Izolacje.com.pl

Wodoszczelność i odporność korozyjna betonu

Rozwój budownictwa hydrotechnicznego, a także podziemnego wiąże się z koniecznością zapewnienia szczelności obiektów budowlanych i zwiększenia ich odporności na działanie korozji chemicznej.

Zobacz także

Parati Płyta fundamentowa i jej zalety – wszystko, co trzeba wiedzieć

Płyta fundamentowa i jej zalety – wszystko, co trzeba wiedzieć Płyta fundamentowa i jej zalety – wszystko, co trzeba wiedzieć

Budowa domu jest zadaniem niezwykle trudnym, wymagającym od inwestora podjęcia wielu decyzji, bezpośrednio przekładających się na efekt. Dokłada on wszelkich starań, żeby budynek był w pełni funkcjonalny,...

Budowa domu jest zadaniem niezwykle trudnym, wymagającym od inwestora podjęcia wielu decyzji, bezpośrednio przekładających się na efekt. Dokłada on wszelkich starań, żeby budynek był w pełni funkcjonalny, wygodny oraz wytrzymały. A jak pokazuje praktyka, aby osiągnąć ten cel, należy rozpocząć od podstaw. Właśnie to zagwarantuje nam solidna płyta fundamentowa.

KOESTER Polska Iniekcja uszczelniająca żelem akrylowym KÖSTER Injektion Gel G4 żelbetowej płyty fundamentowej podziemnej hali pieca do wytopu szkła

Iniekcja uszczelniająca żelem akrylowym KÖSTER Injektion Gel G4 żelbetowej płyty fundamentowej podziemnej hali pieca do wytopu szkła Iniekcja uszczelniająca żelem akrylowym KÖSTER Injektion Gel G4 żelbetowej płyty fundamentowej podziemnej hali pieca do wytopu szkła

W ramach prowadzonych prac modernizacyjnych i okresowej wymiany pieca do wytopu szkła podjęto decyzję o usunięciu powstałych podczas dotychczasowej eksploatacji nieszczelności płyty fundamentowej. Płyta...

W ramach prowadzonych prac modernizacyjnych i okresowej wymiany pieca do wytopu szkła podjęto decyzję o usunięciu powstałych podczas dotychczasowej eksploatacji nieszczelności płyty fundamentowej. Płyta o wymiarach w świetle ścian 35,50x36,27 m i grubości 1,60 m wykazywała liczne i okresowo intensywne przecieki, które powodowały konieczność tymczasowego odprowadzania przenikających wód gruntowych systemem rowków powierzchniowych wyciętych w płycie do studzienek zbiorczych i odpompowywania. Powierzchnia...

Saint Gobain Construction Products Polska/ Weber Hydroizolacja fundamentów - jak chronić dom przed wodą?

Hydroizolacja fundamentów - jak chronić dom przed wodą? Hydroizolacja fundamentów - jak chronić dom przed wodą?

Jednym z najważniejszych, a jednocześnie najtrudniejszych zadań wśród prac budowlanych jest zabezpieczenie obiektu przed działaniem wód gruntowych. Na działanie wody szczególnie narażone są fundamenty....

Jednym z najważniejszych, a jednocześnie najtrudniejszych zadań wśród prac budowlanych jest zabezpieczenie obiektu przed działaniem wód gruntowych. Na działanie wody szczególnie narażone są fundamenty. Aby zapewnić ich skuteczną i trwałą ochronę, należy zastosować nowoczesne materiały izolacyjne, właściwie dobrać rozwiązania konstrukcyjne i zadbać o prawidłowe wykonanie.

Wśród wielu czynników mających wpływ na wodoszczelność i odporność korozyjną betonu należy wymienić:

  • rodzaj zastosowanego cementu i jego skład fazowy,
  • szybkość przebiegu reakcji chemicznych w procesie hydratacji cementu i szybkość twardnienia,
  • rozmiary i ciągłość kapilar i mikrokapilar w twardniejącym zaczynie,
  • rodzaj i ilość zastosowanych w cemencie dodatków mineralnych,
  • kapilary i próżnie kapilarne na granicy: kruszywo–zaczyn cementowy,
  • zastosowanie specjalnych domieszek chemicznych do cementu lub powlekanie betonów środkami utrudniającymi przenikanie wody przez beton,
  • warunki pielęgnacji betonu.

Wodoszczelność twardniejącego zaczynu cementowego

Wodoszczelność i odporność korozyjna betonu zależy w poważnym stopniu od oddziaływania wody i czynników chemicznie agresywnych na twardniejący zaczyn cementowy. Wodoszczelność zaczynu cementowego zależy od wielu czynników, wśród których ważną rolę odgrywa współczynnik wodno- cementowy.

Rys. 1. Współczynnik przesiąkliwości zaczynu o różnym współczynniku w:c [1]

Rys. 1. Współczynnik przesiąkliwości zaczynu o różnym współczynniku w:c [1]

Rys. 2. Wpływ postępu hydratacji zaczynu cementowego na jego przepuszczalność przy różnych współczynnikach w:c [2]

Rys. 2. Wpływ postępu hydratacji zaczynu cementowego na jego przepuszczalność przy różnych współczynnikach w:c [2]

Przepuszczalność i przesiąkliwość cieczy w świeżym zaczynie są niemal zupełne, co ma związek z ciągłością sieci kapilar. Wzrastająca szczelność zaczynu w miarę postępu hydratacji zmniejsza przesiąkanie. Wielkość tego oporu zależy od wielkości, formy i koncentracji hydratyzujących cząstek cementu, a także od szybkości przebiegu reakcji chemicznych i procesu twardnienia. Stosunkowo szczelny zaczyn lub beton można uzyskać przy niskim współczynniku w:c. Przekroczenie  współczynnika w:c powyżej 0,50 pogarsza wodoszczelność. Obrazuje to rys. 1 [1], natomiast wpływ czasu hydratacji zaczynu cementowego na jego przepuszczalność przy różnych współczynnikach w:c ilustruje rys. 2 [2].

Omawiane zjawisko zmian przepuszczalności zaczynu cementowego ma niewątpliwie związek ze zmianami porowatości kapilarnej. Objętość kapilar maleje wraz z postępem hydratacji. Ten stan zilustrowano na diagramie zmian proporcji objętościowych w zaczynie cementowym o różnym stopniu hydratacji (rys. 3) [3].

Rys. 3. Diagram zmian proporcji objętościowych w zaczynie cementowym o różnym stopniu hydratacji [3]

Rys. 3. Diagram zmian proporcji objętościowych w zaczynie cementowym o różnym stopniu hydratacji [3] 

Poprawa wodoszczelności w miarę postępu hydratacji cementu ma związek z brakiem ciągłości kapilar. Czas dojrzewania zaczynu cementowego, przy którym kapilary tracą swoją ciągłość i ulegają rozdzieleniu, podaje z pewnym przybliżeniem S. Diamond [4] (tabela 1).

Tabela 1. Przybliżony czas rozdzielenia kapilar

Tabela 1. Przybliżony czas rozdzielenia kapilar 

Różnice składu chemicznego cementu zdaniem niektórych autorów nie wywierają większego wpływu na jego wodoszczelność. Stwierdzenie to może być przyjęte z pewnymi zastrzeżeniami. Wiadomo bowiem, że składniki mineralne cementu w procesie hydratacji wpływają w zróżnicowany sposób na wodożądność cementu zapewniającą wymaganą konsystencję świeżej mieszanki zaczynu lub betonu. Dyskusyjny jest również problem alkaliów w cemencie. Próbki zaczynu cementowego pozbawionego alkaliów mają wielokrotnie większą przesiąkliwość niż takie same próbki zawierające nawet niewielkie ilości alkaliów. Wiąże się to ze wzrostem lepkości wody pod wpływem rozpuszczalnych w niej alkaliów (NaOH i KOH). Nadmierna obecność alkaliów w cemencie może być jednakże przyczyną korozji wewnętrznej wskutek reakcji z niewłaściwie dobranym kruszywem [5]. Przyczyną korozji wewnętrznej i w konsekwencji obniżonej wodoszczelności, a nawet destrukcji betonu może być także powstawanie ettringitu w procesie hydratacji1).

