Izolacje.com.pl

Zaawansowane wyszukiwanie

Bauder Polska Sp. z o. o. Nowoczesne rozwiązania na dachy płaskie

Nowoczesne rozwiązania na dachy płaskie Nowoczesne rozwiązania na dachy płaskie

Szczelny dach płaski to gwarancja bezpieczeństwa dla użytkowników budynku oraz pewność wieloletniej i bezawaryjnej trwałości pokrycia. Obecnie od materiałów do izolacji i renowacji dachów wymaga się coraz...

Szczelny dach płaski to gwarancja bezpieczeństwa dla użytkowników budynku oraz pewność wieloletniej i bezawaryjnej trwałości pokrycia. Obecnie od materiałów do izolacji i renowacji dachów wymaga się coraz więcej – powinny być nie tylko wysokiej jakości, ale także przyjazne dla środowiska.

Wełna mineralna – ciepło i cicho »

Wełna mineralna – ciepło i cicho » Wełna mineralna – ciepło i cicho »

Policz, ile kosztuje Cię ogrzewanie »

Policz, ile kosztuje Cię ogrzewanie » Policz, ile kosztuje Cię ogrzewanie »

Tarasy nad pomieszczeniami ogrzewanymi – Warunki Techniczne a zagadnienia cieplno‑wilgotnościowe

Jak projektować tarasy nad pomieszczeniami ogrzewanymi zgodnie z WT 2021?; fot. www.pixabay.com

Jak projektować tarasy nad pomieszczeniami ogrzewanymi zgodnie z WT 2021?; fot. www.pixabay.com

Taras nadziemny to element konstrukcji umieszczony nad pomieszczeniem, pełniący jednocześnie funkcję dachu, zabezpieczony balustradą lub attyką. Można wyróżnić tarasy w układzie odwróconym (warstwa hydroizolacji chroniona jest przez warstwę termoizolacyjną) lub klasycznym (warstwa termoizolacyjna chroniona jest przed oddziaływaniem wilgoci przez warstwę hydroizolacji). Powierzchnia tarasu dostępna jest z przyległych pomieszczeń.

Zobacz także

mgr inż. Maciej Rokiel Tarasy i balkony. Projektowanie i warunki techniczne wykonania i odbioru robót

Tarasy i balkony. Projektowanie i warunki techniczne wykonania i odbioru robót Tarasy i balkony. Projektowanie i warunki techniczne wykonania i odbioru robót

Praktyczny poradnik umożliwia sprawne poruszanie się po nowoczesnych rozwiązaniach dotyczących tarasów i balkonów. Zawiera liczne schematy i rysunki oraz tabele ułatwiające dotarcie do poszczególnych punktów...

Praktyczny poradnik umożliwia sprawne poruszanie się po nowoczesnych rozwiązaniach dotyczących tarasów i balkonów. Zawiera liczne schematy i rysunki oraz tabele ułatwiające dotarcie do poszczególnych punktów tematycznych.

Alchimica Polska Sp. z o.o. Hydroizolacja tarasu i balkonu w systemie Hyperdesmo

Hydroizolacja tarasu i balkonu w systemie Hyperdesmo Hydroizolacja tarasu i balkonu w systemie Hyperdesmo

Zarówno balkon, jak i taras cały czas są narażone na działanie destrukcyjnych czynników atmosferycznych. Dlatego też zastosowane podczas ich budowy materiały przede wszystkim muszą stanowić skuteczną ochronę...

Zarówno balkon, jak i taras cały czas są narażone na działanie destrukcyjnych czynników atmosferycznych. Dlatego też zastosowane podczas ich budowy materiały przede wszystkim muszą stanowić skuteczną ochronę przed wodą, wilgocią i zmianami temperatury. I to niezależnie od wielkości tych przydomowych powierzchni.

Canada Rubber Polska Szczelnie, estetycznie i na lata?

Szczelnie, estetycznie i na lata? Szczelnie, estetycznie i na lata?

Dlaczego warto zająć się hydroizolacją tarasu? Jaki produkt idealnie sprawdzi się na tarasach? Poniżej prezentujemy trzy systemy z użyciem żywicy poliuretanowej – DROOF 250, które idealnie sprawdzą się...

Dlaczego warto zająć się hydroizolacją tarasu? Jaki produkt idealnie sprawdzi się na tarasach? Poniżej prezentujemy trzy systemy z użyciem żywicy poliuretanowej – DROOF 250, które idealnie sprawdzą się w hydroizolacji tarasu.

Zgodnie z art. 5.1 ustawy Prawo budowlane [1]:

„Obiekt budowlany jako całość oraz jego poszczególne części, wraz ze związanymi z nim urządzeniami budowlanymi należy, biorąc pod uwagę przewidywany okres użytkowania, projektować i budować w sposób określony w przepisach, w tym techniczno-budowlanych, oraz zgodnie z zasadami wiedzy technicznej, zapewniając spełnienie podstawowych wymagań dotyczących obiektów budowlanych określonych w załączniku I do rozporządzenia Parlamentu Europejskiego i Rady (UE) Nr 305/2011 z dnia 9 marca 2011 r. ustanawiającego zharmonizowane warunki wprowadzania do obrotu wyrobów budowlanych i uchylającego dyrektywę Rady 89/106/EWG (Dz. Urz. UE L 88 z 04.04.2011, str. 5, z późn. zm.), dotyczących:

a) nośności i stateczności konstrukcji,
b) bezpieczeństwa pożarowego,
c) higieny, zdrowia i środowiska,
d) bezpieczeństwa użytkowania i dostępności obiektów,
e) ochrony przed hałasem,
f) oszczędności energii i izolacyjności cieplnej,
g) zrównoważonego wykorzystania zasobów naturalnych.”

Z kolei art. 7. ustawy [1] precyzuje, że:

„Do przepisów techniczno-budowlanych zalicza się:

1) warunki techniczne, jakim powinny odpowiadać obiekty budowlane i ich usytuowanie;
2) warunki techniczne użytkowania obiektów budowlanych.”

