Izolacje.com.pl

Zaawansowane wyszukiwanie

Termomodernizacja budynków z uwzględnieniem wymagań cieplno-wilgotnościowych od 1 stycznia 2021 roku

Thermomodernisation of buildings taking into account the thermal and humidity requirements applicable from 1st January 2021

Zastosowanie odpowiedniego materiału termoizolacyjnego pozwala na osiągnięcie niskich wartości współczynnika przenikania ciepła.

Zastosowanie odpowiedniego materiału termoizolacyjnego pozwala na osiągnięcie niskich wartości współczynnika przenikania ciepła.

Termomodernizacja dotyczy dostosowania budynku do nowych wymagań ochrony cieplnej i oszczędności energii. Ponadto stanowi zbiór zabiegów mających na celu wyeliminowanie lub znaczne ograniczenie strat ciepła w istniejącym budynku. Jest jednym z elementów modernizacji budynku, który przynosi korzyści finansowe i pokrycie kosztów innych działań.

Zobacz także

RAXY Sp. z o.o. Nowoczesne technologie w ciepłych i zdrowych budynkach

Nowoczesne technologie w ciepłych i zdrowych budynkach Nowoczesne technologie w ciepłych i zdrowych budynkach

Poznaj innowacyjne, specjalistyczne produkty nadające przegrodom budowlanym odpowiednią trwałość, izolacyjność cieplną i szczelność. Jakie rozwiązania pozwolą nowe oraz remontowane chronić budynki i konstrukcje?

Poznaj innowacyjne, specjalistyczne produkty nadające przegrodom budowlanym odpowiednią trwałość, izolacyjność cieplną i szczelność. Jakie rozwiązania pozwolą nowe oraz remontowane chronić budynki i konstrukcje?

Purinova Sp. z o.o. Turkusowa drużyna Purios ciepło wita pomarańczowego bohatera

Turkusowa drużyna Purios ciepło wita pomarańczowego bohatera Turkusowa drużyna Purios ciepło wita pomarańczowego bohatera

Wy mówicie, a my słuchamy. Wskazujecie na nudne reklamy, inżynierów w garniturach, patrzących z każdego bilbordu i na Mister Muscle Budowlanki w ogrodniczkach. To wszystko już było, a wciąż zapomina się...

Wy mówicie, a my słuchamy. Wskazujecie na nudne reklamy, inżynierów w garniturach, patrzących z każdego bilbordu i na Mister Muscle Budowlanki w ogrodniczkach. To wszystko już było, a wciąż zapomina się o kimś bardzo ważnym.

Gór-Stal Płyty termPIR® na dach i ścianę

Płyty termPIR® na dach i ścianę Płyty termPIR® na dach i ścianę

Izolacja dachu jest bardzo ważną kwestią w przypadku stawiania domu czy też innego lokalu użytkowego. Nowoczesne płyty termoizolacyjne termPIR® można stosować nie tylko przy ociepleniu stropów i dachów,...

Izolacja dachu jest bardzo ważną kwestią w przypadku stawiania domu czy też innego lokalu użytkowego. Nowoczesne płyty termoizolacyjne termPIR® można stosować nie tylko przy ociepleniu stropów i dachów, ale także przy izolacji ścian. Warto prawidłowo wykonać ocieplenie domu, aby przypadkowo nie narazić się na wysokie rachunki za ogrzewanie.

 

Abstrakt

W artykule opisano wybrane działania termomodernizacyjne stosowane w istniejących budynkach wraz z przykładami obliczeniowymi uwzgledniającymi wymagania cieplno-wilgotnościowe.

Thermomodernisation of buildings taking into account the thermal and humidity requirements applicable from 1st January 2021

The article describes selected thermo modernization measures applied in existing buildings together with calculation examples taking into account thermal and humidity requirements.

Działania energooszczędne stosowane w budynkach o niskim zużyciu energii można podzielić na trzy podstawowe grupy:

  • Pierwsza to technologie związane z redukcją strat ciepła przez przegrody, a w szczególności:
    - ocieplanie przegród zewnętrznych (podłogi na gruncie, stropy, dach, ściany),
    - dobór stolarki okiennej i drzwiowej z uwzględnieniem wymagań cieplnych według rozporządzenia [1].
  • Druga grupa dotyczy redukcji strat oraz poprawy sprawności systemu instalacyjnego i jest to m.in.:
    - wymiana lub modernizacja grzejników,
    - wymiana lub modernizacja systemu grzewczego (zastosowanie ogrzewania podłogowego, powietrznego itp.),
    - instalacja termostatów,
    - montaż nowoczesnych regulatorów pogodowych bądź pokojowych,
    - izolacja przewodów c.w.u i c.o.,
    - wymiana lub modernizacja systemu wytwarzania ciepłej wody,
    - wymiana lub modernizacja systemu wentylacji (np. zastosowanie wentylacji mechanicznej z odzyskiem ciepła – rekuperatora).
  • Trzecią grupę stanowią prace projektowo-wykonawcze lub modernizacyjne skupiające się na źródle ciepła, do których można zaliczyć:
    - zaprojektowanie i zainstalowanie lub wymianę źródła ciepła (zamiana kotła na nowy cechujący się lepszą sprawnością bądź zamiana źródła lokalnego na miejską sieć ciepłowniczą),
    - zmianę nośnika energii (zamiana kotła na inny, który wytwarza energię, spalając paliwo innego rodzaju, wyjątkiem jest zamiana paliwa w tym samym kotle, który jest przystosowany do spalania kilku rodzajów surowców),
    - zastosowanie technologii wykorzystującej odnawialne źródła energii (OZE) na potrzeby grzewcze (np. pompy ciepła, biopaliwa, kolektory słoneczne),
    - zastosowanie kogeneracji (produkcja jednoczesnego prądu oraz ciepła – dotyczy współdzielni),
    - a także zastosowanie automatyki sterującej źródłem.

Docieplenie przegród zewnętrznych jako podstawowy element termomodernizacji

Aby ilość energii cieplnej potrzebnej do użytkowania budynku zgodnie z jego przeznaczeniem można było utrzymać na racjonalnie niskim poziomie, przewidziano dwie metody pozwalające spełnić wymaganie w nowo projektowanych budynkach:

  • pierwsza polega na takim zaprojektowaniu przegród w budynku, aby wartości współczynników przenikania ciepła U/Uc [W/(m2·K)] przegród zewnętrznych, okien, drzwi oraz technika instalacyjna odpowiadały wymaganiom izolacyjności cieplnej, kryterium w zakresie ochrony cieplnej: Uc  ≤  Uc(max),
  • druga to zaprojektowanie budynku pod kątem zapotrzebowania na nieodnawialną energię pierwotną na jednostkę powierzchni pomieszczeń o regulowanej temperaturze powietrza w budynku, lokalu mieszkalnym lub części budynku stanowiącej samodzielną całość techniczno-użytkową – EP [kWh/(m2·rok)], kryterium w zakresie oszczędności energii: EP    EP(max).

