Izolacje.com.pl

Okna 3-szybowe to komfort ciszy

Okna 3-szybowe to komfort ciszy Okna 3-szybowe to komfort ciszy

Kärcher Twoje płuca to nie filtr. Jak zapewnić wolne od pyłów środowisko pracy na budowie?

Twoje płuca to nie filtr. Jak zapewnić wolne od pyłów środowisko pracy na budowie? Twoje płuca to nie filtr. Jak zapewnić wolne od pyłów środowisko pracy na budowie?

Cząsteczki pyłów to poważne zagrożenie dla zdrowia ludzi. Plac budowy jest z pewnością miejscem, gdzie to zagrożenie jest szczególnie groźne. Kucie, szlifowanie, wiercenie, to zadania, które powodują powstawanie...

Cząsteczki pyłów to poważne zagrożenie dla zdrowia ludzi. Plac budowy jest z pewnością miejscem, gdzie to zagrożenie jest szczególnie groźne. Kucie, szlifowanie, wiercenie, to zadania, które powodują powstawanie dużych ilości pyłów. W jaki sposób zadbać o bezpieczeństwo i zdrowie zatrudnionych osób? Jak ochronić je przed licznymi chorobami spowodowanymi pracą w środowisku o dużym zapyleniu, na przykład takimi jak przewlekła obturacyjna choroba płuc? Na pomoc przybywa niemiecka technologia Kärcher....

Sprawdź systemy ociepleń

Sprawdź systemy ociepleń Sprawdź systemy ociepleń

Tarasy wentylowane – termoizolacja, hydroizolacja, okap

Ventilated terraces – thermal insulation, waterproofing, eaves

Konstrukcje i elementy konstrukcyjne powinny być projektowane, budowane i utrzymane w taki sposób, aby nadawały się do użytku w sposób ekonomiczny w okresie przewidzianym w projekcie.
Rys. Renoplast

Konstrukcje i elementy konstrukcyjne powinny być projektowane, budowane i utrzymane w taki sposób, aby nadawały się do użytku w sposób ekonomiczny w okresie przewidzianym w projekcie.


Rys. Renoplast

Taras nad pomieszczeniem to, niezależnie od sposobu wykonania, rodzaj dachu. Warstwą użytkową mogą być płytki ceramiczne, płyty kamienne i betonowe, deska tarasowa czy nawet żywica.

Zobacz także

Ecolak Membrana PWP 100 – szybki sposób na skuteczną hydroizolację dachu

Membrana PWP 100 – szybki sposób na skuteczną hydroizolację dachu Membrana PWP 100 – szybki sposób na skuteczną hydroizolację dachu

ECOLAK to producent wysokiej jakości membrany hydroizolacyjnej PWP 100.

ECOLAK to producent wysokiej jakości membrany hydroizolacyjnej PWP 100.

VISBUD-Projekt Sp. z o.o. Izolacja tarasów i balkonów - zrób to profesjonalnie

Izolacja tarasów i balkonów - zrób to profesjonalnie Izolacja tarasów i balkonów - zrób to profesjonalnie

Balkony, tarasy i loggie ze względu na działanie czynników klimatycznych narażone są na największe obciążenia. Ciągła zmienność temperatur, suchość i wilgotność powodują uszkodzenia w postaci na przykład...

Balkony, tarasy i loggie ze względu na działanie czynników klimatycznych narażone są na największe obciążenia. Ciągła zmienność temperatur, suchość i wilgotność powodują uszkodzenia w postaci na przykład rys, nieszczelności. Jednocześnie te elementy budynku stają się naturalnym przedłużeniem powierzchni mieszkalnej, dlatego należy je skutecznie i estetycznie zabezpieczać.

Austrotherm Termoizolacja budynku na poziomie PREMIUM

Termoizolacja budynku na poziomie PREMIUM Termoizolacja budynku na poziomie PREMIUM

Z roku na rok obserwujemy rosnące zainteresowanie tematyką szeroko pojętej ekologii i troski o środowisko naturalne. Coraz częściej podejmujemy decyzje, które mają być ekonomicznie uzasadnione.

Z roku na rok obserwujemy rosnące zainteresowanie tematyką szeroko pojętej ekologii i troski o środowisko naturalne. Coraz częściej podejmujemy decyzje, które mają być ekonomicznie uzasadnione.

O czym przeczytasz w artykule?

Abstrakt

  • Tarasy nad pomieszczeniami ogrzewanymi
  • Zagadnienia cieplno-wilgotnościowe w konstrukcjach tarasów
  • Materiały do wykonywania hydroizolacji i termoizolacji
  • Dobór materiału na izolację do konkretnych rozwiązań
  • Okapy jako ważne detale w konstrukcjach tarasów i balkonów

Przedmiotem artykułu są zagadnienia konstrukcyjne (termoizolacja i hydroizolacja) związane z tarasami wentylowanymi. Autor rozpatruje je w odniesieniu do tarasów umiejscowionych nad pomieszczeniami ogrzewanymi oraz do tarasów nadziemnych i balkonów. Przedstawia związane z tym tematem zagadnienia cieplno-wilgotnościowe, materiały do wykonywania hydroizolacji i termoizolacji oraz problemy związane z wykańczaniem okapów.

Ventilated terraces – thermal insulation, waterproofing, eaves

This paper concerns structural issues (thermal insulation and waterproofing) regarding ventilated terraces. The author provides an analysis with reference to terraces located over heated rooms as well as overground terraces and balconies. It presents relevant thermal insulation and waterproofing issues, materials suitable for waterproofing and thermal insulation and problems related with installation of eaves fittings.

Niezależnie od rodzaju warstwy użytkowej można wyróżnić dwie koncepcje odprowadzenia wody – powierzchniową i drenażową. Ta pierwsza wymaga wykonania warstwy użytkowej z płytek ceramicznych lub kamiennych klejonych do podłoża ewentualnie z żywicy. Druga – drenażowa – daje znacznie większe możliwości aranżacji warstwy użytkowej, począwszy od płytek klejonych na jastrychu wodoprzepuszczalnym (co jest spotykane relatywnie rzadko), poprzez płyty na warstwie kruszywa, a skończywszy na płytach ułożonych na podstawkach dystansowych. Ten ostatni wariant coraz częściej nazywany jest tarasem wentylowanym. To potoczne (czy wręcz marketingowe) określenie wskazuje na pustą przestrzeń pomiędzy płytami czy deskami tarasowymi a konstrukcją połaci.

Taki wariant wykończenia może być także stosowany na tarasach naziemnych oraz na balkonach. W obu przypadkach zasada wykonywania warstwy użytkowej jest taka sama, jednak specyfika konstrukcji wymaga nieco innego podejścia projektowo-wykonawczego.

Tarasy nad pomieszczeniami ogrzewanymi

Można wyróżnić następujące obciążenia działające na połać:

  • mechaniczne – obciążenia użytkowe, ciężar własny, drgania oraz obciążenia związane z różną rozszerzalnością termiczną elementów konstrukcji,
  • termiczne – obciążenia temperaturą, nagłe zmiany (szokowe) oraz długotrwałe oddziaływania cykli zamarzania–rozmarzania i związane z tym przejścia temperatury przez zero itp.,
  • chemiczne – agresywne czynniki zawarte w wodzie opadowej i powietrzu,
  • biologiczne – mikroorganizmy, mchy itp.,
  • związane z obecnością wody – celowe wydaje się wydzielenie wody jako osobnego czynnika niszczącego; choć prawie zawsze występuje w połączeniu z innymi czynnikami, jest swego rodzaju katalizatorem procesów destrukcyjnych.

Układ drenażowy może być wykonany w wariantach:

  • klasycznym (termoizolacja jest chroniona przez hydroizolację)
  • oraz odwróconym (hydroizolacja jest chroniona przez termoizolację).

Typowe układy warstw tarasu nad pomieszczeniem pokazano na RYS. 1RYS. 2 i RYS. 3.

RYS. 1. Układ warstw tarasu nad pomieszczeniem – wariant 1.

RYS. 1. Układ warstw tarasu nad pomieszczeniem – wariant 1. Objaśnienia: 1 – podstawka dystansowa, 2 – płyta warstwy użytkowej, 3 – przekładka ochronna, 4 – hydroizolacja, 5 – jastrych dociskowy, 6 – hydroizolacja międzywarstwowa, 7 – termoizolacja, 8 – paroizolacja, 9 – warstwa spadkowa, 10 – warstwa sczepna, 11 – płyta konstrukcyjna; rys.: M. Rokiel

RYS. 2. Układ warstw tarasu nad pomieszczeniem – wariant 2.

RYS. 2. Układ warstw tarasu nad pomieszczeniem – wariant 2. Objaśnienia: 1 – podstawka dystansowa, 2 – płyta warstwy użytkowej, 3 – przekładka ochronna, 4 – hydroizolacja, 5 – termoizolacja, 6 – paroizolacja i izolacja międzywarstwowa, 7 – warstwa spadkowa, 8 – warstwa sczepna, 9 – płyta konstrukcyjna; rys.: M. Rokiel

RYS. 3. Układ warstw tarasu nad pomieszczeniem – wariant 3 (układ odwrócony).

