Izolacje.com.pl

Redukcja zasolenia przegród budowlanych za pomocą kompresów

Reduction of salinity in the building partitions with the use of compresses

FOT. 1. Krystalizacja soli na powierzchni muru; fot.: B. Monczyński

FOT. 1. Krystalizacja soli na powierzchni muru; fot.: B. Monczyński

Jednym z najbardziej niekorzystnych zjawisk związanych z obecnością soli i wilgoci w układzie porów materiałów budowlanych jest krystalizacja soli [1–2] (FOT. 1).

O czym przeczytasz w artykule:
  • Sole powodujące destrukcję materiałów i elementów budowlanych
  • Metody i procedury zmniejszania stężenia jonów soli
  • Redukcja zasolenia
  • Kompresy do redukcji soli (wymagania jakościowe i normy, diagnostyka, kontrolowanie zakresu redukcji zasolenia, usuwanie wykwitów solnych i innych uszkodzeń, sposoby nakładania kompresów)
  • Postępowanie z obiektami szczególnie wrażliwymi

Przedmiotem artykułu jest redukcja zasolenia przegród budowlanych za pomocą kompresów. Autor przeprowadza analizę soli powodujących destrukcję materiałów i elementów budowlanych oraz prezentuje metody i procedury zmniejszania stężenia jonów soli i zagadnienia związane z redukcją zasolenia. Szczególną uwagę poświęca kompresom do redukcji soli. Omawia wymagania jakościowe i normy, diagnostykę, kontrolowanie zakresu redukcji zasolenia, usuwanie wykwitów solnych i innych uszkodzeń oraz sposoby nakładania kompresów. Uwzględnia również zasady postępowania z obiektami szczególnie wrażliwymi.

Reduction of salinity in the building partitions with the use of compresses

The subject of this article is to reduce salinity in the building partitions with the use of compresses. The author conducts an analysis of salts that cause the destruction of materials and building elements, and presents methods and procedures for reducing the concentration of salt ions, as well as issues related to the reduction of salinity. Particular attention is paid to compresses to reduce salt deposits. He discusses the quality requirements and standards, diagnostic methods, controlling the scope of salinity reduction, removing salt efflorescence and other kinds of damage, as well as methods of applying compresses. He also takes into account the rules for dealing with particularly sensitive objects.

Sole powodujące destrukcję materiałów i elementów budowlanych

Szkodliwe sole budowlane to najczęściej dobrze rozpuszczalne związki chemiczne, głównie o charakterze organicznym, które w formie rozpuszczonej (jonów) lub krystalicznej występują w strukturze porowatych materiałów budowlanych. W zmiennych warunkach cieplno-wilgotnościowych (RYS. 1), w wyniku zmiany stanu skupienia lub zmiany objętości (spowodowanej magazynowaniem lub uwalnianiem wody hydratacyjnej) wywołują mechaniczne naprężenia w strukturze materiału, które z kolei mogą prowadzić do jej uszkodzenia [4].

rys1 redukcja zasolenia

RYS. 1. Transport wilgoci oraz soli w murze; rys.: [3]

Z uwagi na różnorodność wpływów wywieranych na materiały budowlane, jak również na liczne kombinacje soli, nie można podać dolnej granicy zasolenia, poniżej której nie będzie ono stanowić zagrożenia dla budynku. Niemniej, na podstawie praktycznych doświadczeń i eksperymentów, można wyprowadzić przybliżone rzędy wielkości zawartości anionów, w przypadku których można oczekiwać pewnego poziomu zagrożenia (TABELA 1).

tab1 redukcja zasolenia

TABELA 1. Ocena ryzyka związanego z różnymi stężeniami anionów szkodliwych soli budowlanych [4]
1) W przypadku tynku lub ściany nieotynkowanej; 2) W przypadku ściany, z której usunięto tynk.

Jednakże realistyczna ocena rzeczywistego ryzyka możliwa jest jedynie w połączeniu ze znajomością zawartości nie tylko anionów, lecz także kationów. Kationy najczęściej brane pod uwagę to kationy wapnia, magnezu, sodu i potasu. Kombinacje anionów i kationów, które tworzą sole prowadzące do uszkodzeń elementów budowli, przedstawia RYS. 2.

rys2 redukcja zasolenia

RYS. 2. Orientacyjna ocena zagrożenia uszkodzeniami spowodowanymi przez szkodliwe sole budowlane; rys.: [4]

Poziom ryzyka narażenia na szkodliwe działanie soli uzależniony jest od dominującego anionu i odpowiedniego kationu. Intensywność barwy jonów wskazuje na potencjalne zagrożenie (na przykład siarczany są istotne dla uszkodzeń w stężeniach podanych w TABELI 1, jednakże w większym stopniu w połączeniu z sodem lub magnezem, a w mniejszym z wapniem). W pojedynczych przypadkach występują również inne jony, takie jak anion węglanowy (CO32–) czy kation amonowy (NH4+).

Metody i procedury zmniejszania stężenia jonów soli

Dostępne są różne działania, o zróżnicowanych wymaganiach oraz celach, które można podzielić na cztery kategorie [3, 8]:

  • Kategoria I: technologia usuwania,
  • Kategoria II: technologia redukcji,
  • Kategoria III: technologia przekształcania,
  • Kategoria IV: technologia pokrywania.

Należy ponadto wprowadzić rozróżnienie między [3]:

  • tzw. działaniami osłonowymi (towarzyszącymi) po uprzednim wykonaniu wtórnych izolacji poziomych i/lub pionowych [9], koncentrującymi się na magazynowaniu soli krystalizujących w wyniku wysychania,
  • renowacją w przypadku uszkodzenia spowodowanego wilgocią higroskopijną,
  • redukcją zasolenia jako elementu renowacji i/lub działań podejmowanych w celu zachowania pierwotnej substancji historycznie cennego budynku.

Do technologii pokrywania (kategoria IV) zaliczyć można tynki renowacyjne [10] oraz tzw. tynki regulujące zawilgocenie [11].

W przypadku technologii przekształcania (kategoria III) łatwo rozpuszczalne sole są przekształcane w słabo rozpuszczalne lub nierozpuszczalne związki soli w wyniku reakcji chemicznych lub procesów biologicznych [3].

Całkowite usuwanie szkodliwych soli (kategoria I) w praktyce możliwe jest jedynie w szczególnych przypadkach oraz wymaga bardzo dużych nakładów, zarówno technicznych, jak i czasowych. Najczęściej nie jest to ani technicznie możliwe, ani konieczne – wystarczająca okazuje się możliwość zmniejszenia istniejących gradientów soli w murze [3].

Obok tynków ofiarnych [12] w tym celu stosowane są kompresy redukujące zasolenie.

Metody zmniejszania stężenia jonów szkodliwych soli w kamieniu naturalnym, jak również w innych porowatych mineralnych materiałach budowlanych, w budownictwie oraz konserwacji zabytków za pomocą kompresów, opisane zostały w instrukcji WTA (Naukowo-Technicznego Stowarzyszenia na rzecz Konserwacji Budynków oraz Ochrony – niem. Wissenschaftlich-Technische Arbeitsgemeinschaft für Bauwerks­erhaltung und Denkmalpflege) nr 3–13/19 [4].

