Izolacje.com.pl

Tarasy nadziemne nad pomieszczeniami ogrzewanymi

Projektowanie tarasów | Tarasy nadziemne | Konstrukcja tarasu | Wymagania cieplno-wilgotnosciowe | Izolacja tarasu

Projektowanie tarasów nadziemnych nad pomieszczeniami ogrzewanymi | Designing and implementation of above-ground terraces over heated spaces

Projektowanie tarasów nadziemnych nad pomieszczeniami ogrzewanymi | Designing and implementation of above-ground terraces over heated spaces

Taras nadziemny jest elementem konstrukcji umieszczonym nad pomieszczeniem pełniącym jednocześnie funkcję dachu. Składa się z płyty nośnej, termoizolacji i hydroizolacji. Jego powierzchnia dostępna jest z przyległych pomieszczeń.

Zobacz także

Canada Rubber Polska Przeciekający taras i dach? Membrana poliuretanowa DROOF 250 rozwiąże problem

Przeciekający taras i dach? Membrana poliuretanowa DROOF 250 rozwiąże problem Przeciekający taras i dach? Membrana poliuretanowa DROOF 250 rozwiąże problem

Balkony, tarasy i dachy to powierzchnie najbardziej narażone na destrukcyjne działanie czynników atmosferycznych. Zewnętrzne elementy konstrukcyjne, wystawione na zmienne warunki pogodowe i środowiskowe,...

Balkony, tarasy i dachy to powierzchnie najbardziej narażone na destrukcyjne działanie czynników atmosferycznych. Zewnętrzne elementy konstrukcyjne, wystawione na zmienne warunki pogodowe i środowiskowe, mogą nie przetrwać nawet jednego sezonu, jeśli nie będą dobrze zabezpieczone. Warto zdać sobie sprawę, że jeśli konstrukcja została postawiona prawidłowo, to z pewnością wina za przeciekającą powierzchnię leży w niewłaściwym zabezpieczeniu jej przed wodą oraz wilgocią – bez względu na porę roku mamy...

Ecolak Membrana PWP 100 – szybki sposób na skuteczną hydroizolację dachu, tarasu, balkonu

Membrana PWP 100 – szybki sposób na skuteczną hydroizolację dachu, tarasu, balkonu Membrana PWP 100 – szybki sposób na skuteczną hydroizolację dachu, tarasu, balkonu

ECOLAK to producent wysokiej jakości membrany hydroizolacyjnej PWP 100.

ECOLAK to producent wysokiej jakości membrany hydroizolacyjnej PWP 100.

VISBUD-Projekt Sp. z o.o. Izolacja tarasów i balkonów - zrób to profesjonalnie

Izolacja tarasów i balkonów - zrób to profesjonalnie Izolacja tarasów i balkonów - zrób to profesjonalnie

Balkony, tarasy i loggie ze względu na działanie czynników klimatycznych narażone są na największe obciążenia. Ciągła zmienność temperatur, suchość i wilgotność powodują uszkodzenia w postaci na przykład...

Balkony, tarasy i loggie ze względu na działanie czynników klimatycznych narażone są na największe obciążenia. Ciągła zmienność temperatur, suchość i wilgotność powodują uszkodzenia w postaci na przykład rys, nieszczelności. Jednocześnie te elementy budynku stają się naturalnym przedłużeniem powierzchni mieszkalnej, dlatego należy je skutecznie i estetycznie zabezpieczać.

ABSTRAKT

W artykule przedstawiono zagadnienia związane z hydroizolacją tarasów. Opisano obciążenia oddziałujące na konstrukcję i ich skutki oraz poprawne rozwiązania pozwalające na trwałe i skuteczne zaprojektowanie i wykonanie tarasu. Podano rozwiązania technologiczno­‑materiałowe w odniesieniu do wariantów z uszczelnieniem zespolonym oraz drenażowym odprowadzeniem wody.

The article presents issues related to the waterproofing of terraces. It describes factors which influence these structural components, as well as appropriate solutions which allow for a durable and effective design and implementation of a terrace. It also specifies technological and material solutions with regard to the variant of under-tile sealing, as well as the drainage system option.

Punktem wyjścia do prawidłowego zaprojektowania tarasu jest precyzyjne określenie funkcji, jaką ma pełnić w przyszłości, analiza schematu konstrukcyjnego, określenie obciążeń i czynników destrukcyjnych, a następnie na tej podstawie przyjęcie poprawnych technicznie rozwiązań ­materiałowo-konstrukcyjnych. Drugim, równie ważnym etapem jest wykonawstwo zgodne ze sztuką budowlaną. Te dwa procesy muszą ze sobą współgrać.

Tymczasem obecnie obserwuje się tendencje minimalistyczne w realizacji tych konstrukcji przejawiające się różnymi formami, począwszy od niekompletnej analizy zjawisk zachodzących w projektowanych elementach, a skończywszy na braku zaprojektowania detali i szczegółów konstrukcyjnych. W konsekwencji konstrukcje te ulegają szybkiej destrukcji.

Wymagania stawiane konstrukcji tarasu

Przy projektowaniu tarasu nad pomieszczeniem ogrzewanym konieczne jest:

  •  zapewnienie przeniesienia obciążeń oddziałujących na konstrukcję,
  •  zabezpieczenie przed wnikaniem wód opadowych w konstrukcję tarasu i w pomieszczenie pod konstrukcją,
  •  zapewnienie bezpiecznego użytkowania tarasu,
  •  utrzymanie we wnętrzu pomieszczenia komfortu cieplnego,
  •  zapewnienie odpowiedniej izolacyjności akustycznej.

Przyjmuje się, że podstawowymi obciążeniami są obciążenie stałe (ciężar własny konstrukcji i warstw wykończeniowych) oraz zmienne (użytkowe). Takie podejście należy jednak uznać za błędne.

Rozwiązanie konstrukcyjne tarasu powinno uwzględniać wszystkie czynniki oddziałujące na połać (obciążenia stałe, zmienne, termiczne oraz obciążenie wilgocią).

Znacznie trudniejsze niż zapewnienie przejęcia obciążeń stałych i zmiennych jest zapewnienie odporności na różnice temperatur dochodzące do 60°C i więcej pomiędzy wierzchnią warstwą tarasu a spodem płyty nośnej znajdującej się zawsze w pomieszczeniu.

W upalne dni powierzchnia tarasu, zwłaszcza wykończona ciemnymi płytkami, potrafi nagrzać się do temperatury nawet 70°C i wyższej. Spód płyty znajduje się w temperaturze pokojowej. Do tego dochodzi obciążenie szokowe, np. w wyniku gwałtownej burzy latem.

W czasie ostrej zimy powierzchnia tarasu oziębia się do temperatury –20°C, a nawet –30°C, natomiast w pomieszczeniu pod tarasem panuje temperatura rzędu +25°C. Problemem jest więc nie tylko różnica temperatur między spodem tarasu a jego wierzchnią warstwą, lecz także różnica między temperaturą minimalną zimą a maksymalną latem działającą na konstrukcję (gradient rzędu prawie 100°C).

Bardzo niebezpieczne są zwłaszcza cykle zamarzania i odmarzania w okresie wczesnej i późnej zimy (temperatura ujemna w nocy i nad ranem, dodatnia w ciągu dnia). Dlatego wymagania, które musi spełniać konstrukcja tarasu, są większe, niż może się wydawać.

Pierwotną przyczyną procesów destrukcyjnych jest przyjęcie złego rozwiązania konstrukcyjno-materiałowego, wynikające z nieprzeanalizowania rzeczywistych warunków pracy elementu konstrukcyjnego. Przykład błędnego rozwiązania pokazano na RYS. 1.

Projektowanie tarasów ze względu na wymagania cieplno-wilgotnościowe

Rozwiązanie projektowe powinno zapewnić odpowiedni komfort cieplny użytkownikom pomieszczeń pod tarasem oraz zapobiegać rozwojowi grzybów pleśniowych na stropie i przyległych fragmentach ścian.

Za pomocą obliczeń należy dobrać grubość warstwy termoizolacji, tak by maksymalna wartość współczynnika przenikania ciepła Umaks., obliczana zgodnie z PN-EN ISO 6946:2008 [1] w ­odniesieniu do ­pomieszczeń o temp. t1>16°C, była nie większa niż 0,30 W/(m2·K) [2], a także wyeliminować możliwość kondensacji pary wodnej sprzyjającej rozwojowi grzybów pleśniowych oraz możliwość zawilgocenia wnętrza przegrody na skutek powstania płaszczyzny bądź strefy kondensacji [2, 3].

Zgodnie z wymaganiami Rozporządzenia Ministra Infrastruktury z dnia 12 marca 2002 r. w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie [2], należy tak zaprojektować i wykonać przegrodę, żeby na jej wewnętrznej powierzchni nie występowała kondensacja pary wodnej. Należy to zrobić zgodnie z normą PN-EN ISO 13788:2003 [3].

Obliczona wielkość fRsi dla przegrody i ich węzłów konstrukcyjnych (ze zwróceniem uwagi na sposób użytkowania pomieszczenia, jego przeznaczenie oraz zewnętrzne warunki cieplno­-wilgotnościowe) musi być nie mniejsza niż wymagana wartość krytyczna podana w normie PN­‑EN ISO 13788:2003 [3].