Według rozporządzenia [1] dla budynku produkcyjnego, magazynowego i gospodarczego dopuszcza się większe wartości współczynnika U/Uc niż U(max) oraz Uc(max), jeśli uzasadnia to rachunek efektywności ekonomicznej inwestycji, obejmujący koszt budowy i eksploatacji budynku. Ponadto w budynku mieszkalnym, zamieszkania zbiorowego, użyteczności publicznej, produkcyjnym, magazynowym i gospodarczym podłoga na gruncie w ogrzewanym pomieszczeniu powinna mieć izolację cieplną obwodową z materiału izolacyjnego w postaci warstwy o oporze cieplnym co najmniej 2,0 (m2·K)/W, przy czym opór cieplny warstw podłogowych oblicza się zgodnie z PN-EN ISO 6946:2008 [2] oraz PN-EN ISO 13370:2008 [3].

Według zmian wprowadzonych w rozporządzeniu [1] wymagania dla nowo projektowanych budynków dotyczą jednoczesnego spełnienia dwóch wymagań w zakresie współczynnika przenikania ciepła U [W/(m2·K)] – Uc≤ Uc(max) dla pojedynczych przegród budynku oraz wskaźnika zapotrzebowania na nieodnawialną energię pierwotną EP [kWh/(m2·rok)] – EP ≤ EP(max) dla całego budynku.

RYS. 1. Przykładowy dobór materiałów termoizolacyjnych; rys.: K. Pawłowski

RYS. 1. Przykładowy dobór materiałów termoizolacyjnych; rys.: K. Pawłowski

RYS. 2. Kolejność postępowania w aspekcie ocieplenia na istniejące ocieplenie; rys.: opracowanie własne na podst. [4, 5]

RYS. 2. Kolejność postępowania w aspekcie ocieplenia na istniejące ocieplenie; rys.: opracowanie własne na podst. [4, 5]

Wymagania minimalne, o których mowa w ust. 1 rozporządzenia [1], uznaje się za spełnione dla budynku podlegającego przebudowie – termomodernizacji, jeżeli przegrody oraz wyposażenie techniczne budynku podlegające przebudowie odpowiadają przynajmniej wymaganiom izolacyjności cieplnej określonym w załączniku nr 2 do rozporządzenia [1]. Ponadto należy pamiętać, że budynek powinien być zaprojektowany i wykonany w taki sposób, aby ograniczyć ryzyko przegrzewania budynku w okresie letnim (dotyczy przegród przezroczystych – stolarka okienna). W trakcie projektowania i wykonywania docieplenia przegród zewnętrznych budynku należy pamiętać o wyeliminowaniu zjawiska kondensacji powierzchniowej (ryzyko rozwoju pleśni i grzybów pleśniowych) oraz kondensacji międzywarstwowej.

RYS. 3–4. Rozkład temperatury w ścianie ocieplonej od zewnątrz (3) i od wewnątrz (4); rys.: K. Pawłowski

RYS. 3–4. Rozkład temperatury w ścianie ocieplonej od zewnątrz (3) i od wewnątrz (4); rys.: K. Pawłowski

RYS. 5. Ocieplenie poddaszy użytkowych w budynkach istniejących: izolacja cieplna między i pod krokwiami. Oznaczenia: 1 – dachówka ceramiczna, 2 – łata, 3 – kontrłata, 4 – szczelina dobrze wentylowana, 5 – folia wysokoparoprzepuszczalna, 6 – krokiew, 7 – izolacja cieplna (np. wełna mineralna), 8 – dodatkowa warstwa izolacji cieplnej (np. wełna mineralna), 9 – folia paroizolacyjna, 10 – płyta gipsowo­‑kartonowa; rys.: K. Pawłowski

RYS. 5. Ocieplenie poddaszy użytkowych w budynkach istniejących: izolacja cieplna między i pod krokwiami. Oznaczenia: 1 – dachówka ceramiczna, 2 – łata, 3 – kontrłata, 4 – szczelina dobrze wentylowana, 5 – folia wysokoparoprzepuszczalna, 6 – krokiew, 7 – izolacja cieplna (np. wełna mineralna), 8 – dodatkowa warstwa izolacji cieplnej (np. wełna mineralna), 9 – folia paroizolacyjna, 10 – płyta gipsowo­‑kartonowa; rys.: K. Pawłowski

RYS. 6. Ocieplenie poddaszy użytkowych w budynkach istniejących: izolacja cieplna nad krokwiami. Oznaczenia: 1 – dachówka ceramiczna, 2 – łata, 3 – kontrłata lub deskowanie, 4 – szczelina dobrze wentylowana, 5 – folia, 6 – izolacja cieplna (np. płyty PIR/PUR), 7 – folia paroizolacyjna, 8 – deskowanie, 9 – krokiew; rys.: K. Pawłowski

RYS. 6. Ocieplenie poddaszy użytkowych w budynkach istniejących: izolacja cieplna nad krokwiami. Oznaczenia: 1 – dachówka ceramiczna, 2 – łata, 3 – kontrłata lub deskowanie, 4 – szczelina dobrze wentylowana, 5 – folia, 6 – izolacja cieplna (np. płyty PIR/PUR), 7 – folia paroizolacyjna, 8 – deskowanie, 9 – krokiew; rys.: K. Pawłowski

Zastosowanie odpowiedniego materiału termoizolacyjnego pozwala na osiągnięcie niskich wartości współczynnika przenikania ciepła U/Uc [W/(m2·K)] pełnej przegrody i liniowego współczynnika przenikania ciepła Ψ [W/(m·K)] oraz minimalizację ryzyka występowania kondensacji powierzchniowej i międzywarstwowej. Przed wyborem odpowiedniego materiału do izolacji cieplnej należy zwrócić uwagę na takie właściwości, jak:

  • współczynnik przewodzenia ciepła λ [W/(m·K)],
  • gęstość objętościowa,
  • izolacyjność akustyczna,
  • przepuszczalność pary wodnej,
  • współczynnik oporu dyfuzyjnego μ [-],
  • wrażliwość na czynniki biologiczne i chemiczne,
  • ochronę przeciwpożarową.

Na podstawie prowadzonych obliczeń i analiz w tym zakresie zestawiono przykładowy dobór materiałów termoizolacyjnych (RYS. 1).