RYS. 3. Układ warstw tarasu nad pomieszczeniem – wariant 3 (układ odwrócony). Objaśnienia: 1 – podstawka dystansowa, 2 – płyta warstwy użytkowej, 3 – termoizolacja (płyty o frezowanych krawędziach), 4 – hydroizolacja i paroizolacja, 5 – warstwa spadkowa, 6 – warstwa sczepna, 7 – płyta konstrukcyjna; rys.: M. Rokiel

RYS. 4. Często spotykany błędny układ warstw tarasu nad pomieszczeniem – opis w tekście (patrz także FOT. 1 i FOT. 2).

RYS. 4. Często spotykany błędny układ warstw tarasu nad pomieszczeniem – opis w tekście (patrz także FOT. 1 i FOT. 2). Objaśnienia: 1 – podstawka dystansowa, 2 – płyta warstwy użytkowej, 3 – przekładka ochronna, 4 – hydroizolacja, 5 – jastrych dociskowy, 6 – warstwa rozdzielająca, 7 – termoizolacja, 8 – paroizolacja i izolacja międzywarstwowa, 9 – warstwa spadkowa, 10 – warstwa sczepna, 11 – płyta konstrukcyjna; rys.: M. Rokiel

O ile dla układu z płytkami ceramicznymi za główne obciążenie należało uznać termikę, to szczegółowa analiza warstw i zjawisk w połaci układu drenażowego wykazuje, że konieczne jest zwrócenie uwagi na rodzaj i charakter obciążeń mechanicznych. Już sama warstwa płytek stanowiła bardzo dobre zabezpieczenie izolacji podpłytkowej, a do tego podłożem pod nią był jastrych dociskowy.

Układ drenażowy z warstwą użytkową na podstawkach dystansowych generuje zupełnie inne obciążenia. Oczywiście mamy do czynienia z wodą i termiką, jednak znaczną rolę zaczyna odgrywać obciążenie mechaniczne.

Zagadnienia cieplno-wilgotnościowe

Przeanalizujmy na początek układ tradycyjny pokazany na RYS. 1. Warstwa użytkowa (płyty lub ruszt z desek) na podstawkach dystansowych jest ułożona na warstwie jastrychu cementowego. Pojawia się pytanie, gdzie należy umieścić hydroizolację i z jakiego materiału należy ją wykonać.

Często spotykany błąd pokazano na RYS. 4. Przedstawiony tam układ jest niedopuszczalny z punktu widzenia odporności na uszkodzenia. Innymi słowy – będzie on skutecznie funkcjonował dopóki nie dojdzie do żadnego uszkodzenia powłoki wodochronnej pod podstawkami dystansowymi.

Przeanalizujmy powyższy układ. Paroizolacja i izolacja międzywarstwowa umieszczona jest pod termoizolacją. Druga izolacja umiejscowiona jest bezpośrednio pod podstawkami dystansowymi. Zatem w razie jej uszkodzenia wnikającą w połać wodę zatrzyma izolacja na płycie konstrukcyjnej. Pojawia się pytanie, co będzie się dziać w połaci. Woda wnikająca w połać spowoduje zawilgocenie najpierw podkładu, a następnie termoizolacji (warstwa rozdzielająca nie zatrzyma wody, bo nie jest hydroizolacją). Rezultatem może być utworzenie się w połaci „basenu” (FOT. 1 i FOT. 2), przy czym styropian będzie leżał w wodzie.

Likwidacja tej usterki w tym przypadku nie będzie polegać na naprawieniu uszkodzonej powłoki wodochronnej, lecz na usunięciu wszystkich warstw połaci (mokry styropian nie wyschnie, a połać nie będzie spełniać wymagań związanych z ciepłochronnością, pojawi się przemarzanie i kondensacja).

Konstrukcje i elementy konstrukcyjne powinny być projektowane, budowane i utrzymane w taki sposób, aby nadawały się do użytku w sposób ekonomiczny w okresie przewidzianym w projekcie. Konstrukcja, z odpowiednim stopniem niezawodności, nie powinna między innymi wykazywać uszkodzeń w stopniu nieproporcjonalnym do pierwotnej przyczyny w wyniku takich wydarzeń jak powódź, obsunięcie terenu, pożar, wybuch lub w rezultacie błędów ludzkich (wymaganie odporności konstrukcji).

Odpowiedni stopień niezawodności należy określić, biorąc pod uwagę możliwe konsekwencje utraty niezawodności, jak również koszt, zakres wysiłków i czynności niezbędnych do ograniczenia ryzyka zniszczenia. Natomiast zabiegi, które powinny być podjęte, aby osiągnąć wymagany stopień niezawodności, obejmują przede wszystkim wymagania dotyczące skuteczności i trwałości zabezpieczenia wodochronnego i termicznego. Z tego powodu wykonanie w takim elemencie wodochronnego zabezpieczenia nad termoizolacją nie podlega dyskusji. Proszę zwrócić uwagę, że powierzchnia tego typu tarasu może dochodzić do kilkuset metrów kwadratowych. Nie zawsze są to małe tarasy w budynkach jednorodzinnych czy segmentowych – w ten sposób często zagospodarowuje się duże powierzchnie dachów w budynkach użyteczności publicznej czy apartamentowcach.

FOT. 1–2. Widok odkrywki fragmentu tarasu wykonanego według schematu pokazanego na RYS. 4 po usunięciu jastrychu dociskowego; fot.: M. Rokiel

Materiały do wykonywania hydroizolacji i termoizolacji

Odpowiedź na pytanie, z jakich materiałów należy wykonać hydroizolację i termoizolację, wymaga analizy oddziaływujących obciążeń. Teoretycznie najmniej problemów powinno być z paroizolacją (układ paroizolacja–termoizolacja należy traktować jako jedno). Rodzaj materiału (a ściśle mówiąc wymagany opór dyfuzyjny: μ lub Sd) musi wynikać z obliczeń cieplno-wilgotnościowych (dla rzeczywistych, a nie tylko normowych warunków zewnętrznych i wewnętrznych). Zwykle stosuje się paroizolacyjne papy albo folie z tworzyw sztucznych, rzadziej masy polimerowo-bitumiczne (KMB).

Na izolację główną na termoizolacji (pod jastrychem dociskowym) można stosować materiały rolowe: papy polimerowo-bitumiczne, samoprzylepne membrany bitumiczne albo folie (membrany) z tworzywa sztucznego lub kauczuku. Arkusze folii (gr. 1–1,5 mm) muszą być łączone ze sobą poprzez zgrzewanie, sklejanie czy wulkanizację. Dobór rodzaju materiału zależy od koncepcji konstrukcji, wyników obliczeń cieplno-wilgotnościowych oraz analizy detali i szczegółów, w tym okapu oraz progu drzwiowego (konstrukcja, elewacja, próg drzwiowy, inne detale – hydroizolacja główna).

Dobór materiału na izolację tarasów nadziemnych i balkonów

Obciążenie użytkowe tarasów nadziemnych czy balkonów może dochodzić do 5 kN/m2 połaci. Jest to oczywiście obciążenie równomiernie rozłożone, natomiast rzeczywiste punktowe obciążenie przekazywane na warstwy połaci przez podstawki dystansowe jest zupełnie inne. Na rynku znaleźć można różne rodzaje podstawek dystansowych, od prostych do zaawansowanych, umożliwiających nie tylko płynną regulację poziomu, lecz także poziomowanie warstwy użytkowej czy wręcz wykonanie posadzki podniesionej nawet o kilkanaście centymetrów w porównaniu do poziomu hydroizolacji (FOT. 2).

W przypadku tarasów naziemnych oraz balkonów na łączniku izotermicznym hydroizolacja pod warstwą użytkową jest jedyną powłoką wodochronną.

Dla wariantu pokazanego na RYS. 1 izolacja ułożona jest na podkładzie cementowym. Jest to stabilne i nośne podłoże. Jednak możliwe jest pominięcie jastrychu dociskowego, wówczas izolacja jest ułożona na termoizolacji (RYS. 2).

Podobnie jest dla układu odwróconego (RYS. 3), z tą różnicą, że podstawki dystansowe są ustawione bezpośrednio na termoizolacji.
Do tego dochodzi obciążenie siłą poziomą, które w pewnych sytuacjach może być dość istotne. Co zatem się dzieje, gdy podstawki ustawione są na termoizolacji?

Przeanalizujmy na początek wariant z obciążeniem użytkowym 4 kN/m2 (ok. 400 kg/m2). Typowy wymiar płyty waha się od 40×40 cm do 60×60 cm przy grubości od 2 do 4,5 cm, choć spotkać można także płyty o wymiarach 30×60 cm czy 30×120 cm.

Przykładowy układ podstawek dystansowych pokazano na RYS. 5. Układ podstawek musi być dobrany do wymiarów i kształtu płyt oraz przewidywanego obciążenia połaci. Ale to nie wszystko.