Wzrost powierzchni właściwej cementu nie wywiera większego bezpośredniego wpływu na wodoszczelność cementu, jeśli pominąć tempo jego twardnienia, a także wpływ rozdrobnienia cementu na dobór w:c. Cement o niższej powierzchni właściwej daje z pewnym opóźnieniem zaczyn o wodoszczelności zbliżonej do zaczynu z cementu o większej miałkości [6, 7].

Znaczny wpływ na poziom wodoszczelności zaczynu wywierają warunki jego pielęgnacji. Wysuszenie stwardniałego zaczynu prowadzi do obniżenia jego wodoszczelności. Zjawisko to związane jest z przejawami częściowego nieodwracalnego skurczu, co prowadzi do pęknięć kapilarnych i udrożnienia kanalików, a w konsekwencji do obniżenia wodoszczelności struktury. Szczególnie niekorzystne jest wysuszenie świeżego lub krótko twardniejącego zaczynu. Prowadzi to bowiem do wzrostu współczynnika przesiąkliwości 70 razy większego w porównaniu z próbkami niepoddanymi suszeniu, a następnie nawilżaniu.

Związek przepuszczalności i szybkości dyfuzji z trwałością betonu wymaga uwzględnienia większej liczby czynników niż porowatość i skład fazowy zaczynu [2]. Ważny jest bowiem gradient ciśnienia hydraulicznego wywołującego przepływ cieczy przez próbkę, a także przekrój poprzeczny powierzchni przepływu. Świadczy o tym uproszczone równanie D’Arcy’ego pozwalające obliczyć współczynnik przepuszczalności.

gdzie:

Q – przepływ cieczy przez próbkę [m3/s],

K – współczynnik przepuszczalności próbki m/s,

A – przekrój poprzeczny powierzchni przepływu,

dn/dx – gradient ciśnienia hydraulicznego wywołującego przepływ przez próbkę.

Wodoszczelność betonu zależy nie tylko od tych czynników, które determinują wodoszczelność zaczynu. W zależności od rodzaju zastosowanego kruszywa mogą bowiem wystąpić większe lub mniejsze kapilarne próżnie na granicy kruszywo – zaczyn cementowy. Sytuacji tej można zapobiec lub ją ograniczyć w wyniku dobrego zagęszczenia mieszanki betonowej. Ważna jest również ciągłość betonowania ograniczająca możliwość wystąpienia makroskopowych nieciągłości betonu. Znaczący wpływ na wodoszczelność zaczynu cementowego wywiera temperatura ich pielęgnacji i eksploatacji.

W betonach hydrotechnicznych na pierwszy plan wysuwają się takie właściwości, jak wodoszczelność, mrozoodporność, odporność na działanie korozyjne środowiska. Ponadto cementy i betony powinny charakteryzować się ograniczonym skurczem i małą kalorycznością. Uzyskanie betonu o podanych właściwościach zależy od właściwego doboru składników, z których jest on wykonany, oraz od poprawnego wykonania betonu.

Cementy o obniżonej egzotermii przy hydratacji przeznaczone są np. do budowy dużych masywów betonowych, w tym zapór betonowych. Podwyższona egzotermia wewnątrz twardniejącego betonu może bowiem wywołać szkodliwe naprężenia, spękania i w konsekwencji obniżenie wodoszczelności. Jak już wspomniano, stwardniały zaczyn cementowy charakteryzuje się obecnością porów i kapilar. Woda w zaczynie znajduje się w różnych stanach, zależnych od jej fizykochemicznych więzi w uwodnionych produktach, a także od charakteru i wymiarów porów i kapilar, w których ona się znajduje. W betonach nasyconych wodą najszybciej zamarza woda fizyczna – niezwiązana, znajdująca się w pustkach i makroporach zaczynu cementowego. Zamarzaniu podlega głównie tak zwana woda odparowywalna.

Woda nieodparowywalna, proporcjonalna do stopnia hydratacji cementu, jest trwalej związana w strukturze zaczynu cementowego, dlatego też uważana jest za niezamarzającą. W praktyce w twardniejącym zaczynie cementowym za zamarzającą uważa się wodę kapilarną, której znaczna część zamarza w temperaturze –12°C. Według Powersa [6] w temperaturze –12°C zamarza powyżej 80% wody kapilarnej, zaś w temperaturze –4°C – ok. 60% tej wody.

Zamarzaniu wody towarzyszy, jak wiadomo, wzrost objętości o ok. 9%. Powstające przy tym ciśnienie może być przyczyną wewnętrznych naprężeń, zwiększenia porowatości i obniżenia wodoszczelności betonu. Topnienie lodu w okresie ocieplenia zaczynu lub betonu powoduje skurcz stwardniałego zaczynu, który jednak nie powoduje powrotu próbki do swoich pierwotnych wymiarów. Przy kolejnych cyklach zamrażania i topnienia zjawiska pęcznienia i skurczu nasilają wielkość naprężeń powodujących powiększenie spękań. Obrazuje to rys. 4[1].

Rys. 4. Pęcznienie i skurcz stwardniałego zaczynu w cyklach zamrażania i odmrażania [1]

Rys. 4. Pęcznienie i skurcz stwardniałego zaczynu w cyklach zamrażania i odmrażania [1] 

Badania Powersa [6] wskazują, że dobra mrozoodporność stwardniałego zaczynu uwarunkowana jest równomiernym rozlokowaniem porów powietrznych i ich ilością, a także odległością sąsiadujących porów. W nawiązaniu do tych wyników badań została opracowana koncepcja napowietrzenia betonu w wyniku wprowadzenia do mieszanki niewielkich ilości środków powierzchniowo- czynnych obniżających napięcie powierzchniowe wody zarobowej.

Z powyższego omówienia zagadnień wynika, że wodoszczelność stwardniałego zaczynu lub betonu jest ściśle związana z mrozoodpornością, to zaś nasuwa wniosek, że większość czynników, które korzystnie wpływają na wodoszczelność stwardniałego zaczynu i betonu, sprzyja ich mrozoodporności. Byłoby jednak błędem przyjęcie prostej relacji zaczyn – beton, gdyż mrozoodporność betonu zależy również od innych czynników, w tym od mrozoodporności kruszyw. Mrozoodporność kruszyw ma ścisły związek z ich porowatością i możliwym stopniem ich nasycenia wodą.

Korozja i jej wpływ na wodoszczelność betonu

Szczegółowe omówienie problemów związanych z korozją chemiczną betonu nie jest możliwe w ramach tego artykułu. Jest jednak sprawą niewątpliwą, że korozja betonu ma ścisły związek z właściwościami zaczynu cementowego, w tym jego wodoszczelnością [8, 9].

Zazwyczaj działanie czynników agresywnych na szczelną matrycę cementową przebiega na tyle powoli, że ich wpływ jest niemal minimalny. Jednakże mogą zaistnieć określone warunki, w których działanie tych czynników może się okazać bardzo poważne.

Możliwe są, jak wiadomo, następujące rodzaje korozji:

  • związane z rozpuszczeniem i wyługowaniem rozpuszczalnych składników stwardniałego zaczynu cementowego, zaczynu w cyklach zamrażania i odmrażania [1]
  • wywołane reakcjami wymiany jonowej między stwardniałym zaczynem i agresywnymi roztworami z otaczającego środowiska, w wyniku których tworzą się łatwo rozpuszczalne związki niemające właściwości wiążących (agresja związków magnezu, kwasowa, CO2),
  • uwarunkowane tworzeniem się i gromadzeniem w matrycy cementowej słabo rozpuszczalnych i zwiększających swą objętość soli (agresja siarczanowa).