Oznacza to, że definiując warunki techniczne dla tarasów, obligatoryjnie należy spełnić wymogi podane w:

  • Ustawie Prawo Budowlane [1],
  • Ustawie o wyrobach budowlanych [2],
  • rozporządzeniu w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie [3].

Fakultatywne są natomiast wszelkiego rodzaju warunki techniczne wykonania i odbioru robót [4–8]. Nie znaczy to jednak, że są one nieistotne, ich przestrzeganie ma bowiem zasadnicze znaczenie dla bezawaryjnej eksploatacji (brak procesów destrukcyjnych, przecieków itp.) połaci.

Rozwiązanie konstrukcyjne tarasu nad pomieszczeniem ogrzewanym musi uwzględniać wszystkie czynniki oddziaływujące na połać (a nie tylko wymogi ujęte w WT [3]).

Analizując budowę połaci tarasowej, niezależnie od koncepcji jej wykonania i odwodnienia (układ z powierzchniowym odprowadzeniem wody/wariant drenażowy), oraz wymagania podstawowe [1], jak i WT [3], tarasy należy projektować ze względu na:

  • obciążenie wilgocią,
  • obciążenia termiczne,
  • wymagania cieplno-wilgotnościowe,
  • ochronę akustyczną,
  • bezpieczeństwo użytkowania,

natomiast do wykonania warstw połaci można stosować wyłącznie materiały, których producent dostarczył dokumenty, które świadczą o dopuszczeniu do obrotu i powszechnego lub jednostkowego zastosowania użytych wyrobów budowlanych, zgodnie z Ustawą o wyrobach budowlanych [2] oraz rozporządzeniem Parlamentu Europejskiego i Rady (UE) [9].

Żaden z powyższych warunków nie może być traktowany w oderwaniu od innych.

Analiza Warunków Technicznych [3] pokazuje ciągły wzrost wymagań związanych z izolacyjnością cieplną oraz oszczędzaniem energii. Przyjęcie jako granicznych (maksymalnych) wartości wskaźnika zapotrzebowania na nieodnawialną energię pierwotną EP(max) [kWh/(m2·rok)] dla całego analizowanego budynku i jednocześnie współczynnika przenikania ciepła UC(max) [W/(m2·K)] dla połaci tarasowej tarasu nad pomieszczeniem ogrzewanym wymusza na etapie projektowania wykonanie szczegółowych analiz i obliczeń będących punktem wyjścia do optymalizacji rozwiązań konstrukcyjno materiałowych całego obiektu, a nie tylko jej poszczególnych elementów czy przegród.

W rozdziale 4 Warunków Technicznych [3] podano wymagania związane z ochroną przed zawilgoceniem i korozją biologiczną. Z najważniejszych dotyczących tarasów wymienić należy:

§  315 Budynek powinien być zaprojektowany i wykonany w taki sposób, aby opady atmosferyczne, woda w gruncie i na jego powierzchni, woda użytkowana w budynku oraz para wodna w powietrzu w tym budynku nie powodowały zagrożenia zdrowia i higieny użytkowania.
§  317.
2
. Części ścian zewnętrznych, bezpośrednio nad otaczającym terenem, tarasami, balkonami i dachami, powinny być zabezpieczone przed przenikaniem wody opadowej i z topniejącego śniegu.

§  318. Rozwiązania konstrukcyjno-materiałowe przegród zewnętrznych i ich uszczelnienie powinny uniemożliwiać przenikanie wody opadowej do wnętrza budynków.
§  321.
1.
Na wewnętrznej powierzchni nieprzezroczystej przegrody zewnętrznej nie może występować kondensacja pary wodnej umożliwiająca rozwój grzybów pleśniowych.

2. We wnętrzu przegrody, o której mowa w ust. 1, nie może występować narastające w kolejnych latach zawilgocenie spowodowane kondensacją pary wodnej.
3. Warunki określone w ust. 1 i 2 uważa się za spełnione, jeśli przegrody odpowiadają wymaganiom określonym w pkt 2.2.4. załącznika nr 2 do rozporządzenia.”

Przywołany p. 2.2.4 jest częścią załącznika podającego wymagania izolacyjności cieplnej i inne wymagania związane z oszczędnością energii, z których do tarasów ma przede wszystkim zastosowanie:

  • p.1.1. określający: maksymalny współczynnik przenikania ciepła Uc(max) = 0,15 W/(m2·K),
  • p. 2 podający warunki spełnienia wymagań dotyczących powierzchniowej kondensacji pary wodnej, w tym także zalecenia dotyczące sposobu wykonywania obliczeń.

„§  322. 1. Rozwiązania materiałowo-konstrukcyjne zewnętrznych przegród budynku, warunki cieplno-wilgotnościowe, a także intensywność wymiany powietrza w pomieszczeniach, powinny uniemożliwiać powstanie zagrzybienia.”

Zatem zgodnie z powyżej przywołanymi wymaganiami, dla poprawnie zaprojektowanej pod względem cieplno-wilgotnościowej przegrody (pomijam tu wymóg ograniczenia wskaźnika zapotrzebowania na nieodnawialną energię pierwotną):

  • współczynnik przenikania ciepła UC(max) ≤  0,15 W/(m2·K),
  • nie dochodzi do kondensacji powierzchniowej i rozwoju grzybów pleśniowych na wewnętrznej powierzchni
  • nie dochodzi do narastającej kondensacji międzywarstwowej. Ewentualny kondensat nie wpływa na pogorszenie parametrów i właściwości warstw przegrody i wysycha w okresie letnim (warunki spełnione jednocześnie).

Wymagania cieplno-wilgotnościowe związane są przede wszystkim z trzema elementami połaci: hydroizolacją, termoizolacją i paroizolacją.