RYS. 5. Przykładowe rozmieszczenie podstawek dystansowych; rys.: Renoplast

RYS. 5. Przykładowe rozmieszczenie podstawek dystansowych; rys.: Renoplast

Rzeczywiste punktowe obciążenie przekazywane na warstwy połaci przez podstawki dystansowe jest zupełnie inne. Przeanalizujmy układ dla płyt 30×30 cm pokazany na RYS. 5 (załóżmy grubość płyt 3 cm) na poczwórnych podstawkach dystansowych o powierzchni podstawy 44,5 cm2 dla każdej z czterech części.

Jeśli przyjmiemy ciężar takiej płyty kamiennej 0,08 kN (masa 8 kg) i uwzględnimy obciążenie użytkowe 4 kN/m2, to podstawka oddziałuje na powierzchnię siłą 0,11 kN (odpowiada to obciążeniu masą 11 kg). Wydaje się to niewiele. Pamiętajmy jednak, że powierzchnia podstawki wynosi 44,5 cm2, a taki nacisk generuje w podłożu naprężenia rzędu 0,025 MPa (25 kPa).

To dla obciążenia normowego. Jednak na takiej płycie może stanąć pojedynczy człowiek. Przy założeniu, że waży on 80 kg, pojedyncza podstawka wygeneruje naprężenia wynoszące ok. 0,048 MPa (48 kPa) (zakładając równomierny rozkład obciążeń na każdą z 4 podstawek). Miarodajne dla określenia ryzyka przemieszczeń jest w tym przypadku obciążenie osobą stojącą na płycie.

Dla płyty o wymiarach 60×60 cm, przy podparciu tylko w narożnikach, sytuacja wygląda już inaczej. Powierzchnia takiej płyty jest cztery razy większa niż powierzchnia płyty analizowanej powyżej, dlatego przy obciążeniu użytkowym 4 kN/m2 podstawka wygeneruje naprężenia rzędu 0,1 MPa (100 kPa), czyli cztery razy większe. Obciążenie takiej płyty osobą o masie 90 kg nie spowoduje drastycznego wzrostu obciążenia punktowego w porównaniu do płyty 30×30 cm (zwiększy się jedynie ze względu na wzrost ciężaru płyty). Miarodajne jest tu zatem obciążenie normowe. Z podanych powyżej powodów pokazana na RYS. 5 płyta o wymiarach 60×60 cm jest podparta także w środku. Jakie to może mieć konsekwencje?

Jednym z głównych zarzutów podnoszonych przez przeciwników układów wentylowanych na podstawkach jest fakt, że są one podatne na „nierównomierne osiadanie” albo „uginanie powierzchni”. Takie sytuacje oczywiście się zdarzają, lecz ich przyczyna jest zwykle zupełnie inna. Jeżeli na termoizolacji znajduje się jastrych dociskowy, to o „uginaniu się” nie ma mowy, jeżeli jednak tej warstwy nie ma (RYS. 2 i RYS. 3), to podłożem jest termoizolacja.

Dla płyt termoizolacyjnych (EPS, XPS, pianki PIR/PUR) nie zmierzy się typowej wytrzymałości na ściskanie, jest to bowiem materiał podatny, który po przyłożeniu obciążenia odkształci się (ściśnie). Odkształcenie to jest przy tym proporcjonalne nie tylko do obciążenia, lecz także do pierwotnej grubości.

Po pierwsze, szczególnie niebezpieczne jest stosowanie złej jakości styropianu, nieodpornego na długotrwały nacisk i o niewielkiej wytrzymałości mechanicznej. Z najistotniejszych parametrów mechanicznych zastosowanego materiału termoizolacyjnego należy wymienić ściśliwość, tj. odkształcalność przy długotrwałym obciążeniu. Przykładowo klasa CS(10) 100 oznacza wartość naprężenia ściskającego 100 kPa przy odkształceniu 10%, co oznacza, że przy obciążeniu 100 kPa następuje zmniejszenie grubości płyty o maks. 10%. Jeśli założyć, że odkształcenia mają charakter sprężysty (w obszarze obowiązywania prawa Hooke’a), to można przyjąć, że odkształcenie jest proporcjonalne do obciążenia.

Jeżeli zatem układ generujący naprężenia 100 kPa byłby umieszczony na 20-centymetrowej płycie z materiału termoizolacyjnego o klasie CS(10)100, to takie podłoże ścisnęłoby się maksymalnie o 2 cm. Oczywiście jest to analiza uproszczona, w rzeczywistości odkształcenie będzie mniejsze, jednak pokazuje ona, na ile istotny jest dobór odpowiedniego podłoża. Problem rozwiązuje albo zwiększenie ilości punktów podparcia, albo wykonanie na termoizolacji jastrychu dociskowego rozkładającego obciążenia na większą powierzchnię.

Przeanalizujmy jeszcze sytuację z zastosowaniem podstawek o dużej powierzchni podparcia (FOT. 3FOT. 4 i FOT. 5). Przykładowo dla pokazanej na FOT. 4  podstawce dystansowej o średnicy 200 mm powierzchnia stopy wynosi 314 cm2. Takie podstawki pozwalają na podniesienie poziomu posadzki nawet do 20 cm powyżej poziomu hydroizolacji, zapewniając jednocześnie stabilność w przypadku typowych obciążeń poziomych.

Tego typu podstawki nie powinny być rozstawione rzadziej niż co 60 cm (osiowo). Przy takim właśnie rozstawie oraz normowym obciążeniu 4 kN/m2 i ciężarze samej płyty naprężenia generowane przez podstawkę dystansową wynoszą 0,056 MPa (56 kPa). Są to naprężenia większe niż obciążenie od jednej osoby stojącej na podstawce.

FOT. 3-4. Przykłady podstawek dystansowych; fot.: Ravdeck
FOT. 5. Widok pustki powietrznej pod warstwą użytkową tarasu wykonaną z desek umocowanych na podstawkach dystansowych; fot.: Renoplast

FOT. 5. Widok pustki powietrznej pod warstwą użytkową tarasu wykonaną z desek umocowanych na podstawkach dystansowych; fot.: Renoplast

Zastosowanie płyt o większych wymiarach (np. 120×60 cm) zawsze wymaga nie tylko dodatkowych podstawek dystansowych, ale i analizy, w jaki sposób może być obciążona sama płyta (możliwość obciążenia np. przez dwie osoby, i to w sposób nierównomierny). Powyższa analiza, jakkolwiek uproszczona, pokazuje, jak bardzo istotny jest dobór warstw połaci.

Za krytyczne warstwy należy uznać:

  • termoizolację, ze względu na ściśliwość,
  • hydroizolację pod podstawkami, ze względu na obciążenie punktowe i niebezpieczeństwo uszkodzenia/przebicia.

Jeżeli termoizolacja znajduje się pod jastrychem dociskowym (RYS. 1), należy stosować termoizolację klasy minimum CS(10)200 (np. styropian EPS 200, choć zdecydowanie zalecany jest np. XPS). W przypadku układów pokazanych na RYS. 2 i RYS. 3, gdy podstawki ułożone są na termoizolacji, należy stosować wyłącznie XPS (lub inny materiał) o ściśliwości nie niższej niż CS(10)300), o ile z analizy nie wynika inaczej. Układ odwrócony (RYS. 3) dodatkowo wymaga zastosowania materiału termoizolacyjnego niewrażliwego na wilgoć i wodę (XPS). Z tego wynika, że przywołane wcześniej „nierównomierne osiadanie” albo „uginanie powierzchni” wynika wyłącznie z nieprzeanalizowania na etapie projektu i/lub realizacji obciążeń oraz możliwych przemieszczeń podstawek dystansowych albo z zastosowania niewłaściwego (zbyt miękkiego) materiału termoizolacyjnego.

Problemem mogą być także podstawki dystansowe o zbyt małej powierzchni podparcia lub zbyt rzadko rozmieszczone. Im większa powierzchnia podstawki, tym mniejsze naprężenia i mniejsze odkształcenia termoizolacji. Istotna jest także sztywność samej stopki podstawki. Dlatego nie należy stosować podstawek dystansowych niewiadomego pochodzenia „gdyż są tańsze”. Taka podstawka, oprócz wymaganych parametrów wytrzymałościowych, musi być odporna na czynniki atmosferyczne i pozwalać na regulację wysokości podparcia.

Niekiedy nierównomiernemu osiadaniu sprzyja koncepcja wykonania połaci. Z jakiegoś powodu różnicuje się nie tylko grubość, ale i klasę materiału termoizolacyjnego pod podstawkami dystansowymi. Aby zachować równomierność odkształceń pod obciążeniem użytkowym i/lub ograniczyć tę wielkość, dla konkretnego przypadku może się okazać, że konieczne będzie zastosowanie np. XPS-a o mniejszej ściśliwości (np. XPS 500) oraz obliczeniowe oszacowanie wielkości ściśnięcia termoizolacji.