Redukcja zasolenia

Przyczyną niekorzystnych zmian na powierzchni materiałów porowatych nie zawsze są szkodliwe sole budowlane. Z tego powodu elementem niezbędnym jest prawidłowo zaplanowana i wykonana diagnostyka dotycząca zanieczyszczenia [2, 13]. Pobieranie próbek, szczególnie w przypadku obiektów zabytkowych, musi być ograniczone do rozsądnego poziomu [4].

Z drugiej strony redukcja zasolenia może być obarczona pewnym ryzykiem dla obiektu (np. uszkodzenia powierzchni czy migracji szkodliwych soli do obszarów wcześniej nieobciążonych).

Należy zatem określić, czy cel, jakim jest wyeliminowanie lub ograniczenie szkodliwego wpływu zasolenia, jest możliwy do osiągnięcia, a o tym, czy w konkretnym przypadku ma być przeprowadzona redukcja zasolenia przy zastosowaniu kompresów (oraz środków towarzyszących) należy zdecydować, uwzględniając zarówno aspekty techniczne, jak i konserwatorskie.

f2 redukcja zasolenia

FOT. 2. Kompres nałożony na zasolonej cegle ceramicznej; fot.: Jacek Olesiak

Głównym celem stosowania kompresów jest nieniszczące zmniejszenie zawartości szkodliwych soli w porowatych mineralnych materiałach budowlanych (np. kamieniu naturalnym, cegle, zaprawach murarskich, betonie itp.). Redukcja zasolenia wymagana jest z reguły w celu zatrzymania lub spowolnienia wywołanych przez sole procesów niszczenia struktury. Jednocześnie stwarzane są warunki do innych działań (wzmacnianie, reprofilacja, impregnacja, malowanie, tynkowanie itp.), których wykonanie, skuteczność lub trwałość może zostać osłabiona nadmierną zawartością szkodliwych soli.

Redukcja zasolenia przy zastosowaniu kompresów wykorzystuje rozpuszczalność soli w wodzie i opiera się na transporcie rozpuszczonych soli (roztworu) z zasolonego materiału budowlanego do kompresu (FOT. 2RYS. 3).

rys3 redukcja zasolenia

RYS. 3. Przykład rozkładu soli i wilgoci w schnącym kompresie; rys.: [4]

Ruch cieczy jest wywoływany przez gradient wilgoci (transport kapilarny) lub przez gradienty temperatury i ciśnienia (konwekcja), a także przez grawitację, w wyniku której rozpuszczone sole transportowane są wewnątrz cieczy (gradient stężeń rozpuszczonych soli w wodzie prowadzi do transportu jonów soli na drodze dyfuzji).

Kapilarny transport rozpuszczonych soli (adwekcja) uwarunkowany jest strukturą porów materiału budowlanego i w najprostszy sposób (jednakże z wystarczającą dokładnością) można go scharakteryzować za pomocą współczynnika nasiąkliwości. Kierunek transportu jonów przebiega zatem zgodnie z gradientem wilgoci: z obszaru bardziej wilgotnego do bardziej suchego.

Siłą napędową transportu jonów poprzez dyfuzję jest gradient stężeń – jony dyfundują w kierunku od wyższego stężenia do niższego. Dyfuzja zachodzi również jako dyfuzja powierzchniowa na styku faz („warstewka wilgoci” na ścianach porów itp.). Skuteczność transportu jonów przez dyfuzję jest jednak wielokrotnie mniejsza niż w przypadku transportu kapilarnego.

Aby możliwy był ciągły kapilarny transport wilgoci z podłoża do kompresu, kompres musi mieć mniejsze pory niż podłoże (RYS. 4).

rys4 redukcja zasolenia

RYS. 4. Kierunek kapilarnego transportu od większych porów do mniejszych; skuteczność transportu jonów przez dyfuzję jest wielokrotnie mniejsza niż w przypadku transportu kapilarnego; rys.: [4]

W wyniku ukierunkowanego transportu wilgoci do kompresu następuje zmniejszenie zawartości wody w podłożu – najpierw „opróżniane” są większe pory. Sole odkładają się tylko w tych porach podłoża, których promień jest mniejszy niż promień porów w nałożonym kompresie.

Stopień porowatości kompresu musi zapewniać zarówno takie nawilżenie podłoża, aby doprowadzić do rozpuszczenia szkodliwych soli, jak i adwekcję („powrotny” przepływ kapilarny) do kompresu.

Opisane powyżej procesy przebiegają równocześnie. Stopień, w jakim poszczególne procesy transportowe przyczyniają się do redukcji zasolenia, uzależniony jest zarówno od właściwości materiału, z którego wykonano kompres, jak i od warunków, w jakich prowadzone jest odsalanie.

Kompresy do redukcji soli

Kompresy do redukcji soli to z reguły rozrabiane z wodą demineralizowaną mieszaniny kilku składników (TABELA 2), bez zawartości spoiwa (środka wiążącego). Regulując proporcje poszczególnych substancji wchodzących w skład mieszaniny, można dostosować właściwości do konkretnego obszaru zastosowania (warunków brzegowych). Należy przy tym uwzględnić zagrożenia związane z użyciem poszczególnych substancji.

tab2 redukcja zasolenia

TABELA 2. Najczęściej używane składniki kompresów i ich funkcje w mieszankach [4]

Wymagania jakościowe i normy

Jako podstawowe wymagania jakościowe muszą zostać spełnione następujące warunki:

1. Mieszanka do wykonania kompresu nie może (co oczywiste) zawierać soli rozpuszczalnych (tj. zawartość soli < 0,1%, mas.) ani substancji barwiących.
2. Gotowa do użycia mieszanka musi mieć wartość pH (mierzoną w 25°C) w zakresie od 6 do maksymalnie 10.
3. Mieszanka kompresów musi być łatwa do nałożenia, dobrze przylegać po wyschnięciu i nie może przenosić naprężeń na powierzchnię.
4. Po zastosowaniu kompres musi być możliwy do usunięcia i pozostawiać jak najmniej śladów.

W celu uzasadnienia potrzeby redukcji soli za pomocą kompresów, jak również wykazania ich szans powodzenia, niezbędne są wzajemnie skoordynowane badania laboratoryjne i konserwatorskie opisane w normach PN-EN 16085:2013-02 [14] oraz PN-EN 16455:2014-12 [15].

Diagnostyka

Od jednego do trzech miesięcy należy zaplanować na badania wstępne (diagnostyczne). Powinny one uwzględniać następujące kwestie:

  • Struktura podłoża:
    –  układ warstw oraz opis zastosowanych materiałów,
    –  występujące uszkodzenia (np. wykwity, plamy wilgoci) – ich przyczyny i/lub źródła oraz możliwość usunięcia.
  • Możliwość absorpcji oraz uwalniania wody z podłoża.
  • Rodzaj i rozłożenie soli w profilach wysokościowym i głębokościowym (do głębokości kilku centymetrów), ilościowe określenie zawartości anionów i kationów.
  • Warunki mikroklimatu wewnętrznego.

