Izolacje.com.pl

Badanie wilgotności mineralnych materiałów budowlanych

Humidity analyses of mineral construction materials

Pomiar wilgotnościomierzem elektronicznym
B. Monczyński

Pomiar wilgotnościomierzem elektronicznym


B. Monczyński

Kluczowym elementem diagnostyki zawilgoconych konstrukcji murowych jest ocena ich parametrów wilgotnościowych, jak również rozpoznanie rodzaju i proporcji szkodliwych soli zawartych w materiale budowlanym [1]. Sposoby pomiaru zawartości wody względnie wilgotności w mineralnych materiałach budowlanych zostały szerzej opisane w instrukcji WTA nr 4–11–16/D [2].

Zobacz także

dr inż. Maciej Niedostatkiewicz Nośność kotew chemicznych w elementach wapienno‑piaskowych

Nośność kotew chemicznych w elementach wapienno‑piaskowych Nośność kotew chemicznych w elementach wapienno‑piaskowych

Problem nośności kotew chemicznych (wklejanych) osadzonych w podłożach o dużej nośności był już wielokrotnie poruszany w literaturze technicznej oraz naukowo­‑technicznej. Nadal jednak powstają wątpliwości...

Problem nośności kotew chemicznych (wklejanych) osadzonych w podłożach o dużej nośności był już wielokrotnie poruszany w literaturze technicznej oraz naukowo­‑technicznej. Nadal jednak powstają wątpliwości co do rzeczywistej nośności kotew osadzonych w elementach drążonych pionowo.

SUEZ Izolacje Budowlane Jakich materiałów użyć do izolacji fundamentów?

Jakich materiałów użyć do izolacji fundamentów? Jakich materiałów użyć do izolacji fundamentów?

Budowa domu to zdecydowanie jedno z większych przedsięwzięć, jakie podejmujemy w życiu. Mądre zaplanowanie całej budowy zdecydowanie przyspiesza wszystkie prowadzone prace, zmniejsza czasowe odstępy pomiędzy...

Budowa domu to zdecydowanie jedno z większych przedsięwzięć, jakie podejmujemy w życiu. Mądre zaplanowanie całej budowy zdecydowanie przyspiesza wszystkie prowadzone prace, zmniejsza czasowe odstępy pomiędzy poszczególnymi etapami oraz pozwala na zaoszczędzenie środków finansowych. W planie warto uwzględnić też dobór technologii i materiałów, jakie użyjemy do wykonania izolacji fundamentów tak, aby wykonane izolacje były trwałe i działały sprawnie przez lata.

KOESTER Polska Iniekcja uszczelniająca żelem akrylowym KÖSTER Injektion Gel G4 żelbetowej płyty fundamentowej podziemnej hali pieca do wytopu szkła

Iniekcja uszczelniająca żelem akrylowym KÖSTER Injektion Gel G4 żelbetowej płyty fundamentowej podziemnej hali pieca do wytopu szkła Iniekcja uszczelniająca żelem akrylowym KÖSTER Injektion Gel G4 żelbetowej płyty fundamentowej podziemnej hali pieca do wytopu szkła

W ramach prowadzonych prac modernizacyjnych i okresowej wymiany pieca do wytopu szkła podjęto decyzję o usunięciu powstałych podczas dotychczasowej eksploatacji nieszczelności płyty fundamentowej. Płyta...

W ramach prowadzonych prac modernizacyjnych i okresowej wymiany pieca do wytopu szkła podjęto decyzję o usunięciu powstałych podczas dotychczasowej eksploatacji nieszczelności płyty fundamentowej. Płyta o wymiarach w świetle ścian 35,50x36,27 m i grubości 1,60 m wykazywała liczne i okresowo intensywne przecieki, które powodowały konieczność tymczasowego odprowadzania przenikających wód gruntowych systemem rowków powierzchniowych wyciętych w płycie do studzienek zbiorczych i odpompowywania. Powierzchnia...

Mineralne materiały budowlane to ciała kapilarno-porowate, tj. zawierające pory (o różnej średnicy i objętości) połączone systemem kapilar. W porach i kapilarach materiałów może gromadzić się woda, przy czym jej przechowywanie regulowane jest przez dwa mechanizmy:

  • przyłączenie cząsteczek wody do ścian porów i kapilar siłami powierzchniowymi (woda związana fizycznie)
  • oraz pobieranie wody niezwiązanej (woda swobodna).

Materiały mineralne mogą zawierać również wodę związaną chemicznie, jednak ta, jako stanowiąca część struktury materiału, nie jest brana pod uwagę podczas badania wilgotności. Mineralne materiały budowlane zawierają też często szkodliwe sole budowlane, które nie tylko mogą być przyczyną wykwitów i destrukcji materiału, lecz także powodować zmianę izoterm sorpcji.

Wilgotność materiału budowlanego

Przez wilgotność materiału budowlanego należy rozumieć stosunek masy wody związanej fizycznie oraz wody swobodnej do masy suchego materiału budowlanego. Stosunek ten może być wyrażony w kg/kg, jednak najczęściej określa się go w procentach masy lub objętości:

Wilgotność materiału określa się przy użyciu jednego z dwóch wzorów [3], [4]:

(1)

gdzie: 

wm - wilgotność masowa [%],
mm - masa próbki zawilgoconej [g],
ms - masa próbki suchej [g],
mw - masa wody [g].

(2)

gdzie: 

wo - wilgotność objętościowa [%]
mm - masa próbki zawilgoconej [g],
ms - masa próbki suchej [g],
ρw - gęstość wody [g/cm3],
ρo - gęstość objętościowa badanego materiału [g/cm3],
wm - wilgotność masowa [%].

Każdy mineralny materiał budowlany może pochłaniać wilgoć z powietrza oraz uwalniać ją.

Higroskopijność materiału, czyli zdolność pochłaniania oraz uwalniania wilgoci z otoczenia, uzależniona jest od rodzaju materiału i może być opisana tzw. izotermami sorpcji (RYS. 1).

Rys. 1. Schematyczne przedstawienie typowej izotermy sorpcji mineralnegomateriału budowlanego; rys. [2]

Rys. 1. Schematyczne przedstawienie typowej izotermy sorpcji mineralnegomateriału budowlanego; rys. [2]

Wilgotność materiału na skutek sorpcji wody z otaczającego powietrza stabilizuje się na określonym poziomie przy stałej wilgotności względnej powietrza - wartość ta określana jest jako wilgotność równowagowa lub wilgotność higroskopijna. Jeśli wilgotność względna rośnie, materiał pochłania wodę z otaczającego powietrza. Gdy natomiast spada, materiał oddaje wodę (wysycha). Izotermy sorpcji opisują zatem wilgotność materiału jako funkcję wilgotności względnej powietrza i mają typowy przebieg dla mineralnych materiałów budowlanych. Zawartość soli przesuwa izotermę sorpcji w kierunku wyższej zawartości wody.

Idealnym warunkiem wstępnym oceny zawartości wody jest znajomość kompletnej izotermy sorpcji badanego materiału budowlanego. W tym celu należałoby określić zawartość wilgoci w materiale przy wilgotności względnej 0% oraz ok. 95%, co w praktyce stanowi zazwyczaj znaczną trudność. Wartość wilgotności równowagowej identyfikuje się zatem poprzez indeksowanie wilgotnością względną, przy której została ona określona (np. wilgotność higroskopijna w80 to zawartość wody przy wilgotności względnej powietrza wynoszącej 80%).

Na cele diagnostyki budowli wilgotność higroskopijną najczęściej określa się po przechowywaniu w eksykatorze nad wodą:

(3)

gdzie:  

wm - wilgotność higroskopijna/równowagowa [%],
mm - masa próbki przechowywanej w określonych warunkach klimatycznych [g],
ms - masa próbki suchej [g].

Należy również podkreślić, że na podstawie izoterm sorpcji można określić wilgotność względną powietrza w porach materiału (klimat wewnętrzny materiału).

W przypadku stanu równowagi klimat wewnętrzny odpowiada klimatowi otoczenia. Wilgotność materiału znajdującego się w środowisku o wilgotności względnej powyżej 95% lub mającego kontakt z wodą w postaci ciekłej określa się jako wilgotność nadhigroskopijną.