Jest to istotne, by wyeliminować rozwój grzybów pleśniowych, który najwcześniej uwidacznia się w obszarze występowania przynajmniej dwóch liniowych mostków termicznych (np. na styku ściana–strop, w narożniku pomieszczenia). Oznacza to, że istotny wpływ na rozwój grzybów może mieć izolacyjność cieplna ścian zewnętrznych pomieszczenia pod tarasem.

Dodatkowo we wnętrzu przegrody nie może występować narastające w kolejnych latach zawilgocenie na skutek kondensacji pary wodnej. Rozporządzenie [2] dopuszcza kondensację pary wodnej w okresie zimowym wewnątrz przegrody, o ile w okresie letnim możliwe będzie wyparowanie kondensatu i nie nastąpi na skutek tej kondensacji degradacja materiału przegrody.

Ten warunek należy sprawdzić zgodnie z normą PN-EN ISO 13788:2003 [3]. Wyeliminowanie kondensacji wgłębnej jest bardzo istotne, ponieważ parametry cieplne zależą od wilgotności materiału.

Dlatego taras (i w ogóle przegrody zewnętrzne) należy projektować tak, by ich zawilgocenie nie spowodowało takiego obniżenia izolacyjności cieplnej, że przestaną one spełniać stawiane im wymagania techniczne. Obliczenia współczynnika przenikania ciepła U, zgodnie z normą PN-EN ISO 6946:2008 [1], wykonuje się w odniesieniu do ustalonych warunków.

Opór dyfuzyjny warstwy (okładziny) wewnętrznej powinien być równy oporowi dyfuzyjnemu warstwy (okładziny) zewnętrznej lub być większy od niego. Jeżeli nie spełni się tego warunku, trzeba zastosować paroizolację pomiędzy warstwą wewnętrzną a termoizolacją.

Paroizolacja

Wybór rodzaju materiału stosowanego jako paroizolacja powinien wynikać bezpośrednio z obliczeń cieplno-wilgotnościowych.

Należy tak dobrać parametry paroizolacji (współczynnik oporu dyfuzyjnego m, zastępczy [porównawczy] opór dyfuzyjny SD), aby wyeliminować niebezpieczeństwo kondensacji wilgoci w warstwach tarasu.

Do wykonania paroizolacji stosuje się:

  • paroizolacyjne wyroby rolowe (papy, membrany, folie z tworzyw sztucznych), spełniające wymagania normy PN-EN 13970:2006 [4] lub PN-EN 13984:2006 [5]; doskonale sprawdzają się w tej roli papy z wkładką z folii aluminiowej;
  • roztwory i polimerowe masy bitumiczne o określonych parametrach m/SD (spełniają one swoją rolę w typowych sytuacjach).

Nie wolno natomiast stosować jako paroizolacji zwykłych folii z tworzyw sztucznych o gr. 0,2 mm.

Termoizolacja tarasów w układzie tradycyjnym

Do wykonania termoizolacji w układzie tradycyjnym (RYS. 2) najczęściej stosuje się:

  •  wełnę mineralną (MW) zgodną z normą PN-EN 13162:2009 [6] klasy min. CS (10) 30;
  •  polistyren ekspandowany (EPS), spełniający wymagania normy PN-EN 13163:2009 [7]; zastosowanie musi wynikać z normy PN­‑B-20132:2005 [8] (np. klasa EPS 250 lub wyższa);
  •  polistyren ekstrudowany (XPS) zgodny z normą PN-EN 13164:2010 [9].

Instrukcja ITB nr 344/2007 [10] zezwala na wykonywanie termoizolacji tarasów także z następujących materiałów:

  •  sztywnej pianki poliuretanowej (PUR), spełniającej wymagania normy PN-EN 13165:2010 [11] klasy min. CS (10/Y) 150,
  •  korka ekspandowanego (ICB) zgodnego z normą PN-EN 13170:2010 [12].

Termoizolacja tarasów w układzie odwróconym

Do wykonywania termoizolacji tarasów w układzie odwróconym (RYS. 3) należy stosować materiały odporne na stałe oddziaływanie wilgoci. Według normy DIN V 4108-10: 2004-06 [13] materiały termoizolacyjne stosowane w dachach/tarasach muszą spełniać następujące wymagania:

  •  wytrzymałość na ściskanie lub naprężenia ściskające przy odkształceniu 10% – min. 300 kPa,
  •  odkształcenie przy obciążeniu 40 kPa i temp. 70°C – maks. 5%,
  •  nasiąkliwość wodą po 300 cyklach zamarzania i odmarzania – maks. 2% (redukcja wytrzymałości mechanicznej nie może być przy tym większa niż 10% w porównaniu z próbkami suchymi),
  •  nasiąkliwość na skutek dyfuzji pary wodnej: płyty o gr. 50 mm – maks. 5%, płyty o gr. 100 mm – maks. 3%, płyty o gr. 200 mm – maks. 1,5%,
  •  nasiąkliwość przy długotrwałym zanurzeniu w wodzie – maks. 0,7%.

Wymagania te spełniają płyty z polistyrenu ekstrudowanego (XPS) [9].

Na dobór termoizolacji/hydroizolacji ma wpływ rodzaj warstwy użytkowej. Płyty warstwy użytkowej mogą być układane na systemowych podstawkach dystansowych ułożonych bezpośrednio na warstwie termoizolacji. Warstwy te muszą być odporne na obciążenie punktowe. Alternatywnie można stosować odpowiednie podkładki lub warstwy ochronne.

Projektowanie tarasów ze względu na obciążenie wilgocią

Tarasy zasadniczo projektuje się z powierzchniowym lub drenażowym odprowadzeniem wody [14]. Powierzchniowy sposób odprowadzenia wody wymaga wykonania uszczelnienia zespolonego (podpłytkowego), okładziny ceramicznej lub z kamieni naturalnych (RYS. 2).

Istotą tego rozwiązania jest niedopuszczenie do penetracji wilgoci i wody w głąb jastrychu. Drenażowy sposób odprowadzenia wody zakłada możliwość wnikania wody opadowej w warstwy wierzchnie (użytkowe) konstrukcji.

Polega na odprowadzeniu wody opadowej zarówno po powierzchni użytkowej (okładzinie ceramicznej, dekoracyjnych płytach chodnikowych, kostce betonowej), jak i przez specjalną warstwę drenującą (RYS. 3). Można wykorzystać układ tradycyjny, w którym termoizolacja chroniona jest przez hydroizolację, oraz odwrócony, w którym termoizolacja chroni hydroizolację.

Przykładowy układ warstw tarasu z powierzchniowym odprowadzeniem wody to:

  •  okładzina ceramiczna/okładzina z kamieni naturalnych,
  •  zaprawa klejąca,
  •  uszczelnienie (zespolone) podpłytkowe,
  •  jastrych dociskowy,
  •  warstwa rozdzielająca/hydroizolacja międzywarstwowa,
  •  termoizolacja,
  •  paroizolacja,
  •  warstwa spadkowa na warstwie sczepnej,
  • płyta nośna.

W układzie tradycyjnym tarasów z drenażowym odprowadzeniem wody układ warstw może być następujący:

  • wariant A:
    • płytki ceramiczne,
    • zaprawa klejąca,
    • jastrych drenujący (beton lub zaprawa wodoprzepuszczalna),
    • warstwa filtracyjna,
    • warstwa ochronna,
    • hydroizolacja,
    • termoizolacja,
    • paroizolacja,
    • warstwa spadkowa na warstwie sczepnej,
    • płyta nośna;
  • wariant B:
    • płyty betonowe, kamienne, brukowe itp.,
    • warstwa drenująca (kruszywo),
    • warstwa filtracyjna,
    • warstwa ochronna,
    • hydroizolacja,
    • termoizolacja,
    • paroizolacja,
    • warstwa spadkowa na warstwie sczepnej,
    • płyta nośna;
  • wariant C:
    • płyty betonowe, kamienne itp.,
    • podstawki dystansowe,
    • warstwa ochronna,
    • hydroizolacja,
    • termoizolacja,
    • paroizolacja,
    • warstwa spadkowa na warstwie sczepnej,
    • płyta nośna.

Natomiast w układzie odwróconym tarasów z drenażowym odprowadzeniem wody przykładowy układ warstw to:

  • płyty betonowe, kamienne, brukowe itp.,
  • warstwa drenująca (kruszywo)/podstawki dystansowe,
  • warstwa filtracyjna/ochronna,
  • termoizolacja,
  • hydroizolacja,
  • warstwa spadkowa na warstwie sczepnej,
  • płyta nośna.

Taras z powierzchniowym odprowadzeniem wody

W tej konstrukcji najbardziej narażona na oddziaływania termiczne jest warstwa użytkowa, tj. okładzina ceramiczna, elastyczna zaprawa uszczelniająca, klej do okładzin ceramicznych oraz warstwa jastrychu (elementy te należy rozpatrywać łącznie).

Warstwa użytkowa

W warstwie użytkowej na skutek zmian temperatury powstają naprężenia ścinające na styku okładzina ceramiczna–podłoże, wynikające z różnicy współczynników rozszerzalności termicznej okładziny ceramicznej i podłoża.

Naprężenia te muszą zostać przeniesione przez układ elastycznej zaprawy uszczelniającej i kleju do płytek, dlatego poprawne zaprojektowanie i wykonanie warstw użytkowych wymaga zastosowania materiałów o odpowiednich parametrach wytrzymałościowych oraz zdolnych przenieść odkształcenia wynikające z gradientów temperaturowych na powierzchni tarasu.