Dla wariantów pokazanych na RYS. 1 i RYS. 2 izolacja ułożona jest bezpośrednio pod podstawkami dystansowymi. Zastosowana izolacja musi być odporna na przebicie statyczne.

Dla wariantu pokazanego na RYS. 1 izolacja może być wykonana z:

  • materiałów rolowych bitumicznych (papa polimerowo-bitumiczna, samoprzylepna membrana bitumiczna),
  • materiałów rolowych z tworzywa sztucznego albo kauczuku,
  • elastycznych szlamów mineralnych.

Zastosowanie tych materiałów wymaga jednak komentarza. Taras jest rodzajem dachu użytkowego. Papy bitumiczne, zwłaszcza w wysokich temperaturach, mają tendencję do wydzielania specyficznego zapachu, co nie musi być obojętne dla osób przebywających na tarasie. Z tych względów papy są tu stosowane coraz rzadziej.

Elastyczne szlamy uszczelniające to cienkowarstwowe (2–3 mm) zaprawy uszczelniające. Doświadczenie pokazuje, że są one z sukcesem stosowane w tego typu układach, jednak nie należy tego robić bezkrytycznie. Przede wszystkim nie wolno stosować materiałów, które są deklarowane do zastosowania tylko jako izolacja podpłytkowa. Tu nie ma żadnej warstwy ochronnej, wręcz przeciwnie, występuje ciągłe oddziaływanie zmiennych warunków atmosferycznych oraz obciążenia mechaniczne i punktowy nacisk. Zatem szlam pracuje jak powłoka ochronna, musi być odporny na UV, szokowe obciążenia oraz cykle zamarzania i rozmrażania. Odporność na te czynniki zwykle określa się przyczepnością, szczelnością oraz wyglądem powierzchni.

Równie istotna jest zdolność mostkowania rys. Nie wolno zakładać, że podłoże się nie zarysuje i że nie dojdzie do mechanicznego uszkodzenia. Zatem szlam powinien być także zbadany na tzw. odporność na przebicie statyczne. Wartość uzyskaną w badaniach należy odnieść do rzeczywistych obciążeń (przypominam, że inne będą w przypadku małych, przydomowych tarasów, a inne w przypadku budynków użyteczności publicznej).

Te tzw. czynniki niepewności powinny decydować o możliwości zastosowania, podkreślam, w konkretnym przypadku, konkretnego materiału. Dobrą praktyką jest zastosowanie ochronnych przekładek, np. z grubej geowłókniny, bezpośrednio pod stopkami podstawek dystansowych (nie tylko dla izolacji ze szlamu). Niezależnie od tego grubość warstwy szlamu nie może być mniejsza niż 3 mm.

Folie z tworzywa sztucznego lub kauczuku, oprócz wymaganej odporności mechanicznej (grubość), muszą umożliwić wykonanie szczelnej powłoki. Muszą zatem dać się na krawędziach zgrzać, skleić czy zwulkanizować (nie jest to dla każdego oczywiste, spotykałem się z „projektami”, gdzie taka „izolacja” była folią grubości 0,2 mm). Efektywna grubość membrany nie może być mniejsza niż 1,2 mm, a sam materiał musi zachowywać giętkość w ujemnych temperaturach (nie wyższych niż –20°C). Wymagana jest także odporność na wysokie i niskie temperatury oraz korozję biologiczną.

Dla wariantu pokazanego na RYS. 2 możliwe jest zastosowanie jedynie folii z tworzyw sztucznych i kauczuku, a dla układu odwróconego (RYS. 3) – z rolowych materiałów bitumicznych i folii z tworzyw sztucznych. Szlamów dla takiego wariantu się nie stosuje.

Spód podstawki dystansowej nie może mieć żadnych zadziorów, nierówności itp. elementów wywierających punktowy nacisk na powłokę wodochronną. Powyższa analiza pokazuje jednocześnie jak istotne jest stosowanie wysokiej jakości podstawek dystansowych o możliwie dużej średnicy. Niebezpieczne są zwłaszcza podstawki o niewielkiej średnicy i pierścieniowym kształcie. Powierzchnia takiego pierścienia może być znacznie mniejsza niż może się wydawać na pierwszy rzut oka.

Na połać (posadzkę z płyt lub desek tarasowych) mogą także oddziaływać siły poziome. Są one szczególnie niebezpieczne, gdyż przy błędach w wykonaniu mogą prowadzić do utraty stateczności warstwy użytkowej i jej osunięcia. Im mniejsza wysokość potrawki dystansowej, tym większa stabilność i odporność na obciążenia poziome. Z drugiej strony większa średnica podstawki także zapewnia większą stabilność i odporność na obciążenia poziome. Biorąc pod uwagę, że warstwa użytkowa z płyt może być nawet 20 cm nad hydroizolacją (choć spotyka się także zalecenia mówiące o 40 cm), zastosowanie odpowiednich podstawek jest wymogiem bezwzględnym. Bezkrytyczne zwiększanie wysokości posadzki nad podłożem jest niedopuszczalne.

Okap

Układ drenażowy zawsze wymaga systemowego wykończenia okapu (porównaj RYS. 6 i RYS. 7), chyba że mamy do czynienia z balustradą pełną (dla wariantów pokazanych na RYS. 2 i RYS. 3 jest to w zasadzie jedyna możliwość). Konieczne jest zabezpieczenie płyt przed wypadnięciem przy zapewnieniu skutecznego odprowadzenia wody.

Sytuację utrudnia fakt, że nie da się tego zrobić za pomocą obróbki blacharskiej. Wprawdzie możliwe jest rozwiązanie sposobu mocowania profilu dla układu pokazanego na RYS. 2, jednak wymaga to indywidualnego podejścia do zagadnienia. Z tego powodu profil okapowy musi być dopasowany do rodzaju warstwy użytkowej (deska tarasowa, płyty na podstawkach dystansowych). Ogranicza to możliwość kształtowania wymaganej wysokości podstawek dystansowych przez wysokość i kształt profilu okapowego. Należy pamiętać, że układ drenażowy umożliwia uzyskanie poziomej warstwy użytkowej przy „schowaniu” spadku w warstwach połaci. Dla niewielkich wymiarów połaci może to nie mieć znaczenia, przy większych ma znaczenie zasadnicze.

RYS. 6. Detal okapu tarasu naziemnego; rys.: Renoplast

RYS. 6. Detal okapu tarasu naziemnego; rys.: Renoplast

RYS. 7. Detal okapu tarasu nadziemnego – opis w tekście.

RYS. 7. Detal okapu tarasu nadziemnego – opis w tekście. Objaśnienia: 1 – podstawka dystansowa, 2 – płyta warstwy użytkowej, 3 – przekładka ochronna, 4 – hydroizolacja z elastycznego szlamu, 5 – taśma uszczelniająca, 6 – jastrych dociskowy zbrojony w strefie okapowej, 7 – hydroizolacja międzywarstwowa, 8 – systemowy profil okapowy, 9 – rynna, 10 – termoizolacja połaci, 11 – warstwa zbrojąca i wyprawa elewacyjna, 12 – paroizolacja, 13 – warstwa spadkowa, 14 – warstwa sczepna, 15 – płyta konstrukcyjna, 16 – termoizolacja bezpośrednio pod okapem z materiału takiego jak 10, 17 – termoizolacja ściany; rys.: M. Rokiel

RYS. 8. Detal okapu tarasu naziemnego – opis w tekście; rys.: Renoplast

RYS. 8. Detal okapu tarasu naziemnego – opis w tekście; rys.: Renoplast

Przykładowy detal okapu pokazano na RYS. 6. Jest to detal tarasu naziemnego. Dla porównania RYS. 7 także przedstawia detal tarasu nadziemnego (detal pokazuje sposób uszczelnienia systemowego profilu, gdy izolację na jastrychu wykonano ze szlamu). Między tymi okapami jest zasadnicza różnica. Na RYS. 7 w strefie okapu znajduje się podwójna podstawka. Jej obecność wynika z charakteru pracy jastrychu dociskowego.

Należy zwrócić uwagę, że pas ocieplenia ściany bezpośrednio pod okapem powinien być wykonany z tego samego materiału termoizolacyjnego co termoizolacja połaci. Ma to na celu zapewnienie możliwie jednorodnego podłoża pod jastrych dociskowy. Grubość ocieplenia ściany może dochodzić do 25 cm. Ściany takie są wykonywane z materiału o zupełnie innej (mniejszej) ściśliwości. Zatem pas jastrychu przy okapie pracuje jako wspornik, stąd jego dodatkowe zbrojenie siatkami w górnej części. Przyjmuje się, że minimalna klasa jastrychu dociskowego to C20 F4 przy grubości minimum 4 cm. W analizowanym przypadku grubość należy zwiększyć minimum do 6,5 cm przy klasie jastrychu F5 lub do 7,5 cm przy klasie F4. Dodatkowa podstawka rozkłada obciążenie od osoby stojącej na pierwszym rzędzie płyt.