Najpopularniejszą metodą wykonywania izolacji termicznej ścian stała się metoda lekka–mokra, która ewoluowała w bezspoinowy system ocieplenia określany w skrócie – BSO, a od 2009 r. w Polsce określana jest jako ETICS. Chociaż docieplenie metodą lekką–mokrą wydaje się nieskomplikowane, to w trakcie realizacji i eksploatacji można napotkać na pewne niedoskonałości, ponieważ wiedza dotycząca zasad stosowania ociepleń była relatywnie niska i brakowało doświadczeń wykonawczych oraz nadzór i kontrole podczas robót budowlanych były niewystarczające i mało efektywne. Dlatego ważnym zagadnieniem jest ocena trwałości docieplenia budynku.

Szczególnie jest to istotne w przypadku ponownego docieplenia ocieplonych ścian zewnętrznych w celu spełnienia obecnie obowiązujących przepisów prawnych i wymagań technicznych.

Naprawy ocieplonych elewacji dotyczą zabiegów:

  • kosmetycznych (np. mycie elewacji),
  • powierzchniowych (wzmacnianie struktur tynkarskich i malowanie zabezpieczające),
  • w zakresie usuwania uszkodzonych warstw i ponowne wykonywanie lub wymianę warstw zewnętrznych,
  • w zakresie wykonywania dodatkowego ocieplenia na już istniejącym.

Należy podkreślić, że wykonywanie dodatkowego ocieplenia na już istniejącym stało bardzo ważnym zagadnieniem remontowym wielu istniejących budynków mieszkalnych lub użyteczności publicznej. Dlatego też Instytut Techniki Budowlanej, a także organizacje zrzeszające producentów ociepleń starają się szczegółowo zapoznać z problematyką tego typu realizacji. Zasadne staje się opracowanie wytycznych realizacji ociepleń wykonywanych na ociepleniach istniejących.

W ostatnich latach powstały aprobaty techniczne wydane przez Instytut Techniki Budowlanej w Warszawie dla systemów uwzględniających możliwość mocowania do ścian ocieplonych nowego ocieplenia w zakresie spełnienia obowiązujących wymagań cieplnych. Obecne rozwiązania dotyczą jedynie systemów z zastosowaniem styropianu [4, 5].

Na podstawie prowadzonych analiz i obserwacji własnych oraz wytycznych dotyczących renowacji istniejących systemów dociepleń budynków opracowano algorytm (schemat) postępowania w zakresie ocieplenia na istniejące ocieplenie (RYS. 2).

Natomiast ocieplenie przegród zewnętrznych od wewnątrz projektowane i wykonywane jest w:

  • obiektach zabytkowych (budynki wpisane do rejestru zabytków lub objęte ochroną konserwatorską),
  • obiektach o wartości architektonicznej (ciekawy charakter elewacji lub oryginalny wygląd budynku),
  • obiektach o ograniczonych prawach własności (w przypadku gdy część ścian zewnętrznych znajduje się dokładnie na granicy działki),
  • a także w obiektach użytkowanych czasowo (ogrzewanie czasowe w nieregularnych okresach).

Takie rozwiązanie wiąże się jednak ze zjawiskiem wnikania pary wodnej w strukturę przegrody i jej kondensacji.

Na skutek niskiej temperatury otoczenia spada znacznie temperatura wewnątrz przegrody, powodując kondensację na styku warstwy konstrukcyjnej i izolacji cieplnej. Warstwa izolacji cieplnej od strony wewnętrznej przegrody oddziela konstrukcję muru od środowiska wewnętrznego co wpływa na zmniejszenie pojemności cieplnej całego budynku i powoduje wprowadzenie całej warstwy konstrukcyjnej w strefę przemarzania (RYS. 3–4).

Podstawową zaletą ocieplenia od wewnątrz jest zmniejszenie ilości energii niezbędnej do ogrzania pomieszczeń o żądanej temperaturze oraz skrócenia czasu nagrzewania [6].

Docieplenie poddaszy użytkowych można przeprowadzić wprowadzając dodatkową warstwę izolacji cieplnej pod krokwiami lub zastosować system nadkrokwiowy (RYS. 5 i RYS. 6). Często w związku ze stanem technicznym materiału termoizolacyjnego międzykrokwiami należy podjąć decyzję w zakresie całkowitej wymiany ocieplenia.

Szczegółową analizę modernizacji poddaszy użytkowych przedstawiono m.in. w pracach [6, 7].

Przykładowe rozwiązania materiałowe docieplenia przegród zewnętrznych – studium przypadku

Istnieje wiele rozwiązań materiałowych dociepleń przegród zewnętrznych istniejących budynków. Dobór materiału termoizolacyjnego i technologii wykonania nie powinien być przypadkowy, lecz oparty na podstawie analiz otrzymanych parametrów fizykalnych z uwzględnieniem parametrów powietrza zewnętrznego i wewnętrznego.

Przykład 1. Analiza parametrów fizykalnych ściany zewnętrznej z cegły pełnej przed i po dociepleniu

Do obliczeń wytypowano ścianę zewnętrzną z cegły pełnej gr. 37 cm o współczynniku λ = 0,77 W/(m·K) ocieplonej od zewnątrz:

  • wełna mineralna gr. 10, 12, 15 cm, λ = 0,04 W/(m·K);
  • styropian gr. 10, 12, 15 cm, λ = 0,035 W/(m·K),
  • styropian grafitowy gr. 10, 12, 15 cm, λ = 0,031 W/(m·K),
  • płyta z pianki poliuretanowej gr. 10, 12, 15 cm, λ = 0,022 W/(m·K)

oraz ocieplonej od wewnątrz:

  • lekka odmiana betonu komórkowego gr. 10, 12 cm, λ = 0,042 W/(m·K),
  • płyty klimatyczne gr. 10, 12 cm, λ = 0,059 W/(m·K).

Obliczenia przeprowadzono zgodnie z procedurą według PN-EN ISO 6946:2008 [2].

Wyniki obliczeń współczynnika przenikania ciepła Uc [W/(m2·K)] w zależności od rodzaju i grubości materiału termoizolacyjnego przedstawiono w TABELI 1. Kolorem jasnozielonym zaznaczono w niej warianty obliczeniowe (rozwiązania konstrukcyjno-materiałowe ściany zewnętrznej z cegły pełnej gr. 37 cm z ociepleniem), które spełniają podstawowe kryterium cieplne: Uc [W/(m2·K)]  ≤  UC(max) = 0,20 W/(m2·K).