Ze względu na różne współczynniki rozszerzalności liniowej w odniesieniu do ­zdylatowanego odcinka o długości 3 m i różnicy temperatur 50°C (dobowa zmiana temperatury latem) zmiana długości wynosi od 1,5 do 1,95 mm, w odniesieniu zaś do okładzin ceramicznych w tych samych warunkach zmiana długości wynosi od 0,6 do 1,2 mm, co powoduje różnicę zmian długości okładziny ceramicznej i jastrychu wynoszącą od 0,3 mm do nawet 1,35 mm.

Jeśli weźmiemy pod uwagę roczny gradient temperaturowy (zima–lato) równy 100°C, okaże się, że różnica zmian długości 3-metrowego odcinka okładziny w stosunku do długości jastrychu wynosi od 0,6 do 2,7 mm. Odkształcenia te (nawet 0,45 mm/m.b. oraz 0,9 mm/m.b. przy zmianie temperatury odpowiednio o 50°C i 100°C) musi przejąć układ: uszczelnienie podpłytkowe–klej. Dlatego konieczne jest odpowiednie zdylatowanie powierzchni.

Wytyczne ITB [10, 15] wskazują maksymalny rozstaw dylatacji 1,5×1,5 m do 2×2 m, niemieckie wytyczne ZDB [14] podają natomiast rozstaw szczelin dylatacyjnych 2–5 m i uzależniają go od rodzaju płytek, elastyczności kleju oraz lokalizacji konstrukcji i obciążeń na nią działających.

Jednakże, zdaniem autora, przy rozstawie dylatacji większym niż 3 m konieczne jest sprawdzenie za pomocą obliczeń, czy materiał wypełniający dylatację jest w stanie przenieść zmiany jej szerokości (zmiana szerokości szczeliny dylatacyjnej nie może być większa niż zdolność zastosowanej masy do przenoszenia odkształceń).

Optymalnym kształtem zdylatowanej powierzchni jest kwadrat. W innych sytuacjach należy dążyć do tego, by proporcje między bokami pola były do siebie zbliżone, ale nie większe niż 2:1. Dylatować należy także każdą zmianę kierunku pola. Do wypełnień dylatacji stosuje się odporne na czynniki atmosferyczne masy na bazie silikonów, poliuretanów lub wielosiarczków (tiokoli).

Powinny one być klasyfikowane jako konstrukcyjne typu F według normy PN-EN ISO 11600:2004 [16]. Masa tiokolowa może alternatywnie spełniać wymogi normy PN-B-30151:1997 [17]. Szerokość dylatacji nie powinna być mniejsza niż 8 mm (zalecana wielkość to 10 mm). Dylatacje jastrychu dociskowego i okładziny ceramicznej muszą się pokrywać. Uszczelnieniem dylatacji jest taśma uszczelniająca wklejana w uszczelnienie podpłytkowe w miejscu przebiegu dylatacji.

Do klejenia okładzin ceramicznych należy stosować tzw. kleje elastyczne. Według wytycznych niemieckich [18] są to kleje zgodne z normą PN-EN 12004:2008 [19], klasyfikowane jako C2 (o przyczepności ≥1 MPa), których odkształcalność poprzeczną sklasyfikowano jako S2 (kleje o wysokiej odkształcalności) lub S1 (kleje odkształcalne). Wymagania stawiane klejom do okładzin podano w TABELI 1.

Do wykonywania okładziny ceramicznej należy stosować płytki grup BIa lub AIa, (o nasiąkliwości nieprzekraczającej 0,5%), ewentualnie grup BIb lub AIb (o nasiąkliwości nieprzekraczającej 3%), spełniające wymagania normy PN-EN 14411:2009 [20] i mrozoodporne według PN-EN ISO 10545-12:1999 [21].

W wypadku stosowania płytek szkliwionych odporność na ścieranie należy dobierać z uwzględnieniem wymagań i zaleceń normy PN-EN ISO 10545-7:2000 [22] (klasa PEI 4 lub PEI 5) oraz załącznika N do normy PN-EN 14411:2009 [20] (klasa IV lub V). Wymiary płytek nie powinny przekraczać 33×33 cm, szerokość spoin nie może być mniejsza niż 5 mm (niezależnie od wymiarów płytek). W wypadku maksymalnego rozmiaru płytek szerokość spoin powinna wynosić 7–8 mm. Zaleca się stosowanie płytek w jasnych kolorach.

Powierzchnia tarasu ze względu na ryzyko oddziaływania wody (opadów atmosferycznych) powinna być antypoślizgowa (dotyczy to szczególnie płytek ceramicznych). Wobec braku szczegółowych polskich zaleceń można korzystać z niemieckich wytycznych BGR 181 [23], które wymagają klasy antypoślizgowości R 11 albo R 10 i przestrzeni wypełnienia V4.

Bezwzględnie należy zapewnić możliwość usunięcia wody z powierzchni tarasu przez nadanie jej odpowiedniego spadku 1,5–2% (za minimalny spadek przyjmuje się 1%). Spadek połaci powinien być nadany przez odpowiednie skonstruowanie płyty nośnej lub wykonanie warstwy spadkowej.

Do spoinowania należy stosować przeznaczone do balkonów/tarasów cementowe zaprawy klasyfikowane jako CG 2 W A (o zmniejszonej absorpcji wody i wysokiej odporności na ścieranie) lub ewentualnie zaprawy klasy CG 2 W według normy PN-EN 13888:2010 [24]. W TABELI 2 podane zostały wymagania dotyczące zapraw do spoinowania.

Chociaż norma PN-EN 12002:2010 [25] przewiduje badanie odkształcalności poprzecznej zapraw spoinujących, to metodologia badania zupełnie nie odpowiada rzeczywistym warunkom pracy. Z tego powodu badań tych w praktyce się nie wykonuje. Należy więc polegać na renomie producenta. Szlam, taśmy uszczelniające, zaprawa klejąca, spoinująca oraz masa dylatacyjna powinny stanowić system.

Uszczelnienie podpłytkowe (zespolone)

Do wykonania uszczelnienia zespolonego stosuje się:

  • elastyczne szlamy (mikrozaprawy) uszczelniajace,
  • maty (odporny na cykle zamarzania i odmarzania systemowy materiał uszczelniający z tworzywa sztucznego do wykonywania hydroizolacji zespolonej; ma specjalny kształt pozwalający na kompensację naprężeń pochodzących od obciążeń termicznych) lub folie uszczelniające (rolowy, systemowy materiał hydroizolacyjny składający się z właściwego materiału uszczelniającego, zespolonego z włókniną techniczną; służy do wykonywania hydroizolacji zespolonej).

W TABELI 3 podano wymagania dotyczące szlamów według normy PN-EN 14891:2009 [26].

Zawsze muszą być spełnione wymagania podstawowe. Wymagania dodatkowe dotyczą tylko takich warunków użytkowania, w których poziom wymagań podstawowych jest podwyższony i są uzupełnieniem informacji o właściwościach wyrobów.

Podane wymagania trzeba zestawić z tymi, które dotyczą cementowych zapraw klejących. Już pobieżna analiza i porównanie parametrów ujawniają znaczne różnice w wymaganiach minimalnych. O trwałości decydują tu przede wszystkim przyczepność i elastyczność, zarówno izolacji wodochronnej, jak i kleju. Nie wolno zatem ich parametrów rozpatrywać osobno.

Norma PN-EN 14891:2009 [26] nie wprowadza zwiększonej przyczepności jako wymogu dodatkowego. W skrajnym wypadku, gdy przyczepność zastosowanej hydroizolacji jest niewiele większa od 0,5 MPa, może się okazać, że jest ona najsłabszym ogniwem układu. Jej elastyczność (podatność na odkształcenie poprzeczne) będzie większa niż elastyczność zaprawy klejącej.

Nie jest to jednak argument przemawiający za obniżeniem wymagań wobec przyczepności. Wprawdzie dla niektórych zastosowań przewidziano badanie zdolności mostkowania rys w temperaturach ujemnych, ale jest to badanie właściwości fakultatywnych.

Podsumowując, w wypadku materiałów wodochronnych do izolacji podpłytkowej stosowanych na zewnątrz minimalna przyczepność do podłoża powinna być porównywalna z ­przyczepnością klejów klasy C2, czyli wynosić 1 MPa. W praktyce przyczepność do podłoża szlamów zaczyna się od wartości 0,8–0,9 MPa. Spotyka się także materiały o deklarowanej przez producenta przyczepności na poziomie 1,5 MPa i więcej.

Jastrych dociskowy

Podłożem pod uszczelnienie zespolone jest jastrych dociskowy. Do jego wykonania (według wytycznych BEB [27]) można zastosować:

  • jastrych cementowy, spełniający wymagania normy PN-EN 13813:2003 [28] klasy min. C20 i gr. 5 cm,
  • beton klasy min. C20/C25 zgodny z normą PN-EN 206-1:2003 [29], gr. 5 cm.

Izolacja międzywarstwowa

Funkcją uszczelnienia podpłytkowego jest uniemożliwienie wnikania wody w jastrych dociskowy (por. RYS. 2). Ze względu na charakter obciążeń zaleca się wykonanie wodochronnej izolacji międzywarstwowej pomiędzy jastrychem a termoizolacją. Warstwa ta może być pominięta (wówczas zamiast niej należy wykonać warstwę rozdzielającą, np. z folii z tworzywa sztucznego). Funkcję głównej (i jedynej) izolacji przejmuje wtedy uszczelnienie podpłytkowe.