W warunkach rzeczywistych występują najczęściej jednocześnie różne rodzaje korozji. Wyługowanie pod wpływem wody – głównie miękkiej – polega na rozpuszczaniu i wymywaniu przede wszystkim wodorotlenku wapniowego, który tworzy się w procesach hydratacji i hydrolizy cementu. Ługowanie Ca(OH)2 – portlandytu – następuje wówczas, gdy stwardniały zaczyn lub beton jest nieszczelny, a proces przebiega w warunkach szybkiego przepływu i jednostronnego parcia wody. Ciągłe przesączanie wody przez beton powoduje wyługowanie z niego portlandytu, co w konsekwencji powoduje rozluźnienie zwięzłości betonu i pogarszanie jego szczelności. Rozluźnienie struktury betonu ułatwia dalsze przesączanie wody, dalsze wymywanie portlandytu, obniżenie wodoszczelności i mrozoodporności.

Mechanizm ługowania postępuje szczególnie intensywnie pod wpływem kwasu węglowego tworzącego się w wodzie w obecności CO2. Obniża się wówczas pH środowiska. W wyniku reakcji kwasu węglowego z wodorotlenkiem wapnia, a także z wodorotlenkiem magnezu powstają kwaśne węglany wapnia i magnezu: Ca(HCO3)2 i Mg(HCO3)2. Związki te charakteryzują się znaczną rozpuszczalnością w wodzie, wielokrotnie większą niż łatwo wymywalny wodorotlenek wapnia.

W odróżnieniu od korozji wód miękkich i kwaśnych znacznie groźniejsza jest korozja wywołana reakcjami wymiany jonowej między stwardniałym zaczynem cementowym i agresywnymi czynnikami z otaczającego środowiska. Jednym ze związków twardniejącego zaczynu cementowego zdolnych do reakcji wymiany jonowej jest wodorotlenek wapniowy.

Agresja siarczanowa przebiega pod wpływem wód zawierających zazwyczaj siarczany sodu lub potasu, a także amonu i innych składników reagujących z wodorotlenkiem wapniowym i tworzącym siarczan wapnia, według schematu:

Ca(OH)2 + NaSO4 + 2H2O = CaSO4·2H2O + 2NaOH.

Tworzący się siarczan wapnia podwyższa koncentrację jonów SO42– i Ca2+ w wodzie. Związek ten reaguje z fazą stałą uwodnionego glinianu wapniowego i tworzy siarczanoglinian wapniowy:

3CaO · Al2O3 · 6H2O + 3(CaSO4 · 2H2O) = 3CaO · Al2O3 · 3CaSO4 · 32H2O.

W wyniku powstawania dodatkowej ilości ettringitu i związanego z tym wzrostu objętościpowstają wewnętrzne naprężenia powodujące pojawienie się spękań i niszczenie matrycy cementowej, a w konsekwencji betonu. Szybkość omawianej korozji rośnie wraz ze wzrostem stężenia soli rozpuszczonych w agresywnych wodach.

Agresja magnezowa przebiega w warunkach określonych koncentracji kationów magnezu, przy czym stopień wpływu zależy od rodzaju anionu: Cl– lub SO42–. Woda zawierająca chlorek magnezu reaguje przede wszystkim z wodorotlenkiem wapnia:

Ca(OH)2 + MgCl2 = CaCl2 + Mg(OH)2.

Chlorek wapnia stosunkowo łatwo rozpuszcza się w wodzie, tworzący się wodorotlenek magnezu nie ma natomiast właściwości wiążących, w związku z tym wycieka jako miękki osad i tworzy białe nacieki. W wyniku tych procesów zostaje naruszona struktura „kamienia” cementowego.

Najsilniej na twardniejący zaczyn lub beton działa agresja siarczanowo-magnezowa. W tym wypadku reakcja przebiega według schematu:

Ca(OH)2 + MgSO4 + nH2O = CaSO4 · 2H2O + Mg(OH)2 + (n – 2)H2O.

W wyniku tej reakcji tworzy się gips, a także amorficzna masa wodorotlenku magnezu. Kiedy w wyniku tej reakcji zniknie wolny Ca(OH)2 w zaczynie, a wielkość pH ulegnie wyraźnemu obniżeniu, zaczynają się reakcje uwodnionych glinianów i krzemianów wapnia z siarczanem magnezu:

3CaO · Al2O3 · 6H2O + 3(MgSO4 · 7H2O) › 3(CaSO4 · 2H2O) + 2Al(OH)3 + 3Mg(OH)2 + nH2O

3CaO · 2SiO2 · 3H2O + 3(MgSO4 · 7H2O) › 3(CaSO4 · 2H2O) + 3Mg(OH)2 + 2SiO2 · nH2O

Należy przypomnieć, że w warunkach rzeczywistych korozja przebiega w bardziej złożonych okolicznościach, np. w środowisku wody morskiej. Działanie wody morskiej powoduje wyługowanie z betonu wodorotlenku wapniowego, tworzenie ekspansywnego ett ringitu. Pojawiają się ponadto krzemiany sodu i potasu.

Domieszki i dodatki mineralne do cementu i betonu zwiększające wodoszczelność i odporność korozyjną betonu

Zjawiska obniżonej wodoszczelności i odporności korozyjnej betonu mają m.in. związek z obecnością w zaczynie porów kapilarnych. Są one wynikiem nadmiernej obecności wody odparowywanej z zewnątrz stwardniałej struktury.

Ilość wody w świeżej mieszance ma związek z urabialnością mieszanki betonowej. Zmniejszenie zapotrzebowania na wodę przy zachowaniu wymaganej konsystencji świeżej mieszanki jest możliwe dzięki zastosowaniu środków powierzchniowo czynnych, zmniejszających napięcie powierzchniowe cieczy i poprawiających zwilżalność ciała stałego.

Na wodożądność zaczynu cementowego i jego właściwości reologiczne duży wpływ wywiera powierzchnia właściwa cementu, zawartość glinianu wapnia C3A, alkalia, dodatek  gipsu jako regulatora czasu wiązania cementu. Korzystne jest więc zastosowanie cementów zawierających podwyższoną zawartość krzemianów kosztem glinianów i fazy ferrytowej.

W wyniku licznych badań i eksperymentów poprawiono wodoszczelność betonu, dobierając, w zależności od warunków jego eksploatacji, odpowiedni rodzaj cementu, a także odpowiednie dodatki mineralne do cementu [9]. Szczególnie korzystne okazało się w wielu wypadkach zastosowanie dodatków o charakterze pucolanowym, w tym popiołów lotnych i pyłów krzemionkowych. Dodatki te w procesie hydratacji reagują z tworzącym się wodorotlenkiem wapniowym, w wyniku czego powstają uwodnione fazy, głównie krzemianów wapniowych. Reakcje te pozwalają w znaczącym stopniu ograniczyć wymywanie Ca(OH)2, a ponadto ograniczyć korozyjne oddziaływanie agresywnych roztworów.

Korzystny wpływ na odporność korozyjną cementu wywiera dodatek żużla wielkopiecowego. Ujemną stroną cementów z tymi dodatkami jest obniżona mrozoodporność wyrobów, a także obniżona wytrzymałość, szczególnie w pierwszych tygodniach ich twardnienia.

Na uzyskanie betonu, który powinien cechować się zwiększoną wodoszczelnością, pozwalają domieszki chemiczne. Mogą one działać według różnych sposobów, ale ich efekt polega zasadniczo na nadaniu betonom cech hydrofobowych. Przykładem takich domieszek jest kwas stearynowy oraz niektóre tłuszcze roślinne i zwierzęce. Inne domieszki to wosk, stearynian wapnia, żywice i paki. Stosowane są również domieszki bazujące na żywicach silikonowych, które nakładane są na powierzchnie betonu. Na powierzchnie betonu nakładane są również emulsje bitumiczne tworzące błony o pewnym stopniu elastyczności. Istnieją również inne domieszki o podobnym działaniu do wyżej wymienionych, jednakże ich przytaczanie i omówienie przekracza zakres jednego artykułu.