Dolną granicę możliwości kapilarnego transportu wody w materiale stanowi wilgotność krytyczna wkr. Poniżej tej wartości dystrybucja wody w materiale na drodze podciągania kapilarnego nie zachodzi.

Jeśli suchy materiał budowlany znajdzie się w kontakcie z ograniczoną ilością wody, zostaje ona rozprowadzona kapilarami w materiale, jednak transport ten trwa jedynie do momentu, gdy w miejscu kontaktu z wodą zostanie osiągnięta wilgotność krytyczna - dalszy transport wody może odbywać się jedynie na drodze dyfuzji.

Wilgotność krytyczna stanowi ponadto punkt przejścia z obszaru higroskopijnego do nadhigroskopijnego.

Nasiąkliwość materiału budowlanego

Nasiąkliwość to parametr określający, jaką ilość wody może wchłonąć materiał budowlany, gdy jest przez pewien czas wystawiony na działanie wody bez ciśnienia (przy ciśnieniu atmosferycznym). Nasiąkliwość wagowa oznacza stosunek masy wody wchłoniętej przez materiał do masy materiału w stanie suchym [5]:

(4)

gdzie: 

nm - nasiąkliwość przy ciśnieniu atmosferycznym [%],
mn - masa nasyconej próbki (po zanurzeniu w wodzie i osiągnięciu stałej masy) [g],
ms - masa próbki suchej [g].

W przypadku materiałów obciążonych wodą pod ciśnieniem lub długotrwale przechowywanych pod wodą dochodzi do całkowitego wypełnienia porów wodą. Materiał, który pochłonął maksymalną ilość wody, osiąga wilgotność w stanie pełnego nasycenia wmax. Wielkość ta nie stanowi pierwszoplanowego czynnika przy ocenie stanu budowli (można bowiem założyć, że budowla nie jest poddawana działaniu wody ze wszystkich stron), stanowi jednak punkt odniesienia na potrzeby określenia stopnia przesiąknięcia wilgocią oraz higroskopijnego stopnia przesiąknięcia wilgocią.

Stopień przesiąknięcia wilgocią DWG (od niem. Durchfeuchtungsgrad) to wyrażony w procentach stosunek wilgotności materiału do wilgotności w stanie pełnego nasycenia:

(5)

gdzie: 

TABELA. Klasyfikacja zawilgocenia muru na podstawie stopnia przesiąknięcia wilgocią DWG; [6]

TABELA. Klasyfikacja zawilgocenia muru na podstawie stopnia przesiąknięcia wilgocią DWG; [6]

DFG - stopień przesiąknięcia wilgocią [%],
wm - wilgotność masowa ustalona wg wzoru (1) [%],
wmax - wilgotność w stanie pełnego nasycenia [%].

(6)

gdzie: 

DFGh - higroskopijny stopień przesiąknięcia wilgocią [%],
wh - wilgotność higroskopijna ustalona wg wzoru (3) [%],
wmax - wilgotność w stanie pełnego nasycenia [%].

Stopień przesiąknięcia wilgocią wskazuje, jaki procent dostępnej objętości porów wody był wypełniony wodą w momencie pobierania próbek (TAB.).

Ocena zawilgocenia materiałów budowlanych

Ocena zawilgocenia materiałów budowlanych w obszarze higroskopijnym opiera się na wilgotności równowagowej (przy wilgotności względnej powietrza w zakresie od 0% do ok. 95%), tj. na izotermach sorpcji badanego materiału, natomiast w obszarze nadhigroskopijnym jest określana na podstawie ustalonej wilgotności.

Najczęściej do oceny stanu zawilgocenia materiału stosowana jest wilgotność równowagowa tego materiału przy wilgotności względnej 80%, tj. wilgotność higroskopijna w80. Ta wartość referencyjna opiera się na doświadczeniach, które wskazują, że przy wilgotności względnej poniżej 80% najczęściej nie należy się spodziewać szkód spowodowanych zawilgoceniem, np. przez grzyby pleśniowe. Wielkość ta określana była w przeszłości jako "praktyczna wilgotność" materiału - przy prawidłowej wentylacji pomieszczeń z prawdopodobieństwem 90% nie dochodzi do jej przekroczenia.

W praktyce gdy wilgotność pobranej próbki jest wyższa od wilgotności równowagowej w80, oznacza to, że wilgotność materiału jest niedopuszczalnie wysoka i należy się spodziewać wystąpienia szkód powodowanych przez nadmierne zawilgocenie.

Innym sposobem oceny może być sprawdzenie, czy istniejąca wilgotność materiału odpowiada panującym warunkom klimatycznym. Wilgotność materiału przewyższająca oczekiwaną wilgotność równowagową może np. wskazywać na obecność w materiale higroskopijnych soli budowlanych.

W obszarze nadhigroskopijnym najczęściej wykorzystywanym parametrem jest stopień przesiąknięcia wilgocią DFG. Pozwala on na przykład sprawdzić, czy możliwe jest wykonanie impregnacji hydrofobizującej lub czy i które środki iniekcyjne są odpowiednie do wytworzenia wtórnej hydroizolacji poziomej przeciw podciąganiu kapilarnemu wilgoci w murze.

Metody pomiaru wilgotności materiału budowlanego

Metody pomiaru wilgotności materiału budowlanego można podzielić na bezpośrednie, pośrednie oraz higrometryczne.

  • Metody bezpośrednie dostarczają ilościowe wartości zawartości wody w materiale. Powszechnie stosowanymi metodami bezpośrednimi są:
    - metoda grawimetryczna (wagowo-suszarkowa, w literaturze niemieckiej określana jako metoda Darr’a [7])
    - oraz metoda CM (chemiczna).
  • Metody pośrednie (elektryczne, mikrofalowe) nie zapewniają wartości ilościowej dotyczącej zawartości wody, a jedynie określają fizyczne właściwości materiałów budowlanych lub konstrukcji, które są powiązane z wilgocią.

Aby uzyskać dane ilościowe dotyczące zawilgocenia, wymagana jest specyficzna dla obiektu kalibracja materiału budowlanego (metodą grawimetryczną lub metodą CM).

Większość metod pośrednich to metody nieniszczące, pozwalające na nieinwazyjne, półilościowe oznaczenie wilgotności, dzięki czemu doskonale sprawdzają się (również w przypadku braku kalibracji) przy określaniu obszarów o różnym zawilgoceniu (tworzeniu tzw. map zawilgocenia), oceny zmiany zawilgocenia konstrukcji w czasie czy też ukierunkowania pobierania próbek dla metod niszczących (dzięki czemu można zmniejszyć ilość próbek, a tym samym stopień zniszczenia).

W przypadku metod higrometrycznych pomiar wilgotności względnej powietrza w materiale lub na jego powierzchni określa właściwości materiału budowlanego w obszarze higroskopijnym, a mianowicie wilgotność równowagową lub klimat wewnętrzny materiału. Ponieważ metody te nie wymagają określenia izoterm sorpcji, ich wykorzystanie w łatwy sposób prowadzi do bezpośredniej oceny zawartości wilgoci w materiale budowlanym.

Próbki na potrzeby badania zawilgocenia i zasolenia powinny być reprezentatywne pod względem wilgotności, zastosowanego materiału budowlanego, stanu konstrukcji oraz rodzaju występujących szkód. W związku z tym należy zwrócić szczególną uwagę na wybór optymalnej lokalizacji (zazwyczaj miejsca o największym zawilgoceniu).

W miarę możliwości należy pobierać próbki w taki sposób, aby możliwe było ustalenie rozkładu wilgoci w przegrodzie zarówno w pionie, jak i w poziomie. Należy również dążyć do tego, aby sposób pobierania próbki miał jak najmniejszy wpływ na zawartość wody, a tym samym na wynik pomiaru.