Do wykonywania izolacji międzywarstwowej stosuje się:

  • rolowe materiały bitumiczne (papy, membrany samoprzylepne) zgodne z normą PN-EN 13707:2006 [30] lub PN-EN 14967:2007 [31],
  • wyroby rolowe z tworzyw sztucznych i kauczuku (membrany), spełniające wymagania normy PN-EN 13956:2005 [32] lub PN-EN 14909:2007 [33].

Nie dopuszcza się stosowania do izolacji międzywarstwowej pap na osnowie tekturowej oraz pap niemodyfikowanych (niezależnie od osnowy). Grubość folii (membran) polietylenowych (PE) lub z polipropylenu nie może być mniejsza niż 2 mm. W odniesieniu do membran z polichlorku winylu (PVC) za minimalną, graniczną grubość przyjmuje się wartość 1 mm. Można stosować jedynie materiały, które na zakładach są zgrzewane, sklejane lub wulkanizowane.

Izolacja międzywarstwowa może być ułożona na warstwie spadkowej lub płycie konstrukcyjnej wykonanej ze spadkiem. Wówczas do jej wykonania można także stosować modyfikowane polimerami grubowarstwowe, bitumiczne masy uszczelniające (masy KMB [34–35]) z ewentualną wkładką zbrojącą o gr. warstwy po wyschnięciu min. 4 mm, maty i folie uszczelniające.

Wymagania dotyczące mas KMB można znaleźć w wytycznych niemieckich [34]. Wymagania stawiane matom i foliom uszczelniającym (wraz z klejem mocującym materiał do podłoża) podaje aprobata techniczna lub inny dokument odniesienia.

Izolacja zastosowana w tym miejscu musi pełnić jednocześnie funkcję paroizolacji i spełniać wymagania stawiane powłokom paroszczelnym. Nie dopuszcza się w takim wypadku stosowania tradycyjnego lepiku ani mas asfaltowych niezawierających w składzie modyfikatorów polimerowych.

Jako warstwę rozdzielającą ułożoną pomiędzy izolacją międzywarstwową a termoizolacją można stosować folie z tworzyw sztucznych, membrany kubełkowe itp.

Warstwa spadkowa

Jeżeli spadek nie jest skonstruowany za pomocą płyty, należy wykonać warstwę spadkową. Jest to zawsze jastrych zespolony na warstwie sczepnej. Zalecany spadek płaszczyzny płyty wynosi 1,5–2%, min. 1%.

Do wykonywania warstwy spadkowej można zastosować:

  • jastrych cementowy, spełniający wymagania normy PN-EN 13813:2003 [28] klasy min. C20,
  • zaprawę naprawczą, np. typu PCC, z systemów naprawy konstrukcji betonowych i żelbetowych klasyfikowaną przynajmniej jako R2 zgodnie z normą PN-EN 1504-3:2006 [36],
  • beton klasy min. C16/C20 zgodny z normą PN-EN 206-1:2003 [29].

Podane parametry wytrzymałościowe są wymaganiami minimalnymi i trzeba je zawsze porównać z wytrzymałością płyty konstrukcyjnej tarasu nadziemnego. Należy zwracać uwagę, żeby skurcz tradycyjnych zapraw cementowych lub betonów był jak najmniejszy, odporność na czynniki atmosferyczne natomiast – jak największa. Z tego powodu nie wolno stosować zapraw i betonów bez dodatków polimerowych, plastyfikatorów itp. Grubość tak wykonanej warstwy w najcieńszym miejscu nie może być mniejsza niż 3 cm. Grubość w najcieńszym miejscu warstwy spadkowej wykonanej z suchej zaprawy zarabianej wodą (jastrychu cementowego zgodnego z normą PN-EN 13813:2003 [28]) określana jest przez producenta (zalecana gr. to 1 cm). Grubość w najcieńszym miejscu warstwy spadkowej wykonanej z zapraw typu PCC zależy od wytycznych producenta.

Taras z drenażowym odprowadzeniem wody

Ogólne zasady projektowania tarasu z drenażowym odprowadzeniem wody nie różnią się od wytycznych dotyczących tarasów z uszczelnieniem zespolonym. Specyfika drenażowego rozwiązania wymaga jednak kilku uwag.

Jeżeli woda jest odprowadzana przez specjalne obróbki blacharskie z otworami, ich wysokość musi być ściśle skorelowana z grubością warstw konstrukcji (informacje te muszą być podane na rysunkach dokumentacji projektowej). Balustrady nie mogą przebijać powłoki wodochronnej.

W układzie odwróconym do wykonywania izolacji wodochronnej można stosować elastyczne szlamy mineralne. Masy KMB stosowane w takich rozwiązaniach muszą być wykonywane z wkładką zbrojącą, np. z siatki z włókna szklanego. Jako termoizolację należy stosować płyty z polistyrenu ekstrudowanego (XPS).

Dobór materiału i jego parametrów na warstwę drenującą (zwłaszcza zdolności odprowadzania wody) zależy od przyjętego rozwiązania konstrukcyjnego, w szczególności od warstwy użytkowej. Jeżeli warstwą użytkową jest okładzina ceramiczna lub z kamieni naturalnych, do wykonania warstwy drenującej stosuje się:

  • wodoprzepuszczalne jastrychy cementowe spełniające wymagania normy PN-EN 13813:2003 [28] klasy min. C20, o zalecanej gr. przynajmniej 5,5 cm. Taki jastrych wykonany jest zazwyczaj z systemowej zaprawy zarabianej na budowie czystą wodą, wodoprzepuszczalność nadaje mu specjalnie dobrany stos okruchowy;
  • wodoprzepuszczalne betony klasy min. C20/C25 według normy PN-EN 206-1:2003 [29], o zalecanej gr. przynajmniej 7 cm, wykonane z zastosowaniem kruszywa o grubym uziarnieniu (np. 16–22 mm).

Jeżeli warstwa użytkowa wykonana jest z płyt lub kostki układanych luzem na warstwie drenującej, do jej wykonania stosuje się kruszywo płukane (żwir) o uziarnieniu np. 8/16 mm lub 16/32 mm. Grubość warstwy i uziarnienie kruszywa określone są w dokumentacji technicznej.

Płyty warstwy użytkowej mogą być układane na systemowych podstawkach dystansowych ułożonych bezpośrednio na warstwie hydroizolacji. Warstwa hydroizolacyjna musi być odporna na obciążenie punktowe. Alternatywnie można stosować odpowiednie podkładki lub warstwy ochronne.

W zależności od przyjętego rozwiązania konstrukcyjnego jako warstwę ochronną/filtrującą można stosować geowłókniny zgodne z wymaganiami normy PN-EN 13252:2002 [37], a także membrany kubełkowe lub systemowe maty ochronne (ochronno-filtrujące). Membrana kubełkowa nie może być jednak układana na warstwie wodochronnej z masy KMB.

O ostatecznym układzie warstw konstrukcji tarasu decyduje dokumentacja techniczna. Podany układ warstw tarasu może (albo musi) zostać przez projektanta zmodyfikowany w sposób wynikający z konkretnego rozwiązania materiałowego (np. przez zastosowanie systemowej maty jako warstwy ochronnej i filtracyjnej czy wykonanie hydroizolacji z materiałów cechujących się dodatkowo właściwościami paroizolacyjnymi).

Należy stosować wyłącznie systemowe obróbki blacharskie z otworami zapewniające odprowadzenie wody z warstwy drenującej o wysokości dopasowanej do grubości warstw konstrukcji. Balustrada nie może w żadnym wypadku przebijać powłoki wodochronnej.

Podsumowanie

By konstrukcja tarasu nie ulegała szybkiej destrukcji, na etapie projektowania muszą być przyjęte poprawne technicznie rozwiązania materiałowo-konstrukcyjne, wybrane po dokładnym określeniu przyszłych funkcji tarasu, przeanalizowaniu schematu konstrukcyjnego oraz określeniu obciążeń, jakim będzie poddany, i czynników destrukcyjnych, które będą na niego oddziaływały. Równie ważne jest poprawne wykonawstwo. Dlatego dokumentacja techniczna musi zawierać szczegółowe rysunki pokazujące rozwiązania konstrukcyjno-materiałowe takich detali, jak: zaprojektowanie i wykonanie dylatacji, dojść do ściany budynku, drzwi tarasowych, obsadzenie i uszczelnienie obróbek blacharskich itp.