TABELA 1. Wyniki obliczeń współczynnika przenikania ciepła ściany zewnętrznej z cegły pełnej z ociepleniem

TABELA 1. Wyniki obliczeń współczynnika przenikania ciepła ściany zewnętrznej z cegły pełnej z ociepleniem

Przykład 2. Analiza parametrów fizykalnych połączenia ściany zewnętrznej z oknem przed i po dociepleniu

W celu poszukiwania poprawnego rozwiązania układu materiałowego spełniającego obowiązujące wymagania dla budynku po dociepleniu należy wykonać szczegółowe obliczenia parametrów fizykalnych złączy przegród zewnętrznych w kilku wariantach obliczeniowych. W przykładzie obliczeniowym rozpatrywano połączenie ściany zewnętrznej z oknem w przekroju przez ościeżnicę przy zróżnicowanym usytuowaniu ocieplenia w następujących wariantach:

  • wariant I (RYS. 7–10):
    - ściana zewnętrzna z cegły pełnej gr. 37 cm (λ = 0,77 W/(m·K));
    - tynk gipsowy gr. 1,5 cm (λ = 0,40 W/(m·K));
    - stolarka okienna:
      ♦ przypadek A – o współczynniku przenikania ciepła okna Uw = 1,75 W/(m2·K),
      ♦ przypadek B – Uw = 0,86 W/(m2·K),
RYS. 7–10. Przykładowe graficzne przedstawienie wyników symulacji komputerowej dla połączenia ściany zewnętrznej (bez ocieplenia) z oknem w przekroju przez ościeżnicę: model obliczeniowy (7), linie strumieni cieplnych (adiabaty) (8), izotermy (9), izotermy w zakresie 0–20°C (10); rys.: K. Pawłowski

RYS. 7–10. Przykładowe graficzne przedstawienie wyników symulacji komputerowej dla połączenia ściany zewnętrznej (bez ocieplenia) z oknem w przekroju przez ościeżnicę: model obliczeniowy (7), linie strumieni cieplnych (adiabaty) (8), izotermy (9), izotermy w zakresie 0–20°C (10); rys.: K. Pawłowski

  • wariant II (RYS. 11–14):
    - ściana zewnętrzna z cegły pełnej gr. 37 cm (λ = 0,77 W/(m·K));
    - tynk gipsowy gr. 1,5 cm (λ = 0,40 W/(m·K));
    - izolacja termiczna od zewnątrz: płyty z pianki poliuretanowej gr. 10, 12, 15 i 20 cm (λ = 0,022 W/(m·K));
    - stolarka okienna Uw = 0,86 W/(m2·K);
    - bez węgarka,
RYS. 11–14. Przykładowe graficzne przedstawienie wyników symulacji komputerowej dla połączenia ściany zewnętrznej (z ociepleniem od zewnątrz) z oknem w przekroju przez ościeżnicę bez węgarka: model obliczeniowy (11), linie strumieni cieplnych (adiabaty) (12), izotermy (13), izotermy w zakresie 0–20°C (14); rys.: K. Pawłowski

RYS. 11–14. Przykładowe graficzne przedstawienie wyników symulacji komputerowej dla połączenia ściany zewnętrznej (z ociepleniem od zewnątrz) z oknem w przekroju przez ościeżnicę bez węgarka: model obliczeniowy (11), linie strumieni cieplnych (adiabaty) (12), izotermy (13), izotermy w zakresie 0–20°C (14); rys.: K. Pawłowski

  • wariant III (RYS. 15–18):
    - ściana zewnętrzna z cegły pełnej gr. 37 cm (λ = 0,77 W/(m·K));
    - tynk gipsowy gr. 1,5 cm (λ = 0,40 W/(m·K));
    - izolacja termiczna od zewnątrz: płyty z pianki poliuretanowej gr. 10, 12, 15 i 20 cm (λ = 0,022 W/(m·K));
    - stolarka okienna Uw = 0,86 W/(m2·K);
    - z węgarkiem (ocieplenie zachodzi na ościeżnicę – 4 cm),
RYS. 15–18. Przykładowe graficzne przedstawienie wyników symulacji komputerowej dla połączenia ściany zewnętrznej (z ociepleniem od zewnątrz) z oknem w przekroju przez ościeżnicę z węgarkiem: model obliczeniowy (15), linie strumieni cieplnych (adiabaty) (16), izotermy (17), izotermy w zakresie 0–20°C (18); rys.: K. Pawłowski

RYS. 15–18. Przykładowe graficzne przedstawienie wyników symulacji komputerowej dla połączenia ściany zewnętrznej (z ociepleniem od zewnątrz) z oknem w przekroju przez ościeżnicę z węgarkiem: model obliczeniowy (15), linie strumieni cieplnych (adiabaty) (16), izotermy (17), izotermy w zakresie 0–20°C (18); rys.: K. Pawłowski

  • wariant IV (RYS. 19–22):
    - ściana zewnętrzna z cegły pełnej gr. 37 cm (λ = 0,77 W/(m·K));
    - tynk gipsowy gr. 1,5 cm (λ = 0,40 W/(m·K));
    - izolacja termiczna od wewnątrz: płyty z pianki poliuretanowej gr. 10, 12, 15 i 20 cm (λ = 0,022 W/(m·K));
    - stolarka okienna Uw = 0,86 W/(m2·K);
    - bez węgarka,
RYS. 19–22. Przykładowe graficzne przedstawienie wyników symulacji komputerowej dla połączenia ściany zewnętrznej (z ociepleniem od wewnątrz) z oknem w przekroju przez ościeżnicę bez węgarka: model obliczeniowy (19), linie strumieni cieplnych (adiabaty) (20), izotermy (21), izotermy w zakresie 0–20°C (22); rys.: K. Pawłowski

RYS. 19–22. Przykładowe graficzne przedstawienie wyników symulacji komputerowej dla połączenia ściany zewnętrznej (z ociepleniem od wewnątrz) z oknem w przekroju przez ościeżnicę bez węgarka: model obliczeniowy (19), linie strumieni cieplnych (adiabaty) (20), izotermy (21), izotermy w zakresie 0–20°C (22); rys.: K. Pawłowski

  • wariant V (RYS. 23–26):
    - ściana zewnętrzna z cegły pełnej gr. 37cm (λ = 0,77 W/(m·K));
    - tynk gipsowy gr. 1,5 cm (λ = 0,40 W/(m·K));
    - izolacja termiczna od wewnątrz: płyty z pianki poliuretanowej gr. 10, 12, 15 i 20 cm (λ = 0,022 W/(m·K));
    - stolarka okienna Uw = 0,86 W/(m2·K);
    - z węgarkiem (ocieplenie zachodzi na ościeżnicę – 4 cm).
RYS. 23–26. Przykładowe graficzne przedstawienie wyników symulacji komputerowej dla połączenia ściany zewnętrznej (z ociepleniem od wewnątrz) z oknem w przekroju przez ościeżnicę z węgarkiem: model obliczeniowy (23), linie strumieni cieplnych (adiabaty) (24), izotermy (25), izotermy w zakresie 0–20°C (26); rys.: K. Pawłowski