Najczęściej stosowane są następujące sposoby poboru próbek:

  • Młotek i przecinak - metoda zapewniająca najmniejszą zmianę wilgotności materiału.
    Próbka powinna zawierać wszystkie istotne składniki materiału budowlanego, nie powinna być zatem mniejsza niż 50 g.
  • Szlifierka kątowa - stosowana do wycinania próbek z płaskich elementów konstrukcyjnych (tynki, jastrychy).
    Aby zminimalizować wpływ ciepła tarcia na wilgotność próbki, zwykle wycina się fragment o wymiarach minimum 10×10 cm.
  • Rdzeń wiertniczy - pobierany przy użyciu wiertła koronowego z węglikiem wiertarką udarową lub wiertła diamentowego wiertarką bez udaru.
    W obu przypadkach średnica wiertła powinna być nie mniejsza niż 70 mm ponieważ przy mniejszych średnicach wpływ wiercenia na wilgotność próbki znacząco wrasta.
    Zmianę wilgotności próbki w czasie jej pobierania można minimalizować przez użycie sprężonego powietrza lub urządzenia ssącego do chłodzenia i usuwania otrzymanego urobku.
    Również z uwagi na możliwą zmianę zawartości wody zaleca się pobieranie próbek w odcinkach (próbki długości od 1 do 2 średnic wiertła).
    Ten sposób próbkowania sprawdza się szczególnie przy tworzeniu profili zawilgocenia. Nie jest jednak odpowiedni dla materiałów o wysokiej wytrzymałości ponieważ rosnący wówczas czas wiercenia w zbyt dużym stopniu wpływa na wilgotność próbki.
  • Zwierciny - próbki pobiera się za pomocą wiertła o średnicy min. 20 mm.
    Próbka pyłu wiertniczego pozwala na określenie średniej zawartości wody na głębokości pobierania próbek. Ten sposób pobierania próbek (szczególnie w przypadku materiałów o dużej wytrzymałości) może w znacznym stopniu wpływać na zawilgocenie próbek. Dlatego też należy unikać przegrzewania się wiertła - stosować wiertarki wolnoobrotowe (max 300 obr./min) i kontrolować temperaturę wiertła (w miarę potrzeby można je wymieniać), tak aby nie była ona wyższa niż "temperatura dłoni" [8].

Pobrane próbki powinny być pakowane i badane osobno.

Aby uniknąć zmiany wilgotności w czasie przechowywania i transportu, próbki należy pakować w sposób uniemożliwiający wymianę wilgoci z otoczeniem. W tym celu najlepiej stosować szczelnie zamykane pojemniki metalowe, szklane lub plastikowe.

Do krótkotrwałego przechowywania (do 24 h) można stosować strunowe worki z folii PE (używane w gospodarstwie domowym).

Próbki należy pakować w taki sposób, aby opakowanie zawierało jak najmniej zamkniętego powietrza. Alternatywą jest ważenie materiału na miejscu lub uwzględnienie wagi opakowania przy obliczaniu wilgotności.

Nieinwazyjne metody badania zawilgocenia

Do najczęściej stosowanych nieinwazyjnych sposobów badania zawilgocenia należą metody elektryczna (FOT. 1) oraz mikrofalowa (FOT. 2) [4].

Metoda elektryczna wykorzystuje fakt, że suchy materiał budowlany jest bardzo słabym przewodnikiem. Z kolei woda wraz z rozpuszczalnymi solami tworzy elektrolity, które przewodzą prąd elektryczny.

Obecnie stosowane wilgotnościomierze elektroniczne oparte są najczęściej na metodzie dielektrycznej, tj. na wykorzystaniu zjawisk zmiany pojemności elektrycznej materiału wraz ze zmianą jego zawilgocenia - dzięki dużej różnicy między wartością stałej dielektrycznej wody i substancji bezwodnych możliwe jest przyjęcie proporcjonalności między stałą dielektryczną a wilgotnością badanego materiału [9].

Niektóre z dostępnych na rynku wilgotnościomierzy elektronicznych są skalibrowane w taki sposób, że podają wynik wyrażony w procentach wilgotności. Ponieważ jednak nie jest to możliwe, szczególnie przy znacznym zawilgoceniu, dla wszystkich rodzajów i odmian materiałów wynikiem jest najczęściej liczba niemianowana. Dodatkowo na wyniki pomiaru negatywnie wpływa (przekłamuje) obecność szkodliwych soli budowlanych.

Metody mikrofalowe w rzeczywistości zaliczają się do metod dielektrycznych. Wyróżnia je jednak wysoka częstotliwość - od 2 do 10 GHz.
Zasada pomiaru opiera się w tym wypadku na obserwacji różnicy częstotliwości między promieniowaniem wysłanym a odbitym - wynik, podobnie jak w przypadku wilgotnościomierzy elektronicznych, odczytywany jest w jednostkach niemianowanych, tzw. digidsach.

FOT. 1. Pomiar wilgotnościomierzem elektronicznym; fot.: B. Monczyński

FOT. 1. Pomiar wilgotnościomierzem elektronicznym; fot.: B. Monczyński 

FOT. 2. Pomiar wilgotnościomierzem mikrofalowym; fot.: B. Monczyński

FOT. 2. Pomiar wilgotnościomierzem mikrofalowym; fot.: B. Monczyński

Podstawowymi zaletami tego typu urządzeń jest głębokość pomiaru (nawet do 70 cm w głąb materiału, w zależności od urządzenia) oraz to, że na jego wynik nie wpływa zasolenie [10].

RYS. 2. Zasada prowadzenia zespolonych badań wilgotności; rys. [4]

RYS. 2. Zasada prowadzenia zespolonych badań wilgotności; rys. [4]

FOT. 3-4. Zasada działania metody grawimetrycznej na przykładzie wagosuszarki: przed (3) i po wysuszeniu (4); fot.: B. Monczyński

FOT. 3-4. Zasada działania metody grawimetrycznej na przykładzie wagosuszarki: przed (3) i po wysuszeniu (4); fot.: B. Monczyński

FOT. 5. Zestaw do pomiaru wilgotności metodą karbidową (urządzenie CM); fot.: B. Monczyński

FOT. 5. Zestaw do pomiaru wilgotności metodą karbidową (urządzenie CM); fot.: B. Monczyński

Wspólne zastosowanie obu nieniszczących pomiarów wilgotności - elektrycznej (głębokość pomiaru: kilka centymetrów) oraz mikrofalowej (głębokość pomiaru: kilkadziesiąt centymetrów) pozwala na wykonanie zespolonych pomiarów i ustalenie rozkładu zawilgocenia w murze (RYS. 2).

Metody bezpośrednie badania zawilgocenia

Najdokładniejszym sposobem badania wilgotności materiałów bMetoda grawimetryczna (łac. gravis - ciężki, gr. metréō - mierzę), określana często jako wagowo-suszarkowa, stanowi metodę referencyjną, dzięki której można bezpośrednio określić zawartość wody w materiałach budowlanych [3]. Wszystkie inne metody pomiaru wilgotności są kalibrowane na podstawie metody grawimetrycznej. Pozwala ona określić masową zawartość wody w materiale budowlanym - w tym celu wilgotną próbkę waży się, suszy do stałej masy i ponownie waży. Wilgotność materiału można określić na podstawie równań (1) lub (2).

Suszenie materiału zazwyczaj przeprowadza się w suszarkach laboratoryjnych w temperaturze uniemożliwiającej uwolnienie wody związanej chemicznie. Dla większości materiałów mineralnych temperatura ta wynosi 105°C, zaś dla gipsu i materiałów anhydrytowych 40°C.

Czasami stosowane są także wagosuszarki (FOT. 3-4), w tym również przenośne, pozwalające na przeprowadzenie pomiarów bezpośrednio w miejscu pobrania próbek.

Oznaczanie zawartości wilgoci w materiałach budowlanych metodą CM (od niem. Calciumcarbid-Methode - metoda karbidowa) opiera się na reakcji węglika wapnia (potocznie zwanego karbidem) z wodą. W metodzie tej pobraną próbkę rozdrabnia się, waży, a następnie umieszcza w specjalnym metalowym naczyniu ciśnieniowym (FOT. 5).

W kolejnym kroku do naczynia wkłada się zestaw czterech stalowych kulek oraz szklaną ampułkę z węglikiem wapnia, a następnie zamyka się całość przy użyciu manometru.

Potrząśnięcie urządzeniem powoduje rozbicie ampułki, co z kolei umożliwia reakcję karbidu z wodą, w wyniku której powstają wodorotlenek wapnia oraz acetylen:

Acetylen, którego ilość uzależniona jest od ilości zawartej w próbce wody, powoduje wzrost ciśnienia w naczyniu. Odczyt ciśnienia na manometrze pozwala z kolei obliczyć ilość wody zawartej w materiale.