Jednym z kierunków badań prowadzonych w Instytucie Mineralnych Materiałów Budowlanych, Oddział w Krakowie, obecnie Instytucie Szkła, Ceramiki, Materiałów Ogniotrwałych i Budowlanych, Oddział Mineralnych Materiałów Budowlanych w Krakowie, była modyfikacja zaczynu, zaprawy i betonu związkami krzemoorganicznymi [10]. W wyniku obszernych badań wyodrębniono dwa związki o szczególnie korzystnych oddziaływaniach w zakresie szczelności betonu i jego odporności na agresję siarczanową. Są to czterometylosiloksan i polidwumetylosilan. Związki te wprowadzane do masy betonowej poprawiają właściwości reologiczne świeżych mieszanek oraz właściwości stwardniałych betonów. Domieszki te spełniają funkcje domieszek kompleksowych działających jako plastyfikatory, regulatory czasu wiązania, zmniejszające zwilżalność powierzchni betonu, obniżające podciąganie kapilarne wody oraz nasiąkliwość betonu. Betony z wymienionymi domieszkami charakteryzują się ponadto podwyższoną odpornością na działanie zmiennych temperatur oraz odpornością na korozyjne działanie siarczanów. Wyniki podstawowych właściwości zapraw z wymienionymi domieszkami krzemoorganicznymi przedstawiono w tabeli 2 [11].

Tabela 2. Właściwości zapraw modyfikowanych związkami krzemoorganicznymi

Tabela 2. Właściwości zapraw modyfikowanych związkami krzemoorganicznymi

Z danych tych wynika, że domieszki czterometoksysilanu (TMOS), a także polidwumetylosilanu (PDMS) wpływają m.in. na zwiększenie kąta zwilżania zaprawy wodą. Szczegółowe badania wpływu tych domieszek na główne fazy cementu, tj. alit, belit i glinian trójwapniowy, wykazały, że zaczyny bez domieszek nie wykazywały właściwości hydrofobowych. Kropla wody naniesiona na ich powierzchnie wsiąkała w próbkę, natomiast zaczyny tych faz z domieszkami wykazały właściwości hydrofobowe, co ilustrują fot. 1–3[11].

Fot. 1–3. Kąty zwilżania wodą zaczynów z faz klinkierowych z domieszką PDMS: 1 – zaczyn alitu (kąt zwilżania 85°), 2 – zaczyn belitu (kąt zwilżania 126°), 3 – zaczyn C3A (kąt zwilżania 101°)

Fot. 1–3. Kąty zwilżania wodą zaczynów z faz klinkierowych z domieszką PDMS: 1 – zaczyn alitu (kąt zwilżania 85°), 2 – zaczyn belitu (kąt zwilżania 126°), 3 – zaczyn C3A (kąt zwilżania 101°)

Inny kierunek badań prowadzonych w instytucie [12,13] dotyczył cementu bezgipsowego MPz. Prowadzone badania dowiodły, że zastąpienie gipsu w cemencie innymi regulatorami wiązania będącymi zarazem upłynniaczami pozwoliły uzyskać korzystną konsystencję zaczynu, zaprawy i betonu, przy znacząco obniżonej właściwej ilości wody. Świadczą o tym dane zestawione w tabeli 3[13].

Tabela 3. Podstawowe właściwości fizyczne cementu MPz w porównaniu z cementem portlandzkim i hutniczym

Tabela 3. Podstawowe właściwości fizyczne cementu MPz w porównaniu z cementem portlandzkim i hutniczym

Wypada zaznaczyć, że cement bezgipsowy MPz otrzymano z klinkieru o wysokim module krzemowym i wysokiej zawartości krzemianów.

Wysoka szczelność betonu wykonanego z cementu MPz zapewnia nie tylko wysoki poziom wytrzymałości wczesnej i końcowej, lecz także znaczną mrozoodporność oraz wysoką odporność na agresję siarczanową. Świadczą o tym wyniki badań mrozoodporności betonów przytoczone w tabeli 4, a także zmiany liniowe zapraw po 8 tyg. ich przechowywania w 4,4% roztworze Na2SO4 (tabela 5). W zamieszczonej tabeli 4 wyniki badań mrozoodporności podano jako zmniejszenie wytrzymałości próbek oraz jako ubytek masy po zamrożeniu i rozmrożeniu w cyklach od 25 do 200.

Tabela 4. Mrozoodporność betonu wykonanego z cementu MPz-II

Tabela 4. Mrozoodporność betonu wykonanego z cementu MPz-II

Tabela 5. Zmiany liniowe zapraw

Tabela 5. Zmiany liniowe zapraw

Dalsza modyfikacja właściwości cementu MPz pozwoliła rozszerzyć zakres jego zastosowań. W badaniach Instytutu we współpracy z Ośrodkiem Badawczym Budownictwa Przemysłu Węglowego zainteresowano się możliwością uszczelniania betonu w wyniku wprowadzenia domieszki kwasu winowego. Punktem wyjścia było stwierdzenie, że powodem nieszczelności i korozji betonu jest wodorotlenek wapniowy we wczesnych stadiach hydratacji cementu. Uwzględniając ten fakt, stwierdzono, że wprowadzenie do zaczynu cementowego domieszki kwasu winowego (domieszki Izoporbet) powoduje jego szybką reakcję z Ca(OH)2 i tworzenie nierozpuszczalnego w wodzie winianu wapniowego. Związek ten, krystalizując w wodzie porowej, zwiększa szczelność matrycy.

Jak wiadomo, izomery kwasu są słabymi kwasami, które z zasadami tworzą sole- winiany. Produktem reakcji kwasu winowego jest winian wapnia o składzie Ca[OOC – CH(OH) – CH(OH) – COO]. Skład kwasów winowych jest następujący:

Winian wapniowy, niezależnie od zdolności trwałego uszczelniania matrycy cementowej, jest ponadto [5] inhibitorem korozji stali zbrojeniowej, którego mechanizm oddziaływania polega na tworzeniu warstewki ochronnej na stali poprzez zmianę składu cieczy porowej.

Metoda stosowania preparatu Izoporbet polega na nanoszeniu powierzchniowym na beton od strony parcia wody. Przeprowadzone dotychczas badania wskazują, że preparat ten może być używany m.in. do:

  • uszczelniania zbiorników betonowych na wodę przemysłową,
  • powierzchniowego uszczelniania elewacji budynków, w tym mieszkalnych,
  • ocieplania elewacji budynków,
  • przyklejania styropianu do betonu lub siatki z włókien szklanych,
  • uszczelniania betonowych chłodni kominowych.

Literatura

  1. J. Sulikowski, „Cement. Produkcja i zastosowanie”, Wydawnictwo ARKADY, Warszawa 1982.
  2. W. Kurdowski, „Chemia cementu”, Wydawnictwo Naukowe PWN, Warszawa 1991.
  3. A.M. Neville, „Własności betonu”, „Polski Cement”, Kraków 2000.
  4. S. Diamond, „Cement paste microstructure”, „Cement and Concrete Assoc”, April 1976.
  5. L. Czarnecki, T. Broniewski, O. Herring, „Chemia w budownictwie, Wydawnictwo ARKADY, Warszawa 1996.
  6. T. Powers, „Physical Properties of Cement Paste”, [w:] „IV Mieżd. Kongr. Pa Chim. Cem”, Washington 1960, s. 577–613.
  7. A. Grudemo, „The Microstructure of Hardened Cement Paste”, [w:] „IV Mieżd. Kongr. Pa Chim. Cem”, Washington 1960, s. 615–658.
  8. M. Gruener, „Korozja i ochrona betonu”, Wydawnictwo ARKADY, Warszawa 1983.
  9. S. Peukert, „Cementy powszechnego użytku i specjalne. Podstawy produkcji, własności, zastosowanie”, „Polski Cement”, Kraków 2000.
  10. M. Zdaniewicz, „Zastosowanie wybranych związków krzemoorganicznych do hydrofobizacji zaczynów i zapraw cementowych”, XVII Konferencja Naukowo-Techniczna Jadwisin 2000.
  11. M. Zdaniewcz, „Wpływ domieszek związków krzemoorganicznych na kształtowanie właściwości zaczynów i zapraw cementowych”, Praca doktorska AGH, 1999.
  12. S. Peukert, „Teoretyczne i praktyczne podstawy iniekcji cementu, w celu umożliwienia rozwoju technologii BWW”, Zeszyty Naukowe AGH, Kraków 1999.
  13. S. Peukert, H. Mróz, „Cement MPz i mieszanki na jego podstawie”, „Cement–Wapno–Gips” nr 4–5/1990.
  14. S. Peuker, H. Mróz, M. Tenerowicz, E. Olszewski, Cz. Ostrowski, „Izoporbet” – Polski Patent 148783, 1986.