Wyniki pozwalają odpowiedzieć na następujące pytania dodatkowe dotyczące realizacji działań:

  • Czy określona zawartość szkodliwych soli ma znaczenie dla szkód i czy w związku z tym konieczna jest redukcja soli, również w kontekście dalszego użytkowania?
  • Czy można spodziewać się skuteczności zabiegów naprawczych, czy też istnieją alternatywy?
  • Którą procedurę należy zastosować, jakich materiałów użyć, jakiego czasu aplikacji należy oczekiwać?
  • Jaki jest całkowity czas trwania zabiegu?

Wybrana procedura musi zostać przetestowana na odcinkach próbnych, a jej skuteczność musi zostać w odpowiedni sposób udokumentowana.

Kontrolowanie zakresu redukcji zasolenia

W trakcie prowadzenia redukcji zasolenia należy kontrolować faktyczny zakres redukcji, badając materiał kompresu, a jeśli to możliwe, również podłoże.

Na podstawie tak prowadzonej kontroli można ocenić, czy dalsze stosowanie kompresu jest uzasadnione. W celu oceny zabiegu redukcji zasolenia po jego zakończeniu należy przeprowadzić pomiar zawartości szkodliwych soli (anionów oraz kationów) w taki sam sposób, jak w procedurze badania wstępnego.

Ograniczenie sprawdzenia zawartości soli do kompresu (z pominięciem podłoża) uniemożliwi jednoznaczną ocenę skuteczności zabiegu.

Badania prowadzone w trakcie stosowania kompresów muszą być prowadzone zgodnie z następującą procedurą:

  • Wykonać pomiar zawartości soli w „kompresie zerowym”.
  • Na koniec każdego cyklu wyciąć reprezentatywne próbki kompresu i zbadać je w pełnej grubości warstwy o powierzchni 10×10 cm, podając datę i miejsce usunięcia. W przypadku kilku cykli próbki należy pobierać z tego samego miejsca. Ilościowo oznaczoną zawartość soli należy podawać w g/m2 na podstawie powierzchni jednostkowej.
  • Regularnie kontrolować stan kompresów. Przyczepność kompresu i wszelkie zmiany na podłożu należy udokumentować pisemnie i fotograficznie.
Usuwanie wykwitów solnych i innych uszkodzeń

Redukcja zasolenia przy zastosowaniu kompresów może być wykonywana wyłącznie przez doświadczonych konserwatorów lub specjalistów. Wszelkie prace należy prowadzić w temperaturze nie niższej niż +5°C.

Przed przystąpieniem do nakładania kompresu z podłoża należy usunąć (na sucho), a następnie zutylizować, wykwity solne i wszelkie inne uszkodzenia. W razie konieczności należy wykonać wstępne wzmocnienie podłoża i/lub tymczasową hydrofobizację.

W przypadku szczególnie wrażliwych powierzchni można (w celu ich ochrony) nałożyć przepuszczalną i stabilną warstwę pośrednią (np. papier japoński – washi), należy jednak mieć na uwadze, że warstwy takie z reguły obniżają skuteczność kompresu.

Konieczność, jak również intensywność (czas trwania, ilość nakładanej wody) nawilżenia podłoża przed nałożeniem kompresu zależą między innymi od:

  • chłonności podłoża,
  • rodzaju, stężenia i rozkładu szkodliwych soli,
  • rozkładu wilgoci w podłożu,
  • rodzaju stosowanego kompresu.

W przypadku suchej a zarazem silnie chłonnej powierzchni, nadmierne zwilżenie wstępne może doprowadzić do niepożądanego transportu soli w głąb materiału. I odwrotnie – zwilżenie musi być na tyle intensywne, aby front wilgoci dotarł do wszystkich zawartych w podłożu soli i „zmobilizował” je. Zarówno do wstępnego zwilżenia, jak i do obróbki kompresu należy stosować wyłącznie wodę demineralizowaną.

Sposoby nakładania kompresów

Materiały do wykonywania kompresów po zarobieniu z wodą przypominają świeże ciasto – należy je nakładać ręcznie lub maszynowo (np. niewielkim agregatem tynkarskim), w jednej lub kilku warstwach, na grubość 10–20 mm. W przypadku powierzchni wrażliwych kompres zawsze należy nakładać ręcznie (FOT. 3). Trzeba zwrócić uwagę, aby dobrze i całkowicie przylegał do podłoża.

f3 redukcja zasolenia

FOT. 3. Ręczna aplikacja kompresu bentonitowego; fot.: iljastreit.de/blog

W przypadku aplikacji na wydzielonych obszarach, aby uniknąć niepożądanych efektów w strefie granicznej (np. wykwitów soli powstałych w wyniku ich redystrybucji), kompres należy nakładać co najmniej 10 cm poza obszar wyraźnie wystawiony na działanie soli.

W przypadku występowania silnych ruchów powietrza (wiatr, przeciągi), niskiej wilgotności i/lub wysokiej temperatury (silnego nasłonecznienia) kompres należy chronić przed zbyt szybkim wysychaniem. Z kolei gdy wilgotność jest stale wysoka, a przepływ powietrza niewielki (np. w piwnicach), szybkość wysychania należy zwiększyć za pomocą odpowiednich środków (osuszacze, wentylacja). Należy przy tym zapewnić takie warunki, aby wyeliminować ryzyko rozwoju grzybów pleśniowych i powstawania innych zagrożeń biologicznych. W przypadku aplikacji na zewnątrz budynku należy ponadto zapewnić ochronę przed zacinającym deszczem.

Okres stosowania kompresu wynosi z reguły od 3 do 6 tygodni i jest on w tym czasie kilkakrotnie wymieniany. Przy bardzo wysokim poziomie zasolenia (tj. powyżej 1,5% mas.) kompres należy wymieniać częściej podczas pierwszych kilku cykli.

Wysuszony kompres jest nieskuteczny i, aby uniknąć ponownego zanieczyszczenia podłoża szkodliwymi solami, powinien zostać natychmiast usunięty. Podłoże należy oczyścić z przylegających resztek na sucho lub mechanicznie (w zależności od wrażliwości podłoża).