Wysokie podstawki wymagają innego wykończenia okapu. Pionowa płytka musi być stabilnie i pewnie zamocowana, nie może również utrudniać odpływu wody. Przedstawiony na RYS. 8 okap tarasu naziemnego pokazuje, że możliwe jest zamontowanie pionowej płyty okapu o wysokości dostosowanej do wysokości podstawek dystansowych. Płyta musi jednak mieć grubość dostosowaną do profilu.

Literatura

  1. Außenbeläge. Belagskonstruktionen mit Fliesen und Platten außerhalb von Gebäuden, ZDB, 2019.
  2. DIN 18560-2:2009-09, „Berichtigung 1:2012-05 – Estriche im Bauwesen- Teil 2: Estriche und Heizestriche auf Dämmschichten (schwimmende Estriche)”.
  3. PN ISO 2394:2000, „Ogólne zasady niezawodności konstrukcji budowlanych”.
  4. M. Rokiel „Poradnik Hydroizolacje w budownictwie. Projektowanie. Wykonawstwo”, wyd. III, Grupa MEDIUM, Warszawa 2019.
  5. PN-EN 13164 +A1:2015‑03, „Wyroby do izolacji cieplnej w budownictwie. Wyroby z polistyrenu ekstrudowanego (XPS) produkowane fabrycznie. Specyfikacja”.
  6. PN-EN 13163 +A2:2016-12, „Wyroby do izolacji cieplnej w budownictwie – Wyroby ze styropianu (EPS) produkowane fabrycznie – Specyfikacja”.
  7. PN-B-20132:2005, „Wyroby do izolacji cieplnej w budownictwie – Wyroby ze styropianu (EPS) produkowane fabrycznie – Zastosowania”.

Chcesz być na bieżąco? Zapisz się do naszego newslettera!

Galeria zdjęć

Tytuł
przejdź do galerii

Komentarze

Powiązane

dr inż. Krzysztof Pawłowski, prof. uczelni Jakie czynniki decydują o jakości wykonania izolacji z płyt styropianowych?

Jakie czynniki decydują o jakości wykonania izolacji z płyt styropianowych? Jakie czynniki decydują o jakości wykonania izolacji z płyt styropianowych?

Technologia ETICS to najbardziej w Polsce popularna metoda ocieplania ścian zewnętrznych budynków. Jak dobrać odpowiednią grubość izolacji cieplnej? Jakie parametry i właściwości płyt styropianowych wpływają...

Technologia ETICS to najbardziej w Polsce popularna metoda ocieplania ścian zewnętrznych budynków. Jak dobrać odpowiednią grubość izolacji cieplnej? Jakie parametry i właściwości płyt styropianowych wpływają na jakość wykonania izolacji?

dr inż. Paweł Krause Uszkodzenia styropianu grafitowego w systemach ociepleń ETICS

Uszkodzenia styropianu grafitowego w systemach ociepleń ETICS Uszkodzenia styropianu grafitowego w systemach ociepleń ETICS

System ociepleń ETICS jest najczęściej wykorzystywanym rozwiązaniem dla poprawy stanu ochrony cieplnej ścian zewnętrznych. W rozwiązaniach tych stosuje się zróżnicowane materiały termoizolacyjne. Można...

System ociepleń ETICS jest najczęściej wykorzystywanym rozwiązaniem dla poprawy stanu ochrony cieplnej ścian zewnętrznych. W rozwiązaniach tych stosuje się zróżnicowane materiały termoizolacyjne. Można zauważyć, iż materiałem zyskującym coraz większe uznanie wśród projektantów i inwestorów jest polistyren spieniony z dodatkami atermicznymi. Dodatki te stosuje się w celu modyfikacji właściwości materiału. Stopień modyfikacji jest uzależniony od rodzaju dodatku, ilości, kształtu i wielkości stosowanych...

mgr inż. Przemysław Brzyski, dr hab. inż. Stanisław Fic Właściwości termoizolacyjne materiału ściennego opartego na wapnie i paździerzach konopnych

Właściwości termoizolacyjne materiału ściennego opartego na wapnie i paździerzach konopnych Właściwości termoizolacyjne materiału ściennego opartego na wapnie i paździerzach konopnych

Tradycyjne materiały termoizolacyjne, takie jak styropian, pianka poliuretanowa oraz wełna mineralna, produkowane są przy wykorzystaniu paliw kopalnych, a także innych nieodnawialnych zasobów przyrody....

Tradycyjne materiały termoizolacyjne, takie jak styropian, pianka poliuretanowa oraz wełna mineralna, produkowane są przy wykorzystaniu paliw kopalnych, a także innych nieodnawialnych zasobów przyrody. Ich produkcja wiąże się z dużym zużyciem energii oraz emisją dwutlenku węgla. Pojawia się także problem utylizacji tych materiałów po zakończeniu cyklu życia, wiążący się również ze znacznym nakładem energii. Zasadne jest wykorzystanie materiałów termoizolacyjnych, które mają właściwości proekologiczne...

Jarosław Guzal Grupa PSB: To będzie dobry rok

Grupa PSB: To będzie dobry rok Grupa PSB: To będzie dobry rok

O rozwoju rynku materiałów budowlanych podczas tegorocznego sezonu oraz o tym, jak poprawić stan mieszkalnictwa w Polsce mówią Bogdan Panhirsz, dyrektor zarządu Grupy PSB Handel, i Mirosław Lubarski, członek...

O rozwoju rynku materiałów budowlanych podczas tegorocznego sezonu oraz o tym, jak poprawić stan mieszkalnictwa w Polsce mówią Bogdan Panhirsz, dyrektor zarządu Grupy PSB Handel, i Mirosław Lubarski, członek zarządu Grupy PSB Handel.

Henryk Ziobro Mocowanie mechaniczne materiału termoizolacyjnego w ETICS

Mocowanie mechaniczne materiału termoizolacyjnego w ETICS Mocowanie mechaniczne materiału termoizolacyjnego w ETICS

Łączniki mechaniczne są jednym z podstawowych elementów systemu ocieplenia ścian zewnętrznych (ETICS). Ich podstawowym zadaniem jest dodatkowa ochrona warstwy ocieplenia przed siłami ssącymi wiatru. Łączniki...

Łączniki mechaniczne są jednym z podstawowych elementów systemu ocieplenia ścian zewnętrznych (ETICS). Ich podstawowym zadaniem jest dodatkowa ochrona warstwy ocieplenia przed siłami ssącymi wiatru. Łączniki przenoszą też obciążenia termiczne spowodowane nagrzewaniem i chłodzeniem się ocieplonej elewacji. Chronią ponadto przed skutkami niewłaściwego przygotowania podłoża do klejenia płyt izolacyjnych, takimi jak brak gruntowania podłoża czy pozostawienie starych tynków albo łuszczących się farb elewacyjnych.

dr hab. inż., prof. UWM Robert Wójcik Jak wybrać materiał termoizolacyjny do ociepleń od wewnątrz?

Jak wybrać materiał termoizolacyjny do ociepleń od wewnątrz? Jak wybrać materiał termoizolacyjny do ociepleń od wewnątrz?

Aktualnie większość materiałów termoizolacyjnych dostępnych na rynku budowlanym o pierwotnie różnorodnych zastosowaniach jest również zalecana przez producentów do dociepleń wewnętrznych. Nie wszystkie...

Aktualnie większość materiałów termoizolacyjnych dostępnych na rynku budowlanym o pierwotnie różnorodnych zastosowaniach jest również zalecana przez producentów do dociepleń wewnętrznych. Nie wszystkie materiały dopuszczone do dociepleń można jednak stosować od wewnątrz. Podjęcie decyzji wymaga dobrego rozpoznania właściwości technicznych, zarówno samych izolacji, jak i docieplanych przegród, a także uwarunkowań wykonawczych.

dr inż. Henryk Żelazny Kierunek przepływu pary wodnej przez strop nad piwnicą dla okresu zimowego i letniego

Kierunek przepływu pary wodnej przez strop nad piwnicą dla okresu zimowego i letniego Kierunek przepływu pary wodnej przez strop nad piwnicą dla okresu zimowego i letniego

Materiały ociepleniowe w poziomych przegrodach budynku chroni się przed zawilgoceniem przez układanie paroizolacji po tej stronie, od której dyfunduje do konstrukcji para wodna. Celem artykułu jest sprawdzenie...

Materiały ociepleniowe w poziomych przegrodach budynku chroni się przed zawilgoceniem przez układanie paroizolacji po tej stronie, od której dyfunduje do konstrukcji para wodna. Celem artykułu jest sprawdzenie kierunku przepływu pary wodnej przez strop nad nieogrzewaną piwnicą w budynku podczas ogrzewania mieszkania oraz w czasie braku zysków ciepła z układu grzewczego.

dr inż. Maciej Trochonowicz Materiały termoizolacyjne stosowane wewnątrz pomieszczeń

Materiały termoizolacyjne stosowane wewnątrz pomieszczeń Materiały termoizolacyjne stosowane wewnątrz pomieszczeń

Artykuł prezentuje badania laboratoryjne materiałów przeznaczonych do wykonywania termoizolacji od wnętrza pomieszczeń. Głównym ich celem było wyznaczenie współczynnika przewodzenia ciepła λ, w zależności...