Dawniej wilgotność materiału odczytywano z tzw. krzywych wzorcowych - dziś urządzenia CM posiadają odpowiednio wyskalowane manometry, manometry cyfrowe lub też dedykowane drukarki oraz bieżącą cyfrową rejestrację wyników.

Metoda CM cechuje się wysoką dokładnością, dzięki czemu doskonale nadaje się do wykonywania pomiarów kontrolnych lub wstępnych - w mniejszym stopniu (z uwagi na wymaganą pracochłonność) do pomiarów seryjnych [4].udowlanych są metody bezpośrednie: metoda grawimetryczna (FOT. 3-4) oraz metoda CM (FOT. 5).

Metody higrometrycznego pomiaru wilgotności

W przypadku higrometrycznego pomiaru wilgotności ustala się wilgotność względną powietrza w zamkniętej komorze pomiarowej lub wewnątrz materiału budowlanego. Na podstawie zmierzonych wartości można następnie ocenić, czy materiał budowlany jest suchy czy wilgotny. Pomiar zakłada, że wilgotność względna w komorze pomiarowej i wilgotność materiału budowlanego są w równowadze.

Metoda pomiaru została przewidziana dla higroskopijnego obszaru wilgotności. Wynik pomiaru jest niezależny od materiału budowlanego, co oznacza, że wyniki badań różnych materiałów budowlanych można bezpośrednio porównywać. Dzięki tym metodom możliwa jest bezpośrednia ocena warunków wilgotnościowych bez konieczności określania zawartości wody w materiale budowlanym.

Istnieją trzy metody pomiaru higrometrycznego:  

  • pomiar na powierzchni materiału,  
  • pomiar wewnątrz materiału,  
  • pomiar na próbce materiału budowlanego.

Pomiar na powierzchni materiału

W tej metodzie pomiarowej badany materiał budowlany stanowi jedną ze ścianek komory pomiarowej. "Komora pomiarowa" może być wykonana na przykład z klejonej na krawędziach folii z tworzywa sztucznego o grubości 0,4 mm lub z naczynia paroszczelnego, które jest ściśle przymocowane do powierzchni materiału budowlanego. W komorze pomiarowej umieszczany jest czujnik. Cyrkulacja powietrza w komorze pomiarowej przyspiesza osiągnięcie wilgotności równowagowej. W przypadku wysokiej wilgotności materiału budowlanego (obszar nadhigroskopijny) podłoże staje się widocznie wilgotne, a wewnątrz "komory pomiarowej" gromadzi się kondensat.

Pomiar ten jest nieniszczący i może (w zależności od rodzaju konstrukcji) zająć od kilku godzin do kilku dni. W miarę możliwości należy zapewnić, aby temperatura materiału budowlanego i otaczającego powietrza podczas pomiaru były tak niezmienne, na ile to tylko możliwe.

RYS. 3. Procedura oceny zawilgocenia materiałów budowlanych; rys.: [2]

RYS. 3. Procedura oceny zawilgocenia materiałów budowlanych; rys.: [2]

W praktyce budowlanej nie zawsze można jednak zapobiec pewnym wahaniom temperatury. W takim przypadku należy wyznaczyć średnią wartość wilgotności względnej w dłuższym okresie. W tym celu należy mierzyć i dokumentować temperaturę elementu oraz temperaturę i wilgotność otaczającego powietrza, np. przy użyciu czujnika z rejestratorem danych.

W klasycznym "teście folii", który mimo swej prostoty pozwala na ocenę jakościową stanu wilgotności, przezroczystą folię z tworzywa sztucznego (na przykład folię PE grubości 0,4 mm) o wymiarach min. 1 m×1 m układa się na powierzchni materiału budowlanego, przykleja na krawędziach i pozostawia na co najmniej 24 godziny. Przegrodę należy uznać za wilgotną (obszar nadhigroskopijny), jeśli po tym czasie na spodniej stronie folii pojawi się woda z kondensatu. Brak kondensatu wskazuje na to, że materiał znajduje się w obszarze higroskopijnym.

Pomiar wewnątrz materiału

Czujnik może być również umieszczony bezpośrednio w materiale budowlanym. W tym celu, przy użyciu wiertarki wolnoobrotowej, wykonuje się otwór. Bezpośrednio po wykonaniu odwiert musi zostać oczyszczony z pyłu wiertniczego poprzez przedmuchanie lub odssanie. Otwór stanowi komorę pomiarową, która, po umieszczeniu w niej czujnika, jest szczelnie zamykana od zewnątrz.

Pomiar wewnątrz materiału stosowany jest również do pomiarów w dłuższym okresie czasu, np. do dokumentacji procesu wysychania przegrody. Aby uzyskać wysoką dokładność pomiaru, zmiany wilgotności powinny być monitorowane aż do momentu osiągnięcia stanu równowagi. W tym celu najlepiej stosować czujniki z rejestratorem danych.

Pomiar na próbce materiału budowlanego

W tej metodzie pomiaru próbkę materiału budowlanego umieszcza się w małym (250-500 ml) szczelnie zamykanym naczyniu. W takiej komorze pomiarowej umieszcza się odpowiedni czujnik. Próbkę (ok. 100-200 g) należy wcześniej rozdrobnić, podobnie jak w badaniu metodą CM.

Doświadczenie pokazało, że w komorze w ciągu od 30 do 120 minut stabilizuje się stały klimat, który odpowiada wilgotności równowagowej próbki. Należy jednak zwrócić uwagę, aby podczas wykonywania pomiaru temperatura naczynia i otaczającego je powietrza była możliwie stała.

Na RYS. 3 przedstawiono przegląd ogólnej procedury oceny zmierzonych wartości wilgotności, w zależności od wybranej metody pomiaru.

Literatura

  1. B. Monczyński, "Diagnostyka zawilgoconych konstrukcji murowych", "IZOLACJE" 1/2019, s. 89-93.
  2. WTA Merkblatt 4–11–16/D, "Messung des Wassergehalts bzw. der Feuchte von mineralischen Baustoffen", Wissenschaftlich­‑Technische Arbeitsgemeinschaft für Bauwerkserhaltung und Denkmalpflege e.V., München, 2016.
  3. PN-EN ISO 12570:2002, "Cieplno-wilgotnościowe właściwości materiałów i wyrobów budowlanych - Określanie wilgotności przez suszenie w podwyższonej temperaturze".
  4. B. Monczyński, "Ocena wysychania muru z wilgoci podciąganej kapilarnie metodą nieniszczących pomiarów zespolonych", w: "Budownictwo a środowisko: problemy architektoniczno-techniczne obiektów budowlanych", Wydawnictwo Zarządu oddziału PZITB w Poznaniu, Poznań 2017, s. 189-202.
  5. PN-EN 13755:2008, "Metody badań kamienia naturalnego - Oznaczanie nasiąkliwości przy ciśnieniu atmosferycznym".
  6. J. Weber, "Baudiagnose und Geräte", w: "Bauwerksabdichtung in der Altbausanierung: Verfahren und juristische Betrachtungsweise", Wiesbaden: Springer Vieweg, 2012, s. 99-135.
  7. F. Frössel, "Osuszanie murów i renowacja piwnic", Polcen, Warszawa 2007.
  8. Ö-Norm B 3355, "Trockenlegung von feuchtem Mauerwerk - Bauwerksdiagnostik und Planungsgrundlage".
  9. M. Trochonowicz, "Wilgoć w obiektach budowlanych. Problematyka badań wilgotnościowych", "Budownictwo i Architektura" 7/2010, s. 131-144.
  10. G. Hankammer and M. Resch, "Bauwerksdiagnostik bei Feuchteschäden: Technik, Geräte, Praxis", Rudolf Müller, Köln, 2012.

Chcesz być na bieżąco? Zapisz się do naszego newslettera!

Komentarze

Powiązane

dr inż. Marek Kamieniarz Dom podziemny

Dom podziemny Dom podziemny

Budownictwo podziemne jest oszczędne i ekologiczne. Dom może harmonijnie współgrać z otoczeniem. W Polsce ta technologia jest jeszcze mało znana.