Postępowanie z obiektami szczególnie wrażliwymi

W sytuacjach szczególnych, np. w przypadku przenośnych elementów z kamienia naturalnego, takich jak rzeźby, płyty nagrobne itp., odsalanie można przeprowadzić w warsztacie. Elementy płaskie o niewielkiej grubości, charakteryzujące się wysoką porowatością i dobrą przepuszczalnością wody (np. płyty nagrobne) można umieścić nieobrabianą stroną w kąpieli wodnej (RYS. 5), natomiast kompres nałożyć na stronę obrabianą. Dzięki temu uzyskuje się ukierunkowany przepływ wilgoci przez cały przekrój elementu, a tym samym uzyskuje zdecydowanie wyższą wydajność. Należy jednak zwrócić uwagę, że w przypadku długiego czasu trwania takiego zabiegu znacząco wzrasta ryzyko rozwoju grzybów pleśniowych lub innych porażeń biologicznych.

rys5 redukcja zasolenia

RYS. 5. Ukierunkowany przepływ soli w roztworze w kierunku kompresu; rys.: [4]

Alternatywnie do kąpieli wodnej, ukierunkowany przepływ wilgoci można wygenerować in situ (na obiekcie) przez kontrolowane wprowadzenie wilgoci za frontem zasolenia (RYS. 6). W tym celu w siatce spoin (w przypadku elementów murowanych) lub też w miejscach występujących uszkodzeń montowane są pakery, przez które – po nałożeniu kompresu – wprowadzana jest woda demineralizowana.
Ukierunkowany przepływ wilgoci można ponadto uzyskać, wykorzystując geometrię elementu, np. przez zastosowanie kompresu nawilżającego (RYS. 7).

rys6 redukcja zasolenia

RYS. 6. Modelowe, wyidealizowane przedstawienie docelowego dopływu wody do muru i transportu do kompresu; rys.: [4]

rys7 redukcja zasolenia

RYS. 7. Redukcja zasolenia na cokole przy użyciu połączenia kompresu nawilżającego i redukującego zasolenie; rys.: [4]

Literatura

 1. M. Koniorczyk, D. Gawin, P. Konca, D. Bednarska, „Modeling damage of building materials induced by sodium sulphate crystallization”, „Bauphysik”, 6(38), 2016, s. 366–371.
 2. B. Monczyński, „Zasolenie budynków i sposoby jego określania na potrzeby diagnostyki budowli”, „IZOLACJE” 3/2019, s. 96–101.
 3. F. Frössel, „Mauerwerkstrockenlegung und Kellersanierung. Wenn das Haus nasse Füße hat”, wyd. 3, Fraunhofer IRB Verlag, Stuttgart 2012.
 4. WTA Merkblatt 3–13-19/D, „Salzreduzierung an porösen mineralischen Baustoffen mittels Kompressen”, Wissenschaftlich­‑Technische Arbeitsgemeinschaft für Bauwerkserhaltung und Denkmalpflege e.V., München 2019, s. 12.
 5. C. Arendt, J. Seele, „Feuchte und Salze in Gebäuden: Ursachen, Sanierung, Vorbeugung”, Verlagsanstalt Alexander Koch, Leinfelden–Echterdingen 2001.
 6. WTA Merkblatt 2-9-20/D, „Sanierputzsysteme”, Wissenschaftlich­‑Technische Arbeitsgemeinschaft für Bauwerkserhaltung und Denkmalpflege e.V., München 2020, s. 26.
 7. Ö-Norm B 3355, „Trockenlegung von feuchtem Mauerwerk – Bauwerksdiagnostik und Planungsgrundlage”.
 8. L. Koss, N. Lesnych, H. Venzmer, „Dem Schaden die Suppe versalzen... Methoden zur Entsalzung”, „Bauen im Bestand B + B” 5/2010, s. 24–28.
 9. B. Monczyński, „Wtórna hydroizolacja przyziemnych części budynków”, „IZOLACJE” 4/2019, s. 120–125.
10. B. Monczyński, „Tynki stosowane na zawilgoconych przegrodach – tynki renowacyjne”, „IZOLACJE” 6/2020, s. 80–88.
11. B. Monczyński, „Tynki stosowane na zawilgoconych przegrodach – tynki regulujące zawilgocenie”, „IZOLACJE” 1/2021, s. 112–116.
12. B. Monczyński, „Tynki stosowane na zawilgoconych przegrodach – tynki ofiarne”, „IZOLACJE” 7/8/2020, s. 95–100.
13. B. Monczyński, „Diagnostyka zawilgoconych konstrukcji murowych”, „IZOLACJE” 1/2019, s. 89–93.
14. PN-EN 16085:2013-02, „Konserwacja dóbr kultury – Metodologia pobierania próbek z obiektów dóbr kultury – Zasady ogólne”.
15. PN-EN 16455:2014-12, „Konserwacja dziedzictwa kulturowego – ekstrahowanie i pomiar zawartości soli rozpuszczalnych w kamieniu naturalnym i materiałach pokrewnych zasobów dziedzictwa kultury”.

Galeria zdjęć

Tytuł
przejdź do galerii

Komentarze

Powiązane

dr inż. Jacek Hulimka, dr inż. Marta Kałuża Przyczyny zalania kondygnacji piwnicznej budynku mieszkalnego - błędy projektowe i wykonawcze

Przyczyny zalania kondygnacji piwnicznej budynku mieszkalnego - błędy projektowe i wykonawcze Przyczyny zalania kondygnacji piwnicznej budynku mieszkalnego - błędy projektowe i wykonawcze

W 2010 r., zaledwie 3 lata po przekazaniu do eksploatacji wielorodzinnego budynku mieszkalnego o bardzo wysokim standardzie, doszło do zalania garażu podziemnego. Analiza dokumentacji technicznej obiektu...

W 2010 r., zaledwie 3 lata po przekazaniu do eksploatacji wielorodzinnego budynku mieszkalnego o bardzo wysokim standardzie, doszło do zalania garażu podziemnego. Analiza dokumentacji technicznej obiektu oraz wyniki wykonanych badań wykazały błędy popełnione na etapie projektowania oraz budowy obiektu.

Austrotherm Płyty Austrotherm XPS TOP - efektywna termoizolacja fundamentów

Płyty Austrotherm XPS TOP - efektywna termoizolacja fundamentów Płyty Austrotherm XPS TOP - efektywna termoizolacja fundamentów

Ocieplenie fundamentów to decyzja, której konsekwencje ponosimy przez cały okres użytkowania domu. Warto do tego zastosować płyty z polistyrenu ekstrudowanego XPS.

Ocieplenie fundamentów to decyzja, której konsekwencje ponosimy przez cały okres użytkowania domu. Warto do tego zastosować płyty z polistyrenu ekstrudowanego XPS.

dr Bogumiła Chmielewska, mgr inż. Jerzy Koper Naprawa rys w konstrukcjach żelbetowych metodą iniekcji

Naprawa rys w konstrukcjach żelbetowych metodą iniekcji Naprawa rys w konstrukcjach żelbetowych metodą iniekcji

W pierwszej części artykułu dotyczącego problemu naprawy rys w konstrukcjach żelbetowych metodą iniekcji omówiono klasyfikację i przyczyny powstawania rys w betonie. Wymieniono także możliwości naprawy...