Literatura

  1. PN-EN ISO 6946:2008, „Komponenty budowlane i elementy budynku. Opór cieplny i współczynnik przenikania ciepła. Metoda obliczania”.
  2. Rozporządzenie Ministra Infrastruktury z dnia 12 marca 2002 r. w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie (DzU z 2002 r. nr 75, poz. 690, ze zm.).
  3. PN-EN ISO 13788:2003, „Cieplno-wilgotnościowe właściwości komponentów budowlanych i elementów budynku. Temperatura powierzchni wewnętrznej konieczna do uniknięcia krytycznej wilgotności powierzchni i kondensacji międzywarstwowej. Metody obliczania”.
  4. PN-EN 13970:2006, PN-EN 13970:2006/A1:2007, „Elastyczne wyroby wodochronne. Wyroby asfaltowe do regulacji przenikania pary wodnej. Definicje i właściwości”.
  5. PN-EN 13984:2006, PN-EN 13984:2006/A1:2007, „Elastyczne wyroby wodochronne. Wyroby z tworzyw sztucznych i kauczuku do regulacji przenikania pary wodnej. Definicje i właściwości”.
  6. PN-EN 13162:2009, „Wyroby do izolacji cieplnej w budownictwie. Wyroby z wełny mineralnej (MW) produkowane fabrycznie. Specyfikacja”.
  7. PN-EN 13163:2009, „Wyroby do izolacji cieplnej w budownictwie. Wyroby ze styropianu (EPS) produkowane fabrycznie. Specyfikacja”.
  8. PN-B-20132:2005, „Wyroby do izolacji cieplnej w budownictwie. Wyroby ze styropianu (EPS) produkowane fabrycznie. Zastosowania”.
  9. PN-EN 13164:2010, „Wyroby do izolacji cieplnej w budownictwie. Wyroby z polistyrenu ekstrudowanego (XPS) produkowane fabrycznie. Specyfikacja”.
  10. Instrukcja ITB nr 344/2007, „Zabezpieczenia wodochronne tarasów i balkonów”
  11. PN-EN 13165:2010, „Wyroby do izolacji cieplnej w budownictwie. Wyroby ze sztywnej pianki poliuretanowej (PUR) produkowane fabrycznie. Specyfikacja”.
  12. PN-EN 13170:2010, „Wyroby do izolacji cieplnej w budownictwie. Wyroby z korka ekspandowanego (ICB) produkowane fabrycznie. Specyfikacja”.
  13. DIN V 4108-10: 2004-06, „Wärmeschutz – und Energieeinsparung in Gebäuden – Anwendungsbezogene Anforderungen an Wärmedämmstoffe. Teil 10: Werkmäßig hergestellte Wärmedämmstoffe”.
  14. ZDB, „Außenbeläge. Belagkonstruktionen mit Fliesen und Platten außerhalb von Gebäuden”, VII 2005.
  15. „Warunki techniczne wykonania i odbioru robót. Część C: Zabezpieczenia i izolacje. Zeszyt 4: Izolacje wodochronne tarasów”, ITB, Warszawa 2004.
  16. PN-EN ISO 11600:2004, PN-EN ISO 11600:2004/A1:2011 (oryg.), „Konstrukcje budowlane. Wyroby do uszczelniania. Klasyfikacja i wymagania dotyczące kitów.
  17. PN-B-30151:1997, „Kit tiokolowy”.
  18. „Richtlinie für Flexmörtel. Definition und Einsatzbereiche”, Deutsche Bauchemie e.V., 2001.
  19. PN-EN 12004:2008, „Kleje do płytek. Wymagania, ocena zgodności, klasyfikacja i oznaczenie”.
  20. PN-EN 14411:2009, „Płytki ceramiczne. Definicje, klasyfikacja, właściwości i znakowanie”.
  21. PN-EN ISO 10545-12:1999, „Płytki i płyty ceramiczne. Oznaczanie mrozoodporności”.
  22. PN-EN ISO 10545-7:2000, „Płytki i płyty ceramiczne. Oznaczanie odporności na ścieranie powierzchni płytek szkliwionych”.
  23. BGR 181, „Fußböden in Arbeitsräumen und Arbeitsbereichen mit Rutschgefahr”. Hauptverband der gewerblichen Berufsgenossenschaften, X 2003.
  24. PN-EN 13888:2010, „Zaprawy do spoinowania płytek. Wymagania, ocena zgodności, klasyfikacja i oznaczenie”.
  25. PN-EN 12002:2010, „Kleje do płytek. Oznaczanie odkształcenia poprzecznego cementowych klejów i zapraw do spoinowania”.
  26. PN-EN 14891:2009, PN-EN 14891:2009/AC:2009, „Wyroby nieprzepuszczające wody stosowane w postaci ciekłej pod płytki ceramiczne mocowane klejami. Wymagania, metody badań, ocena zgodności, klasyfikacja i oznaczenie”.
  27. BEB Merkblatt, „Hinweise für Estriche im Freien, Zement-Estriche auf Balkonen und Terrassen”, VII 1999.
  28. PN-EN 13813:2003, „Podkłady podłogowe oraz materiały do ich wykonania. Materiały. Właściwości i wymagania”.
  29. PN-EN 206-1:2003, PN-EN 206-1:2003/Ap1:2004, PN-EN 206-1:2003/A1:2005,
  30. PN-EN 206-1:2003/A2:2006, „Beton. Część 1: Wymagania, właściwości, produkcja i zgodność”.
  31. PN-EN 13707:2006 + A2:2009, „Elastyczne wyroby wodochronne. Wyroby asfaltowe na osnowie do pokryć dachowych. Definicje i właściwości”.
  32. PN-EN 14967:2007, „Elastyczne wyroby wodochronne. Wyroby asfaltowe do poziomej izolacji przeciwwilgociowej. Definicje i właściwości”.
  33. PN-EN 13956:2005, „Elastyczne wyroby wodochronne. Wyroby z tworzyw sztucznych i kauczuku do pokryć dachowych. Definicje i właściwości”.
  34. PN-EN 14909:2007, „Elastyczne wyroby wodochronne. Wyroby z tworzyw sztucznych i kauczuku do poziomej izolacji przeciwwilgociowej. Definicje i właściwości”.
  35. „Richtlinie für die Planung und Ausführung von Abdichtung von Bauteilen mit kunststoffmodifizierten Bitumendickbeschichtungen (KMB) – erdberührte Bauteile”, Deutsche Bauchemie e.V., 2001.
  36. „Richtlinie für die Planung und Ausführung von Abdichtung mit kunststoffmodifizierten Bitumendickbeschichtungen (KMB) – erdberührte Bauteile, Deutsche Bauchemie e.V., 2010.
  37. PN-EN 1504-3:2006, „Wyroby i systemy do ochrony i napraw konstrukcji betonowych. Definicje, wymagania, sterowanie jakością i ocena zgodności. Część 3: Naprawy konstrukcyjne i niekonstrukcyjne”.
  38. PN-EN 13252:2002, PN-EN 13252:2002/A1:2006, „Geotekstylia i wyroby pokrewne. Właściwości wymagane w odniesieniu do wyrobów stosowanych w systemach drenażowych”.
  39. PN-EN 12057:2005, „Wyroby z kamienia naturalnego. Płyty modułowe. Wymagania”.
  40. PN-EN 12058:2005, „Wyroby z kamienia naturalnego. Płyty posadzkowe i schodowe. Wymagania”.
  41. PN-EN 1341:2003, „Płyty z kamienia naturalnego do zewnętrznych nawierzchni drogowych. Wymagania i metody badań”.
  42. PN-EN 12371:2010 (oryg.), „Metody badań kamienia naturalnego. Oznaczenie mrozoodporności”.
  43. PN-EN 1338:2005, PN-EN 1338:2005/AC:2007, „Betonowe kostki brukowe. Wymagania i metody badań”.
  44. PN-EN 1339:2005, PN-EN 1339:2005/AC:2007, „Betonowe płyty brukowe. Wymagania i metody badań”.
  45. PN-EN 1342:2003, „Kostka brukowa z kamienia naturalnego do zewnętrznych nawierzchni drogowych. Wymagania i metody badań”.
  46. „Richtlinie für die Planung und Ausführung von Abdichtung erdberührter Bauteile mit flexiblen Dichtungsschlämmen”, Deutsche Bauchemie e.V., 2006.
  47. „Specyfikacje techniczne wykonania i odbioru robót budowlanych. Okładziny ceramiczne i hydroizolacje zespolone tarasów nad pomieszczeniami ogrzewanymi”, OWEOB Promocja Sp. z o.o., Warszawa 2008.
  48. „Specyfikacje techniczne wykonania i odbioru robót budowlanych. Warstwy użytkowe – okładziny i hydroizolacja tarasów nad pomieszczeniami ogrzewanymi z drenażowym odprowadzeniem wody”, OWEOB Promocja Sp. z o.o., Warszawa 2008.
  49. „Warunki techniczne wykonania i odbioru robót budowlanych. Część B: Roboty wykończeniowe. Zeszyt 5: Okładziny i posadzki z płytek ceramicznych”, ITB, Warszawa 2006.
  50. M. Rokiel, „Poradnik. Hydroizolacje w budownictwie. Wybrane zagadnienia w praktyce”, wyd. II, DW Medium, Warszawa 2009.
  51. M. Rokiel, „Tarasy i balkony. Projektowanie i warunki techniczne wykonania i odbioru robót”, DW Medium, Warszawa 2012.
  52. Materiały firmy Renoplast.
  53. Materiały firmy Sopro.
  54. Materiały firmy Saint-Gobain Construction Products Polska, Marka Weber Deitermann.
  55. Materiały firmy Schomburg.
  56. Materiały firmy Atlas.

Chcesz być na bieżąco? Zapisz się do naszego newslettera!

Galeria zdjęć

Tytuł
przejdź do galerii

Komentarze

Powiązane

dr inż. Agata Stolarska, mgr inż. Jarosław Strzałkowski Wykorzystanie programu CFD do oceny mostka termicznego w miejscu połączenia ściany z podłogą na gruncie

Wykorzystanie programu CFD do oceny mostka termicznego w miejscu połączenia ściany z podłogą na gruncie Wykorzystanie programu CFD do oceny mostka termicznego w miejscu połączenia ściany z podłogą na gruncie

Obliczenia cieplno-wilgotnościowe mostków termicznych wykonane z wykorzystaniem symulacji w odpowiednich programach mogą być bardzo przydatne w trakcie doboru właściwego rozwiązania materiałowo-konstrukcyjnego....