Chcesz być na bieżąco? Zapisz się do naszego newslettera!

Komentarze

  • concret concret, 12.06.2016r., 13:22:29 Czy siarczanoglinian wapniowy jako dodatek do betonu można gdzieś kupić ? jeśli tak prosze o kontakt tomek-wojtowicz@o2.pl pozdrawiam

Powiązane

mgr inż. Maciej Rokiel Materiały do wykonywania hydroizolacji podziemnych części budynków i budowli

Materiały do wykonywania hydroizolacji podziemnych części budynków i budowli Materiały do wykonywania hydroizolacji podziemnych części budynków i budowli

Aby hydroizolacja była skuteczna, powinna być właściwie dobrana, a także poprawnie zaprojektowana i wykonana.

Aby hydroizolacja była skuteczna, powinna być właściwie dobrana, a także poprawnie zaprojektowana i wykonana.

dr inż. Jacek Hulimka, dr inż. Marta Kałuża Przyczyny zalania kondygnacji piwnicznej budynku mieszkalnego - błędy projektowe i wykonawcze

Przyczyny zalania kondygnacji piwnicznej budynku mieszkalnego - błędy projektowe i wykonawcze Przyczyny zalania kondygnacji piwnicznej budynku mieszkalnego - błędy projektowe i wykonawcze

W 2010 r., zaledwie 3 lata po przekazaniu do eksploatacji wielorodzinnego budynku mieszkalnego o bardzo wysokim standardzie, doszło do zalania garażu podziemnego. Analiza dokumentacji technicznej obiektu...

W 2010 r., zaledwie 3 lata po przekazaniu do eksploatacji wielorodzinnego budynku mieszkalnego o bardzo wysokim standardzie, doszło do zalania garażu podziemnego. Analiza dokumentacji technicznej obiektu oraz wyniki wykonanych badań wykazały błędy popełnione na etapie projektowania oraz budowy obiektu.

Austrotherm Płyty Austrotherm XPS TOP - efektywna termoizolacja fundamentów

Płyty Austrotherm XPS TOP - efektywna termoizolacja fundamentów Płyty Austrotherm XPS TOP - efektywna termoizolacja fundamentów

Ocieplenie fundamentów to decyzja, której konsekwencje ponosimy przez cały okres użytkowania domu. Warto do tego zastosować płyty z polistyrenu ekstrudowanego XPS.

Ocieplenie fundamentów to decyzja, której konsekwencje ponosimy przez cały okres użytkowania domu. Warto do tego zastosować płyty z polistyrenu ekstrudowanego XPS.

dr Bogumiła Chmielewska, mgr inż. Jerzy Koper Naprawa rys w konstrukcjach żelbetowych metodą iniekcji

Naprawa rys w konstrukcjach żelbetowych metodą iniekcji Naprawa rys w konstrukcjach żelbetowych metodą iniekcji

W pierwszej części artykułu dotyczącego problemu naprawy rys w konstrukcjach żelbetowych metodą iniekcji omówiono klasyfikację i przyczyny powstawania rys w betonie. Wymieniono także możliwości naprawy...

W pierwszej części artykułu dotyczącego problemu naprawy rys w konstrukcjach żelbetowych metodą iniekcji omówiono klasyfikację i przyczyny powstawania rys w betonie. Wymieniono także możliwości naprawy ze szczególnym uwzględnieniem metody iniekcji.

dr Bogumiła Chmielewska, mgr inż. Jerzy Koper Konstrukcje żelbetowe - naprawa rys metodą iniekcji Cz. 1. Powstawanie rys i metody ich naprawy

Konstrukcje żelbetowe - naprawa rys metodą iniekcji Cz. 1. Powstawanie rys i metody ich naprawy Konstrukcje żelbetowe - naprawa rys metodą iniekcji Cz. 1. Powstawanie rys i metody ich naprawy

Aby zapewnić przyjęty w projekcie okres użytkowania konstrukcji, należy zabezpieczyć ją przed oddziaływaniami mogącymi wpłynąć na trwałość. Dotyczy to m.in. naprawy rys.

Aby zapewnić przyjęty w projekcie okres użytkowania konstrukcji, należy zabezpieczyć ją przed oddziaływaniami mogącymi wpłynąć na trwałość. Dotyczy to m.in. naprawy rys.

Redakcja miesięcznika IZOLACJE Budowa fundamentów - poradnik

Budowa fundamentów - poradnik Budowa fundamentów - poradnik

Fundament to podstawa każdego budynku. Aby skutecznie spełniał swoje zadanie - stanowił oparcie dla konstrukcji domu i chronił przed wilgocią z zewnątrz- musi być dopasowany do istniejących warunków oraz...

Fundament to podstawa każdego budynku. Aby skutecznie spełniał swoje zadanie - stanowił oparcie dla konstrukcji domu i chronił przed wilgocią z zewnątrz- musi być dopasowany do istniejących warunków oraz przewidywanych obciążeń. Jak prawidłowo wykonać fundamenty?

Damian Żabicki Penetrujące materiały hydroizolacyjne

Penetrujące materiały hydroizolacyjne Penetrujące materiały hydroizolacyjne

Na etapie wykonywania hydroizolacji budynku warto rozważyć zastosowanie materiałów penetrujących. Nowoczesne preparaty tego typu zastępują tradycyjne izolacje w postaci papy i lepiku.

Na etapie wykonywania hydroizolacji budynku warto rozważyć zastosowanie materiałów penetrujących. Nowoczesne preparaty tego typu zastępują tradycyjne izolacje w postaci papy i lepiku.

Redakcja miesięcznika IZOLACJE Materiały rolowe do izolacji fundamentów

Materiały rolowe do izolacji fundamentów Materiały rolowe do izolacji fundamentów

Do najstarszych materiałów stosowanych do hydroizolacji fundamentów można zaliczyć materiały rolowe, które mają tę przewagę nad izolacjami bezspoinowymi, że pozwalają na niemal natychmiastowe zasypanie...

Do najstarszych materiałów stosowanych do hydroizolacji fundamentów można zaliczyć materiały rolowe, które mają tę przewagę nad izolacjami bezspoinowymi, że pozwalają na niemal natychmiastowe zasypanie wykopu, a folie z tworzyw sztucznych - o ile nie są klejone do podłoża - pozwalają na zaizolowanie niestabilnego lub zanieczyszczonego podłoża.

KOESTER Polska Żel akrylowy KÖSTER do iniekcji kurtynowych i strukturalnych

Żel akrylowy KÖSTER do iniekcji kurtynowych i strukturalnych Żel akrylowy KÖSTER do iniekcji kurtynowych i strukturalnych

Przy odtwarzaniu hydroizolacji ścian zewnętrznych nie zawsze jest możliwe odkopanie ścian budynku (np. gdy na działce obok stoi budynek lub przebiega ulica). W takich przypadkach często wykonywana jest...

Przy odtwarzaniu hydroizolacji ścian zewnętrznych nie zawsze jest możliwe odkopanie ścian budynku (np. gdy na działce obok stoi budynek lub przebiega ulica). W takich przypadkach często wykonywana jest zewnętrzna hydroizolacja piwnic od środka w technice iniekcji kurtynowej z użyciem żelów iniekcyjnych - np. KÖSTER Injectionsgel G4.

Saint Gobain Construction Products Polska/ Weber Hydroizolacja fundamentów - jak chronić dom przed wodą?

Hydroizolacja fundamentów - jak chronić dom przed wodą? Hydroizolacja fundamentów - jak chronić dom przed wodą?

Jednym z najważniejszych, a jednocześnie najtrudniejszych zadań wśród prac budowlanych jest zabezpieczenie obiektu przed działaniem wód gruntowych. Na działanie wody szczególnie narażone są fundamenty....