W pierwszej części artykułu dotyczącego problemu naprawy rys w konstrukcjach żelbetowych metodą iniekcji omówiono klasyfikację i przyczyny powstawania rys w betonie. Wymieniono także możliwości naprawy ze szczególnym uwzględnieniem metody iniekcji.

dr Bogumiła Chmielewska, mgr inż. Jerzy Koper Konstrukcje żelbetowe - naprawa rys metodą iniekcji Cz. 1. Powstawanie rys i metody ich naprawy

Konstrukcje żelbetowe - naprawa rys metodą iniekcji Cz. 1. Powstawanie rys i metody ich naprawy Konstrukcje żelbetowe - naprawa rys metodą iniekcji Cz. 1. Powstawanie rys i metody ich naprawy

Aby zapewnić przyjęty w projekcie okres użytkowania konstrukcji, należy zabezpieczyć ją przed oddziaływaniami mogącymi wpłynąć na trwałość. Dotyczy to m.in. naprawy rys.

Aby zapewnić przyjęty w projekcie okres użytkowania konstrukcji, należy zabezpieczyć ją przed oddziaływaniami mogącymi wpłynąć na trwałość. Dotyczy to m.in. naprawy rys.

Redakcja miesięcznika IZOLACJE Budowa fundamentów - poradnik

Budowa fundamentów - poradnik Budowa fundamentów - poradnik

Fundament to podstawa każdego budynku. Aby skutecznie spełniał swoje zadanie - stanowił oparcie dla konstrukcji domu i chronił przed wilgocią z zewnątrz- musi być dopasowany do istniejących warunków oraz...

Fundament to podstawa każdego budynku. Aby skutecznie spełniał swoje zadanie - stanowił oparcie dla konstrukcji domu i chronił przed wilgocią z zewnątrz- musi być dopasowany do istniejących warunków oraz przewidywanych obciążeń. Jak prawidłowo wykonać fundamenty?

Damian Żabicki Penetrujące materiały hydroizolacyjne

Penetrujące materiały hydroizolacyjne Penetrujące materiały hydroizolacyjne

Na etapie wykonywania hydroizolacji budynku warto rozważyć zastosowanie materiałów penetrujących. Nowoczesne preparaty tego typu zastępują tradycyjne izolacje w postaci papy i lepiku.

Na etapie wykonywania hydroizolacji budynku warto rozważyć zastosowanie materiałów penetrujących. Nowoczesne preparaty tego typu zastępują tradycyjne izolacje w postaci papy i lepiku.

Redakcja miesięcznika IZOLACJE Materiały rolowe do izolacji fundamentów

Materiały rolowe do izolacji fundamentów Materiały rolowe do izolacji fundamentów

Do najstarszych materiałów stosowanych do hydroizolacji fundamentów można zaliczyć materiały rolowe, które mają tę przewagę nad izolacjami bezspoinowymi, że pozwalają na niemal natychmiastowe zasypanie...

Do najstarszych materiałów stosowanych do hydroizolacji fundamentów można zaliczyć materiały rolowe, które mają tę przewagę nad izolacjami bezspoinowymi, że pozwalają na niemal natychmiastowe zasypanie wykopu, a folie z tworzyw sztucznych - o ile nie są klejone do podłoża - pozwalają na zaizolowanie niestabilnego lub zanieczyszczonego podłoża.

KOESTER Polska Żel akrylowy KÖSTER do iniekcji kurtynowych i strukturalnych

Żel akrylowy KÖSTER do iniekcji kurtynowych i strukturalnych Żel akrylowy KÖSTER do iniekcji kurtynowych i strukturalnych

Przy odtwarzaniu hydroizolacji ścian zewnętrznych nie zawsze jest możliwe odkopanie ścian budynku (np. gdy na działce obok stoi budynek lub przebiega ulica). W takich przypadkach często wykonywana jest...

Przy odtwarzaniu hydroizolacji ścian zewnętrznych nie zawsze jest możliwe odkopanie ścian budynku (np. gdy na działce obok stoi budynek lub przebiega ulica). W takich przypadkach często wykonywana jest zewnętrzna hydroizolacja piwnic od środka w technice iniekcji kurtynowej z użyciem żelów iniekcyjnych - np. KÖSTER Injectionsgel G4.

Saint Gobain Construction Products Polska/ Weber Hydroizolacja fundamentów - jak chronić dom przed wodą?

Hydroizolacja fundamentów - jak chronić dom przed wodą? Hydroizolacja fundamentów - jak chronić dom przed wodą?

Jednym z najważniejszych, a jednocześnie najtrudniejszych zadań wśród prac budowlanych jest zabezpieczenie obiektu przed działaniem wód gruntowych. Na działanie wody szczególnie narażone są fundamenty....

Jednym z najważniejszych, a jednocześnie najtrudniejszych zadań wśród prac budowlanych jest zabezpieczenie obiektu przed działaniem wód gruntowych. Na działanie wody szczególnie narażone są fundamenty. Aby zapewnić ich skuteczną i trwałą ochronę, należy zastosować nowoczesne materiały izolacyjne, właściwie dobrać rozwiązania konstrukcyjne i zadbać o prawidłowe wykonanie.

dr inż. Grzegorz Dmochowski, dr inż. Piotr Berkowski Zarysowania skurczowe płyt fundamentowych i ścian w budynkach mieszkalnych z garażami podziemnymi

Zarysowania skurczowe płyt fundamentowych i ścian w budynkach mieszkalnych z garażami podziemnymi Zarysowania skurczowe płyt fundamentowych i ścian w budynkach mieszkalnych z garażami podziemnymi

Zdecydowana większość budynków mieszkalnych i użyteczności publicznej ma obecnie garaże podziemne, co wiąże się z reguły z posadowieniem ich na płycie fundamentowej i wykonaniem ścian żelbetowych dolnej...

Zdecydowana większość budynków mieszkalnych i użyteczności publicznej ma obecnie garaże podziemne, co wiąże się z reguły z posadowieniem ich na płycie fundamentowej i wykonaniem ścian żelbetowych dolnej kondygnacji.

dr inż. Paula Szczepaniak Pionowa izolacja obwodowa budynków ze ścianami jednowarstwowymi

Pionowa izolacja obwodowa budynków ze ścianami jednowarstwowymi Pionowa izolacja obwodowa budynków ze ścianami jednowarstwowymi

Mostek termiczny połączenia budynku z gruntem, w przypadku stosowania typowego liniowego posadowienia budynku, czyli przy zastosowaniu ław fundamentowych, jest elementem, w którym trudno zachować podstawowy...

Mostek termiczny połączenia budynku z gruntem, w przypadku stosowania typowego liniowego posadowienia budynku, czyli przy zastosowaniu ław fundamentowych, jest elementem, w którym trudno zachować podstawowy warunek dobrej izolacyjności przegrody zewnętrznej - ciągłość na obwodzie bryły.

mgr inż. Irena Domska Styropian hydrofobowy w izolacji cieplnej ścian fundamentowych

Styropian hydrofobowy w izolacji cieplnej ścian fundamentowych Styropian hydrofobowy w izolacji cieplnej ścian fundamentowych

Styropian jest materiałem izolacyjnym, który charakteryzuje się wysoką odpornością na wilgoć. Odporność ta obejmuje nie tylko niewielką, w stosunku do innych materiałów izolacyjnych, nasiąkliwość wodą,...