Komfort cieplny oraz brak kondensacji i związanej z tym korozji biologicznej zapewnia tylko kompleksowe rozwiązanie projektowe i poprawne wykonawstwo nie tylko połaci, ale i ścian pod tarasem i ścian przyległych do połaci. Rozwój grzybów pleśniowych najwcześniej uwidacznia się w obszarze występowania przynajmniej dwóch liniowych mostków termicznych (np. na styku ściany i stropu połaci, przy progu drzwiowym itp.), co oznacza, że istotny wpływ na to zjawisko ma izolacyjność cieplna ścian zewnętrznych pomieszczenia pod tarasem oraz przyległych do tarasu jak również progu drzwiowego (nie tylko samej stolarki).

Już na etapie wyznaczania współczynnika przenikania ciepła UC(max) popełnia się wiele błędów. Jego wartość, zgodnie z normą PN-EN ISO 6946 [10] oblicza się w odniesieniu do warunków ustalonych, a parametry cieplne zależą od wilgotności materiału. Dlatego przyjęty do obliczeń współczynnik przewodzenia ciepła λ [W/(m·K)] musi być przyjęty nie dla warunków laboratoryjnych, lecz dla rzeczywistych. Dlatego rozróżnić należy dwie wartości współczynnika przenikania ciepła UC(max):

  • deklarowaną, czyli wartość oczekiwaną, oszacowaną na podstawie danych pomiarowych w warunkach odniesienia w zakresie temperatury i wilgotności, podaną dla ustalonej frakcji populacji i poziomu ufności oraz odpowiadająca rozsądnie przyjętemu okresowi użytkowania w normalnych warunkach,
  • obliczeniową, dla określonych zewnętrznych lub wewnętrznych warunków, które mogą być uważane za typowe przy zastosowaniu materiału w elemencie budowlanym.

Te dwie wartości znacznie się różnią od siebie.

Przykładowo producenci płyt styropianowych EPS deklarują współczynnik przewodzenia ciepła λ wynoszący nawet 0,031 W/(m·K), natomiast obliczeniowy wynosić może nawet 0,045 W/(m·K) [11, 12].

Deklarowane wartości współczynnika λ dla XPS-u zaczynają się od 0,029 W/(m·K), natomiast obliczeniowa dla układu tradycyjnego wynosi 0,035 W/(m·K), dla odwróconego natomiast 0,041 W/(m·K) [11, 12] (do tego dochodzi współczynnik poprawkowy na układ odwrócony [10]).

Notorycznie pomija się też wpływ mostków termicznych lub oblicza przegrody niejednorodne jako jednorodne.

Norma PN-EN 13788 [13] do określenia ryzyka kondensacji pary wodnej posługuje się współczynnikiem temperaturowym wewnętrznej powierzchni ƒRsi, określając go jako bezwymiarowy współczynnik równy ilorazowi różnicy temperatury wewnętrznej powierzchni przegrody θsi oraz powietrza zewnętrznego θe i różnicy temperatury powietrza w pomieszczeniu θi oraz powietrza zewnętrznego θe. Im wyższa wartość tego współczynnika, tym wyższa temperatura wewnętrznej powierzchni przegrody i mniejsze ryzyko kondensacji pary wodnej na powierzchni i związanego z tym rozwoju grzybów pleśniowych.

Przegrodę uznaje się za poprawnie zaprojektowaną, gdy wartość ƒRsi dla każdego miesiąca jest większa od wartości krytycznej.

Kondensacja powierzchniowa zachodzi w sytuacji, gdy powietrze mające kontakt z chłodną powierzchnią ochładza się do temperatury niższej niż punkt rosy (powietrze o danej zawartości pary wodnej osiąga stan nasycenia).

Jeżeli punkt rosy jest niższy niż temperatura na powierzchni przegrody, do kondensacji nie dochodzi. Zatem do kondensacji powierzchniowej dochodzi w pomieszczeniach o podwyższonej wilgotności powierza i/lub niedostatecznej izolacyjności termicznej.

Kondensacja powierzchniowa pojawia się w miejscach, w których temperatura jest najniższa, czyli w narożnikach pod stropem tarasów albo na styku płyty ze ścianą (generalnie w miejscach występowania geometrycznych i/lub materiałowych mostków termicznych).

Dokładne wyznaczenie współczynnika temperaturowego w obszarze trójwymiarowych mostków cieplnych wymaga zastosowania metod numerycznych (wynika to także wprost z zaleceń normy [13]). Można także korzystać z metod uproszczonych, jednak w wielu przypadkach, zwłaszcza bardziej skomplikowanych, ich dokładność jest niezadawalająca.

Skoro punkt rosy jest wypadkową temperatury powietrza i jego wilgotności to możliwe jest wyznaczenie zależności punktu rosy od wilgotności powietrza w danym pomieszczeniu i odniesienie jej do minimalnej temperatury na wewnętrznej powierzchni przegrody (tę ostatnią wyznaczoną np. metodami numerycznymi [14]) i określenie niebezpieczeństwa kondensacji powierzchniowej.

Literatura techniczna [15] definiuje pojęcie tzw. punktu pleśniowego (przez analogię do punktu rosy). Za wartość punktu pleśniowego przyjmuję się temperaturę kondensacji (czyli punkt rosy) podwyższoną o 3°C (temperatura w najchłodniejszym miejscu przegrody powinna być minimum o 3°C wyższa niż punkt rosy).

Dalszą konsekwencją założeń do metody obliczeniowej normy [13] i wymagań §  321. 2. Warunków Technicznych [3] jest konieczność wyeliminowania kondensacji międzywarstwowej. Te obliczenia notorycznie się pomija, chociaż Warunki Techniczne [3] jednoznacznie wymagają wyeliminowania we wnętrzu przegrody narastającego zawilgocenia na skutek kondensacji pary wodnej.

Rozporządzenie to dopuszcza jednak kondensację pary wodnej w okresie zimowym wewnątrz przegrody, o ile latem możliwe będzie wyparowanie kondensatu i nie nastąpi degradacja materiału przegrody na skutek tej kondensacji. Warunek ten należy sprawdzić zgodnie z normą PN-EN ISO 13788 [13].