Jednym z najważniejszych, a jednocześnie najtrudniejszych zadań wśród prac budowlanych jest zabezpieczenie obiektu przed działaniem wód gruntowych. Na działanie wody szczególnie narażone są fundamenty. Aby zapewnić ich skuteczną i trwałą ochronę, należy zastosować nowoczesne materiały izolacyjne, właściwie dobrać rozwiązania konstrukcyjne i zadbać o prawidłowe wykonanie.

dr inż. Grzegorz Dmochowski, dr inż. Piotr Berkowski Zarysowania skurczowe płyt fundamentowych i ścian w budynkach mieszkalnych z garażami podziemnymi

Zarysowania skurczowe płyt fundamentowych i ścian w budynkach mieszkalnych z garażami podziemnymi Zarysowania skurczowe płyt fundamentowych i ścian w budynkach mieszkalnych z garażami podziemnymi

Zdecydowana większość budynków mieszkalnych i użyteczności publicznej ma obecnie garaże podziemne, co wiąże się z reguły z posadowieniem ich na płycie fundamentowej i wykonaniem ścian żelbetowych dolnej...

Zdecydowana większość budynków mieszkalnych i użyteczności publicznej ma obecnie garaże podziemne, co wiąże się z reguły z posadowieniem ich na płycie fundamentowej i wykonaniem ścian żelbetowych dolnej kondygnacji.

dr inż. Paula Szczepaniak Pionowa izolacja obwodowa budynków ze ścianami jednowarstwowymi

Pionowa izolacja obwodowa budynków ze ścianami jednowarstwowymi Pionowa izolacja obwodowa budynków ze ścianami jednowarstwowymi

Mostek termiczny połączenia budynku z gruntem, w przypadku stosowania typowego liniowego posadowienia budynku, czyli przy zastosowaniu ław fundamentowych, jest elementem, w którym trudno zachować podstawowy...

Mostek termiczny połączenia budynku z gruntem, w przypadku stosowania typowego liniowego posadowienia budynku, czyli przy zastosowaniu ław fundamentowych, jest elementem, w którym trudno zachować podstawowy warunek dobrej izolacyjności przegrody zewnętrznej - ciągłość na obwodzie bryły.

mgr inż. Irena Domska Styropian hydrofobowy w izolacji cieplnej ścian fundamentowych

Styropian hydrofobowy w izolacji cieplnej ścian fundamentowych Styropian hydrofobowy w izolacji cieplnej ścian fundamentowych

Styropian jest materiałem izolacyjnym, który charakteryzuje się wysoką odpornością na wilgoć. Odporność ta obejmuje nie tylko niewielką, w stosunku do innych materiałów izolacyjnych, nasiąkliwość wodą,...

Styropian jest materiałem izolacyjnym, który charakteryzuje się wysoką odpornością na wilgoć. Odporność ta obejmuje nie tylko niewielką, w stosunku do innych materiałów izolacyjnych, nasiąkliwość wodą, lecz również brak negatywnego wpływu na właściwości wytrzymałościowe. Doświadczenia laboratoryjne wskazują również na odporność wytrzymałościową styropianu na wielokrotne zamrażanie i odmrażanie.

dr hab. inż., prof. nadzw. UTP Dariusz Bajno, dr inż. Anna Rawska-Skotniczny Wybrane zagadnienia dotyczące zabezpieczeń podziemnych części istniejących budynków przed wilgocią

Wybrane zagadnienia dotyczące zabezpieczeń podziemnych części istniejących budynków przed wilgocią Wybrane zagadnienia dotyczące zabezpieczeń podziemnych części istniejących budynków przed wilgocią

Wilgoć zawsze będzie towarzyszyć obiektom budowlanym w okresie eksploatacyjnym, dlatego zabezpiecza się je przed nadmiernym zawilgoceniem oraz przed przedostawaniem się wilgoci do ich pomieszczeń poprzez...

Wilgoć zawsze będzie towarzyszyć obiektom budowlanym w okresie eksploatacyjnym, dlatego zabezpiecza się je przed nadmiernym zawilgoceniem oraz przed przedostawaniem się wilgoci do ich pomieszczeń poprzez odpowiedni dobór materiałów oraz izolacje zewnętrzne. Nie istnieją uniwersalne metody zabezpieczeń materiałów przed wilgocią, dlatego podjęcie decyzji o zasadności wykonania izolacji lub też o doborze odpowiedniej technologii powinno zostać poparte przeprowadzoną wcześniej analizą, odpowiadającą...

mgr inż. Marcin Jaroszyński Szary styropian do termoizolacji fundamentów

Szary styropian do termoizolacji fundamentów Szary styropian do termoizolacji fundamentów

Fundament to realizowany jako pierwszy przy budowie budynku, ale też najważniejszy element konstrukcyjny, gwarantujący stabilność i trwałość znajdującej się na nim konstrukcji. Oczywiście metod posadowienia...

Fundament to realizowany jako pierwszy przy budowie budynku, ale też najważniejszy element konstrukcyjny, gwarantujący stabilność i trwałość znajdującej się na nim konstrukcji. Oczywiście metod posadowienia jest kilka, skupmy się jednak na dwóch najbardziej popularnych i najczęściej stosowanych w budownictwie jednorodzinnym i mieszkaniowym. Chodzi o ławy fundamentowe ze ścianką fundamentową i o płytę fundamentową.

dr inż. Mariusz Jackiewicz Hydroizolacja elementów budowli stykających się z gruntem

Hydroizolacja elementów budowli stykających się z gruntem Hydroizolacja elementów budowli stykających się z gruntem

Projektowanie oraz wykonawstwo hydroizolacji konstrukcji budowlanych w Niemczech regulowała wprowadzona w 1983 r. i w międzyczasie wielokrotnie nowelizowana norma DIN 18195. Ta norma jest stosunkowo dobrze...

Projektowanie oraz wykonawstwo hydroizolacji konstrukcji budowlanych w Niemczech regulowała wprowadzona w 1983 r. i w międzyczasie wielokrotnie nowelizowana norma DIN 18195. Ta norma jest stosunkowo dobrze znana w Polsce, z dwóch powodów - braku krajowej, tak kompleksowej normy oraz znaczącego udziału na polskim rynku produktów hydroizolacyjnych niemieckich producentów.

dr inż. Paula Szczepaniak Ocena jakości termicznej rozwiązań węzła połączenia budynku z gruntem posadowionym na płycie fundamentowej

Ocena jakości termicznej rozwiązań węzła połączenia budynku z gruntem posadowionym na płycie fundamentowej Ocena jakości termicznej rozwiązań węzła połączenia budynku z gruntem posadowionym na płycie fundamentowej

Płyta fundamentowa należy do grupy posadowień bezpośrednich. Jest stosowana przy występowaniu słabego podłoża gruntowego, poziomie posadowienia poniżej zwierciadła wody gruntowej, stosowaniu konstrukcji...

Płyta fundamentowa należy do grupy posadowień bezpośrednich. Jest stosowana przy występowaniu słabego podłoża gruntowego, poziomie posadowienia poniżej zwierciadła wody gruntowej, stosowaniu konstrukcji szczelnej wanny lub w przypadku konieczności zapewnienia równomiernego osiadania budynku [1].

mgr inż. Maciej Rokiel Hydroizolacje w gruncie - podział, zastosowanie i właściwości

Hydroizolacje w gruncie - podział, zastosowanie i właściwości Hydroizolacje w gruncie - podział, zastosowanie i właściwości

Konieczność wykonania skutecznych powłok wodochronnych to nie tylko jeden z podstawowych wymogów bezproblemowego i komfortowego użytkowania zarówno budynków (obojętne, czy w budownictwie mieszkaniowym,...

