturalnych (SEM i EDS) można określić rodzaje i przyczyny występujących zjawisk korozyjnych, co pozwala na opracowanie skutecznych i trwałych metod napraw. Gwarantuje to właściwą eksploatację konstrukcji...

dr inż. Artur Pałasz Wyroby hydroizolacyjne typu folia w płynie cz. 2

Wyroby hydroizolacyjne typu folia w płynie cz. 2 Wyroby hydroizolacyjne typu folia w płynie cz. 2

Jakość surowców, poprawność sporządzenia receptury czy przebiegu procesu produkcyjnego można sprawdzić dopiero po przeprowadzeniu odpowiednich badań laboratoryjnych. Odpowiednich, tzn. wykorzystujących...

Jakość surowców, poprawność sporządzenia receptury czy przebiegu procesu produkcyjnego można sprawdzić dopiero po przeprowadzeniu odpowiednich badań laboratoryjnych. Odpowiednich, tzn. wykorzystujących dobre metody badawcze i spełniających stosunkowo rygorystyczne wymagania.

mgr inż. Maciej Rokiel Konstrukcja tarasów – zagadnienia cieplno-wilgotnościowe

Konstrukcja tarasów – zagadnienia cieplno-wilgotnościowe Konstrukcja tarasów – zagadnienia cieplno-wilgotnościowe

Taras jest elementem bardziej skomplikowanym niż balkon. Stanowi rodzaj dachu nad pomieszczeniem, musi zatem cechować się odpowiednią ciepłochronnością. Jednak nie tylko.

Taras jest elementem bardziej skomplikowanym niż balkon. Stanowi rodzaj dachu nad pomieszczeniem, musi zatem cechować się odpowiednią ciepłochronnością. Jednak nie tylko.

mgr inż. Maciej Rokiel Konstrukcja balkonów - zagadnienia cieplno-wilgotnościowe

Konstrukcja balkonów - zagadnienia cieplno-wilgotnościowe Konstrukcja balkonów - zagadnienia cieplno-wilgotnościowe

Pomimo dostępnych na naszym rynku od kilkunastu lat poprawnych rozwiązań technologiczno-materiałowych nadal stosuje się błędne rozwiązania, skutkujące szybkim powstawaniem uszkodzeń. Mało tego – w niektórych...

Pomimo dostępnych na naszym rynku od kilkunastu lat poprawnych rozwiązań technologiczno-materiałowych nadal stosuje się błędne rozwiązania, skutkujące szybkim powstawaniem uszkodzeń. Mało tego – w niektórych czasopismach, a, co gorsza, także w literaturze technicznej są one nadal opisywane jako poprawne.

dr inż. Artur Pałasz Wyroby hydroizolacyjne typu folia w płynie - błędy recepturowe

Wyroby hydroizolacyjne typu folia w płynie - błędy recepturowe Wyroby hydroizolacyjne typu folia w płynie - błędy recepturowe

Aby wyprodukować folię w płynie o odpowiedniej jakości i jednocześnie optymalnej cenie, należy stosować wyłącznie takie surowce, które zostały ocenione jako przydatne do stosowania w recepturze, w określonej,...

Aby wyprodukować folię w płynie o odpowiedniej jakości i jednocześnie optymalnej cenie, należy stosować wyłącznie takie surowce, które zostały ocenione jako przydatne do stosowania w recepturze, w określonej, wynikającej z badań, ilości. Tymczasem większość producentów zamiast na badaniach opiera się przy ustalaniu receptur na rekomendacjach producentów surowców.

mgr inż. Maciej Rokiel Balkony i tarasy - uszczelnienie drenażowe a podpłytkowe

Balkony i tarasy - uszczelnienie drenażowe a podpłytkowe Balkony i tarasy - uszczelnienie drenażowe a podpłytkowe

Balkon i taras to takie części budynku, w których kumulują się liczne oddziaływania. Z tego powodu bardzo ważne jest ich prawidłowe zaprojektowanie i wykonanie. W przeciwnym razie stosunkowo szybko (nawet...

Balkon i taras to takie części budynku, w których kumulują się liczne oddziaływania. Z tego powodu bardzo ważne jest ich prawidłowe zaprojektowanie i wykonanie. W przeciwnym razie stosunkowo szybko (nawet w ciągu kilku miesięcy – jeżeli prace wykonywano jesienią) może dojść do znacznych uszkodzeń.

mgr inż. Maciej Rokiel Balkony i tarasy – uszczelnienie drenażowe i podpłytkowe

Balkony i tarasy – uszczelnienie drenażowe i podpłytkowe Balkony i tarasy – uszczelnienie drenażowe i podpłytkowe

Zarówno wariant drenażowy, jak i z uszczelnieniem podpłytkowym wymagają przemyślenia sposobu wykonania. Dotyczy to zwłaszcza rodzaju, sposobu i miejsca montażu obróbki.