Taki zapis, pod pewnymi warunkami, wydaje się logiczny – brak narastającego zawilgocenia i degradacji materiału przegrody jest jak najbardziej sensowny, nie oznacza on jednak, że taka sytuacja może być bezkrytycznie akceptowalna. Postawić należy także pytanie, jak przyjąć warunki brzegowe. Układ warstw połaci tarasu, niezależnie od koncepcji uszczelnienia, jest narzucony przez rozwiązanie technologiczno-materiałowe, właściwości stosowanych materiałów oraz zjawiska fizyczne.

Rozkład temperatury w przekroju wynika z różnych temperatur po obu stronach przegrody, a przepływ pary wodnej z różnicy ciśnienia tejże pary po obu stronach przegrody – dążą one do wyrównania się. Jednak para wodna, wnikając w warstwy połaci, nie przechodzi przez nią całkowicie – napotyka na opór ze strony poszczególnych jej warstw. Zależy on od rodzaju materiału warstwy (inny dla betonu, styropianu, wełny, powłoki wodochronnej, wykładziny ceramicznej itp.) i jej grubości – jest on określany przez tzw. równoważny opór dyfuzyjny Sd. Powoduje on spadek cząstkowych ciśnień pary wodnej.

Każda warstwa zatrzymuje pewną ilość pary wodnej, jednak pozostała część przenika dalej, zwykle w zimniejszą strefę przekroju. Jeżeli ilość pary wodnej jest zbyt duża, to w pewnym momencie zaczyna ona się wykraplać, gdyż został osiągnięty stan nasycenia i dochodzi do kondensacji. Można mówić o tzw. płaszczyźnie kondensacji, gdy do skraplania dochodzi np. na styku warstw, lub o strefie kondensacji, gdy mamy do czynienia z fragmentem przekroju, gdzie zjawisko to występuje.

Dla tarasu z powierzchniowym odprowadzeniem wody, jeżeli kondensacja pojawi się w warstwie jastrychu dociskowego (czyli w strefie przemarzania – powyżej termoizolacji), to oprócz negatywnego wpływu cykli zamrażania–rozmrażania na zawilgocony podkład (samych przejść przez zero w cyklu jesień–zima–wiosna może być ponad 200) i prawdopodobnie zwiększającego się zawilgocenia podkładu, większych problemów na początku nie będzie.

W okresie letnim zgromadzona wilgoć będzie starała się wyjść przez spoiny, tworząc mało estetyczne wykwity. Na właściwości ciepłochronne wpływ takiego zawilgocenia będzie raczej niewielki. Jednak w dłuższym okresie czasu i w skrajnej sytuacji wzrost ciśnienia pary wodnej na skutek działania słońca i temperatury w lecie może doprowadzić do odspojenia samych płytek.

Gorzej, gdy zawilgoceniu ulegnie termoizolacja z EPS-u. Szerokość strefy zależeć będzie od warunków brzegowych i budowy połaci, dlatego może się zdarzyć, że strefa kondensacji obejmie także część termoizolacji.

Jednak skutek zawilgocenia EPS-u będzie już inny. Spadek ciepłochronności powoduje bowiem poszerzenie wspomnianej strefy, co dodatkowo pogarsza warunki brzegowe – znaczna zmiana (wzrost) przewodności cieplnej zawilgoconej termoizolacji może na tyle zmienić rozkład temperatur w przegrodzie, że wykonane pierwotnie obliczenia nie będą miały żadnego sensu. Drugim problemem jest fakt, że zawilgocony w ten sposób EPS nie wyschnie.

Dla układów drenażowych izolacja może znajdować się bezpośrednio na termoizolacji. Zatem do kondensacji może dojść bezpośrednio pod hydroizolacją, w warstwie termoizolacji, co może mieć znacznie gorsze skutki.

Z podanych powyżej powodów konieczność rzetelnego wykonywania obliczeń cieplno-wilgotnościowych wydaje się oczywista. Wybór rodzaju materiału stosowanego jako paroizolację powinien zależeć bezpośrednio od wyników obliczeń cieplno-wilgotnościowych, do których należy przyjmować wyłącznie obliczeniowe wartości współczynnika przewodzenia ciepła λ. Należy tak dobrać parametry paroizolacji (współczynnik oporu dyfuzyjnego μ/równoważny opór dyfuzyjny Sd), aby wyeliminować niebezpieczeństwo kondensacji wilgoci w warstwach tarasu. Należy także przyjąć rzeczywiste cieplno-wilgotnościowe warunki brzegowe – temperaturę i wilgotność powietrza (normowe czy średnie miesięczne w wielu sytuacjach nie są miarodajne).

Metoda Glasera jest metodą bardzo przybliżoną, zakłada się bardzo wiele uproszczeń w ruchu ciepła i wilgoci oraz w przyjęciu warunków brzegowych. Optymalne (znacznie dokładniejsze i odzwierciedlające rzeczywisty stan cieplno-wilgotnościowy przegrody) byłyby obliczenia w stanie niestacjonarnym. Współczynnik przewodzenia ciepła λ zależy od temperatury oraz zawilgocenia materiału, jednak takie symulacje wymagają użycia specjalistycznych programów komputerowych.