Konieczność wykonania skutecznych powłok wodochronnych to nie tylko jeden z podstawowych wymogów bezproblemowego i komfortowego użytkowania zarówno budynków (obojętne, czy w budownictwie mieszkaniowym, użyteczności publicznej, czy przemysłowym), jak i budowli, a także wymóg formalny. Intensywny rozwój chemii budowlanej w ciągu ostatnich kilkunastu lat spowodował, że mamy do dyspozycji szeroką gamę materiałów, począwszy od stosowanych tylko do izolacji przeciwwilgociowych, a skończywszy na materiałach...

dr inż. Maciej Trochonowicz Diagnostyka hydroizolacji w pracach modernizacyjnych

Diagnostyka hydroizolacji w pracach modernizacyjnych Diagnostyka hydroizolacji w pracach modernizacyjnych

Woda jest substancją warunkującą możliwość wykonania praktycznie wszystkich procesów budowlanych. Niezbędna jest zarówno do produkcji materiałów, jak i ich wbudowania. Jednocześnie ta sama woda, a raczej...

Woda jest substancją warunkującą możliwość wykonania praktycznie wszystkich procesów budowlanych. Niezbędna jest zarówno do produkcji materiałów, jak i ich wbudowania. Jednocześnie ta sama woda, a raczej jej nadmiar, jest czynnikiem powodującym największe zagrożenie dla obiektów budowlanych. Wprowadzana na wiele sposobów z czasem staje się przyczyną wielu niekorzystnych zjawisk, a jej usunięcie poważnym problemem. Dlatego też nieodłącznym elementem wznoszenia czy też remontowania budynków są hydroizolacje.

prof. nzw. dr hab. inż. Irena Ickiewicz Wpływ ocieplenia fundamentów na rozkład temperatury w gruncie w otoczeniu budynku

Wpływ ocieplenia fundamentów na rozkład temperatury w gruncie w otoczeniu budynku Wpływ ocieplenia fundamentów na rozkład temperatury w gruncie w otoczeniu budynku

Głębokość posadowień bezpośrednich określa w Polsce norma PN-81-B-03020 "Grunty budowlane. Posadowienie bezpośrednie. Obliczenia statystyczne i projektowanie".

Głębokość posadowień bezpośrednich określa w Polsce norma PN-81-B-03020 "Grunty budowlane. Posadowienie bezpośrednie. Obliczenia statystyczne i projektowanie".

dr inż. Sławomir Chłądzyński, mgr inż. Katarzyna Walusiak Wpływ wytrzymałości cementu na właściwości klejów do ociepleń

Wpływ wytrzymałości cementu na właściwości klejów do ociepleń Wpływ wytrzymałości cementu na właściwości klejów do ociepleń

Cement portlandzki jest najczęściej stosowanym spoiwem w recepturach suchych mieszanek. Według opracowania na temat przemysłu cementowego w Polsce na rynku krajowym rocznie wykorzystywane jest obecnie...

Cement portlandzki jest najczęściej stosowanym spoiwem w recepturach suchych mieszanek. Według opracowania na temat przemysłu cementowego w Polsce na rynku krajowym rocznie wykorzystywane jest obecnie ok. 700-800 tys. ton tego spoiwa do wytworzenia suchych mieszanek chemii budowlanej [1], co stanowi ok. 4-5% sprzedaży cementu w kraju.

mgr inż. arch. Tomasz Rybarczyk Fundamenty w budynkach jednorodzinnych

Fundamenty w budynkach jednorodzinnych Fundamenty w budynkach jednorodzinnych

Fundamenty są elementem budynku, który przekazuje obciążenia z części naziemnej na podłoże gruntowe. Wszystkie siły działające na budynek, czyli wiatr, śnieg, obciążenia użytkowe, masa własna konstrukcji...

Fundamenty są elementem budynku, który przekazuje obciążenia z części naziemnej na podłoże gruntowe. Wszystkie siły działające na budynek, czyli wiatr, śnieg, obciążenia użytkowe, masa własna konstrukcji i elementów budynku, są przekazywane na grunt. Z kolei fundamenty przekazują oddziaływania gruntu na konstrukcję. Jeśli zachodzą niekorzystne zjawiska, wywołane na przykład osiadaniem gruntu, ruchy gruntu (np. spowodowane tym, że budynek został wybudowany na terenach eksploatacji górniczych lub terenach...

mgr inż. Maciej Rokiel Badanie skuteczności prac i preparatów do wykonywania przepony poziomej

Badanie skuteczności prac i preparatów do wykonywania przepony poziomej Badanie skuteczności prac i preparatów do wykonywania przepony poziomej

Iniekcja chemiczna jest jedną z metod wykonywania wtórnej izolacji poziomej. Celem iniekcji chemicznej jest wytworzenie w przegrodzie przepony przerywającej podciąganie kapilarne, a także uzyskanie, w...

Iniekcja chemiczna jest jedną z metod wykonywania wtórnej izolacji poziomej. Celem iniekcji chemicznej jest wytworzenie w przegrodzie przepony przerywającej podciąganie kapilarne, a także uzyskanie, w dalszym czasie, w strefie muru nad przeponą, obszaru normalnej wilgotności.

dr inż. Wioletta Jackiewicz-Rek, mgr inż. Kaja Kłos, inż. Paweł Zieliński Wymagania dla betonu wodoszczelnego

Wymagania dla betonu wodoszczelnego Wymagania dla betonu wodoszczelnego

Definiując beton wodoszczelny mający zastosowanie w realizacji obiektów tworzących barierę dla wody, nie sposób zacząć bez określenia, że jest to taki rodzaj betonu, który izoluje ze względu na swoje właściwości.

Definiując beton wodoszczelny mający zastosowanie w realizacji obiektów tworzących barierę dla wody, nie sposób zacząć bez określenia, że jest to taki rodzaj betonu, który izoluje ze względu na swoje właściwości.

Najnowsze produkty i technologie

MediaMarkt Laptop na raty – czy warto wybrać tę opcję?

Laptop na raty – czy warto wybrać tę opcję? Laptop na raty – czy warto wybrać tę opcję?

Zakup nowego laptopa to spory wydatek. Może się zdarzyć, że staniemy przed dylematem: tańszy sprzęt, mniej odpowiadający naszym potrzebom, czy droższy, lepiej je spełniający, ale na raty? Często wybór...

Zakup nowego laptopa to spory wydatek. Może się zdarzyć, że staniemy przed dylematem: tańszy sprzęt, mniej odpowiadający naszym potrzebom, czy droższy, lepiej je spełniający, ale na raty? Często wybór tańszego rozwiązania, jest pozorną oszczędnością. Niższa efektywność pracy, mniejsza żywotność, nie mówiąc już o ograniczonych parametrach technicznych. Jeśli szukamy sprzętu, który posłuży nam naprawdę długo, dobrze do zakupu laptopa podejść jak do inwestycji - niezależnie, czy kupujemy go przede wszystkim...

PU Polska – Związek Producentów Płyt Warstwowych i Izolacji Płyty warstwowe PUR/PIR w aspekcie wymagań technicznych stawianych lekkiej obudowie

Płyty warstwowe PUR/PIR w aspekcie wymagań technicznych stawianych lekkiej obudowie Płyty warstwowe PUR/PIR w aspekcie wymagań technicznych stawianych lekkiej obudowie

Rozwój technologii budowlanej w ciągu ostatnich kilkudziesięciu lat zmienił oblicze branży w Polsce, umożliwiając szybszą, tańszą i ekologiczną realizację wznoszonych obiektów. Wprowadzając szeroko do...

Rozwój technologii budowlanej w ciągu ostatnich kilkudziesięciu lat zmienił oblicze branży w Polsce, umożliwiając szybszą, tańszą i ekologiczną realizację wznoszonych obiektów. Wprowadzając szeroko do branży rewolucyjny i rewelacyjny produkt, jakim jest płyta warstwowa, zmodernizowaliśmy de facto ideę prefabrykacji i zamianę tradycyjnych, mokrych i pracochłonnych technologii wznoszenia budynków z elementów małogabarytowych lub konstrukcji szalunkowych na szybki, suchy montaż gotowych elementów w...

Balex Metal Sp. z o. o. System rynnowy Zenit – orynnowanie premium

System rynnowy Zenit – orynnowanie premium System rynnowy Zenit – orynnowanie premium

Wielu inwestorów, wybierając orynnowanie, zwraca wyłącznie uwagę na kolor czy kształt rynien i rur spustowych. Oczywiście estetyka jest ważna, ale nie to jest głównym zadaniem systemu rynnowego. Ma on...