Styropian jest materiałem izolacyjnym, który charakteryzuje się wysoką odpornością na wilgoć. Odporność ta obejmuje nie tylko niewielką, w stosunku do innych materiałów izolacyjnych, nasiąkliwość wodą, lecz również brak negatywnego wpływu na właściwości wytrzymałościowe. Doświadczenia laboratoryjne wskazują również na odporność wytrzymałościową styropianu na wielokrotne zamrażanie i odmrażanie.

dr hab. inż., prof. nadzw. UTP Dariusz Bajno, dr inż. Anna Rawska-Skotniczny Wybrane zagadnienia dotyczące zabezpieczeń podziemnych części istniejących budynków przed wilgocią

Wybrane zagadnienia dotyczące zabezpieczeń podziemnych części istniejących budynków przed wilgocią Wybrane zagadnienia dotyczące zabezpieczeń podziemnych części istniejących budynków przed wilgocią

Wilgoć zawsze będzie towarzyszyć obiektom budowlanym w okresie eksploatacyjnym, dlatego zabezpiecza się je przed nadmiernym zawilgoceniem oraz przed przedostawaniem się wilgoci do ich pomieszczeń poprzez...

Wilgoć zawsze będzie towarzyszyć obiektom budowlanym w okresie eksploatacyjnym, dlatego zabezpiecza się je przed nadmiernym zawilgoceniem oraz przed przedostawaniem się wilgoci do ich pomieszczeń poprzez odpowiedni dobór materiałów oraz izolacje zewnętrzne. Nie istnieją uniwersalne metody zabezpieczeń materiałów przed wilgocią, dlatego podjęcie decyzji o zasadności wykonania izolacji lub też o doborze odpowiedniej technologii powinno zostać poparte przeprowadzoną wcześniej analizą, odpowiadającą...

mgr inż. Marcin Jaroszyński Szary styropian do termoizolacji fundamentów

Szary styropian do termoizolacji fundamentów Szary styropian do termoizolacji fundamentów

Fundament to realizowany jako pierwszy przy budowie budynku, ale też najważniejszy element konstrukcyjny, gwarantujący stabilność i trwałość znajdującej się na nim konstrukcji. Oczywiście metod posadowienia...

Fundament to realizowany jako pierwszy przy budowie budynku, ale też najważniejszy element konstrukcyjny, gwarantujący stabilność i trwałość znajdującej się na nim konstrukcji. Oczywiście metod posadowienia jest kilka, skupmy się jednak na dwóch najbardziej popularnych i najczęściej stosowanych w budownictwie jednorodzinnym i mieszkaniowym. Chodzi o ławy fundamentowe ze ścianką fundamentową i o płytę fundamentową.

dr inż. Mariusz Jackiewicz Hydroizolacja elementów budowli stykających się z gruntem

Hydroizolacja elementów budowli stykających się z gruntem Hydroizolacja elementów budowli stykających się z gruntem

Projektowanie oraz wykonawstwo hydroizolacji konstrukcji budowlanych w Niemczech regulowała wprowadzona w 1983 r. i w międzyczasie wielokrotnie nowelizowana norma DIN 18195. Ta norma jest stosunkowo dobrze...

Projektowanie oraz wykonawstwo hydroizolacji konstrukcji budowlanych w Niemczech regulowała wprowadzona w 1983 r. i w międzyczasie wielokrotnie nowelizowana norma DIN 18195. Ta norma jest stosunkowo dobrze znana w Polsce, z dwóch powodów - braku krajowej, tak kompleksowej normy oraz znaczącego udziału na polskim rynku produktów hydroizolacyjnych niemieckich producentów.

dr inż. Paula Szczepaniak Ocena jakości termicznej rozwiązań węzła połączenia budynku z gruntem posadowionym na płycie fundamentowej

Ocena jakości termicznej rozwiązań węzła połączenia budynku z gruntem posadowionym na płycie fundamentowej Ocena jakości termicznej rozwiązań węzła połączenia budynku z gruntem posadowionym na płycie fundamentowej

Płyta fundamentowa należy do grupy posadowień bezpośrednich. Jest stosowana przy występowaniu słabego podłoża gruntowego, poziomie posadowienia poniżej zwierciadła wody gruntowej, stosowaniu konstrukcji...

Płyta fundamentowa należy do grupy posadowień bezpośrednich. Jest stosowana przy występowaniu słabego podłoża gruntowego, poziomie posadowienia poniżej zwierciadła wody gruntowej, stosowaniu konstrukcji szczelnej wanny lub w przypadku konieczności zapewnienia równomiernego osiadania budynku [1].

mgr inż. Maciej Rokiel Hydroizolacje w gruncie - podział, zastosowanie i właściwości

Hydroizolacje w gruncie - podział, zastosowanie i właściwości Hydroizolacje w gruncie - podział, zastosowanie i właściwości

Konieczność wykonania skutecznych powłok wodochronnych to nie tylko jeden z podstawowych wymogów bezproblemowego i komfortowego użytkowania zarówno budynków (obojętne, czy w budownictwie mieszkaniowym,...

Konieczność wykonania skutecznych powłok wodochronnych to nie tylko jeden z podstawowych wymogów bezproblemowego i komfortowego użytkowania zarówno budynków (obojętne, czy w budownictwie mieszkaniowym, użyteczności publicznej, czy przemysłowym), jak i budowli, a także wymóg formalny. Intensywny rozwój chemii budowlanej w ciągu ostatnich kilkunastu lat spowodował, że mamy do dyspozycji szeroką gamę materiałów, począwszy od stosowanych tylko do izolacji przeciwwilgociowych, a skończywszy na materiałach...

dr inż. Maciej Trochonowicz Diagnostyka hydroizolacji w pracach modernizacyjnych

Diagnostyka hydroizolacji w pracach modernizacyjnych Diagnostyka hydroizolacji w pracach modernizacyjnych

Woda jest substancją warunkującą możliwość wykonania praktycznie wszystkich procesów budowlanych. Niezbędna jest zarówno do produkcji materiałów, jak i ich wbudowania. Jednocześnie ta sama woda, a raczej...

Woda jest substancją warunkującą możliwość wykonania praktycznie wszystkich procesów budowlanych. Niezbędna jest zarówno do produkcji materiałów, jak i ich wbudowania. Jednocześnie ta sama woda, a raczej jej nadmiar, jest czynnikiem powodującym największe zagrożenie dla obiektów budowlanych. Wprowadzana na wiele sposobów z czasem staje się przyczyną wielu niekorzystnych zjawisk, a jej usunięcie poważnym problemem. Dlatego też nieodłącznym elementem wznoszenia czy też remontowania budynków są hydroizolacje.

prof. nzw. dr hab. inż. Irena Ickiewicz Wpływ ocieplenia fundamentów na rozkład temperatury w gruncie w otoczeniu budynku

Wpływ ocieplenia fundamentów na rozkład temperatury w gruncie w otoczeniu budynku Wpływ ocieplenia fundamentów na rozkład temperatury w gruncie w otoczeniu budynku

Głębokość posadowień bezpośrednich określa w Polsce norma PN-81-B-03020 "Grunty budowlane. Posadowienie bezpośrednie. Obliczenia statystyczne i projektowanie".