RYS. 23–26. Przykładowe graficzne przedstawienie wyników symulacji komputerowej dla połączenia ściany zewnętrznej (z ociepleniem od wewnątrz) z oknem w przekroju przez ościeżnicę z węgarkiem: model obliczeniowy (23), linie strumieni cieplnych (adiabaty) (24), izotermy (25), izotermy w zakresie 0–20°C (26); rys.: K. Pawłowski

Dla ww. wariantów określono parametry fizykalne przy zastosowaniu programu komputerowego TRISCO-KOBRU 86 [8] przyjmuje się następujące założenia:

  • modelowanie złączy wykonano zgodnie z zasadami przedstawionymi w PN-EN ISO 10211:2008 [9],
  • opory przejmowania ciepła (Rsi, Rse) przyjęto zgodnie z PN-EN ISO 6946:2008 [2] przy obliczeniach strumieni cieplnych oraz według PN-EN ISO 13788:2003 [10] przy obliczeniach rozkładu temperatur i czynnika temperaturowego ƒRsi(2D),
  • temperatura powietrza wewnętrznego ti = 20°C (pokój dzienny), temperatura powietrza zewnętrznego te = –20°C (III strefa),
  • wartości współczynnika przewodzenia ciepła materiałów budowlanych λ [W/(m·K)] przyjęto według tablic w pracy [11].

Na RYS. 7–10, RYS. 11–14, RYS. 15–18, RYS. 19–22 i RYS. 23–26 przedstawiono graficzne wyniki symulacji komputerowej analizowanego złącza przy zastosowaniu programu komputerowego TRISCO-KOBRU 86 [8], a w TABELI 2 zestawiono wyniki przeprowadzonych obliczeń.

TABELA 2. Wyniki obliczeń parametrów fizykalnych analizowanych złączy ścian zewnętrznych

TABELA 2. Wyniki obliczeń parametrów fizykalnych analizowanych złączy ścian zewnętrznych

Na podstawie przeprowadzonych obliczeń (TABELA 2) można stwierdzić, że analizowane złącza generują dodatkowe straty ciepła określone m.in. w postaci liniowego współczynnika przenikania ciepła Ψi [W/(m·K)] oraz obniżenie temperatury na wewnętrznej powierzchni przegrody tsi,min. [°C]. Parametry fizykalne złączy ścian zewnętrznych po dociepleniu zależą od usytuowania i grubości materiału termoizolacyjnego.

Należy zwrócić uwagę, że ocieplenie połączenia ściany zewnętrznej z oknem bez węgarka powoduje znacznie wyższe dodatkowe straty ciepła (Φ, L2D, Ψi) oraz obniżenie temperatury na wewnętrznej powierzchni przegrody (tsi,min., ƒRsi.(2D)) w porównaniu z dociepleniem przy zastosowaniu węgarka – TABELA 2.

Takie rozwiązanie powoduje ryzyko występowania kondensacji na wewnętrznej powierzchni przegrody (rozwój pleśni i grzybów pleśniowych), kondensacji międzywarstwowej oraz zwiększenie ilości energii koniecznej do ogrzania pomieszczeń o żądanej temperaturze.

Spełnienie kryterium w zakresie uniknięcia występowania ryzyka kondensacji powierzchniowej (rozwoju pleśni i grzybów pleśniowych): ƒRsi.(2D)  ≥  ƒRsi.(kryt.), wymaga określenia wartości ƒRsi.(2D) na podstawie temperatury minimalnej na wewnętrznej powierzchni przegrody w miejscu mostka cieplnego (2D) tmin. [°C] oraz wartości ƒRsi.(kryt.) uwzględniającej parametry powietrza wewnętrznego i zewnętrznego (wilgotność i temperatura powietrza).

Wartość maksymalna z 12 miesięcy w odniesieniu do lokalizacji (Bydgoszcz) ƒRsi.(max) = ƒRsi.(kryt.) = 0,785 (luty). Oznacza to, że w każdym miesiącu roku i dla każdych innych wartości temperatur brzegowych dla uniknięcia kondensacji powierzchniowej ƒRsi.(2D) powinien być większy od 0,785.

Należy podkreślić, że na podstawie przeprowadzonych obliczeń (TABELA 2) w wielu przypadkach połączenia ściany zewnętrznej z oknem wystąpi ryzyko kondensacji powierzchniowej (ryzyko rozwoju pleśni i grzybów pleśniowych).

Przykład 3. Analiza parametrów cieplnych stropodachów drewnianych przed i po modernizacji

W pierwszym etapie obliczeń określono współczynnik przenikania ciepła Uc stropodachu drewnianego (nad poddaszem użytkowym) z ociepleniem pomiędzy krokwiami (RYS. 27).

W analizowanej połaci dachowej (stropodachu o konstrukcji drewnianej) zaprojektowano dobrze wentylowaną warstwę powietrza (gr. 3 cm między kontrłatami i gr. 3 cm nad izolacją cieplną), co spełnia to kryterium według pkt. 5.3.4. normy PN-EN ISO 6946:2008 [2]; „całkowity opór cieplny komponentu budowlanego zawierającego dobrze wentylowaną warstwę powietrza należy obliczyć, pomijając opór cieplny warstwy powietrza i wszystkich innych warstw między warstwą powietrza a środowiskiem zewnętrznym oraz dodając zewnętrzny opór przejmowania ciepła, odpowiadający powietrzu nieruchomemu; alternatywnie może być zastosowana wartość Rsi z Tablicy 1 normy”. Obliczenia współczynnika przenikania ciepła U dla przegrody niejednorodnej cieplnie wykonano metodą kresów według PN-EN ISO 6946:2008 [2]. Wyniki obliczeń w zależności od zastosowanego materiału termoizolacyjnego przedstawiono w TABELI 3.

Należy zwrócić uwagę, że przy zastosowaniu ocieplenia gr. 18 lub 20 cm jako izolacji między krokwiami trudno jest spełnić podstawowe kryterium cieplne: Uc [W/(m2·K)]  ≤  UC(max) = 0,15 W/(m2·K) – TABELA 3.