Artykuł prezentuje badania laboratoryjne materiałów przeznaczonych do wykonywania termoizolacji od wnętrza pomieszczeń. Głównym ich celem było wyznaczenie współczynnika przewodzenia ciepła λ, w zależności od zmieniających się wartości wilgotności i temperatury powietrza.

mgr inż. Michał Musiał Innowacyjne rozwiązania materiałowe w konstrukcjach stropodachów

Innowacyjne rozwiązania materiałowe w konstrukcjach stropodachów Innowacyjne rozwiązania materiałowe w konstrukcjach stropodachów

Jedną z możliwości poprawy parametrów fizycznych stropodachów jest zastosowanie innowacyjnych, nowoopracowanych materiałów budowlanych, bez zmieniania konwencjonalnego ułożenia warstw tych przegród.

Jedną z możliwości poprawy parametrów fizycznych stropodachów jest zastosowanie innowacyjnych, nowoopracowanych materiałów budowlanych, bez zmieniania konwencjonalnego ułożenia warstw tych przegród.

mgr inż. Leszek Danecki , mgr inż. Grzegorz Czapiewski , dr Elżbieta Wardzińska , dr inż. Barbara Szczepaniak , mgr inż. Leszek Majewski Opracowanie technologii wytwarzania hybrydowego materiału termoizolacyjnego będącego kompozytem styropianu i włókien pochodzących z recyklingu

Opracowanie technologii wytwarzania hybrydowego materiału termoizolacyjnego będącego kompozytem styropianu i włókien pochodzących z recyklingu Opracowanie technologii wytwarzania hybrydowego materiału termoizolacyjnego będącego kompozytem styropianu i włókien pochodzących z recyklingu

Czy można wytworzyć nowy materiał termoizolacyjny? Owszem! Przedstawiamy hybrydowy materiał termoizolacyjny składający się ze styropianu i włókien pochodzących z recyklingu. Poznajmy jego zalety.

Czy można wytworzyć nowy materiał termoizolacyjny? Owszem! Przedstawiamy hybrydowy materiał termoizolacyjny składający się ze styropianu i włókien pochodzących z recyklingu. Poznajmy jego zalety.

Austrotherm Termoizolacja budynku na poziomie PREMIUM

Termoizolacja budynku na poziomie PREMIUM Termoizolacja budynku na poziomie PREMIUM

Z roku na rok obserwujemy rosnące zainteresowanie tematyką szeroko pojętej ekologii i troski o środowisko naturalne. Coraz częściej podejmujemy decyzje, które mają być ekonomicznie uzasadnione.

Z roku na rok obserwujemy rosnące zainteresowanie tematyką szeroko pojętej ekologii i troski o środowisko naturalne. Coraz częściej podejmujemy decyzje, które mają być ekonomicznie uzasadnione.

mgr inż. Przemysław Brzyski Ekologiczne aspekty wykorzystania wybranych materiałów stosowanych jako izolacje termiczne

Ekologiczne aspekty wykorzystania wybranych materiałów stosowanych jako izolacje termiczne Ekologiczne aspekty wykorzystania wybranych materiałów stosowanych jako izolacje termiczne

Na rynku budowlanym pojawia się coraz więcej materiałów wykonanych przy efektywnym wykorzystaniu zasobów i przyjaznych środowisku. Czy mogą one być konkurencyjne dla tradycyjnych materiałów termoizolacyjnych?

Na rynku budowlanym pojawia się coraz więcej materiałów wykonanych przy efektywnym wykorzystaniu zasobów i przyjaznych środowisku. Czy mogą one być konkurencyjne dla tradycyjnych materiałów termoizolacyjnych?

dr inż. Krzysztof Pawłowski, prof. uczelni Ściany zewnętrzne – kryteria wyboru rozwiązań materiałowych

Ściany zewnętrzne – kryteria wyboru rozwiązań materiałowych Ściany zewnętrzne – kryteria wyboru rozwiązań materiałowych

Ściana zewnętrzna stanowi sztuczną przegrodę między otoczeniem o zmiennej temperaturze i wilgotności a wnętrzem budynku – o określonych parametrach. Aby zapewniła utrzymanie w pomieszczeniu właściwych...

Ściana zewnętrzna stanowi sztuczną przegrodę między otoczeniem o zmiennej temperaturze i wilgotności a wnętrzem budynku – o określonych parametrach. Aby zapewniła utrzymanie w pomieszczeniu właściwych warunków mikroklimatu wewnętrznego, zgodnych z nowymi wymaganiami cieplno-wilgotnościowymi, do jej wykonania muszą być zastosowane odpowiednie rozwiązania konstrukcyjno­-materiałowe.

dr Barbara Lucyna Pietruszka Aerożele krzemionkowe jako komponent nowoczesnych izolacji cieplnych

Aerożele krzemionkowe jako komponent nowoczesnych izolacji cieplnych Aerożele krzemionkowe jako komponent nowoczesnych izolacji cieplnych

Izolacje cieplne z zastosowaniem aerożeli krzemionkowych charakteryzują się bardzo niską wartością współczynnika przewodzenia ciepła λ. Ponadto badania wykazały, że możliwe jest dalsze obniżanie wartości...

Izolacje cieplne z zastosowaniem aerożeli krzemionkowych charakteryzują się bardzo niską wartością współczynnika przewodzenia ciepła λ. Ponadto badania wykazały, że możliwe jest dalsze obniżanie wartości tego parametru.

dr inż. Aleksander Byrdy, dr inż. Czesław Byrdy Minimalne grubości termoizolacji stropodachów dwudzielnych o konstrukcji krokwiowej

Minimalne grubości termoizolacji stropodachów dwudzielnych o konstrukcji krokwiowej Minimalne grubości termoizolacji stropodachów dwudzielnych o konstrukcji krokwiowej

Stropy między przestrzenią mieszkalną a przestrzenią poddasza mają na konstrukcyjnej warstwie nośnej warstwę izolacji termicznej nazywanej dawniej polepą. W tradycyjnych rozwiązaniach warstwę polepy wykonywano...

Stropy między przestrzenią mieszkalną a przestrzenią poddasza mają na konstrukcyjnej warstwie nośnej warstwę izolacji termicznej nazywanej dawniej polepą. W tradycyjnych rozwiązaniach warstwę polepy wykonywano z luźno nasypanego piasku lub trocin z wapnem o grubościach nieprzekraczających 10 cm i wyrównywano od strony strychu wylewką cementową. Obecnie jednak rozwiązania te nie są wystarczające i konieczne jest stosowanie innych materiałów termoizolacyjnych o większej grubości.

Jacek Sawicki Rodzaje izolacji wysokotemperaturowych

Rodzaje izolacji wysokotemperaturowych Rodzaje izolacji wysokotemperaturowych

Izolacje przeznaczone do stosowania w warunkach wysokich temperatur to materiały i ich układy, które w bezpośrednim lub pośrednim kontakcie z gorącymi mediami (płomieniami, gazami, cieczami, materiałami...

Izolacje przeznaczone do stosowania w warunkach wysokich temperatur to materiały i ich układy, które w bezpośrednim lub pośrednim kontakcie z gorącymi mediami (płomieniami, gazami, cieczami, materiałami stałymi, stopionymi itd.) lub czynnikami gorącymi ograniczają emisję ciepła ze źródła do otoczenia i/lub ośrodka sąsiedniego.

mgr inż. Krzysztof Patoka Zalety wentylacji dachu

Zalety wentylacji dachu Zalety wentylacji dachu

O tym, że wentylacja dachów działa na nie korzystnie, wiedzą wszyscy związani z budownictwem, ale tylko nieliczni zdają sobie sprawę, jak duże są to korzyści. Być może z tego powodu większość dachów w...

O tym, że wentylacja dachów działa na nie korzystnie, wiedzą wszyscy związani z budownictwem, ale tylko nieliczni zdają sobie sprawę, jak duże są to korzyści. Być może z tego powodu większość dachów w Polsce nie jest wentylowana. Na zmianę tego stanu powinien wpłynąć rozwój budownictwa energooszczędnego, które bez wentylowania dachów praktycznie nie może istnieć.

dr inż. Tomasz Steidl, dr inż. Bożena Orlik-Kożdoń Docieplanie przegród zewnętrznych od wewnątrz – materiały, technologie i projektowanie

Docieplanie przegród zewnętrznych od wewnątrz – materiały, technologie i projektowanie Docieplanie przegród zewnętrznych od wewnątrz – materiały, technologie i projektowanie

Metoda docieplania obiektów od strony zewnętrznej stosowana jest z powodzeniem od wielu lat. Istnieją jednak pewne ograniczenia tej technologii, np. w budynkach zabytkowych. W tego typu obiektach rozwiązaniem...