Głębokość posadowień bezpośrednich określa w Polsce norma PN-81-B-03020 "Grunty budowlane. Posadowienie bezpośrednie. Obliczenia statystyczne i projektowanie".

dr inż. Sławomir Chłądzyński, mgr inż. Katarzyna Walusiak Wpływ wytrzymałości cementu na właściwości klejów do ociepleń

Wpływ wytrzymałości cementu na właściwości klejów do ociepleń Wpływ wytrzymałości cementu na właściwości klejów do ociepleń

Cement portlandzki jest najczęściej stosowanym spoiwem w recepturach suchych mieszanek. Według opracowania na temat przemysłu cementowego w Polsce na rynku krajowym rocznie wykorzystywane jest obecnie...

Cement portlandzki jest najczęściej stosowanym spoiwem w recepturach suchych mieszanek. Według opracowania na temat przemysłu cementowego w Polsce na rynku krajowym rocznie wykorzystywane jest obecnie ok. 700-800 tys. ton tego spoiwa do wytworzenia suchych mieszanek chemii budowlanej [1], co stanowi ok. 4-5% sprzedaży cementu w kraju.

mgr inż. arch. Tomasz Rybarczyk Fundamenty w budynkach jednorodzinnych

Fundamenty w budynkach jednorodzinnych Fundamenty w budynkach jednorodzinnych

Fundamenty są elementem budynku, który przekazuje obciążenia z części naziemnej na podłoże gruntowe. Wszystkie siły działające na budynek, czyli wiatr, śnieg, obciążenia użytkowe, masa własna konstrukcji...

Fundamenty są elementem budynku, który przekazuje obciążenia z części naziemnej na podłoże gruntowe. Wszystkie siły działające na budynek, czyli wiatr, śnieg, obciążenia użytkowe, masa własna konstrukcji i elementów budynku, są przekazywane na grunt. Z kolei fundamenty przekazują oddziaływania gruntu na konstrukcję. Jeśli zachodzą niekorzystne zjawiska, wywołane na przykład osiadaniem gruntu, ruchy gruntu (np. spowodowane tym, że budynek został wybudowany na terenach eksploatacji górniczych lub terenach...

mgr inż. Maciej Rokiel Badanie skuteczności prac i preparatów do wykonywania przepony poziomej

Badanie skuteczności prac i preparatów do wykonywania przepony poziomej Badanie skuteczności prac i preparatów do wykonywania przepony poziomej

Iniekcja chemiczna jest jedną z metod wykonywania wtórnej izolacji poziomej. Celem iniekcji chemicznej jest wytworzenie w przegrodzie przepony przerywającej podciąganie kapilarne, a także uzyskanie, w...

Iniekcja chemiczna jest jedną z metod wykonywania wtórnej izolacji poziomej. Celem iniekcji chemicznej jest wytworzenie w przegrodzie przepony przerywającej podciąganie kapilarne, a także uzyskanie, w dalszym czasie, w strefie muru nad przeponą, obszaru normalnej wilgotności.

dr inż. Wioletta Jackiewicz-Rek, mgr inż. Kaja Kłos, inż. Paweł Zieliński Wymagania dla betonu wodoszczelnego

Wymagania dla betonu wodoszczelnego Wymagania dla betonu wodoszczelnego

Definiując beton wodoszczelny mający zastosowanie w realizacji obiektów tworzących barierę dla wody, nie sposób zacząć bez określenia, że jest to taki rodzaj betonu, który izoluje ze względu na swoje właściwości.

Definiując beton wodoszczelny mający zastosowanie w realizacji obiektów tworzących barierę dla wody, nie sposób zacząć bez określenia, że jest to taki rodzaj betonu, który izoluje ze względu na swoje właściwości.

mgr inż. Bartłomiej Monczyński Prowadzenie prac hydroizolacyjnych w okresie zimowym

Prowadzenie prac hydroizolacyjnych w okresie zimowym Prowadzenie prac hydroizolacyjnych w okresie zimowym

Zima jak co roku zaskoczyła drogowców! Zdanie to (choć - nawiasem mówiąc - bardzo krzywdzące dla wspomnianych drogowców, którzy zajmują się budową dróg, a nie ich utrzymaniem) doskonale obrazuje zjawisko,...

Zima jak co roku zaskoczyła drogowców! Zdanie to (choć - nawiasem mówiąc - bardzo krzywdzące dla wspomnianych drogowców, którzy zajmują się budową dróg, a nie ich utrzymaniem) doskonale obrazuje zjawisko, które widoczne jest szczególnie w budownictwie: to, co nieuniknione, potrafi zaskoczyć.

Najnowsze produkty i technologie

Fabryka Styropianu ARBET Wielka płyta – czy ocieplanie jej to ważne zagadnienie?

Wielka płyta – czy ocieplanie jej to ważne zagadnienie? Wielka płyta – czy ocieplanie jej to ważne zagadnienie?

Domy z wielkiej płyty wyróżniają się w krajobrazie Polski. Najczęściej budowano z nich wieżowce, mające około 10 pięter. Przez wiele lat w kontekście ich użytkowania mówiono o aspekcie estetycznym. Dziś...

Domy z wielkiej płyty wyróżniają się w krajobrazie Polski. Najczęściej budowano z nich wieżowce, mające około 10 pięter. Przez wiele lat w kontekście ich użytkowania mówiono o aspekcie estetycznym. Dziś jednak porusza się ważne kwestie dotyczące kwestii użytkowych, w tym – ich odpowiedniej izolacji.

KOESTER Polska Sp. z o.o. Köster – Specjaliści od hydroizolacji

Köster – Specjaliści od hydroizolacji Köster – Specjaliści od hydroizolacji

KÖSTER BAUCHEMIE AG specjalizuje się w produkcji i dystrybucji materiałów do hydroizolacji i ochrony budowli oraz systemów uszczelnień, a ich produkty chronią budowle na całym świecie. Zarówno podczas...

KÖSTER BAUCHEMIE AG specjalizuje się w produkcji i dystrybucji materiałów do hydroizolacji i ochrony budowli oraz systemów uszczelnień, a ich produkty chronią budowle na całym świecie. Zarówno podczas renowacji budynków historycznych, jak i w trakcie budowy nowych obiektów – proponuje skuteczne rozwiązanie każdego problemu związanego ze szkodliwym oddziaływaniem wody i wilgoci.

TRUTEK FASTENERS POLSKA Wzmacnianie bydynków wielkopłytowych w systemie TRUTEK TCM

Wzmacnianie bydynków wielkopłytowych w systemie TRUTEK TCM Wzmacnianie bydynków wielkopłytowych w systemie TRUTEK TCM

TRUTEK FASTENERS POLSKA jest firmą specjalizującą się w produkcji najwyższej jakości systemów zamocowań przeznaczonych do budownictwa lądowego, drogowego i przemysłu. W ofercie firmy znajdują się wyroby...