Literatura

1. Obwieszczenie Marszałka Sejmu Rzeczypospolitej Polskiej z dnia 7 lipca 2020 r. w sprawie ogłoszenia jednolitego tekstu w sprawie ogłoszenia jednolitego tekstu ustawy – Prawo budowlane (DzU 2020 poz. 1333).
2. Obwieszczenie Marszałka Sejmu Rzeczypospolitej Polskiej z dnia 9 stycznia 2020 r. w sprawie ogłoszenia jednolitego tekstu ustawy o wyrobach budowlanych (DzU 2020 poz. 215).
3. Obwieszczenie Ministra Inwestycji i Rozwoju z dnia 8 kwietnia 2019 r. w sprawie ogłoszenia jednolitego tekstu rozporządzenia Ministra Infrastruktury w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie (DzU 2019 poz. 1065).
4. „Außenbeläge. Belagskonstruktionen mit Fliesen und Platten außerhalb von Gebäuden“, ZDB, 2019.
5. M. Rokiel, „Tarasy i balkony. Projektowanie i warunki techniczne wykonania i odbioru”, Dom Wydawniczy Medium, Warszawa 2011.
6. M. Rokiel, „Hydroizolacje w budownictwie. Projektowanie. Wykonawstwo”, wyd. III, Grupa MEDIUM, Warszawa 2019.
7. „Abdichtungen im Verbund (AIV). Hinweise für Abdichtungen im Verbund mit Bekleidungen und Belägen aus Fliesen und Platten für den Innenbereich“, ZDB, 2019.
8. BGR 181: Fußböden in Arbeitsräumen und Arbeitsbereichen mit Rutschgefahr. Hauptverband der gewerblichen Berufsgenossenschaften, X.2003.
9. Rozporządzenie Parlamentu Europejskiego i Rady (UE) Nr 305/2011 z dnia 9 marca 2011 r. ustanawiające zharmonizowane warunki wprowadzania do obrotu wyrobów budowlanych i uchylające dyrektywę Rady 89/106/EWG.
10. PN-EN ISO 6946, „Komponenty budowlane i elementy budynku – Opór cieplny i współczynnik przenikania ciepła – Metody obliczania”.
11. A. Dylla, „Fizyka cieplna budowli w praktyce. Obliczenia cieplno­‑wilgotnościowe”, PWN, Warszawa 2015.
12. P. Klemm (red.), „Budownictwo ogólne t. 2. Fizyka budowli”, Arkady, Warszawa 2005.
13. PN-EN 13788, „Cieplno-wilgotnościowe właściwości komponentów budowlanych i elementów budynku – Temperatura powierzchni wewnętrznej konieczna do uniknięcia krytycznej wilgotności powierzchni i kondensacji międzywarstwowej – Metody obliczania”.
14. PN-EN ISO 10211, „Mostki cieplne w budynkach. Strumienie ciepła i temperatury powierzchni. Obliczenia szczegółowe”.
15. J. Karyś (red.), „Ochrona przed wilgocią i korozją biologiczną w budownictwie”, Grupa MEDIUM, Warszawa 2014.
16. PN-EN ISO 10456, „Materiały i wyroby budowlane. Właściwości cieplno-wilgotnościowe. Tabelaryczne wartości obliczeniowe i procedury określania deklarowanych i obliczeniowych wartości cieplnych”.

Komentarze

Powiązane

Małgorzata Kłapkowska Izolacja tarasu

Izolacja tarasu Izolacja tarasu

Problemów związanych z przeciekaniem tarasów można uniknąć, jeśli w czasie budowy prace zostaną wykonane wyjątkowo starannie, a zastosowane materiały i technologia będą dopasowane do warunków użytkowania...

Problemów związanych z przeciekaniem tarasów można uniknąć, jeśli w czasie budowy prace zostaną wykonane wyjątkowo starannie, a zastosowane materiały i technologia będą dopasowane do warunków użytkowania i konstrukcji tarasu.

mgr inż. Maciej Rokiel Projektowanie tarasów nadziemnych nad pomieszczeniami ogrzewanymi

Projektowanie tarasów nadziemnych nad pomieszczeniami ogrzewanymi Projektowanie tarasów nadziemnych nad pomieszczeniami ogrzewanymi

Punktem wyjścia do prawidłowego zaprojektowania konstrukcji tarasu jest precyzyjne określenie funkcji, jaką ma on pełnić w przyszłości, analiza schematu konstrukcyjnego, określenie obciążeń i czynników...

Punktem wyjścia do prawidłowego zaprojektowania konstrukcji tarasu jest precyzyjne określenie funkcji, jaką ma on pełnić w przyszłości, analiza schematu konstrukcyjnego, określenie obciążeń i czynników destrukcyjnych, a na tej podstawie przyjęcie poprawnych technicznie rozwiązań materiałowo-konstrukcyjnych.

mgr inż. Maciej Rokiel Jak projektować tarasy nadziemne nad pomieszczeniami ogrzewanymi?

Jak projektować tarasy nadziemne nad pomieszczeniami ogrzewanymi?

Drenażowy sposób odprowadzenia wody zakłada możliwość wnikania wody opadowej w warstwy wierzchnie konstrukcji tarasu. Polega na odprowadzeniu wody opadowej zarówno po powierzchni użytkowej, jak i przez...

Drenażowy sposób odprowadzenia wody zakłada możliwość wnikania wody opadowej w warstwy wierzchnie konstrukcji tarasu. Polega na odprowadzeniu wody opadowej zarówno po powierzchni użytkowej, jak i przez specjalną warstwę drenującą.

mgr inż. Maciej Rokiel Jak wykonać szczelny taras i balkon?

Jak wykonać szczelny taras i balkon? Jak wykonać szczelny taras i balkon?

Tarasy i balkony to elementy bardzo chętnie wykorzystywane w architekturze. Dobrze umiejscowione dodają charakteru budynkowi. Niestety, ich hydroizolacje są często projektowane i wykonywane z błędami,...

Tarasy i balkony to elementy bardzo chętnie wykorzystywane w architekturze. Dobrze umiejscowione dodają charakteru budynkowi. Niestety, ich hydroizolacje są często projektowane i wykonywane z błędami, czego skutki...

dr inż. Magdalena Grudzińska Balkony o różnej konstrukcji

Balkony o różnej konstrukcji Balkony o różnej konstrukcji

Konstrukcja balkonów może być bardzo różna – najczęściej spotykane są balkony wspornikowe, nieco rzadziej balkony na niezależnej konstrukcji wsporczej, oddylatowane od budynku. Sposób powiązania balkonu...