Obliczenia cieplno-wilgotnościowe mostków termicznych wykonane z wykorzystaniem symulacji w odpowiednich programach mogą być bardzo przydatne w trakcie doboru właściwego rozwiązania materiałowo-konstrukcyjnego. Pozwala to na wyeliminowanie błędów na etapie projektowania budynku oraz służy zminimalizowaniu wpływu mostków termicznych na straty ciepła z budynku.

mgr inż. Jerzy Żurawski Projektowanie budynków biurowych z wykorzystaniem nowych materiałów izolacyjnych

Projektowanie budynków biurowych z wykorzystaniem nowych materiałów izolacyjnych Projektowanie budynków biurowych z wykorzystaniem nowych materiałów izolacyjnych

Dostępność atrakcyjnych działek pod budowę budynków biurowych stopniowo się zmniejsza. Z tego powodu każde rozwiązanie materiałowe umożliwiające zwiększenie powierzchni użytkowej dzięki zastosowaniu izolacji...

Dostępność atrakcyjnych działek pod budowę budynków biurowych stopniowo się zmniejsza. Z tego powodu każde rozwiązanie materiałowe umożliwiające zwiększenie powierzchni użytkowej dzięki zastosowaniu izolacji o lepszych parametrach powinno być wzięte pod uwagę i dokładnie przeanalizowane pod względem kosztów oraz korzyści.

mgr inż. Krzysztof Patoka Komin - słaby punkt dachu

Komin - słaby punkt dachu Komin - słaby punkt dachu

Kominy są obecnie najczęstszą przyczyną przeciekania dachów. Nic dziwnego, skoro ich wykonawcy popełniają wciąż te same błędy i stosują nieodpowiednie techniki.

Kominy są obecnie najczęstszą przyczyną przeciekania dachów. Nic dziwnego, skoro ich wykonawcy popełniają wciąż te same błędy i stosują nieodpowiednie techniki.

dr inż. Krzysztof Pawłowski, prof. uczelni Ściany zewnętrzne – kryteria wyboru rozwiązań materiałowych

Ściany zewnętrzne – kryteria wyboru rozwiązań materiałowych Ściany zewnętrzne – kryteria wyboru rozwiązań materiałowych

Ściana zewnętrzna stanowi sztuczną przegrodę między otoczeniem o zmiennej temperaturze i wilgotności a wnętrzem budynku – o określonych parametrach. Aby zapewniła utrzymanie w pomieszczeniu właściwych...

Ściana zewnętrzna stanowi sztuczną przegrodę między otoczeniem o zmiennej temperaturze i wilgotności a wnętrzem budynku – o określonych parametrach. Aby zapewniła utrzymanie w pomieszczeniu właściwych warunków mikroklimatu wewnętrznego, zgodnych z nowymi wymaganiami cieplno-wilgotnościowymi, do jej wykonania muszą być zastosowane odpowiednie rozwiązania konstrukcyjno­-materiałowe.

dr inż. arch. Karolina Kurtz-Orecka Projektowanie budynków niskoenergetycznych

Projektowanie budynków niskoenergetycznych Projektowanie budynków niskoenergetycznych

Zapotrzebowanie na energię w budynku, odzwierciedlone w rachunkach za ogrzewanie, jest bezpośrednio związane z funkcją budynku i stanem jego użytkowania.

Zapotrzebowanie na energię w budynku, odzwierciedlone w rachunkach za ogrzewanie, jest bezpośrednio związane z funkcją budynku i stanem jego użytkowania.

mgr inż. Maciej Rokiel Konstrukcja balkonów i tarasów – typowe błędy

Konstrukcja balkonów i tarasów – typowe błędy Konstrukcja balkonów i tarasów – typowe błędy

Zagadnień termoizolacyjnych nie można traktować w oderwaniu od układu hydroizolacji. Świadczą o tym najczęstsze problemy, z którymi borykają się użytkownicy tarasów lub balkonów.

Zagadnień termoizolacyjnych nie można traktować w oderwaniu od układu hydroizolacji. Świadczą o tym najczęstsze problemy, z którymi borykają się użytkownicy tarasów lub balkonów.

dr inż. Krzysztof Pawłowski, prof. uczelni, mgr inż. Monika Dybowska-Józefiak, mgr inż. Krzysztof Józefiak Minimalizacja wpływu mostków cieplnych na izolacyjność przegrody

Minimalizacja wpływu mostków cieplnych na izolacyjność przegrody Minimalizacja wpływu mostków cieplnych na izolacyjność przegrody

Podczas projektowania przegrody zewnętrznej należy zminimalizować negatywny wpływ mostków cieplnych na jej izolacyjność. Konieczna jest do tego znajomość wartości parametrów cieplnych węzłów.

Podczas projektowania przegrody zewnętrznej należy zminimalizować negatywny wpływ mostków cieplnych na jej izolacyjność. Konieczna jest do tego znajomość wartości parametrów cieplnych węzłów.

dr inż. Krzysztof Pawłowski, prof. uczelni Projektowanie podłóg w świetle nowych wymagań cieplnych

Projektowanie podłóg w świetle nowych wymagań cieplnych Projektowanie podłóg w świetle nowych wymagań cieplnych

Projektowanie podłóg na gruncie, stropach międzykondygnacyjnych, nad pomieszczeniami nieogrzewanymi oraz stropach kondygnacji podziemnych powinno nie tylko zapewnić spełnienie wymagań konstrukcyjnych i...

Projektowanie podłóg na gruncie, stropach międzykondygnacyjnych, nad pomieszczeniami nieogrzewanymi oraz stropach kondygnacji podziemnych powinno nie tylko zapewnić spełnienie wymagań konstrukcyjnych i akustycznych, lecz także cieplno­‑wilgotnościowych.

mgr inż. Maciej Rokiel Konstrukcja tarasów – zagadnienia cieplno-wilgotnościowe

Konstrukcja tarasów – zagadnienia cieplno-wilgotnościowe Konstrukcja tarasów – zagadnienia cieplno-wilgotnościowe

Taras jest elementem bardziej skomplikowanym niż balkon. Stanowi rodzaj dachu nad pomieszczeniem, musi zatem cechować się odpowiednią ciepłochronnością. Jednak nie tylko.

Taras jest elementem bardziej skomplikowanym niż balkon. Stanowi rodzaj dachu nad pomieszczeniem, musi zatem cechować się odpowiednią ciepłochronnością. Jednak nie tylko.

Waldemar Joniec Kamery termowizyjne do badania stanu izolacji

Kamery termowizyjne do badania stanu izolacji Kamery termowizyjne do badania stanu izolacji

Kamery termowizyjne stosowane w branży budowlanej, ciepłowniczej i instalacyjnej pozwalają skontrolować stan izolacji budynków, rurociągów, wymienników ciepła, instalacji, a nawet ocenić montaż kolektorów...

Kamery termowizyjne stosowane w branży budowlanej, ciepłowniczej i instalacyjnej pozwalają skontrolować stan izolacji budynków, rurociągów, wymienników ciepła, instalacji, a nawet ocenić montaż kolektorów słonecznych.

dr inż. Magdalena Grudzińska Balkony o różnej konstrukcji

Balkony o różnej konstrukcji Balkony o różnej konstrukcji

Konstrukcja balkonów może być bardzo różna – najczęściej spotykane są balkony wspornikowe, nieco rzadziej balkony na niezależnej konstrukcji wsporczej, oddylatowane od budynku. Sposób powiązania balkonu...

Konstrukcja balkonów może być bardzo różna – najczęściej spotykane są balkony wspornikowe, nieco rzadziej balkony na niezależnej konstrukcji wsporczej, oddylatowane od budynku. Sposób powiązania balkonu z budynkiem ma zasadnicze znaczenie dla przepływu ciepła i możliwości kondensacji wilgoci na powierzchni przegród budowlanych.

mgr inż. Maria Dreger Izolacje z pianki poliuretanowej a wyroby z wełny mineralnej

Izolacje z pianki poliuretanowej a wyroby z wełny mineralnej

W zapewnieniu ochrony cieplnej budynku i ograniczeniu strat ciepła przez przegrodę budowlaną nie chodzi o chwilowy wynik opisany wartością współczynnika przewodzenia ciepła λ, w dodatku deklarowaną, a...

W zapewnieniu ochrony cieplnej budynku i ograniczeniu strat ciepła przez przegrodę budowlaną nie chodzi o chwilowy wynik opisany wartością współczynnika przewodzenia ciepła λ, w dodatku deklarowaną, a nie osiąganą w rzeczywistych warunkach. Właściwości materiałów izolacyjnych należy oceniać kompleksowo i rzetelnie.

mgr inż. Paweł Gaciek Metody docieplania budynków na starych systemach ociepleń

Metody docieplania budynków na starych systemach ociepleń Metody docieplania budynków na starych systemach ociepleń

Ponowne docieplanie ocieplonych wcześniej ścian zewnętrznych jest coraz częściej braną pod uwagę metodą przy planowaniu tzw. renowacji. Wynika to z potrzeby naprawy usterek ocieplenia istniejącego albo...