Metoda docieplania obiektów od strony zewnętrznej stosowana jest z powodzeniem od wielu lat. Istnieją jednak pewne ograniczenia tej technologii, np. w budynkach zabytkowych. W tego typu obiektach rozwiązaniem może być wykonanie ocieplenia od strony wewnętrznej.

dr hab. inż., prof. UWM Robert Wójcik, mgr inż. Piotr Kosiński Jaki jest współczynnik przewodzenia ciepła wełny mineralnej?

Jaki jest współczynnik przewodzenia ciepła wełny mineralnej? Jaki jest współczynnik przewodzenia ciepła wełny mineralnej?

Pomimo licznych publikacji wyników badań i prowadzonej dyskusji stanowiska na temat zakresu optymalnego zagęszczenia nadal nie są jednoznaczne. Pokutują stare opinie: im materiał lżejszy, tym cieplejszy....

Pomimo licznych publikacji wyników badań i prowadzonej dyskusji stanowiska na temat zakresu optymalnego zagęszczenia nadal nie są jednoznaczne. Pokutują stare opinie: im materiał lżejszy, tym cieplejszy. Zapomina się przy tym o postępującej w czasie deformacji materiału.

mgr inż. Krzysztof Patoka Gołębie a wentylacja dachu

Gołębie a wentylacja dachu Gołębie a wentylacja dachu

W każdym większym mieście żyją gołębie. Ich obecność jest szczególnie widoczna w budynkach znajdujących się w starych dzielnicach miast – na poddaszach oraz w różnych zakamarkach dachów znajdują się gniazda...

W każdym większym mieście żyją gołębie. Ich obecność jest szczególnie widoczna w budynkach znajdujących się w starych dzielnicach miast – na poddaszach oraz w różnych zakamarkach dachów znajdują się gniazda tych ptaków. Mieszkania w starych dzielnicach mają coraz większą wartość, dlatego często ruguje się gołębie, a poddasza starych budynków przerabia.

mgr inż. Paweł Gaciek Renowacja ocieplonych ścian

Renowacja ocieplonych ścian Renowacja ocieplonych ścian

Systemy ociepleniowe, nazywane obecnie ETICS (External Thermal Insulation Composite System), są z powodzeniem stosowane w Polsce od ponad 20 lat na ścianach zewnętrznych budynków. Ich podstawowym zadaniem...

Systemy ociepleniowe, nazywane obecnie ETICS (External Thermal Insulation Composite System), są z powodzeniem stosowane w Polsce od ponad 20 lat na ścianach zewnętrznych budynków. Ich podstawowym zadaniem jest zwiększanie izolacyjności termicznej ścian. Nie bez znaczenia jest również poprawa estetyki elewacji.

mgr inż. Krzysztof Patoka Dzicy lokatorzy pod dachem

Dzicy lokatorzy pod dachem Dzicy lokatorzy pod dachem

Każdego lata powracającym problemem użytkowników domów jest pojawienie się dzikich lokatorów – owadów, ptaków i ssaków. Zwierzęta te zasiedlają dachy, a ich obecność jest przyczyną różnych zniszczeń.

Każdego lata powracającym problemem użytkowników domów jest pojawienie się dzikich lokatorów – owadów, ptaków i ssaków. Zwierzęta te zasiedlają dachy, a ich obecność jest przyczyną różnych zniszczeń.

dr hab. inż., prof. Wiesław Ligęza, dr inż. Jacek Dębowski, dr inż. Małgorzata Fedorczak-Cisak Projektowanie ścian zewnętrznych w budynkach pasywnych - problemy techniczne

Projektowanie ścian zewnętrznych w budynkach pasywnych - problemy techniczne

Przepisy dotyczące ochrony cieplnej budynków są ciągle zaostrzane. Wynika to z polityki UE zakładającej znaczne ograniczenie zużycia energii w budownictwie. W praktyce oznacza to projektowanie budynków...

Przepisy dotyczące ochrony cieplnej budynków są ciągle zaostrzane. Wynika to z polityki UE zakładającej znaczne ograniczenie zużycia energii w budownictwie. W praktyce oznacza to projektowanie budynków w sposób dotychczas w naszych warunkach nieznany.

mgr inż. Karol Bednarczyk System ze styropianem czy z wełną mineralną?

System ze styropianem czy z wełną mineralną? System ze styropianem czy z wełną mineralną?

Inwestorzy planujący ocieplenie budynku powinni się zastanowić, jakich właściwości, poza termoizolacyjnymi, oczekują od całego systemu ociepleniowego. Izolacyjność cieplna styropianu i wełny mineralnej...

Inwestorzy planujący ocieplenie budynku powinni się zastanowić, jakich właściwości, poza termoizolacyjnymi, oczekują od całego systemu ociepleniowego. Izolacyjność cieplna styropianu i wełny mineralnej jest bowiem podobna, porównywalne więc będą oszczędności w zużyciu energii.

Wybrane dla Ciebie

Izolacja domu zgodna z wymaganiami prawnymi - sprawdź

Izolacja domu zgodna z wymaganiami prawnymi - sprawdź Izolacja domu zgodna z wymaganiami prawnymi - sprawdź

Zalety wełny celulozowej w krótkim podsumowaniu:

Zalety wełny celulozowej w krótkim podsumowaniu: Zalety wełny celulozowej w krótkim podsumowaniu:

Termoizolacja dla budownictwa

Termoizolacja dla budownictwa Termoizolacja dla budownictwa

Znajdź swój sposób na izolacje

Znajdź swój sposób na izolacje Znajdź swój sposób na izolacje

Bezpieczeństwo pracowników - system barier ochronnych

Bezpieczeństwo pracowników - system barier ochronnych Bezpieczeństwo pracowników - system barier ochronnych

Jest nowa receptura hydroizolacji! »

Jest nowa receptura hydroizolacji! » Jest nowa receptura hydroizolacji! »

Kiedy fotowoltaika się opłaca?

Kiedy fotowoltaika się opłaca? Kiedy fotowoltaika się opłaca?

Budownictwo przyszłości

Budownictwo przyszłości Budownictwo przyszłości

Kompleksowa ceramika dla domu

Kompleksowa ceramika dla domu Kompleksowa ceramika dla domu

Skuteczna izolacja dachu płaskiego »

Skuteczna izolacja dachu płaskiego » Skuteczna izolacja dachu płaskiego »

Czego użyć do naprawy balkonu lub tarasu?

Czego użyć do naprawy balkonu lub tarasu? Czego użyć do naprawy balkonu lub tarasu?

Indywidualne usługi w zakresie produkcji dowolnych elementów z tworzyw sztucznych » »

Indywidualne usługi w zakresie produkcji dowolnych elementów z tworzyw sztucznych » » Indywidualne usługi w zakresie produkcji dowolnych elementów z tworzyw sztucznych » »

Porównaj ceny styropianu i oszczędzaj »

Porównaj ceny styropianu i oszczędzaj » Porównaj ceny styropianu i oszczędzaj »

Zalety ocieplania styropianem pasywnym »

Zalety ocieplania styropianem pasywnym » Zalety ocieplania styropianem pasywnym »

Izolacja natryskowa budynków »

Izolacja natryskowa budynków » Izolacja natryskowa budynków »

Uprawnienia budowlane 2021 Część 1. Poradnik z kluczem. 523 pytania i 20 testów egzaminacyjnych

Uprawnienia budowlane 2021 Część 1. Poradnik z kluczem. 523 pytania i 20 testów egzaminacyjnych Uprawnienia budowlane 2021 Część 1. Poradnik z kluczem. 523 pytania i 20 testów egzaminacyjnych

Część B: Roboty wykończeniowe, zeszyt 17: Podłogi zewnętrzne z desek kompozytowych

Część B: Roboty wykończeniowe, zeszyt 17: Podłogi zewnętrzne z desek kompozytowych Część B: Roboty wykończeniowe, zeszyt 17: Podłogi zewnętrzne z desek kompozytowych

Warunki techniczne jakim powinny odpowiadać budynki i ich usytuowanie 2021

Warunki techniczne jakim powinny odpowiadać budynki i ich usytuowanie 2021 Warunki techniczne jakim powinny odpowiadać budynki i ich usytuowanie 2021

Najnowsze produkty i technologie

Euler Hermes Przyspieszenie spłaty faktur w budownictwie – kapitał obrotowy niezbędny do zwiększenia produkcji i dostaw

Przyspieszenie spłaty faktur w budownictwie – kapitał obrotowy niezbędny do zwiększenia produkcji i dostaw Przyspieszenie spłaty faktur w budownictwie – kapitał obrotowy niezbędny do zwiększenia produkcji i dostaw

Produkcja budowlana rośnie, ale nie bez zawirowań – w dużym uproszczeniu w ślad za uruchamianiem i wykonaniem przetargów infrastrukturalnych. Śledząc aktualne trendy u wykonawców przewidywać można, jak...