Zarówno wariant drenażowy, jak i z uszczelnieniem podpłytkowym wymagają przemyślenia sposobu wykonania. Dotyczy to zwłaszcza rodzaju, sposobu i miejsca montażu obróbki.

mgr inż. Maciej Rokiel Konstrukcja balkonów i tarasów – typowe błędy

Konstrukcja balkonów i tarasów – typowe błędy Konstrukcja balkonów i tarasów – typowe błędy

Zagadnień termoizolacyjnych nie można traktować w oderwaniu od układu hydroizolacji. Świadczą o tym najczęstsze problemy, z którymi borykają się użytkownicy tarasów lub balkonów.

Zagadnień termoizolacyjnych nie można traktować w oderwaniu od układu hydroizolacji. Świadczą o tym najczęstsze problemy, z którymi borykają się użytkownicy tarasów lub balkonów.

mgr inż. Maciej Rokiel Tarasy nadziemne nad pomieszczeniami ogrzewanymi

Tarasy nadziemne nad pomieszczeniami ogrzewanymi Tarasy nadziemne nad pomieszczeniami ogrzewanymi

Taras nadziemny jest elementem konstrukcji umieszczonym nad pomieszczeniem pełniącym jednocześnie funkcję dachu. Składa się z płyty nośnej, termoizolacji i hydroizolacji. Jego powierzchnia dostępna jest...

Taras nadziemny jest elementem konstrukcji umieszczonym nad pomieszczeniem pełniącym jednocześnie funkcję dachu. Składa się z płyty nośnej, termoizolacji i hydroizolacji. Jego powierzchnia dostępna jest z przyległych pomieszczeń.

mgr inż. Monika Dybowska-Józefiak, dr inż. Krzysztof Pawłowski prof. PBŚ Balkony - analiza numeryczna parametrów cieplno­-wilgotnościowych w świetle nowych wymagań cieplnych

Balkony - analiza numeryczna parametrów cieplno­-wilgotnościowych w świetle nowych wymagań cieplnych Balkony - analiza numeryczna parametrów cieplno­-wilgotnościowych w świetle nowych wymagań cieplnych

W ciągu ostatnich lat w znaczący sposób zostały zaostrzone w Polsce wymagania cieplne dotyczące budynków. W związku z tym niezwykle ważne staje się w procesie projektowym poprawne wykonywanie szczegółowych...

W ciągu ostatnich lat w znaczący sposób zostały zaostrzone w Polsce wymagania cieplne dotyczące budynków. W związku z tym niezwykle ważne staje się w procesie projektowym poprawne wykonywanie szczegółowych obliczeń i analiz, które powinny być podstawą wyboru rozwiązań konstrukcyjnych oraz izolacyjnych. Dotyczy to szczególnie złączy, w tym połączenia ściany zewnętrznej z płytą balkonową.

dr inż. Magdalena Grudzińska Balkony oszklone jako systemy szklarniowe

Balkony oszklone jako systemy szklarniowe Balkony oszklone jako systemy szklarniowe

W pasywnych systemach pozyskiwania energii słonecznej procesy odbierania i przekazywania energii powinny odbywać się dzięki samej konstrukcji budynku, bez pomocy dodatkowych urządzeń mechanicznych czy...

W pasywnych systemach pozyskiwania energii słonecznej procesy odbierania i przekazywania energii powinny odbywać się dzięki samej konstrukcji budynku, bez pomocy dodatkowych urządzeń mechanicznych czy elektrycznych.

dr inż. Magdalena Grudzińska Balkony jako systemy szklarniowe

Balkony jako systemy szklarniowe Balkony jako systemy szklarniowe

Systemy szklarniowe należą do grupy systemów pasywnych, pozwalających na zmniejszenie zapotrzebowania na ciepło dzięki wykorzystaniu energii promieniowania słonecznego. W tych systemach zamiana energii...

Systemy szklarniowe należą do grupy systemów pasywnych, pozwalających na zmniejszenie zapotrzebowania na ciepło dzięki wykorzystaniu energii promieniowania słonecznego. W tych systemach zamiana energii słonecznej na cieplną oraz rozprowadzanie ciepła odbywają się dzięki naturalnym zjawiskom przepływu energii w elementach budynku.

dr inż. Magdalena Grudzińska Balkony oszklone jako szklarnie

Balkony oszklone jako szklarnie Balkony oszklone jako szklarnie

Balkony oszklone zyskują coraz większą popularność w budynkach istniejących i nowo projektowanych, dzięki atrakcyjności architektonicznej i użytkowej, połączonej z ochroną cieplną i akustyczną przyległych...

Balkony oszklone zyskują coraz większą popularność w budynkach istniejących i nowo projektowanych, dzięki atrakcyjności architektonicznej i użytkowej, połączonej z ochroną cieplną i akustyczną przyległych pomieszczeń. Stosunkowo niski koszt obudowy balkonu sprawia, że jest to rozwiązanie powszechnie dostępne i proste w realizacji.

mgr inż. Maciej Rokiel Trudne detale tarasów i balkonów

Trudne detale tarasów i balkonów Trudne detale tarasów i balkonów

Balkon i taras to elementy konstrukcyjne budynku zwiększające jego wartość użytkową. Możliwości ich wykorzystania są ogromne: od miejsca przeznaczonego na wypoczynek do przedłużenia salonu. Aby jednak...