Budownictwo podziemne jest oszczędne i ekologiczne. Dom może harmonijnie współgrać z otoczeniem. W Polsce ta technologia jest jeszcze mało znana.

mgr inż. Maciej Rokiel, mgr inż. Cezariusz Magott Renowacja fundamentów – błędy i zaniedbania

Renowacja fundamentów – błędy i zaniedbania Renowacja fundamentów – błędy i zaniedbania

Wydawać by się mogło, że podstawowym celem działań inwestora powinno być zapewnienie skuteczności prac renowacyjnych, przejawiające się w dążeniu do eliminowania błędów. Niestety, jak pokazuje doświadczenie,...

Wydawać by się mogło, że podstawowym celem działań inwestora powinno być zapewnienie skuteczności prac renowacyjnych, przejawiające się w dążeniu do eliminowania błędów. Niestety, jak pokazuje doświadczenie, nadal jest to pogląd błędny. Liczba popełnianych w pracach renowacyjnych błędów jest ogromna, począwszy od etapu diagnostyki i projektowania, a skończywszy na złym wykonawstwie. Ich konsekwencje są różne, zależne od przyczyny, jednak wspólny jest ich mianownik, a mianowicie koszty związane z...

dr inż. Jacek Hulimka, dr inż. Marta Kałuża Podziemny zbiornik przeciwpożarowy – ocena i naprawa

Podziemny zbiornik przeciwpożarowy – ocena i naprawa Podziemny zbiornik przeciwpożarowy – ocena i naprawa

Bezpośrednio po przekazaniu wysokiego budynku do eksploatacji stwierdzono liczne przecieki w ścianie oddzielającej trójkondygnacyjny parking podziemny od zbiornika przeciwpożarowego. W ciągu pierwszych...

Bezpośrednio po przekazaniu wysokiego budynku do eksploatacji stwierdzono liczne przecieki w ścianie oddzielającej trójkondygnacyjny parking podziemny od zbiornika przeciwpożarowego. W ciągu pierwszych trzech lat eksploatacji różni wykonawcy podejmowali kolejne próby naprawy ściany (iniekcje rys i domniemanych pustek), nie uzyskali jednak pożądanych efektów. W związku z tym na zlecenie właściciela budynku przeprowadzono ekspertyzę konstrukcji zbiornika, dzięki której stwierdzono przyczyny obserwowanych...

mgr inż. Jarosław Gasewicz Grubowarstwowe bitumiczne powłoki hydroizolacyjne

Grubowarstwowe bitumiczne powłoki hydroizolacyjne Grubowarstwowe bitumiczne powłoki hydroizolacyjne

Grubowarstwowe powłoki hydroizolacyjne wykonywane z mas na bazie emulsji bitumicznych modyfikowanych tworzywami sztucznymi dostępne są na rynku materiałów budowlanych już od ok. czterdziestu lat. Ich wprowadzenie...

Grubowarstwowe powłoki hydroizolacyjne wykonywane z mas na bazie emulsji bitumicznych modyfikowanych tworzywami sztucznymi dostępne są na rynku materiałów budowlanych już od ok. czterdziestu lat. Ich wprowadzenie miało ułatwić wykonywanie hydroizolacji na pionowych elementach budowli stykających się z gruntem.

mgr inż. Cezariusz Magott, mgr inż. Maciej Rokiel Jak powódź wpływa na budynek oraz stan jego przyziemi?

Jak powódź wpływa na budynek oraz stan jego przyziemi? Jak powódź wpływa na budynek oraz stan jego przyziemi?

Odra zaczyna swój bieg na terenie Czech w Górach Odrzańskich. O rozmiarach fal powodziowych na jej górnym odcinku, tzn. w Raciborzu, Opolu i we Wrocławiu, decydują wielkości opadów w zlewniach jej czeskich...

Odra zaczyna swój bieg na terenie Czech w Górach Odrzańskich. O rozmiarach fal powodziowych na jej górnym odcinku, tzn. w Raciborzu, Opolu i we Wrocławiu, decydują wielkości opadów w zlewniach jej czeskich górnych dopływów: największej Opawy i mniejszych Ostrawicy i Olzy. Opawa i Odra prowadzą wodę z Sudetów Wschodnich, a Ostrawica i Olza z Beskidu Zachodniego. W dalszym biegu rzeki decydujący wpływ na przebieg wezbrań już poniżej Wrocławia mają jej lewobrzeżne dopływy: Osobłoga i Nysa Kłodzka.

dr inż. Anna Kaczmarek, dr hab. inż. Maria Wesołowska, dr inż. Krzysztof Pawłowski, prof. uczelni Jaki wpływ na wybrane materiały budowlane mają woda i wilgoć?

Jaki wpływ na wybrane materiały budowlane mają woda i wilgoć? Jaki wpływ na wybrane materiały budowlane mają woda i wilgoć?

Woda wywiera negatywny wpływ na materiał budowlany. Zawilgocony traci swoje właściwości izolacyjne – wzrasta jego współczynnik przewodzenia ciepła, a co za tym idzie zwiększają się straty ciepła w budynku....

Woda wywiera negatywny wpływ na materiał budowlany. Zawilgocony traci swoje właściwości izolacyjne – wzrasta jego współczynnik przewodzenia ciepła, a co za tym idzie zwiększają się straty ciepła w budynku. Ponadto materiały takie jak gips, anhydryt, czyli o dużym współczynniku rozmiękania, pod wpływem wilgoci zmniejszają swoją wytrzymałość mechaniczną. Jest to przyczyną niszczenia płyt gipsowo-kartonowych, tynków i podkładów gipsowych oraz anhydrytowych. Woda powoduje również korozję chemiczną tynków,...

dr inż. Paula Szczepaniak, dr hab. inż. Maria Wesołowska Obliczanie strat ciepła przez przegrody stykające się z gruntem

Obliczanie strat ciepła przez przegrody stykające się z gruntem

W obowiązującym rozporządzeniu ministra infrastruktury w sprawie metodologii obliczania charakterystyki energetycznej budynku opis procedury obliczania strat ciepła przez przegrody stykające się z gruntem...

W obowiązującym rozporządzeniu ministra infrastruktury w sprawie metodologii obliczania charakterystyki energetycznej budynku opis procedury obliczania strat ciepła przez przegrody stykające się z gruntem ogranicza się do wskazania normy PN-EN 12831:2006 , według której należy przeprowadzić obliczenia. Jednak przywołana norma nie wyczerpuje problematyki przegród stykających się z gruntem, dlatego problem ten bardzo często pojawia się w dyskusjach przed ministerialnymi egzaminami czy też w trakcie...

mgr inż. Maciej Rokiel Hydroizolacje fundamentów z użyciem mas KMB

Hydroizolacje fundamentów z użyciem mas KMB Hydroizolacje fundamentów z użyciem mas KMB

Bezwzględnym wymogiem bezproblemowej i długoletniej eksploatacji budynku jest jego poprawne (zgodne ze sztuką budowlaną) zaprojektowanie i wykonanie. Podstawą jest m.in. zastosowanie odpowiedniej hydroizolacji...

Bezwzględnym wymogiem bezproblemowej i długoletniej eksploatacji budynku jest jego poprawne (zgodne ze sztuką budowlaną) zaprojektowanie i wykonanie. Podstawą jest m.in. zastosowanie odpowiedniej hydroizolacji części zagłębionej w gruncie.

mgr inż. Maciej Rokiel Masy KMB do hydroizolacji fundamentów

Masy KMB do hydroizolacji fundamentów Masy KMB do hydroizolacji fundamentów

O skuteczności prac hydroizolacyjnych decyduje przyjęcie poprawnego rozwiązania projektowego, a następnie prawidłowe wykonanie. Dlatego w wytycznych precyzyjnie zdefiniowano stopnie obciążenia wilgocią/wodą,...

O skuteczności prac hydroizolacyjnych decyduje przyjęcie poprawnego rozwiązania projektowego, a następnie prawidłowe wykonanie. Dlatego w wytycznych precyzyjnie zdefiniowano stopnie obciążenia wilgocią/wodą, przedstawiono szczegółowe rysunki detali oraz podano zalecenia będące w zasadzie warunkami technicznymi wykonania i odbioru robót.

mgr inż. Maciej Rokiel Hydroizolacje fundamentów z masami KMB

Hydroizolacje fundamentów z masami KMB Hydroizolacje fundamentów z masami KMB

Niemieckie wytyczne, wobec braku polskich norm i wytycznych dotyczących wykonywania hydroizolacji z mas KMB, stanowią źródło informacji na temat m.in. poprawnej aplikacji zapewniającej skuteczność izolacji.