Produkcja budowlana rośnie, ale nie bez zawirowań – w dużym uproszczeniu w ślad za uruchamianiem i wykonaniem przetargów infrastrukturalnych. Śledząc aktualne trendy u wykonawców przewidywać można, jak płacić będą oni w najbliższym czasie za już dostarczone materiały. Czy trzeba martwić się o swoje należności, czy może lepiej skupić się na aktywnym wsparciu sprzedaży – wszak nawet na rynku dostawcy można walczyć o zwiększenie w nim swoich udziałów.

Sika Poland sp. z o.o. Tylko skuteczna hydroizolacja chroni budynki przed zniszczeniem

Tylko skuteczna hydroizolacja chroni budynki przed zniszczeniem Tylko skuteczna hydroizolacja chroni budynki przed zniszczeniem

Ostatnio pogoda nas nie rozpieszcza. Gorące dni przeplatają się z chłodnymi, a często towarzyszą im intensywne ulewy. Jednocześnie zabetonowana przestrzeń miejska i susze hydrologiczne sprawiają, że nadmiar...

Ostatnio pogoda nas nie rozpieszcza. Gorące dni przeplatają się z chłodnymi, a często towarzyszą im intensywne ulewy. Jednocześnie zabetonowana przestrzeń miejska i susze hydrologiczne sprawiają, że nadmiar wody z trudem wsiąka w grunt. Skutek? Zagrożenie dla budynków i potencjalne ogromne straty.

CEMEX Polska Sp. z o.o. Skuteczna izolacja termiczna stropodachów i dachów płaskich – poznaj ofertę pianobetonu od CEMEX Polska

Skuteczna izolacja termiczna stropodachów i dachów płaskich – poznaj ofertę pianobetonu od CEMEX Polska Skuteczna izolacja termiczna stropodachów i dachów płaskich – poznaj ofertę pianobetonu od CEMEX Polska

W budownictwie, w którym stosowane są stropodachy lub dachy płaskie, straty ciepła przez dach mogą być znaczne. Dlatego od prawidłowo wykonanej izolacji termicznej zależy nie tylko oszczędność energii,...

W budownictwie, w którym stosowane są stropodachy lub dachy płaskie, straty ciepła przez dach mogą być znaczne. Dlatego od prawidłowo wykonanej izolacji termicznej zależy nie tylko oszczędność energii, ale również stabilność i funkcjonalność dachów płaskich. Doskonałe właściwości INSULARIS PIANO firmy CEMEX Polska stanowią doskonałą alternatywę dla standardowo stosowanych izolacji ze styropianu, wełny czy keramzytobetonu i zwiększają bezpieczeństwo całej konstrukcji.

Farby KABE Systemy ociepleń KABE THERM – najlepsza ochrona elewacji

Systemy ociepleń KABE THERM – najlepsza ochrona elewacji Systemy ociepleń KABE THERM – najlepsza ochrona elewacji

Elewacja stanowi największą zewnętrzną część budynku narażoną na bezpośrednie i długotrwałe oddziaływanie niekorzystnych czynników atmosferycznych, mechanicznych i środowiskowych.

Elewacja stanowi największą zewnętrzną część budynku narażoną na bezpośrednie i długotrwałe oddziaływanie niekorzystnych czynników atmosferycznych, mechanicznych i środowiskowych.

innogy.pl Przyłącze energetyczne czy agregat — co wybrać?

Przyłącze energetyczne czy agregat — co wybrać? Przyłącze energetyczne czy agregat — co wybrać?

Rozpoczynasz budowę domu? Pamiętaj, że większość prac budowlanych uzależnionych jest od dostępu do prądu. Jak dostarczyć go na działkę, która nie jest jeszcze podłączona do sieci elektroenergetycznej?...

Rozpoczynasz budowę domu? Pamiętaj, że większość prac budowlanych uzależnionych jest od dostępu do prądu. Jak dostarczyć go na działkę, która nie jest jeszcze podłączona do sieci elektroenergetycznej? Czy korzystniejsze będzie wykonanie przyłącza, czy może wykorzystanie agregatu prądotwórczego?

SUEZ Izolacje Budowlane Kup wiedzę, oszczędź na inwestycji. Konsultacje projektowe z SUEZ

Kup wiedzę, oszczędź na inwestycji. Konsultacje projektowe z SUEZ Kup wiedzę, oszczędź na inwestycji. Konsultacje projektowe z SUEZ

Odpowiedni poziom wiedzy o hydroizolacjach jest niezbędny, żeby budować skutecznie i na długie lata. Hydroizolacje budowlane to skomplikowana materia, a błędy popełniane w tym zakresie często mają fatalne...

Odpowiedni poziom wiedzy o hydroizolacjach jest niezbędny, żeby budować skutecznie i na długie lata. Hydroizolacje budowlane to skomplikowana materia, a błędy popełniane w tym zakresie często mają fatalne skutki. Jak się ich ustrzec? To proste – skonsultuj się z ekspertami!

merXu Integracja merXu z BaseLinkerem

Integracja merXu z BaseLinkerem Integracja merXu z BaseLinkerem

MerXu to nowa międzynarodowa platforma internetowa dla przedsiębiorców sprzedających i kupujących przede wszystkim w kategoriach przemysłowych, takich jak: chemia i metalurgia, budownictwo, elektrotechnika,...

MerXu to nowa międzynarodowa platforma internetowa dla przedsiębiorców sprzedających i kupujących przede wszystkim w kategoriach przemysłowych, takich jak: chemia i metalurgia, budownictwo, elektrotechnika, oświetlenie, ogrzewanie i hydraulika, bhp, narzędzia, przemysł i budowa maszyn, HoReCa oraz wyposażenie biur i przedsiębiorstw.

AlchiPolska Sp. z o.o. Chłodny dach, czyli skuteczna renowacja pokryć dachowych

Chłodny dach, czyli skuteczna renowacja pokryć dachowych Chłodny dach, czyli skuteczna renowacja pokryć dachowych

Przeciekający dach to poważny problem, jednak nie zawsze musi oznaczać konieczności wymiany całego pokrycia. Dostępne na rynku nowoczesne produkty do hydroizolacji, np. system płynnych membran poliuretanowych...

Przeciekający dach to poważny problem, jednak nie zawsze musi oznaczać konieczności wymiany całego pokrycia. Dostępne na rynku nowoczesne produkty do hydroizolacji, np. system płynnych membran poliuretanowych Hyperdesmo firmy Alchimica, zabezpieczą powierzchnię przed szkodliwym działaniem wody, tworząc szczelną, a jednocześnie oddychającą powłokę ochronną nawet w trudno dostępnych miejscach.

Kärcher Twoje płuca to nie filtr. Jak zapewnić wolne od pyłów środowisko pracy na budowie?

Twoje płuca to nie filtr. Jak zapewnić wolne od pyłów środowisko pracy na budowie? Twoje płuca to nie filtr. Jak zapewnić wolne od pyłów środowisko pracy na budowie?

Cząsteczki pyłów to poważne zagrożenie dla zdrowia ludzi. Plac budowy jest z pewnością miejscem, gdzie to zagrożenie jest szczególnie groźne. Kucie, szlifowanie, wiercenie, to zadania, które powodują powstawanie...

Cząsteczki pyłów to poważne zagrożenie dla zdrowia ludzi. Plac budowy jest z pewnością miejscem, gdzie to zagrożenie jest szczególnie groźne. Kucie, szlifowanie, wiercenie, to zadania, które powodują powstawanie dużych ilości pyłów. W jaki sposób zadbać o bezpieczeństwo i zdrowie zatrudnionych osób? Jak ochronić je przed licznymi chorobami spowodowanymi pracą w środowisku o dużym zapyleniu, na przykład takimi jak przewlekła obturacyjna choroba płuc? Na pomoc przybywa niemiecka technologia Kärcher....

Copyright © 2004-2019 Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Spółka komandytowa, nr KRS: 0000537655. Wszelkie prawa, w tym Autora, Wydawcy i Producenta bazy danych zastrzeżone. Jakiekolwiek dalsze rozpowszechnianie artykułów zabronione. Korzystanie z serwisu i zamieszczonych w nim utworów i danych wyłącznie na zasadach określonych w Zasadach korzystania z serwisu.
Portal Budowlany - Izolacje.com.pl

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim urządzeniu końcowym. W każdym momencie możesz dokonać zmiany ustawień przeglądarki dotyczących cookies. Nim Państwo zaczną korzystać z naszego serwisu prosimy o zapoznanie się z naszą polityką prywatności oraz Informacją o Cookies. Więcej szczegółów w naszej Polityce Prywatności oraz Informacji o Cookies. Administratorem Państwa danych osobowych jest Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Sp.K., nr KRS: 0000537655, z siedzibą w 04-112 Warszawa, ul. Karczewska 18, tel. +48 22 810-21-24, właściciel strony www.izolacje.com.pl. Twoje Dane Osobowe będą chronione zgodnie z wytycznymi polityki prywatności www.izolacje.com.pl oraz zgodnie z Rozporządzeniem Parlamentu Europejskiego i Rady (UE) 2016/679 z dnia 27 kwietnia 2016r i z Ustawą o ochronie danych osobowych Dz.U. 2018 poz. 1000 z dnia 10 maja 2018r.