Balkon i taras to elementy konstrukcyjne budynku zwiększające jego wartość użytkową. Możliwości ich wykorzystania są ogromne: od miejsca przeznaczonego na wypoczynek do przedłużenia salonu. Aby jednak ten element nie sprawiał użytkownikowi problemów, konieczne jest pokonanie kilku trudności projektowych i wykonawczych.

mgr inż. Maciej Rokiel Trudne detale balkonów i tarasów

Trudne detale balkonów i tarasów Trudne detale balkonów i tarasów

Zaprojektowanie detali balkonu czy tarasu może przysparzać pewnych trudności. Kolejnym z newralgicznych miejsc, wymagających szczególnej uwagi i decydujących o poprawności wykonania całej konstrukcji,...

Zaprojektowanie detali balkonu czy tarasu może przysparzać pewnych trudności. Kolejnym z newralgicznych miejsc, wymagających szczególnej uwagi i decydujących o poprawności wykonania całej konstrukcji, są dylatacje brzegowe.

mgr inż. Marek Gawron, mgr inż. Maciej Rokiel Tarasy i balkony - trudne detale

Tarasy i balkony - trudne detale Tarasy i balkony - trudne detale

Kolejnymi newralgicznymi miejscami tarasów i balkonów są okap i balustrada. Także i tu wymagana jest bardzo duża dokładność podczas projektowania oraz wykonywania detali.

Kolejnymi newralgicznymi miejscami tarasów i balkonów są okap i balustrada. Także i tu wymagana jest bardzo duża dokładność podczas projektowania oraz wykonywania detali.

Wybrane dla Ciebie

Wełna skalna jako materiał termoizolacyjny »

Wełna skalna jako materiał termoizolacyjny » Wełna skalna jako materiał termoizolacyjny »

Systemowa termomodernizacja to ciepło i estetyka »

Systemowa termomodernizacja to ciepło i estetyka » Systemowa termomodernizacja to ciepło i estetyka »

Płyty XPS – następca styropianu »

Płyty XPS – następca styropianu » Płyty XPS – następca styropianu »

Dach biosolarny - co to jest? »

Dach biosolarny - co to jest? » Dach biosolarny - co to jest? »

Zobacz, które płyty termoizolacyjne skutecznie ochronią dom przed zimnem »

Zobacz, które płyty termoizolacyjne skutecznie ochronią dom przed zimnem » Zobacz, które płyty termoizolacyjne skutecznie ochronią dom przed zimnem »

Budowanie szkieletowe czy modułowe? »

Budowanie szkieletowe czy modułowe? » Budowanie szkieletowe czy modułowe? »

Termomodernizacja z poszanowaniem wartości zabytków »

Termomodernizacja z poszanowaniem wartości zabytków » Termomodernizacja z poszanowaniem wartości zabytków »

Przekonaj się, jak inni izolują pianką poliuretanową »

Przekonaj się, jak inni izolują pianką poliuretanową » Przekonaj się, jak inni izolują pianką poliuretanową »

Papa dachowa, która oczyszcza powietrze »

Papa dachowa, która oczyszcza powietrze » Papa dachowa, która oczyszcza powietrze »

Podpowiadamy, jak wybrać system ociepleń

Podpowiadamy, jak wybrać system ociepleń Podpowiadamy, jak wybrać system ociepleń

Podpowiadamy, jak skutecznie przeprowadzić renowacje piwnicy »

Podpowiadamy, jak skutecznie przeprowadzić renowacje piwnicy » Podpowiadamy, jak skutecznie przeprowadzić renowacje piwnicy »

300% rozciągliwości membrany - TAK! »

300% rozciągliwości membrany - TAK! » 300% rozciągliwości membrany - TAK! »

Copyright © 2004-2019 Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Spółka komandytowa, nr KRS: 0000537655. Wszelkie prawa, w tym Autora, Wydawcy i Producenta bazy danych zastrzeżone. Jakiekolwiek dalsze rozpowszechnianie artykułów zabronione. Korzystanie z serwisu i zamieszczonych w nim utworów i danych wyłącznie na zasadach określonych w Zasadach korzystania z serwisu.
Portal Budowlany - Izolacje.com.pl

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim urządzeniu końcowym. W każdym momencie możesz dokonać zmiany ustawień przeglądarki dotyczących cookies. Nim Państwo zaczną korzystać z naszego serwisu prosimy o zapoznanie się z naszą polityką prywatności oraz Informacją o Cookies. Więcej szczegółów w naszej Polityce Prywatności oraz Informacji o Cookies. Administratorem Państwa danych osobowych jest Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Sp.K., nr KRS: 0000537655, z siedzibą w 04-112 Warszawa, ul. Karczewska 18, tel. +48 22 810-21-24, właściciel strony www.izolacje.com.pl. Twoje Dane Osobowe będą chronione zgodnie z wytycznymi polityki prywatności www.izolacje.com.pl oraz zgodnie z Rozporządzeniem Parlamentu Europejskiego i Rady (UE) 2016/679 z dnia 27 kwietnia 2016r i z Ustawą o ochronie danych osobowych Dz.U. 2018 poz. 1000 z dnia 10 maja 2018r.