Konstrukcja balkonów może być bardzo różna – najczęściej spotykane są balkony wspornikowe, nieco rzadziej balkony na niezależnej konstrukcji wsporczej, oddylatowane od budynku. Sposób powiązania balkonu z budynkiem ma zasadnicze znaczenie dla przepływu ciepła i możliwości kondensacji wilgoci na powierzchni przegród budowlanych.

mgr inż. Maciej Rokiel Taras nadziemny – między teorią a praktyką

Taras nadziemny – między teorią a praktyką Taras nadziemny – między teorią a praktyką

Taras nadziemny (nad pomieszczeniem) to element konstrukcyjny budynku zwiększający niewątpliwie jego wartość użytkową. Możliwości jego wykorzystania są ogromne. Aby jednak ten modny obecnie element nie...

Taras nadziemny (nad pomieszczeniem) to element konstrukcyjny budynku zwiększający niewątpliwie jego wartość użytkową. Możliwości jego wykorzystania są ogromne. Aby jednak ten modny obecnie element nie był przyczyną kłopotów w użytkowaniu budynku, projektant i wykonawca powinni rozwiązać kilka niełatwych problemów.

mgr inż. Maciej Rokiel Tarasy i balkony. Projektowanie i warunki techniczne wykonania i odbioru robót

Tarasy i balkony. Projektowanie i warunki techniczne wykonania i odbioru robót Tarasy i balkony. Projektowanie i warunki techniczne wykonania i odbioru robót

Praktyczny poradnik umożliwia sprawne poruszanie się po nowoczesnych rozwiązaniach dotyczących tarasów i balkonów. Zawiera liczne schematy i rysunki oraz tabele ułatwiające dotarcie do poszczególnych punktów...

Praktyczny poradnik umożliwia sprawne poruszanie się po nowoczesnych rozwiązaniach dotyczących tarasów i balkonów. Zawiera liczne schematy i rysunki oraz tabele ułatwiające dotarcie do poszczególnych punktów tematycznych.

prof. dr hab. eur. inż. Tomasz Z. Błaszczyński, dr inż. Aldona Łowińska-Kluge Trwałość balkonów i loggii - błędy projektowe i wykonawcze

Trwałość balkonów i loggii - błędy projektowe i wykonawcze Trwałość balkonów i loggii - błędy projektowe i wykonawcze

Często już po kilku latach od skończenia budowy lub wykonania prac remontowych w budynkach mieszkalnych, w strefie balkonów i loggii pojawiają się oznaki zniszczenia materiałów. Na podstawie badań przeprowadzonych...

Często już po kilku latach od skończenia budowy lub wykonania prac remontowych w budynkach mieszkalnych, w strefie balkonów i loggii pojawiają się oznaki zniszczenia materiałów. Na podstawie badań przeprowadzonych w obiektach, badań laboratoryjnych próbek pobranych z tych obiektów, a także ich badań strukturalnych (SEM i EDS) można określić rodzaje i przyczyny występujących zjawisk korozyjnych, co pozwala na opracowanie skutecznych i trwałych metod napraw. Gwarantuje to właściwą eksploatację konstrukcji...

dr inż. Artur Pałasz Wyroby hydroizolacyjne typu folia w płynie cz. 2

Wyroby hydroizolacyjne typu folia w płynie cz. 2 Wyroby hydroizolacyjne typu folia w płynie cz. 2

Jakość surowców, poprawność sporządzenia receptury czy przebiegu procesu produkcyjnego można sprawdzić dopiero po przeprowadzeniu odpowiednich badań laboratoryjnych. Odpowiednich, tzn. wykorzystujących...

Jakość surowców, poprawność sporządzenia receptury czy przebiegu procesu produkcyjnego można sprawdzić dopiero po przeprowadzeniu odpowiednich badań laboratoryjnych. Odpowiednich, tzn. wykorzystujących dobre metody badawcze i spełniających stosunkowo rygorystyczne wymagania.

mgr inż. Maciej Rokiel Konstrukcja tarasów – zagadnienia cieplno-wilgotnościowe

Konstrukcja tarasów – zagadnienia cieplno-wilgotnościowe Konstrukcja tarasów – zagadnienia cieplno-wilgotnościowe

Taras jest elementem bardziej skomplikowanym niż balkon. Stanowi rodzaj dachu nad pomieszczeniem, musi zatem cechować się odpowiednią ciepłochronnością. Jednak nie tylko.

Taras jest elementem bardziej skomplikowanym niż balkon. Stanowi rodzaj dachu nad pomieszczeniem, musi zatem cechować się odpowiednią ciepłochronnością. Jednak nie tylko.

mgr inż. Maciej Rokiel Konstrukcja balkonów - zagadnienia cieplno-wilgotnościowe

Konstrukcja balkonów - zagadnienia cieplno-wilgotnościowe Konstrukcja balkonów - zagadnienia cieplno-wilgotnościowe

Pomimo dostępnych na naszym rynku od kilkunastu lat poprawnych rozwiązań technologiczno-materiałowych nadal stosuje się błędne rozwiązania, skutkujące szybkim powstawaniem uszkodzeń. Mało tego – w niektórych...

Pomimo dostępnych na naszym rynku od kilkunastu lat poprawnych rozwiązań technologiczno-materiałowych nadal stosuje się błędne rozwiązania, skutkujące szybkim powstawaniem uszkodzeń. Mało tego – w niektórych czasopismach, a, co gorsza, także w literaturze technicznej są one nadal opisywane jako poprawne.

dr inż. Artur Pałasz Wyroby hydroizolacyjne typu folia w płynie - błędy recepturowe

Wyroby hydroizolacyjne typu folia w płynie - błędy recepturowe Wyroby hydroizolacyjne typu folia w płynie - błędy recepturowe

Aby wyprodukować folię w płynie o odpowiedniej jakości i jednocześnie optymalnej cenie, należy stosować wyłącznie takie surowce, które zostały ocenione jako przydatne do stosowania w recepturze, w określonej,...