Niemieckie wytyczne, wobec braku polskich norm i wytycznych dotyczących wykonywania hydroizolacji z mas KMB, stanowią źródło informacji na temat m.in. poprawnej aplikacji zapewniającej skuteczność izolacji.

mgr inż. Cezariusz Magott Renowacja obiektów zabytkowych - izolacja pozioma i pionowa

Renowacja obiektów zabytkowych - izolacja pozioma i pionowa Renowacja obiektów zabytkowych - izolacja pozioma i pionowa

Odtwarzanie izolacji hydrofobowych w przyziemiach budynków istniejących wykonuje się wówczas, gdy dotychczasowe zabezpieczenia uległy degradacji lub nie wykonano ich podczas wznoszenia obiektu. Izolacje...

Odtwarzanie izolacji hydrofobowych w przyziemiach budynków istniejących wykonuje się wówczas, gdy dotychczasowe zabezpieczenia uległy degradacji lub nie wykonano ich podczas wznoszenia obiektu. Izolacje poziome i pionowe mają ponownie zabezpieczyć przegrody budynku lub budowli poddawanych renowacji przed wilgocią podciąganą z gruntu, wodą opadową lub naporową.

mgr inż. Maciej Rokiel Materiały do wykonywania hydroizolacji podziemnych części budynków i budowli

Materiały do wykonywania hydroizolacji podziemnych części budynków i budowli Materiały do wykonywania hydroizolacji podziemnych części budynków i budowli

Aby hydroizolacja była skuteczna, powinna być właściwie dobrana, a także poprawnie zaprojektowana i wykonana.

Aby hydroizolacja była skuteczna, powinna być właściwie dobrana, a także poprawnie zaprojektowana i wykonana.

dr inż. Jacek Hulimka, dr inż. Marta Kałuża Przyczyny zalania kondygnacji piwnicznej budynku mieszkalnego - błędy projektowe i wykonawcze

Przyczyny zalania kondygnacji piwnicznej budynku mieszkalnego - błędy projektowe i wykonawcze Przyczyny zalania kondygnacji piwnicznej budynku mieszkalnego - błędy projektowe i wykonawcze

W 2010 r., zaledwie 3 lata po przekazaniu do eksploatacji wielorodzinnego budynku mieszkalnego o bardzo wysokim standardzie, doszło do zalania garażu podziemnego. Analiza dokumentacji technicznej obiektu...

W 2010 r., zaledwie 3 lata po przekazaniu do eksploatacji wielorodzinnego budynku mieszkalnego o bardzo wysokim standardzie, doszło do zalania garażu podziemnego. Analiza dokumentacji technicznej obiektu oraz wyniki wykonanych badań wykazały błędy popełnione na etapie projektowania oraz budowy obiektu.

Austrotherm Płyty Austrotherm XPS TOP - efektywna termoizolacja fundamentów

Płyty Austrotherm XPS TOP - efektywna termoizolacja fundamentów Płyty Austrotherm XPS TOP - efektywna termoizolacja fundamentów

Ocieplenie fundamentów to decyzja, której konsekwencje ponosimy przez cały okres użytkowania domu. Warto do tego zastosować płyty z polistyrenu ekstrudowanego XPS.

Ocieplenie fundamentów to decyzja, której konsekwencje ponosimy przez cały okres użytkowania domu. Warto do tego zastosować płyty z polistyrenu ekstrudowanego XPS.

dr Bogumiła Chmielewska, mgr inż. Jerzy Koper Naprawa rys w konstrukcjach żelbetowych metodą iniekcji

Naprawa rys w konstrukcjach żelbetowych metodą iniekcji Naprawa rys w konstrukcjach żelbetowych metodą iniekcji

W pierwszej części artykułu dotyczącego problemu naprawy rys w konstrukcjach żelbetowych metodą iniekcji omówiono klasyfikację i przyczyny powstawania rys w betonie. Wymieniono także możliwości naprawy...

W pierwszej części artykułu dotyczącego problemu naprawy rys w konstrukcjach żelbetowych metodą iniekcji omówiono klasyfikację i przyczyny powstawania rys w betonie. Wymieniono także możliwości naprawy ze szczególnym uwzględnieniem metody iniekcji.

dr Bogumiła Chmielewska, mgr inż. Jerzy Koper Konstrukcje żelbetowe - naprawa rys metodą iniekcji Cz. 1. Powstawanie rys i metody ich naprawy

Konstrukcje żelbetowe - naprawa rys metodą iniekcji Cz. 1. Powstawanie rys i metody ich naprawy Konstrukcje żelbetowe - naprawa rys metodą iniekcji Cz. 1. Powstawanie rys i metody ich naprawy

Aby zapewnić przyjęty w projekcie okres użytkowania konstrukcji, należy zabezpieczyć ją przed oddziaływaniami mogącymi wpłynąć na trwałość. Dotyczy to m.in. naprawy rys.

Aby zapewnić przyjęty w projekcie okres użytkowania konstrukcji, należy zabezpieczyć ją przed oddziaływaniami mogącymi wpłynąć na trwałość. Dotyczy to m.in. naprawy rys.

Redakcja miesięcznika IZOLACJE Budowa fundamentów - poradnik

Budowa fundamentów - poradnik Budowa fundamentów - poradnik

Fundament to podstawa każdego budynku. Aby skutecznie spełniał swoje zadanie - stanowił oparcie dla konstrukcji domu i chronił przed wilgocią z zewnątrz- musi być dopasowany do istniejących warunków oraz...

Fundament to podstawa każdego budynku. Aby skutecznie spełniał swoje zadanie - stanowił oparcie dla konstrukcji domu i chronił przed wilgocią z zewnątrz- musi być dopasowany do istniejących warunków oraz przewidywanych obciążeń. Jak prawidłowo wykonać fundamenty?

Damian Żabicki Penetrujące materiały hydroizolacyjne

Penetrujące materiały hydroizolacyjne Penetrujące materiały hydroizolacyjne

Na etapie wykonywania hydroizolacji budynku warto rozważyć zastosowanie materiałów penetrujących. Nowoczesne preparaty tego typu zastępują tradycyjne izolacje w postaci papy i lepiku.

Na etapie wykonywania hydroizolacji budynku warto rozważyć zastosowanie materiałów penetrujących. Nowoczesne preparaty tego typu zastępują tradycyjne izolacje w postaci papy i lepiku.

Redakcja miesięcznika IZOLACJE Materiały rolowe do izolacji fundamentów

Materiały rolowe do izolacji fundamentów Materiały rolowe do izolacji fundamentów

Do najstarszych materiałów stosowanych do hydroizolacji fundamentów można zaliczyć materiały rolowe, które mają tę przewagę nad izolacjami bezspoinowymi, że pozwalają na niemal natychmiastowe zasypanie...

Do najstarszych materiałów stosowanych do hydroizolacji fundamentów można zaliczyć materiały rolowe, które mają tę przewagę nad izolacjami bezspoinowymi, że pozwalają na niemal natychmiastowe zasypanie wykopu, a folie z tworzyw sztucznych - o ile nie są klejone do podłoża - pozwalają na zaizolowanie niestabilnego lub zanieczyszczonego podłoża.

KOESTER Polska Żel akrylowy KÖSTER do iniekcji kurtynowych i strukturalnych

Żel akrylowy KÖSTER do iniekcji kurtynowych i strukturalnych Żel akrylowy KÖSTER do iniekcji kurtynowych i strukturalnych

Przy odtwarzaniu hydroizolacji ścian zewnętrznych nie zawsze jest możliwe odkopanie ścian budynku (np. gdy na działce obok stoi budynek lub przebiega ulica). W takich przypadkach często wykonywana jest...

Przy odtwarzaniu hydroizolacji ścian zewnętrznych nie zawsze jest możliwe odkopanie ścian budynku (np. gdy na działce obok stoi budynek lub przebiega ulica). W takich przypadkach często wykonywana jest zewnętrzna hydroizolacja piwnic od środka w technice iniekcji kurtynowej z użyciem żelów iniekcyjnych - np. KÖSTER Injectionsgel G4.