TRUTEK FASTENERS POLSKA jest firmą specjalizującą się w produkcji najwyższej jakości systemów zamocowań przeznaczonych do budownictwa lądowego, drogowego i przemysłu. W ofercie firmy znajdują się wyroby tradycyjne – od wielu lat stosowane w budownictwie, a także nowatorskie, zaawansowane technologicznie rozwiązania gwarantujące najwyższy poziom bezpieczeństwa.

TRUTEK FASTENERS POLSKA Innowacyjna technologia mocowania izolacji termicznej budynku

Innowacyjna technologia mocowania izolacji termicznej budynku Innowacyjna technologia mocowania izolacji termicznej budynku

Łączniki do mocowania izolacji termicznej obiektu to bardzo ważny element zapewniający bezpieczeństwo i stabilność warstwy docieplenia.

Łączniki do mocowania izolacji termicznej obiektu to bardzo ważny element zapewniający bezpieczeństwo i stabilność warstwy docieplenia.

GERARD AHI Roofing Kft. Oddział w Polsce Sp. z o.o. | RTG Roof Tile Group Dach marzeń: stylowy, nowoczesny i wyjątkowo odporny

Dach marzeń: stylowy, nowoczesny i wyjątkowo odporny Dach marzeń: stylowy, nowoczesny i wyjątkowo odporny

Czy chciałbyś mieć elegancki, nowoczesny dach, o niepowtarzalnym antracytowym kolorze, który zapewni Twojemu domowi najlepszą ochronę?

Czy chciałbyś mieć elegancki, nowoczesny dach, o niepowtarzalnym antracytowym kolorze, który zapewni Twojemu domowi najlepszą ochronę?

Tremco CPG Poland Sp. z o.o. Flowcrete – bezspoinowe posadzki żywiczne w przemyśle

Flowcrete – bezspoinowe posadzki żywiczne w przemyśle Flowcrete  – bezspoinowe posadzki żywiczne w przemyśle

Bezspoinowe posadzki żywiczne są często nazywane posadzkami przemysłowymi. Ze względu na ich właściwości, m.in. trwałość, wytrzymałość mechaniczną, w tym odporność na ścieranie, szczelność i nienasiąkliwość...

Bezspoinowe posadzki żywiczne są często nazywane posadzkami przemysłowymi. Ze względu na ich właściwości, m.in. trwałość, wytrzymałość mechaniczną, w tym odporność na ścieranie, szczelność i nienasiąkliwość oraz łatwość utrzymania w czystości, rozwiązania posadzkowe na bazie żywic syntetycznych są powszechnie stosowane w zakładach produkcyjnych z różnych branż.

Blachy Pruszyński, mgr inż. Piotr Olgierd Korycki Zagadnienia akustyki w obiektach przemysłowych z lekką obudową

Zagadnienia akustyki w obiektach przemysłowych z lekką obudową Zagadnienia akustyki w obiektach przemysłowych z lekką obudową

Obecnie trudno sobie wyobrazić budownictwo, a zwłaszcza halowe, użyteczności publicznej, przemysłowe i specjalne bez obudowy, jaką stanowią ściany osłonowe czy przekrycia dachowe. Wykonuje się je z lekkiej...

Obecnie trudno sobie wyobrazić budownictwo, a zwłaszcza halowe, użyteczności publicznej, przemysłowe i specjalne bez obudowy, jaką stanowią ściany osłonowe czy przekrycia dachowe. Wykonuje się je z lekkiej obudowy, takiej jak: płyty warstwowe, systemy oparte na bazie kaset stalowych wzdłużnych, warstwowe przekrycia dachowe z elementem nośnym w postaci blach trapezowych. Wymienione rozwiązania mają szereg zalet, m.in. małą masę jednostkową, możliwość montażu niezależnie od warunków atmosferycznych,...

MIWO – Stowarzyszenie Producentów Wełny Mineralnej: Szklanej i Skalnej Warunki Techniczne wymagają głębokich zmian

Warunki Techniczne wymagają głębokich zmian Warunki Techniczne wymagają głębokich zmian

Przepisy rozporządzenia Ministra Infrastruktury z dnia 12 kwietnia 2002 r. w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie (z późniejszymi zmianami) – zwanego Warunkami...

Przepisy rozporządzenia Ministra Infrastruktury z dnia 12 kwietnia 2002 r. w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie (z późniejszymi zmianami) – zwanego Warunkami Technicznymi lub w skrócie WT – stosuje się przy projektowaniu, budowie i przebudowie oraz zmianie sposobu użytkowania wszystkich rodzajów budynków oraz budowli nadziemnych i podziemnych, spełniających funkcje użytkowe budynków. Ten akt prawny jest aktem wykonawczym do Ustawy Prawo budowlane i określa...

Seban Nowoczesne membrany hydroizolacyjne – rozwiązania na dachy płaskie i zielone

Nowoczesne membrany hydroizolacyjne – rozwiązania na dachy płaskie i zielone Nowoczesne membrany hydroizolacyjne – rozwiązania na dachy płaskie i zielone

Współczesne budownictwo kładzie coraz większy nacisk na energooszczędność i poprawę efektywności energetycznej obiektów. Aby zmniejszyć zapotrzebowanie budynków na energię, projektanci, architekci i inwestorzy...

Współczesne budownictwo kładzie coraz większy nacisk na energooszczędność i poprawę efektywności energetycznej obiektów. Aby zmniejszyć zapotrzebowanie budynków na energię, projektanci, architekci i inwestorzy chętniej stosują technologie korzystające z energii odnawialnej.

Copyright © 2004-2019 Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Spółka komandytowa, nr KRS: 0000537655. Wszelkie prawa, w tym Autora, Wydawcy i Producenta bazy danych zastrzeżone. Jakiekolwiek dalsze rozpowszechnianie artykułów zabronione. Korzystanie z serwisu i zamieszczonych w nim utworów i danych wyłącznie na zasadach określonych w Zasadach korzystania z serwisu.
Portal Budowlany - Izolacje.com.pl

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim urządzeniu końcowym. W każdym momencie możesz dokonać zmiany ustawień przeglądarki dotyczących cookies. Nim Państwo zaczną korzystać z naszego serwisu prosimy o zapoznanie się z naszą polityką prywatności oraz Informacją o Cookies. Więcej szczegółów w naszej Polityce Prywatności oraz Informacji o Cookies. Administratorem Państwa danych osobowych jest Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Sp.K., nr KRS: 0000537655, z siedzibą w 04-112 Warszawa, ul. Karczewska 18, tel. +48 22 810-21-24, właściciel strony www.izolacje.com.pl. Twoje Dane Osobowe będą chronione zgodnie z wytycznymi polityki prywatności www.izolacje.com.pl oraz zgodnie z Rozporządzeniem Parlamentu Europejskiego i Rady (UE) 2016/679 z dnia 27 kwietnia 2016r i z Ustawą o ochronie danych osobowych Dz.U. 2018 poz. 1000 z dnia 10 maja 2018r.