Aby wyprodukować folię w płynie o odpowiedniej jakości i jednocześnie optymalnej cenie, należy stosować wyłącznie takie surowce, które zostały ocenione jako przydatne do stosowania w recepturze, w określonej, wynikającej z badań, ilości. Tymczasem większość producentów zamiast na badaniach opiera się przy ustalaniu receptur na rekomendacjach producentów surowców.

mgr inż. Maciej Rokiel Balkony i tarasy - uszczelnienie drenażowe a podpłytkowe

Balkony i tarasy - uszczelnienie drenażowe a podpłytkowe Balkony i tarasy - uszczelnienie drenażowe a podpłytkowe

Balkon i taras to takie części budynku, w których kumulują się liczne oddziaływania. Z tego powodu bardzo ważne jest ich prawidłowe zaprojektowanie i wykonanie. W przeciwnym razie stosunkowo szybko (nawet...

Balkon i taras to takie części budynku, w których kumulują się liczne oddziaływania. Z tego powodu bardzo ważne jest ich prawidłowe zaprojektowanie i wykonanie. W przeciwnym razie stosunkowo szybko (nawet w ciągu kilku miesięcy – jeżeli prace wykonywano jesienią) może dojść do znacznych uszkodzeń.

mgr inż. Maciej Rokiel Balkony i tarasy – uszczelnienie drenażowe i podpłytkowe

Balkony i tarasy – uszczelnienie drenażowe i podpłytkowe Balkony i tarasy – uszczelnienie drenażowe i podpłytkowe

Zarówno wariant drenażowy, jak i z uszczelnieniem podpłytkowym wymagają przemyślenia sposobu wykonania. Dotyczy to zwłaszcza rodzaju, sposobu i miejsca montażu obróbki.

Zarówno wariant drenażowy, jak i z uszczelnieniem podpłytkowym wymagają przemyślenia sposobu wykonania. Dotyczy to zwłaszcza rodzaju, sposobu i miejsca montażu obróbki.

mgr inż. Maciej Rokiel Konstrukcja balkonów i tarasów – typowe błędy

Konstrukcja balkonów i tarasów – typowe błędy Konstrukcja balkonów i tarasów – typowe błędy

Zagadnień termoizolacyjnych nie można traktować w oderwaniu od układu hydroizolacji. Świadczą o tym najczęstsze problemy, z którymi borykają się użytkownicy tarasów lub balkonów.

Zagadnień termoizolacyjnych nie można traktować w oderwaniu od układu hydroizolacji. Świadczą o tym najczęstsze problemy, z którymi borykają się użytkownicy tarasów lub balkonów.

mgr inż. Maciej Rokiel Tarasy nadziemne nad pomieszczeniami ogrzewanymi

Tarasy nadziemne nad pomieszczeniami ogrzewanymi Tarasy nadziemne nad pomieszczeniami ogrzewanymi

Taras nadziemny jest elementem konstrukcji umieszczonym nad pomieszczeniem pełniącym jednocześnie funkcję dachu. Składa się z płyty nośnej, termoizolacji i hydroizolacji. Jego powierzchnia dostępna jest...

Taras nadziemny jest elementem konstrukcji umieszczonym nad pomieszczeniem pełniącym jednocześnie funkcję dachu. Składa się z płyty nośnej, termoizolacji i hydroizolacji. Jego powierzchnia dostępna jest z przyległych pomieszczeń.

mgr inż. Monika Dybowska-Józefiak, dr inż. Krzysztof Pawłowski prof. PBŚ Balkony - analiza numeryczna parametrów cieplno­-wilgotnościowych w świetle nowych wymagań cieplnych

Balkony - analiza numeryczna parametrów cieplno­-wilgotnościowych w świetle nowych wymagań cieplnych Balkony - analiza numeryczna parametrów cieplno­-wilgotnościowych w świetle nowych wymagań cieplnych

W ciągu ostatnich lat w znaczący sposób zostały zaostrzone w Polsce wymagania cieplne dotyczące budynków. W związku z tym niezwykle ważne staje się w procesie projektowym poprawne wykonywanie szczegółowych...

W ciągu ostatnich lat w znaczący sposób zostały zaostrzone w Polsce wymagania cieplne dotyczące budynków. W związku z tym niezwykle ważne staje się w procesie projektowym poprawne wykonywanie szczegółowych obliczeń i analiz, które powinny być podstawą wyboru rozwiązań konstrukcyjnych oraz izolacyjnych. Dotyczy to szczególnie złączy, w tym połączenia ściany zewnętrznej z płytą balkonową.

dr inż. Magdalena Grudzińska Balkony oszklone jako systemy szklarniowe

Balkony oszklone jako systemy szklarniowe Balkony oszklone jako systemy szklarniowe

W pasywnych systemach pozyskiwania energii słonecznej procesy odbierania i przekazywania energii powinny odbywać się dzięki samej konstrukcji budynku, bez pomocy dodatkowych urządzeń mechanicznych czy...

W pasywnych systemach pozyskiwania energii słonecznej procesy odbierania i przekazywania energii powinny odbywać się dzięki samej konstrukcji budynku, bez pomocy dodatkowych urządzeń mechanicznych czy elektrycznych.

dr inż. Magdalena Grudzińska Balkony jako systemy szklarniowe

Balkony jako systemy szklarniowe Balkony jako systemy szklarniowe

Systemy szklarniowe należą do grupy systemów pasywnych, pozwalających na zmniejszenie zapotrzebowania na ciepło dzięki wykorzystaniu energii promieniowania słonecznego. W tych systemach zamiana energii...

Systemy szklarniowe należą do grupy systemów pasywnych, pozwalających na zmniejszenie zapotrzebowania na ciepło dzięki wykorzystaniu energii promieniowania słonecznego. W tych systemach zamiana energii słonecznej na cieplną oraz rozprowadzanie ciepła odbywają się dzięki naturalnym zjawiskom przepływu energii w elementach budynku.

dr inż. Magdalena Grudzińska Balkony oszklone jako szklarnie

Balkony oszklone jako szklarnie Balkony oszklone jako szklarnie

Balkony oszklone zyskują coraz większą popularność w budynkach istniejących i nowo projektowanych, dzięki atrakcyjności architektonicznej i użytkowej, połączonej z ochroną cieplną i akustyczną przyległych...