Saint Gobain Construction Products Polska/ Weber Hydroizolacja fundamentów - jak chronić dom przed wodą?

Hydroizolacja fundamentów - jak chronić dom przed wodą? Hydroizolacja fundamentów - jak chronić dom przed wodą?

Jednym z najważniejszych, a jednocześnie najtrudniejszych zadań wśród prac budowlanych jest zabezpieczenie obiektu przed działaniem wód gruntowych. Na działanie wody szczególnie narażone są fundamenty....

Jednym z najważniejszych, a jednocześnie najtrudniejszych zadań wśród prac budowlanych jest zabezpieczenie obiektu przed działaniem wód gruntowych. Na działanie wody szczególnie narażone są fundamenty. Aby zapewnić ich skuteczną i trwałą ochronę, należy zastosować nowoczesne materiały izolacyjne, właściwie dobrać rozwiązania konstrukcyjne i zadbać o prawidłowe wykonanie.

dr inż. Grzegorz Dmochowski, dr inż. Piotr Berkowski Zarysowania skurczowe płyt fundamentowych i ścian w budynkach mieszkalnych z garażami podziemnymi

Zarysowania skurczowe płyt fundamentowych i ścian w budynkach mieszkalnych z garażami podziemnymi Zarysowania skurczowe płyt fundamentowych i ścian w budynkach mieszkalnych z garażami podziemnymi

Zdecydowana większość budynków mieszkalnych i użyteczności publicznej ma obecnie garaże podziemne, co wiąże się z reguły z posadowieniem ich na płycie fundamentowej i wykonaniem ścian żelbetowych dolnej...

Zdecydowana większość budynków mieszkalnych i użyteczności publicznej ma obecnie garaże podziemne, co wiąże się z reguły z posadowieniem ich na płycie fundamentowej i wykonaniem ścian żelbetowych dolnej kondygnacji.

dr inż. Paula Szczepaniak Pionowa izolacja obwodowa budynków ze ścianami jednowarstwowymi

Pionowa izolacja obwodowa budynków ze ścianami jednowarstwowymi Pionowa izolacja obwodowa budynków ze ścianami jednowarstwowymi

Mostek termiczny połączenia budynku z gruntem, w przypadku stosowania typowego liniowego posadowienia budynku, czyli przy zastosowaniu ław fundamentowych, jest elementem, w którym trudno zachować podstawowy...

Mostek termiczny połączenia budynku z gruntem, w przypadku stosowania typowego liniowego posadowienia budynku, czyli przy zastosowaniu ław fundamentowych, jest elementem, w którym trudno zachować podstawowy warunek dobrej izolacyjności przegrody zewnętrznej - ciągłość na obwodzie bryły.

mgr inż. Irena Domska Styropian hydrofobowy w izolacji cieplnej ścian fundamentowych

Styropian hydrofobowy w izolacji cieplnej ścian fundamentowych Styropian hydrofobowy w izolacji cieplnej ścian fundamentowych

Styropian jest materiałem izolacyjnym, który charakteryzuje się wysoką odpornością na wilgoć. Odporność ta obejmuje nie tylko niewielką, w stosunku do innych materiałów izolacyjnych, nasiąkliwość wodą,...

Styropian jest materiałem izolacyjnym, który charakteryzuje się wysoką odpornością na wilgoć. Odporność ta obejmuje nie tylko niewielką, w stosunku do innych materiałów izolacyjnych, nasiąkliwość wodą, lecz również brak negatywnego wpływu na właściwości wytrzymałościowe. Doświadczenia laboratoryjne wskazują również na odporność wytrzymałościową styropianu na wielokrotne zamrażanie i odmrażanie.

Wybrane dla Ciebie

Korzyści z czyszczenia urządzeniami wysokociśnieniowymi ▶️

Korzyści z czyszczenia urządzeniami wysokociśnieniowymi ▶️ Korzyści z czyszczenia urządzeniami wysokociśnieniowymi ▶️

Profesjonalna wiedza na temat hydroizolacji

Profesjonalna wiedza na temat hydroizolacji Profesjonalna wiedza na temat hydroizolacji

Dobór technologii i materiałów izolacyjnych do kosztorysu

Dobór technologii i materiałów izolacyjnych do kosztorysu Dobór technologii i materiałów izolacyjnych do kosztorysu

Dobra izolacja domu, równa się oszczędność! Zobacz jak tego dokonać »

Dobra izolacja domu, równa się oszczędność! Zobacz jak tego dokonać » Dobra izolacja domu, równa się oszczędność! Zobacz jak tego dokonać »

Kredyty preferencyjne ze środków unijnych? »

Kredyty preferencyjne ze środków unijnych? » Kredyty preferencyjne ze środków unijnych? »

Stawianie hali - co musisz wiedzieć»

Stawianie hali - co musisz wiedzieć» Stawianie hali - co musisz wiedzieć»

Jak wybrać płytę izolacyjną? Czym się sugerować?

Jak wybrać płytę izolacyjną? Czym się sugerować? Jak wybrać płytę izolacyjną? Czym się sugerować?

Ciepło zimą, zimno latem - poprawna izolacja

Ciepło zimą, zimno latem - poprawna izolacja Ciepło zimą, zimno latem - poprawna izolacja

Kompleksowa ceramika dla domu

Kompleksowa ceramika dla domu Kompleksowa ceramika dla domu

Skuteczna izolacja dachu płaskiego »

Skuteczna izolacja dachu płaskiego » Skuteczna izolacja dachu płaskiego »

Czego użyć do naprawy balkonu lub tarasu?

Czego użyć do naprawy balkonu lub tarasu? Czego użyć do naprawy balkonu lub tarasu?

Indywidualne usługi w zakresie produkcji dowolnych elementów z tworzyw sztucznych » »

Indywidualne usługi w zakresie produkcji dowolnych elementów z tworzyw sztucznych » » Indywidualne usługi w zakresie produkcji dowolnych elementów z tworzyw sztucznych » »

Porównaj ceny styropianu i oszczędzaj »

Porównaj ceny styropianu i oszczędzaj » Porównaj ceny styropianu i oszczędzaj »

Zalety ocieplania styropianem pasywnym »

Zalety ocieplania styropianem pasywnym » Zalety ocieplania styropianem pasywnym »

Izolacja natryskowa budynków »

Izolacja natryskowa budynków » Izolacja natryskowa budynków »

BHP w budownictwie 2021. Przepisy z komentarzem + SARS-CoV-2 w BHP + Pytania egzaminacyjne na uprawnienia budowlane

BHP w budownictwie 2021. Przepisy z komentarzem + SARS-CoV-2 w BHP + Pytania egzaminacyjne na uprawnienia budowlane BHP w budownictwie 2021. Przepisy z komentarzem + SARS-CoV-2 w BHP + Pytania egzaminacyjne na uprawnienia budowlane

Nowoczesne hydroizolacje budynków - Zeszyt 1. Zabezpieczenia wodochronne części podziemnych budynków

Nowoczesne hydroizolacje budynków - Zeszyt 1. Zabezpieczenia wodochronne części podziemnych budynków Nowoczesne hydroizolacje budynków - Zeszyt 1. Zabezpieczenia wodochronne części podziemnych budynków

Warunki techniczne jakim powinny odpowiadać budynki i ich usytuowanie 2021

Warunki techniczne jakim powinny odpowiadać budynki i ich usytuowanie 2021 Warunki techniczne jakim powinny odpowiadać budynki i ich usytuowanie 2021

Najnowsze produkty i technologie

mieszkanie.pl Co można wybudować bez pozwolenia?

Co można wybudować bez pozwolenia? Co można wybudować bez pozwolenia?

Nie wszystkie obiekty budowlane od 19 września 2020 wymagają uzyskanie pozwolenia na budowę. Nie oznacza to, że każdą działkę można zagospodarować w dowolny sposób. Warto zapoznać się z nowymi rozporządzaniami,...