Wielu inwestorów, wybierając orynnowanie, zwraca wyłącznie uwagę na kolor czy kształt rynien i rur spustowych. Oczywiście estetyka jest ważna, ale nie to jest głównym zadaniem systemu rynnowego. Ma on przede wszystkim bezpiecznie odprowadzać wodę deszczową i roztopową z dachu, a o tym decydują detale. Zadbała o nie firma Balex Metal. System rynnowy Zenit jest dopracowany do perfekcji. Równie świetnie się prezentuje.

BREVIS S.C. Insolio - nawiewnik montowany bez konieczności frezowania szczelin

Insolio - nawiewnik montowany bez konieczności frezowania szczelin Insolio - nawiewnik montowany bez konieczności frezowania szczelin

Nawiewniki okienne to urządzenia mechaniczne zapewniające stały, a zarazem regulowany dopływ świeżego powietrza bez potrzeby otwierania okien. Ich montaż to jedna z najprostszych metod zapewnienia prawidłowego...

Nawiewniki okienne to urządzenia mechaniczne zapewniające stały, a zarazem regulowany dopływ świeżego powietrza bez potrzeby otwierania okien. Ich montaż to jedna z najprostszych metod zapewnienia prawidłowego działania wentylacji grawitacyjnej, mechanicznej wywiewnej i hybrydowej (połączenie obu poprzednich typów). Wiele osób rezygnowało z ich instalacji z powodu konieczności ingerencji w konstrukcję ramy okna. Na szczęście to już przeszłość - od kilku lat na rynku dostępne są modele montowane na...

PETRALANA Zastosowanie przeciwogniowe, termiczne, akustyczne – płyty PETRATOP i PETRALAMELA-FG

Zastosowanie przeciwogniowe, termiczne, akustyczne – płyty PETRATOP i PETRALAMELA-FG Zastosowanie przeciwogniowe, termiczne, akustyczne – płyty PETRATOP i PETRALAMELA-FG

PETRATOP i PETRALAMELA-FG to produkty stworzone z myślą o efektywnej izolacji termicznej oraz akustycznej oraz bezpieczeństwie pożarowym garaży i piwnic. Rozwiązanie to zapobiega wymianie wysokiej temperatury...

PETRATOP i PETRALAMELA-FG to produkty stworzone z myślą o efektywnej izolacji termicznej oraz akustycznej oraz bezpieczeństwie pożarowym garaży i piwnic. Rozwiązanie to zapobiega wymianie wysokiej temperatury z górnych kondygnacji budynków z niską temperaturą, która panuje bliżej gruntu.

VITCAS Polska Sp. z o.o. Jakich materiałów użyć do izolacji cieplnej kominka?

Jakich materiałów użyć do izolacji cieplnej kominka? Jakich materiałów użyć do izolacji cieplnej kominka?

Kominek to od lat znany i ceniony element wyposażenia domu. Nie tylko daje ciepło w chłodne wieczory, ale również stwarza niepowtarzalny klimat w pomieszczeniu. Obserwowanie pomarańczowych płomieni pozwala...

Kominek to od lat znany i ceniony element wyposażenia domu. Nie tylko daje ciepło w chłodne wieczory, ale również stwarza niepowtarzalny klimat w pomieszczeniu. Obserwowanie pomarańczowych płomieni pozwala zrelaksować się po ciężkim dniu pracy. Taka aura sprzyja również długim rozmowom w gronie najbliższych. Aby kominek był bezpieczny w użytkowaniu, należy zadbać o jego odpowiednią izolację termiczną. Dlaczego zabezpieczenie kominka jest tak ważne i jakich materiałów izolacyjnych użyć? Na te pytania...

Recticel Insulation Płyty termoizolacyjne EUROTHANE G – efektywne docieplenie budynku od wewnątrz

Płyty termoizolacyjne EUROTHANE G – efektywne docieplenie budynku od wewnątrz Płyty termoizolacyjne EUROTHANE G – efektywne docieplenie budynku od wewnątrz

Termomodernizacja jest jednym z podstawowych zadań podejmowanych w ramach modernizacji budynków. W odniesieniu do ścian docieplenie wykonuje się od zewnątrz, zgodnie z podstawowymi zasadami fizyki budowli....

Termomodernizacja jest jednym z podstawowych zadań podejmowanych w ramach modernizacji budynków. W odniesieniu do ścian docieplenie wykonuje się od zewnątrz, zgodnie z podstawowymi zasadami fizyki budowli. Czasami jednak nie ma możliwości wykonania docieplenia na fasadach, np. na budynkach zabytkowych, obiektach z utrudnionym dostępem do elewacji czy na budynkach usytuowanych w granicy. W wielu takich przypadkach jest jednak możliwe wykonanie docieplenia ścian od wewnątrz.

Ocmer Jak wygląda budowa hali magazynowej?

Jak wygląda budowa hali magazynowej? Jak wygląda budowa hali magazynowej?

Budowa obiektu halowego to wieloetapowy proces, w którym każdy krok musi zostać precyzyjnie zaplanowany i umiejscowiony w czasie. Jak wyglądają kolejne fazy takiego przedsięwzięcia? Wyjaśniamy, jak przebiega...

Budowa obiektu halowego to wieloetapowy proces, w którym każdy krok musi zostać precyzyjnie zaplanowany i umiejscowiony w czasie. Jak wyglądają kolejne fazy takiego przedsięwzięcia? Wyjaśniamy, jak przebiega budowa hali magazynowej i z jakich etapów składa się cały proces.

Parati Płyta fundamentowa i jej zalety – wszystko, co trzeba wiedzieć

Płyta fundamentowa i jej zalety – wszystko, co trzeba wiedzieć Płyta fundamentowa i jej zalety – wszystko, co trzeba wiedzieć

Budowa domu jest zadaniem niezwykle trudnym, wymagającym od inwestora podjęcia wielu decyzji, bezpośrednio przekładających się na efekt. Dokłada on wszelkich starań, żeby budynek był w pełni funkcjonalny,...

Budowa domu jest zadaniem niezwykle trudnym, wymagającym od inwestora podjęcia wielu decyzji, bezpośrednio przekładających się na efekt. Dokłada on wszelkich starań, żeby budynek był w pełni funkcjonalny, wygodny oraz wytrzymały. A jak pokazuje praktyka, aby osiągnąć ten cel, należy rozpocząć od podstaw. Właśnie to zagwarantuje nam solidna płyta fundamentowa.

Copyright © 2004-2019 Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Spółka komandytowa, nr KRS: 0000537655. Wszelkie prawa, w tym Autora, Wydawcy i Producenta bazy danych zastrzeżone. Jakiekolwiek dalsze rozpowszechnianie artykułów zabronione. Korzystanie z serwisu i zamieszczonych w nim utworów i danych wyłącznie na zasadach określonych w Zasadach korzystania z serwisu.
Portal Budowlany - Izolacje.com.pl

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim urządzeniu końcowym. W każdym momencie możesz dokonać zmiany ustawień przeglądarki dotyczących cookies. Nim Państwo zaczną korzystać z naszego serwisu prosimy o zapoznanie się z naszą polityką prywatności oraz Informacją o Cookies. Więcej szczegółów w naszej Polityce Prywatności oraz Informacji o Cookies. Administratorem Państwa danych osobowych jest Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Sp.K., nr KRS: 0000537655, z siedzibą w 04-112 Warszawa, ul. Karczewska 18, tel. +48 22 810-21-24, właściciel strony www.izolacje.com.pl. Twoje Dane Osobowe będą chronione zgodnie z wytycznymi polityki prywatności www.izolacje.com.pl oraz zgodnie z Rozporządzeniem Parlamentu Europejskiego i Rady (UE) 2016/679 z dnia 27 kwietnia 2016r i z Ustawą o ochronie danych osobowych Dz.U. 2018 poz. 1000 z dnia 10 maja 2018r.