Balkony oszklone zyskują coraz większą popularność w budynkach istniejących i nowo projektowanych, dzięki atrakcyjności architektonicznej i użytkowej, połączonej z ochroną cieplną i akustyczną przyległych pomieszczeń. Stosunkowo niski koszt obudowy balkonu sprawia, że jest to rozwiązanie powszechnie dostępne i proste w realizacji.

mgr inż. Maciej Rokiel Trudne detale tarasów i balkonów

Trudne detale tarasów i balkonów Trudne detale tarasów i balkonów

Balkon i taras to elementy konstrukcyjne budynku zwiększające jego wartość użytkową. Możliwości ich wykorzystania są ogromne: od miejsca przeznaczonego na wypoczynek do przedłużenia salonu. Aby jednak...

Balkon i taras to elementy konstrukcyjne budynku zwiększające jego wartość użytkową. Możliwości ich wykorzystania są ogromne: od miejsca przeznaczonego na wypoczynek do przedłużenia salonu. Aby jednak ten element nie sprawiał użytkownikowi problemów, konieczne jest pokonanie kilku trudności projektowych i wykonawczych.

mgr inż. Maciej Rokiel Trudne detale balkonów i tarasów

Trudne detale balkonów i tarasów Trudne detale balkonów i tarasów

Zaprojektowanie detali balkonu czy tarasu może przysparzać pewnych trudności. Kolejnym z newralgicznych miejsc, wymagających szczególnej uwagi i decydujących o poprawności wykonania całej konstrukcji,...

Zaprojektowanie detali balkonu czy tarasu może przysparzać pewnych trudności. Kolejnym z newralgicznych miejsc, wymagających szczególnej uwagi i decydujących o poprawności wykonania całej konstrukcji, są dylatacje brzegowe.

mgr inż. Marek Gawron, mgr inż. Maciej Rokiel Tarasy i balkony - trudne detale

Tarasy i balkony - trudne detale Tarasy i balkony - trudne detale

Kolejnymi newralgicznymi miejscami tarasów i balkonów są okap i balustrada. Także i tu wymagana jest bardzo duża dokładność podczas projektowania oraz wykonywania detali.

Kolejnymi newralgicznymi miejscami tarasów i balkonów są okap i balustrada. Także i tu wymagana jest bardzo duża dokładność podczas projektowania oraz wykonywania detali.

dr inż. Magdalena Grudzińska Balkony jako szklarnie

Balkony jako szklarnie Balkony jako szklarnie

Wybór rodzaju i powierzchni oszklenia jest kluczowym problemem w projektowaniu układów pasywnie pozyskujących energię słoneczną. Jakie rozwiązania są najkorzystniejsze?

Wybór rodzaju i powierzchni oszklenia jest kluczowym problemem w projektowaniu układów pasywnie pozyskujących energię słoneczną. Jakie rozwiązania są najkorzystniejsze?

Wybrane dla Ciebie

Pokrycia ceramiczne na każdy dach »

Pokrycia ceramiczne na każdy dach » Pokrycia ceramiczne na każdy dach »

Ochroń się przed hałasem! »

Ochroń się przed hałasem! » Ochroń się przed hałasem! »

Styropian na wiele sposobów »

Styropian na wiele sposobów » Styropian na wiele sposobów »

Wełna kamienna – izolacja bezpieczna od ognia »

Wełna kamienna – izolacja bezpieczna od ognia » Wełna kamienna – izolacja bezpieczna od ognia »

Profile do montażu metodą „lekką-mokrą »

Profile do montażu metodą „lekką-mokrą » Profile do montażu metodą „lekką-mokrą »

Panele grzewcze do ścian i sufitów »

Panele grzewcze do ścian i sufitów » Panele grzewcze do ścian i sufitów »

Skuteczna walka z wilgocią w ścianach »

Skuteczna walka z wilgocią w ścianach » Skuteczna walka z wilgocią w ścianach »

Systemowe docieplanie fasad »

Systemowe docieplanie fasad » Systemowe docieplanie fasad »

Podpowiadamy, jak wybrać system ociepleń

Podpowiadamy, jak wybrać system ociepleń Podpowiadamy, jak wybrać system ociepleń

Uszczelnianie fundamentów »

Uszczelnianie fundamentów » Uszczelnianie fundamentów »

Prawidłowe wykonanie elewacji w systemie ETICS to jakość, żywotność i estetyka »

Prawidłowe wykonanie elewacji w systemie ETICS to jakość, żywotność i estetyka » Prawidłowe wykonanie elewacji w systemie ETICS to jakość, żywotność i estetyka »

Copyright © 2004-2019 Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Spółka komandytowa, nr KRS: 0000537655. Wszelkie prawa, w tym Autora, Wydawcy i Producenta bazy danych zastrzeżone. Jakiekolwiek dalsze rozpowszechnianie artykułów zabronione. Korzystanie z serwisu i zamieszczonych w nim utworów i danych wyłącznie na zasadach określonych w Zasadach korzystania z serwisu.
Portal Budowlany - Izolacje.com.pl

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim urządzeniu końcowym. W każdym momencie możesz dokonać zmiany ustawień przeglądarki dotyczących cookies. Nim Państwo zaczną korzystać z naszego serwisu prosimy o zapoznanie się z naszą polityką prywatności oraz Informacją o Cookies. Więcej szczegółów w naszej Polityce Prywatności oraz Informacji o Cookies. Administratorem Państwa danych osobowych jest Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Sp.K., nr KRS: 0000537655, z siedzibą w 04-112 Warszawa, ul. Karczewska 18, tel. +48 22 810-21-24, właściciel strony www.izolacje.com.pl. Twoje Dane Osobowe będą chronione zgodnie z wytycznymi polityki prywatności www.izolacje.com.pl oraz zgodnie z Rozporządzeniem Parlamentu Europejskiego i Rady (UE) 2016/679 z dnia 27 kwietnia 2016r i z Ustawą o ochronie danych osobowych Dz.U. 2018 poz. 1000 z dnia 10 maja 2018r.