Ponowne docieplanie ocieplonych wcześniej ścian zewnętrznych jest coraz częściej braną pod uwagę metodą przy planowaniu tzw. renowacji. Wynika to z potrzeby naprawy usterek ocieplenia istniejącego albo zwiększenia jego izolacyjności.

mgr inż. Krzysztof Patoka Jak projektować i wykonywać gzymsy?

Jak projektować i wykonywać gzymsy? Jak projektować i wykonywać gzymsy?

Cechą każdej architektury, również polskiej, jest moda na różne formy architektoniczne. Obecnie przemija w naszym kraju moda na dworki z wejściem ozdobionym kolumnami, pojawia się natomiast nowa, bardziej...

Cechą każdej architektury, również polskiej, jest moda na różne formy architektoniczne. Obecnie przemija w naszym kraju moda na dworki z wejściem ozdobionym kolumnami, pojawia się natomiast nowa, bardziej pałacowa – na dachy z gzymsami.

mgr inż. Jacek Raźny Poraver – nowe spojrzenie na szkło

Poraver – nowe spojrzenie na szkło Poraver – nowe spojrzenie na szkło

Ponad 7 tysięcy lat temu człowiek wynalazł szkło. Od tego czasu fascynuje ono różnorodnością formy i zastosowania. Może być formowane w różne kształty, cięte, mielone, topione, może mieć zawarte w swym...

Ponad 7 tysięcy lat temu człowiek wynalazł szkło. Od tego czasu fascynuje ono różnorodnością formy i zastosowania. Może być formowane w różne kształty, cięte, mielone, topione, może mieć zawarte w swym wnętrzu różnego rodzaju substancje i materiały. Nawet rozbite czy zmiażdżone pozostaje szkłem – użytecznym na wiele sposobów, odpornym, superczystym produktem o niezliczonej liczbie znakomitych własności.

Jacek Sawicki Uciążliwa pleśń na ścianie - skąd się bierze i jak ją zwalczać?

Uciążliwa pleśń na ścianie - skąd się bierze i jak ją zwalczać? Uciążliwa pleśń na ścianie - skąd się bierze i jak ją zwalczać?

Na obecność pleśni na ścianach wpływa wiele czynników, które tworzą sprzyjający klimat dla jej rozwoju. Pleśń najlepiej rozwija się w środowisku o podwyższonym zawilgoceniu i umiarkowanych temperaturach....

Na obecność pleśni na ścianach wpływa wiele czynników, które tworzą sprzyjający klimat dla jej rozwoju. Pleśń najlepiej rozwija się w środowisku o podwyższonym zawilgoceniu i umiarkowanych temperaturach. Na ścianach wewnątrz pomieszczeń są to miejsca występowania tzw. mostków termicznych, spowodowane brakiem docieplenia muru, gdzie na styku powierzchni ściany z otoczeniem występuje zjawisko skraplania się wilgoci.

dr inż. Krzysztof Pawłowski, prof. uczelni Procedury uwzględniania mostków termicznych w ocenie charakterystyki energetycznej budynków

Procedury uwzględniania mostków termicznych w ocenie charakterystyki energetycznej budynków

Występowanie mostków termicznych jest często niedostrzegane przez projektantów, architektów i konstruktorów. Tymczasem jest to zjawisko, które w istotny sposób wpływa na parametry cieplne budynku, a tym...

Występowanie mostków termicznych jest często niedostrzegane przez projektantów, architektów i konstruktorów. Tymczasem jest to zjawisko, które w istotny sposób wpływa na parametry cieplne budynku, a tym samym na jego charakterystykę energetyczną.

Jacek Sawicki Bezspoinowe izolacje wodochronne tarasów

Bezspoinowe izolacje wodochronne tarasów Bezspoinowe izolacje wodochronne tarasów

Hydroizolacja tarasów ze względu na specyfikę wynikającą z zakresu obciążeń wodą musi spełniać wymagania stawiane izolacjom wodochronnym. Wiąże się z tym konieczność stosowania dopuszczonych do tego celu...

Hydroizolacja tarasów ze względu na specyfikę wynikającą z zakresu obciążeń wodą musi spełniać wymagania stawiane izolacjom wodochronnym. Wiąże się z tym konieczność stosowania dopuszczonych do tego celu materiałów i technologii.

mgr inż. Maciej Rokiel Taras z drenażowym odprowadzeniem wody

Taras z drenażowym odprowadzeniem wody Taras z drenażowym odprowadzeniem wody

Tarasy są chętnie stosowane w apartamentach mieszkalnych, obiektach użyteczności publicznej (kawiarniach, restauracjach), a także w małych domkach jednorodzinnych. Nic w tym dziwnego – ładnie wykonany...

Tarasy są chętnie stosowane w apartamentach mieszkalnych, obiektach użyteczności publicznej (kawiarniach, restauracjach), a także w małych domkach jednorodzinnych. Nic w tym dziwnego – ładnie wykonany taras może znacznie poprawić atrakcyjność budynku, a w przypadku restauracji, kawiarni itp. może być elementem przyciągającym klientów. Paradoksem jest natomiast, że ta tak chętnie stosowana i atrakcyjna architektonicznie część konstrukcji budynku jest jednocześnie jedną z najtrudniejszych do wykonania.

dr inż. Czesław Byrdy Wpływ doboru materiałów i rozwiązań dylatacji na trwałość i szczelność tarasów

Wpływ doboru materiałów i rozwiązań dylatacji na trwałość i szczelność tarasów Wpływ doboru materiałów i rozwiązań dylatacji na trwałość i szczelność tarasów

Taras jest to dach płaski z warstwą wierzchnią przeznaczoną do ruchu pieszego lub ruchu pojazdów. Tarasy nad pomieszczeniami mieszkalnymi odgrywają dodatkową rolę – chronią wnętrza przed opadami atmosferycznymi...

Taras jest to dach płaski z warstwą wierzchnią przeznaczoną do ruchu pieszego lub ruchu pojazdów. Tarasy nad pomieszczeniami mieszkalnymi odgrywają dodatkową rolę – chronią wnętrza przed opadami atmosferycznymi oraz zmianami temperatury. W związku z tymi funkcjami warstwy nawierzchniowe tarasów powinny być odporne na wpływy mechaniczne i klimatyczne.

mgr inż. Maciej Rokiel Hydroizolacje balkonów i tarasów – przypadki szczególne

Hydroizolacje balkonów i tarasów – przypadki szczególne Hydroizolacje balkonów i tarasów – przypadki szczególne

Nierzadkie są rozwiązania architektoniczne balkonów i tarasów – konstrukcji i tak wystarczająco skomplikowanych – które trzeba nazwać szczególnymi. Charakteryzują się one tym, że pewne rozwiązania zastosowano...

Nierzadkie są rozwiązania architektoniczne balkonów i tarasów – konstrukcji i tak wystarczająco skomplikowanych – które trzeba nazwać szczególnymi. Charakteryzują się one tym, że pewne rozwiązania zastosowano w nich bezmyślnie, co jest przyczyną wciąż powtarzających się napraw tych konstrukcji.

Magdalena Wrona Warunki szczelności tarasu

Warunki szczelności tarasu Warunki szczelności tarasu

Tarasy wpisały się na stałe w obraz współczesnych domów i mieszkań. Są miejscem idealnym do wypoczynku i swoistym łącznikiem wnętrza z otaczającym środowiskiem. Niestety, błędy popełniane podczas wykonywania...

Tarasy wpisały się na stałe w obraz współczesnych domów i mieszkań. Są miejscem idealnym do wypoczynku i swoistym łącznikiem wnętrza z otaczającym środowiskiem. Niestety, błędy popełniane podczas wykonywania warstw tarasowych bywają przyczyną usterek ograniczających funkcje użytkowe zarówno tarasu, jak i pomieszczeń znajdujących się pod nim. Do najczęściej spotykanych uszkodzeń należą przecieki wód opadowych, przemarzanie i zawilgocenie stropów oraz uszkodzenia posadzek. U podstaw większości z nich...

mgr inż. Maciej Rokiel Okładziny z kamieni naturalnych na balkonach i tarasach

Okładziny z kamieni naturalnych na balkonach i tarasach Okładziny z kamieni naturalnych na balkonach i tarasach

Balkon to element architektoniczny w postaci płyty wysuniętej poza lico ściany, połączony drzwiami z pomieszczeniem za ścianą oraz zabezpieczony balustradą. Loggia zaś to wnęka w elewacji budynku powstała...

Balkon to element architektoniczny w postaci płyty wysuniętej poza lico ściany, połączony drzwiami z pomieszczeniem za ścianą oraz zabezpieczony balustradą. Loggia zaś to wnęka w elewacji budynku powstała na skutek cofnięcia ściany (ścian), zabezpieczona od zewnątrz balustradą i dostępna z jednego lub kilku pomieszczeń. Istotą tarasu nadziemnego jest natomiast obecność pod płytą pomieszczenia użytkowego. Taras nadziemny zatem to nic innego, jak rodzaj stropodachu nad częścią budynku, zaprojektowaną...

Małgorzata Kłapkowska Izolacja tarasu

Izolacja tarasu Izolacja tarasu

Problemów związanych z przeciekaniem tarasów można uniknąć, jeśli w czasie budowy prace zostaną wykonane wyjątkowo starannie, a zastosowane materiały i technologia będą dopasowane do warunków użytkowania...