TABELA 3. Zestawienie wyników obliczeń współczynnika przenikania ciepła dachu drewnianego z ociepleniem pomiędzy krokwiami

TABELA 3. Zestawienie wyników obliczeń współczynnika przenikania ciepła dachu drewnianego z ociepleniem pomiędzy krokwiami

RYS. 27. Przykładowe zastosowania pianki poliuretanowej w dachach skośnych drewnianych: izolacja cieplna między krokwiami. Oznaczenia: 1 – dachówka ceramiczna, 2 – łata, 3 – kontrłata, 4 – szczelina dobrze wentylowana, 5 – folia wysokoparoprzepuszczalna, 6 – krokiew, 7 – izolacja cieplna, 8 – folia paroizolacyjna, 9 – płyta gipsowo­‑kartonowa; rys.: K. Pawłowski

RYS. 27. Przykładowe zastosowania pianki poliuretanowej w dachach skośnych drewnianych: izolacja cieplna między krokwiami. Oznaczenia: 1 – dachówka ceramiczna, 2 – łata, 3 – kontrłata, 4 – szczelina dobrze wentylowana, 5 – folia wysokoparoprzepuszczalna, 6 – krokiew, 7 – izolacja cieplna, 8 – folia paroizolacyjna, 9 – płyta gipsowo­‑kartonowa; rys.: K. Pawłowski  

RYS. 28. Przykładowe zastosowania pianki poliuretanowej w dachach skośnych drewnianych: izolacja cieplna między i pod krokwiami. Oznaczenia: 1 – dachówka ceramiczna, 2 – łata, 3 – kontrłata, 4 – szczelina dobrze wentylowana, 5 – folia wysokoparoprzepuszczalna, 6 – krokiew, 7 – izolacja cieplna, 8 – dodatkowa warstwa izolacji cieplnej, 9 – folia paroizolacyjna, 10 – płyta gipsowo­‑kartonowa; rys.: K. Pawłowski

RYS. 28. Przykładowe zastosowania pianki poliuretanowej w dachach skośnych drewnianych: izolacja cieplna między i pod krokwiami. Oznaczenia: 1 – dachówka ceramiczna, 2 – łata, 3 – kontrłata, 4 – szczelina dobrze wentylowana, 5 – folia wysokoparoprzepuszczalna, 6 – krokiew, 7 – izolacja cieplna, 8 – dodatkowa warstwa izolacji cieplnej, 9 – folia paroizolacyjna, 10 – płyta gipsowo­‑kartonowa; rys.: K. Pawłowski

Następnie określono współczynnik przenikania ciepła Uc stropodachu drewnianego (nad poddaszem użytkowym) z ociepleniem pomiędzy krokwiami i pod krokwiami (RYS. 28).

Wyniki obliczeń zestawiono w TABELI 4.

Kolorem jasnozielonym zaznaczono w niej warianty obliczeniowe (rozwiązania konstrukcyjno-materiałowe dachów drewnianych ocieplonych między krokwiami i pod krokwiami), które spełniają podstawowe kryterium cieplne: Uc [W/(m2·K)]  ≤  UC(max) = 0,15 W/(m2·K).

TABELA 4. Zestawienie wyników obliczeń współczynnika przenikania ciepła dachu drewnianego z ociepleniem pomiędzy krokwiami i pod krokwiami

TABELA 4. Zestawienie wyników obliczeń współczynnika przenikania ciepła dachu drewnianego z ociepleniem pomiędzy krokwiami i pod krokwiami

Usprawnienia instalacji w budynku jako przykład działań termomodernizacyjnych

  • Określając energochłonność budynku, należy uwzględnić także sprawności systemów instalacyjnych budynku wynikające z: regulacji i wykorzystania ciepła w przestrzeni ogrzewanej (ηH,e), przesyłu ciepła ze źródła ciepła do przestrzeni ogrzewanej (ηH,d), akumulacji ciepła w elementach pojemnościowych systemu ogrzewania (ηH,s), wytwarzania ciepła z nośnika energii lub energii dostarczanych do źródła ciepła (ηH,g).
  • Instalacja grzewcza w budynku musi spełniać wymagania przepisów techniczno-budowlanych, a także powinna uwzględniać wiedzę techniczną z zakresu rozwiązań energooszczędnych.
  • Projektowany system powinien być systemem wysokosprawnym.
  • Należy zaplanować wysokosprawne źródła ciepła, dołożyć wszelkich starań w celu obniżenia strat na przesyle czynnika grzewczego oraz, jeśli występuje zbiornik akumulacyjny, straty na akumulacji powinny być minimalne, a także optymalnie dobrać elementy odpowiedzialne za regulację i wykorzystanie ciepła.
  • Maksymalne możliwe sprawności można uzyskać według [12] m.in. poprzez stosowanie kotłów kondensacyjnych, pomp ciepła o wysokim współczynniku efektywności (COP), odpowiednie prowadzenie przewodów rozprowadzających czynnik grzejny (zwarta instalacja) oraz ich właściwą izolację cieplną, odpowiednią izolację zbiorników buforowych oraz dobrane do specyfiki ich pracy i użytkowania sterowanie ładowaniem i rozładowaniem, niskotemperaturowe systemy grzejne płaszczyznowe, grzejnikowe lub mieszane, stosowanie wysokosprawnych pomp pomocniczych charakteryzujących się niskim poborem mocy (skutkujące małym zużyciem energii pomocniczej).

Wartość wskaźnika rocznego zapotrzebowanie na nieodnawialną energię pierwotną (EP) określa efektywność całkowitą budynku i służy do sprawdzenia kryterium w zakresie oszczędności energii według rozporządzenia [1]: EP  ≤  EP(max). Dotyczy energii zawartej w źródłach, w tym paliwach i nośnikach, niezbędnej do pokrycia zapotrzebowania na energię końcową, z uwzględnieniem dodatkowych nakładów na dostarczenie tej energii do granicy budynku.

Wartość współczynnika nakładu nieodnawialnej energii pierwotnej na wytworzenie i dostarczenie nośnika energii lub energii dla systemów technicznych wi przyjmuje się na podstawie danych udostępnionych przez dostawcę tego nośnika energii lub energii. Uzyskanie niskich wartości wskazuje na nieznaczne zapotrzebowanie i tym samym wysoką efektywność energetyczną budynku.

Wprowadzenie odnawialnych źródeł energii (OZE) powoduje możliwość wprowadzenia do obliczeń wskaźnika wi poniżej 1, a w konsekwencji uzyskanie niskiej wartości wskaźnika EP.