Nie wszystkie obiekty budowlane od 19 września 2020 wymagają uzyskanie pozwolenia na budowę. Nie oznacza to, że każdą działkę można zagospodarować w dowolny sposób. Warto zapoznać się z nowymi rozporządzaniami, aby nie popełnić błędu. Ustawa została w znacznej części zliberalizowana, ale niektóre budowle są obarczone dokumentacją i dla ich legalności wystarczy jedynie zgłoszenie. Więcej na ten temat dowiesz się poniżej.

merXu Korzystaj z merxu i oszczędzaj na firmowych zakupach

Korzystaj z merxu i oszczędzaj na firmowych zakupach Korzystaj z merxu i oszczędzaj na firmowych zakupach

Czy znacie już nowy serwis internetowy, który umożliwia handel między firmami – merXu.com? Platforma obejmuje blisko milion ofert dostępnych dla kupujących poszukujących produktówz różnych branż: narzędzi,...

Czy znacie już nowy serwis internetowy, który umożliwia handel między firmami – merXu.com? Platforma obejmuje blisko milion ofert dostępnych dla kupujących poszukujących produktówz różnych branż: narzędzi, elektrotechniki i oświetlenia, budownictwa, instalacji, maszyn i metalurgii czy bezpieczeństwa pracy.

fischer Polska sp. z o.o. Systemy mocujące fischer – szeroki wybór i wysoka jakość produktów do izolacji

Systemy mocujące fischer – szeroki wybór i wysoka jakość produktów do izolacji Systemy mocujące fischer – szeroki wybór i wysoka jakość produktów do izolacji

Różne podłoża budowlane, materiały, grubości oraz klasy bezpieczeństwa pożarowego wymagają zastosowania odpowiedniego typu systemów mocujących. Firma fischer, światowy lider w zakresie techniki zamocowań,...

Różne podłoża budowlane, materiały, grubości oraz klasy bezpieczeństwa pożarowego wymagają zastosowania odpowiedniego typu systemów mocujących. Firma fischer, światowy lider w zakresie techniki zamocowań, oferuje bogate portfolio wyrobów przeznaczonych do stosowania w izolacji.

Bauder Polska Sp. z o. o. Kompletne systemy dachów zielonych

Kompletne systemy dachów zielonych Kompletne systemy dachów zielonych

Wykorzystywanie powierzchni dachu jako ogrodu dachowego staje się coraz bardziej popularne.

Wykorzystywanie powierzchni dachu jako ogrodu dachowego staje się coraz bardziej popularne.

BASCOGLASS Sp. z o. o. Pręty kompozytowe do zbrojenia betonu

Pręty kompozytowe do zbrojenia betonu Pręty kompozytowe do zbrojenia betonu

Pręty kompozytowe wykorzystywane są w konstrukcjach budowlanych od kilkudziesięciu lat. Wysoka odporność na korozję, duża wytrzymałość na rozciąganie, obojętność elektromagnetyczna oraz łatwość cięcia...

Pręty kompozytowe wykorzystywane są w konstrukcjach budowlanych od kilkudziesięciu lat. Wysoka odporność na korozję, duża wytrzymałość na rozciąganie, obojętność elektromagnetyczna oraz łatwość cięcia to główne czynniki decydujące o wyborze prętów kompozytowych jako zbrojenia konstrukcji. Liczne realizacje, w których zastosowano takie zbrojenie oraz pozytywne wyniki wielu badań świadczą o tym, iż jest ono dobrą alternatywą dla klasycznej stali zbrojeniowej.

MARMA POLSKIE FOLIE SP. Z O.O. Modernizacja dachów pochyłych

Modernizacja dachów pochyłych Modernizacja dachów pochyłych

Z badań i doświadczeń zbieranych w UE wiadomo, że remonty dachów przeprowadza się orientacyjnie co 30 lat. Powodów do remontowania jest wiele. Pokrycia i inne materiały tworzące dach niszczą się lub wymagają...

Z badań i doświadczeń zbieranych w UE wiadomo, że remonty dachów przeprowadza się orientacyjnie co 30 lat. Powodów do remontowania jest wiele. Pokrycia i inne materiały tworzące dach niszczą się lub wymagają odnowienia. Oprócz tego stale rosną wymagania i pojawiają się nowe funkcje dachów (przykład fotowoltaika). Każdy remont dachu należy wykorzystać jako okazję do jego ocieplenia, ponieważ dodatkowa warstwa termoizolacji jest dobrą inwestycją oszczędzającą wydatki na energię już w najbliższym okresie...

merXu Sprawdzeni dostawcy na merXu

Sprawdzeni dostawcy na merXu Sprawdzeni dostawcy na merXu

Osoby szukające materiałów wykończeniowych do różnego typu prac budowlanych powinny skorzystać z możliwości nowoczesnej platformy zakupowej merXu, oferującej wiele funkcjonalności dostosowanych konkretnie...

Osoby szukające materiałów wykończeniowych do różnego typu prac budowlanych powinny skorzystać z możliwości nowoczesnej platformy zakupowej merXu, oferującej wiele funkcjonalności dostosowanych konkretnie do potrzeb firm i specyfiki rynku B2B.

Izolacje Pluimers Ocieplenie poddasza pianą PUR

Ocieplenie poddasza pianą PUR Ocieplenie poddasza pianą PUR

Ciągle rozwijający się sektor budownictwa mieszkaniowego i wzrastające ceny energii sprawiają, że coraz częściej inwestorzy zastanawiają się nad wyborem idealnego ocieplenia poddasza swojego budynku. Skutecznym...

Ciągle rozwijający się sektor budownictwa mieszkaniowego i wzrastające ceny energii sprawiają, że coraz częściej inwestorzy zastanawiają się nad wyborem idealnego ocieplenia poddasza swojego budynku. Skutecznym i szybkim sposobem jest ocieplenie poddasza pianą pur. Dzięki takiemu rozwiązaniu otrzymujemy produkt wraz z usługą, która zazwyczaj trwa 1-2 dni. Inwestor nie musi praktycznie o nic się martwić. Bardzo ważny jest jednak wybór piany pur.

MIWO - Stowarzyszenie Producentów Wełny Mineralnej: Szklanej i Skalnej Jak zaizolować dom, aby zapewnić bezpieczeństwo pożarowe?

Jak zaizolować dom, aby zapewnić bezpieczeństwo pożarowe? Jak zaizolować dom, aby zapewnić bezpieczeństwo pożarowe?

W pożarze możemy stracić życie lub zdrowie oraz cały dobytek, a w Polsce bezpieczeństwo pożarowe jest wciąż niedoceniane. Z ostatnich danych opublikowanych przez Komendę Główną Państwowej Straży Pożarnej...

W pożarze możemy stracić życie lub zdrowie oraz cały dobytek, a w Polsce bezpieczeństwo pożarowe jest wciąż niedoceniane. Z ostatnich danych opublikowanych przez Komendę Główną Państwowej Straży Pożarnej wynika, że w 2020 roku w pożarach w naszym kraju zginęło 489 osób, z czego 360 w pożarach budynków, czyli 7 na 10 ofiar zginęło w mieszkaniach lub domach. Aż 1859 osób zostało rannych. To duże liczby!

Copyright © 2004-2019 Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Spółka komandytowa, nr KRS: 0000537655. Wszelkie prawa, w tym Autora, Wydawcy i Producenta bazy danych zastrzeżone. Jakiekolwiek dalsze rozpowszechnianie artykułów zabronione. Korzystanie z serwisu i zamieszczonych w nim utworów i danych wyłącznie na zasadach określonych w Zasadach korzystania z serwisu.
Portal Budowlany - Izolacje.com.pl

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim urządzeniu końcowym. W każdym momencie możesz dokonać zmiany ustawień przeglądarki dotyczących cookies. Nim Państwo zaczną korzystać z naszego serwisu prosimy o zapoznanie się z naszą polityką prywatności oraz Informacją o Cookies. Więcej szczegółów w naszej Polityce Prywatności oraz Informacji o Cookies. Administratorem Państwa danych osobowych jest Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Sp.K., nr KRS: 0000537655, z siedzibą w 04-112 Warszawa, ul. Karczewska 18, tel. +48 22 810-21-24, właściciel strony www.izolacje.com.pl. Twoje Dane Osobowe będą chronione zgodnie z wytycznymi polityki prywatności www.izolacje.com.pl oraz zgodnie z Rozporządzeniem Parlamentu Europejskiego i Rady (UE) 2016/679 z dnia 27 kwietnia 2016r i z Ustawą o ochronie danych osobowych Dz.U. 2018 poz. 1000 z dnia 10 maja 2018r.