Problemów związanych z przeciekaniem tarasów można uniknąć, jeśli w czasie budowy prace zostaną wykonane wyjątkowo starannie, a zastosowane materiały i technologia będą dopasowane do warunków użytkowania i konstrukcji tarasu.

Najnowsze produkty i technologie

CFI World S.A. Robakowo CFI WORLD – najwyższej jakości surowce przemysłowe

CFI WORLD – najwyższej jakości surowce przemysłowe CFI WORLD – najwyższej jakości surowce przemysłowe

CFI World SA to firma z całkowicie polskim kapitałem, działająca na rynku surowców chemicznych od 2009 r. Jako dystrybutor oferuje produkty przeznaczone dla różnych gałęzi przemysłu, w tym między innymi...

CFI World SA to firma z całkowicie polskim kapitałem, działająca na rynku surowców chemicznych od 2009 r. Jako dystrybutor oferuje produkty przeznaczone dla różnych gałęzi przemysłu, w tym między innymi branży budowlanej, kosmetycznej, farmaceutycznej czy spożywczej. Współpracuje z wiodącymi producentami, w tym Lotte Fine Chemical czy LG Chem.

Bricoman Jak wyrównać ściany?

Jak wyrównać ściany? Jak wyrównać ściany?

Ściany odbiegające od pionu, nieestetyczne narożniki, wybrzuszenia czy ubytki w dużym stopniu wpływają na estetykę wnętrz. Utrudniają wykończenie pomieszczeń za pomocą płytek i bardzo brzydko prezentują...

Ściany odbiegające od pionu, nieestetyczne narożniki, wybrzuszenia czy ubytki w dużym stopniu wpływają na estetykę wnętrz. Utrudniają wykończenie pomieszczeń za pomocą płytek i bardzo brzydko prezentują się po pomalowaniu. Żeby mieszkanie było ładne i zadbane oraz żeby wyglądało elegancko, warto wyrównać ściany. Nie zawsze wymaga to dużych nakładów finansowych oraz przeprowadzenia czasochłonnych prac.

Fabryka Styropianu ARBET Wielka płyta – czy ocieplanie jej to ważne zagadnienie?

Wielka płyta – czy ocieplanie jej to ważne zagadnienie? Wielka płyta – czy ocieplanie jej to ważne zagadnienie?

Domy z wielkiej płyty wyróżniają się w krajobrazie Polski. Najczęściej budowano z nich wieżowce, mające około 10 pięter. Przez wiele lat w kontekście ich użytkowania mówiono o aspekcie estetycznym. Dziś...

Domy z wielkiej płyty wyróżniają się w krajobrazie Polski. Najczęściej budowano z nich wieżowce, mające około 10 pięter. Przez wiele lat w kontekście ich użytkowania mówiono o aspekcie estetycznym. Dziś jednak porusza się ważne kwestie dotyczące kwestii użytkowych, w tym – ich odpowiedniej izolacji.

KOESTER Polska Sp. z o.o. Köster – Specjaliści od hydroizolacji

Köster – Specjaliści od hydroizolacji Köster – Specjaliści od hydroizolacji

KÖSTER BAUCHEMIE AG specjalizuje się w produkcji i dystrybucji materiałów do hydroizolacji i ochrony budowli oraz systemów uszczelnień, a ich produkty chronią budowle na całym świecie. Zarówno podczas...

KÖSTER BAUCHEMIE AG specjalizuje się w produkcji i dystrybucji materiałów do hydroizolacji i ochrony budowli oraz systemów uszczelnień, a ich produkty chronią budowle na całym świecie. Zarówno podczas renowacji budynków historycznych, jak i w trakcie budowy nowych obiektów – proponuje skuteczne rozwiązanie każdego problemu związanego ze szkodliwym oddziaływaniem wody i wilgoci.

TRUTEK FASTENERS POLSKA Wzmacnianie bydynków wielkopłytowych w systemie TRUTEK TCM

Wzmacnianie bydynków wielkopłytowych w systemie TRUTEK TCM Wzmacnianie bydynków wielkopłytowych w systemie TRUTEK TCM

TRUTEK FASTENERS POLSKA jest firmą specjalizującą się w produkcji najwyższej jakości systemów zamocowań przeznaczonych do budownictwa lądowego, drogowego i przemysłu. W ofercie firmy znajdują się wyroby...

TRUTEK FASTENERS POLSKA jest firmą specjalizującą się w produkcji najwyższej jakości systemów zamocowań przeznaczonych do budownictwa lądowego, drogowego i przemysłu. W ofercie firmy znajdują się wyroby tradycyjne – od wielu lat stosowane w budownictwie, a także nowatorskie, zaawansowane technologicznie rozwiązania gwarantujące najwyższy poziom bezpieczeństwa.

TRUTEK FASTENERS POLSKA Innowacyjna technologia mocowania izolacji termicznej budynku

Innowacyjna technologia mocowania izolacji termicznej budynku Innowacyjna technologia mocowania izolacji termicznej budynku

Łączniki do mocowania izolacji termicznej obiektu to bardzo ważny element zapewniający bezpieczeństwo i stabilność warstwy docieplenia.

Łączniki do mocowania izolacji termicznej obiektu to bardzo ważny element zapewniający bezpieczeństwo i stabilność warstwy docieplenia.

GERARD AHI Roofing Kft. Oddział w Polsce Sp. z o.o. | RTG Roof Tile Group Dach marzeń: stylowy, nowoczesny i wyjątkowo odporny

Dach marzeń: stylowy, nowoczesny i wyjątkowo odporny Dach marzeń: stylowy, nowoczesny i wyjątkowo odporny

Czy chciałbyś mieć elegancki, nowoczesny dach, o niepowtarzalnym antracytowym kolorze, który zapewni Twojemu domowi najlepszą ochronę?

Czy chciałbyś mieć elegancki, nowoczesny dach, o niepowtarzalnym antracytowym kolorze, który zapewni Twojemu domowi najlepszą ochronę?

Tremco CPG Poland Sp. z o.o. Flowcrete – bezspoinowe posadzki żywiczne w przemyśle

Flowcrete – bezspoinowe posadzki żywiczne w przemyśle Flowcrete  – bezspoinowe posadzki żywiczne w przemyśle

Bezspoinowe posadzki żywiczne są często nazywane posadzkami przemysłowymi. Ze względu na ich właściwości, m.in. trwałość, wytrzymałość mechaniczną, w tym odporność na ścieranie, szczelność i nienasiąkliwość...

Bezspoinowe posadzki żywiczne są często nazywane posadzkami przemysłowymi. Ze względu na ich właściwości, m.in. trwałość, wytrzymałość mechaniczną, w tym odporność na ścieranie, szczelność i nienasiąkliwość oraz łatwość utrzymania w czystości, rozwiązania posadzkowe na bazie żywic syntetycznych są powszechnie stosowane w zakładach produkcyjnych z różnych branż.

Blachy Pruszyński, mgr inż. Piotr Olgierd Korycki Zagadnienia akustyki w obiektach przemysłowych z lekką obudową

Zagadnienia akustyki w obiektach przemysłowych z lekką obudową Zagadnienia akustyki w obiektach przemysłowych z lekką obudową

Obecnie trudno sobie wyobrazić budownictwo, a zwłaszcza halowe, użyteczności publicznej, przemysłowe i specjalne bez obudowy, jaką stanowią ściany osłonowe czy przekrycia dachowe. Wykonuje się je z lekkiej...

Obecnie trudno sobie wyobrazić budownictwo, a zwłaszcza halowe, użyteczności publicznej, przemysłowe i specjalne bez obudowy, jaką stanowią ściany osłonowe czy przekrycia dachowe. Wykonuje się je z lekkiej obudowy, takiej jak: płyty warstwowe, systemy oparte na bazie kaset stalowych wzdłużnych, warstwowe przekrycia dachowe z elementem nośnym w postaci blach trapezowych. Wymienione rozwiązania mają szereg zalet, m.in. małą masę jednostkową, możliwość montażu niezależnie od warunków atmosferycznych,...

Copyright © 2004-2019 Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Spółka komandytowa, nr KRS: 0000537655. Wszelkie prawa, w tym Autora, Wydawcy i Producenta bazy danych zastrzeżone. Jakiekolwiek dalsze rozpowszechnianie artykułów zabronione. Korzystanie z serwisu i zamieszczonych w nim utworów i danych wyłącznie na zasadach określonych w Zasadach korzystania z serwisu.
Portal Budowlany - Izolacje.com.pl

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim urządzeniu końcowym. W każdym momencie możesz dokonać zmiany ustawień przeglądarki dotyczących cookies. Nim Państwo zaczną korzystać z naszego serwisu prosimy o zapoznanie się z naszą polityką prywatności oraz Informacją o Cookies. Więcej szczegółów w naszej Polityce Prywatności oraz Informacji o Cookies. Administratorem Państwa danych osobowych jest Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Sp.K., nr KRS: 0000537655, z siedzibą w 04-112 Warszawa, ul. Karczewska 18, tel. +48 22 810-21-24, właściciel strony www.izolacje.com.pl. Twoje Dane Osobowe będą chronione zgodnie z wytycznymi polityki prywatności www.izolacje.com.pl oraz zgodnie z Rozporządzeniem Parlamentu Europejskiego i Rady (UE) 2016/679 z dnia 27 kwietnia 2016r i z Ustawą o ochronie danych osobowych Dz.U. 2018 poz. 1000 z dnia 10 maja 2018r.