Na stronach internetowych niektórzy dostawcy ciepła zamieszczają wartości wskaźnika nakładu nieodnawialnej energii pierwotnej. W przypadku braku takich danych przyjmuje się wartości współczynnika wi określone w rozporządzeniu [13].

Podjęte działania termomodernizacyjne w budynkach istniejących powinny być przeprowadzane na podstawie szczegółowej analizy ich stanu technicznego i cieplnego. Natomiast ocenę jakości prac związanych z dociepleniem przegród zewnętrznych należy przeprowadzać na podstawie badań termowizyjnych. Wyniki i analizy w tym zakresie dla osiedla na Górnym Śląsku zaprezentowano w pracy [14].

Istnieje potrzeba prowadzenia obliczeń i analiz dotyczących podejmowanych działań energooszczędnych na etapie ich projektowania, wykonawstwa oraz eksploatacji budynków.

Podsumowanie i wnioski

Dobór działań termomodernizacyjnych w istniejących budynkach jest procesem złożonym, obejmującym m.in. zagadnienia materiałów budowlanych, fizyki budowli oraz instalacji budowlanych.

Jakość cieplna obudowy budynku jest oceniana przez określenie wartości współczynników Uc, które wykorzystywane są do dalszych obliczeń w zakresie analizy cieplno-wilgotnościowej przegród i całego budynku (np. współczynnik strat ciepła przez przenikanie Htr [W/K], zapotrzebowanie na energię użytkową EU, energię końcową EK i pierwotną EP [kWh/(m2·rok)]).

Należy także podkreślić, że przy dociepleniu przegród zewnętrznych i ich złączy trzeba uwzględniać kryteria w zakresie: izolacyjności cieplnej, kondensacji powierzchniowej i międzywarstwowej, izolacyjności akustycznej, ochrony przeciwpożarowej oraz nośności i trwałości konstrukcji. Niektóre układy warstw materiałowych spełniają wymagania w zakresie izolacyjności cieplnej (Uc  ≤  Uc(max)), jednak po przeprowadzeniu analizy w zakresie wymagań wilgotnościowych, akustycznych lub przeciwpożarowych usytuowanie warstwy izolacji cieplnej w dowolnym położeniu przegrody jest niedopuszczalne.

Istotne staje się także miarodajne określenie parametrów fizykalnych (cieplno-wilgotnościowych) złączy budowlanych, których wartości zależą od usytuowania i grubości materiału termoizolacyjnego oraz położenia stolarki okiennej w ścianie zewnętrznej (TABELA 2). Posługiwanie się wartościami przybliżonymi i orientacyjnymi, np. w oparciu o PN-EN ISO 14683:2008 [15], jest nieuzasadnione, ponieważ nie uwzględniają zmiany układów materiałowych oraz rodzaju i grubości izolacji cieplnej. Szczegółowe obliczenia i analizy w zakresie ocieplenia elementów obudowy budynków istniejących przedstawiono m.in. w pracach [6], [16].

Całokształt działań termomodernizacyjnych budynków powinien obejmować także usprawnienie lub wymianę elementów instancji szczególnie centralnego ogrzewania i przygotowania ciepłej wody użytkowej oraz wprowadzenie odnawialnych źródeł energii (OZE). Takie kompleksowe podejście do dostosowania budynków do wymagań w zakresie oszczędności energii (EP  ≤  EP(max)) i ochrony cieplnej budynków (Uc  ≤  UC(max)) sprawia, że wartość wskaźnika zapotrzebowania budynku na energię pierwotną (EP) jest stosunkowa niska, a emisja CO2 (ECO2) do atmosfery jest maksymalnie ograniczona.

Literatura

  1. Rozporządzenie Ministra Infrastruktury i Budownictwa z dnia 14 listopada 2017 r. zmieniające rozporządzenie w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie (DzU z 2017 r. poz. 2285).
  2. PN-EN ISO 6946:2008, "Komponenty budowlane i elementy budynku. Opór cieplny i współczynnik przenikania ciepła. Metoda obliczania".
  3. PN-EN ISO 13370:2008, "Cieplne właściwości użytkowe budynków. Wymiana ciepła przez grunt. Metoda obliczania".
  4. P. Gałek, "Metody docieplenia budynków na starych systemach ociepleń",  "Wyzwania współczesnego budownictwa w dziedzinie izolacji" – materiały konferencyjne, Dom Wydawniczy MEDIUM, Warszawa 2012.
  5. "Ocieplenie na ocieplenia – zalecenia dotyczące renowacji istniejącego systemu ETCS", Stowarzyszenie na Rzecz Systemów Ociepleń, wydanie I, Warszawa 2012.
  6. M. Wesołowska, K. Pawłowski, "Aspekty związane z dostosowaniem obiektów istniejących do standardów budownictwa energooszczędnego", praca wydana w ramach projektu finansowanego ze środków funduszy norweskich i środków krajowych, Agencja Reklamowa TOP, Włocławek 2016.
  7. M. Wesołowska, K. Pawłowski, P. Rożek, "Modernizacja poddaszy użytkowych", "IZOLACJE" 11/12/2019, s. 34–43.
  8. Program komputerowy TRISCO-KOBRU 86, PHYSIBEL c.V, Belgia.
  9. PN-EN ISO 10211:2008, "Mostki cieplne w budynkach. Strumienie ciepła i temperatury powierzchni. Obliczenia szczegółowe".
  10. PN-EN ISO 13788:2003, "Cieplno-wilgotnościowe właściwości komponentów budowlanych i elementów budynku. Temperatura powierzchni wewnętrznej umożliwiająca uniknięcie krytycznej wilgotności powierzchni wewnętrznej kondensacji. Metody obliczania".
  11. K. Pawłowski, "Projektowanie przegród zewnętrznych w świetle aktualnych warunków technicznych dotyczących budynków. Obliczenia cieplno-wilgotnościowe przegród zewnętrznych i ich złączy", Grupa MEDIUM, Warszawa 2016.
  12. "Poradnik w zakresie poprawy charakterystyki energetycznej budynków", Ministerstwo Infrastruktury i Budownictwa, Warszawa 2016.
  13. Rozporządzenie Ministra Inwestycji i Rozwoju z dnia 6 września 2019 r. zmieniające rozporządzenie w sprawie metodologii wyznaczania charakterystyki energetycznej budynku lub części budynku oraz świadectw charakterystyki energetycznej (DzU z 2019 r. poz. 1829).
  14. A. Ostańska, "Increasing The Energy Efficiency of Dwelling Houses: Case Study of Residentia; Quarter in Upper Silesia, Poland", "Budownictwo i Architektura" 18(1)/2019, s. 23–32.
  15. PN-EN ISO 14683:2008, "Mostki cieplne w budynkach. Liniowy współczynnik przenikania ciepła. Metody uproszczone i wartości orientacyjne".
  16. M. Wesołowska, P. Szczepaniak, K. Pawłowski, A. Kaczmarek, "Zagadnienia fizykalne w termomodernizacji i remontach obiektów budowlanych", Wydawnictwa Uczelniane Uniwersytetu Technologiczno-Przyrodniczego w Bydgoszczy, Bydgoszcz 2019.

Chcesz być na bieżąco? Zapisz się do naszego newslettera!

Komentarze

Powiązane

mgr inż. Maciej Rokiel System ETICS – dokumentacja projektowa prac ociepleniowych (cz. 3)

System ETICS – dokumentacja projektowa prac ociepleniowych (cz. 3) System ETICS – dokumentacja projektowa prac ociepleniowych (cz. 3)

Artykuł jest kontynuacją artykułów opublikowanych w numerach 3/2022 i 4/2022 miesięcznika „IZOLACJE”.

Artykuł jest kontynuacją artykułów opublikowanych w numerach 3/2022 i 4/2022 miesięcznika „IZOLACJE”.

dr inż. Mariusz Garecki Wykonywanie systemów ociepleń ETICS na zawilgoconych budynkach

Wykonywanie systemów ociepleń ETICS na zawilgoconych budynkach Wykonywanie systemów ociepleń ETICS na zawilgoconych budynkach

Prowadzone od wielu lat rewitalizacje, remonty, przebudowy i rozbudowy istniejących budynków nieodłącznie powiązane są z kwestiami podniesienia ich efektywności energetycznej, oczywiście w miarę możliwości....

Prowadzone od wielu lat rewitalizacje, remonty, przebudowy i rozbudowy istniejących budynków nieodłącznie powiązane są z kwestiami podniesienia ich efektywności energetycznej, oczywiście w miarę możliwości. Dotyczy to zarówno obiektów wpisanych do rejestru zabytków, jak i tych, które znajdują się w strefach ochrony konserwatorskiej i poza nimi. Systematyczny wzrost cen nośników energii, a na przestrzeni ostatniego roku – wzrost wręcz lawinowy, będzie wymuszał na inwestorach konieczność instalacji...

dr inż. Krzysztof Pawłowski prof. PBŚ Podstawowe zagadnienia fizyki cieplnej budowli w aspekcie wymagań prawnych (cz. 1)

Podstawowe zagadnienia fizyki cieplnej budowli w aspekcie wymagań prawnych (cz. 1) Podstawowe zagadnienia fizyki cieplnej budowli w aspekcie wymagań prawnych (cz. 1)

Od wielu lat przepisy prawne związane z procesami projektowania, wznoszenia i eksploatacji budynków wymuszają takie rozwiązania technologiczne i organizacyjne, w wyniku których nowo wznoszone budynki zużywają...

Od wielu lat przepisy prawne związane z procesami projektowania, wznoszenia i eksploatacji budynków wymuszają takie rozwiązania technologiczne i organizacyjne, w wyniku których nowo wznoszone budynki zużywają w trakcie eksploatacji coraz mniej energii na ogrzewanie, wentylację i przygotowanie ciepłej wody użytkowej. Zmiany maksymalnej wartości współczynnika przenikania ciepła Umax. (dawniej kmax.) wpływają na wielkość zużycia energii w trakcie eksploatacji budynków.

mgr inż. Ireneusz Stachura Jak eliminować mostki cieplne w budynku?

Jak eliminować mostki cieplne w budynku? Jak eliminować mostki cieplne w budynku?

Planując budynek, czy to mieszkalny, czy o innej funkcji (np. biurowiec, hotel, szpital), projektant tworzy konkretną bryłę, która ma spełnić szereg funkcji – wizualną, funkcjonalną, ekonomiczną w fazie...

Planując budynek, czy to mieszkalny, czy o innej funkcji (np. biurowiec, hotel, szpital), projektant tworzy konkretną bryłę, która ma spełnić szereg funkcji – wizualną, funkcjonalną, ekonomiczną w fazie realizacji i eksploatacji – i zapewnić właściwe warunki do przebywania w tym budynku ludzi.

dr inż. Krzysztof Pawłowski prof. PBŚ Kształtowanie układu warstw materiałowych podłóg na stropach w budynkach

Kształtowanie układu warstw materiałowych podłóg na stropach w budynkach Kształtowanie układu warstw materiałowych podłóg na stropach w budynkach

Dobór układu warstw materiałowych podłóg na stropach w budynkach nie powinien być przypadkowy, ale oparty na szczegółowych obliczeniach i analizach w zakresie nośności i wytrzymałości, wymagań cieplno-wilgotnościowych,...

Dobór układu warstw materiałowych podłóg na stropach w budynkach nie powinien być przypadkowy, ale oparty na szczegółowych obliczeniach i analizach w zakresie nośności i wytrzymałości, wymagań cieplno-wilgotnościowych, izolacyjności akustycznej oraz ochrony przeciwpożarowej.

dr inż. Andrzej Konarzewski Panele architektoniczne do budownictwa komercyjnego

Panele architektoniczne do budownictwa komercyjnego Panele architektoniczne do budownictwa komercyjnego

W Europie do opisywania konstrukcji ścian osłonowych z płyt warstwowych w obustronnej okładzinie stalowej z rdzeniem izolacyjnym można wykorzystywać zapisy podane w normie PN-EN 13830.

W Europie do opisywania konstrukcji ścian osłonowych z płyt warstwowych w obustronnej okładzinie stalowej z rdzeniem izolacyjnym można wykorzystywać zapisy podane w normie PN-EN 13830.

mgr inż. Julia Blazy, prof. dr hab. inż. Łukasz Drobiec, dr hab. inż. arch. Rafał Blazy prof. PK Zastosowanie fibrobetonu z włóknami polipropylenowymi w przestrzeniach publicznych

Zastosowanie fibrobetonu z włóknami polipropylenowymi w przestrzeniach publicznych Zastosowanie fibrobetonu z włóknami polipropylenowymi w przestrzeniach publicznych

Beton to materiał o dużej wytrzymałości na ściskanie, ale około dziesięciokrotnie mniejszej wytrzymałości na rozciąganie. Ponadto charakteryzuje się kruchym pękaniem i nie pozwala na przenoszenie naprężeń...

Beton to materiał o dużej wytrzymałości na ściskanie, ale około dziesięciokrotnie mniejszej wytrzymałości na rozciąganie. Ponadto charakteryzuje się kruchym pękaniem i nie pozwala na przenoszenie naprężeń po zarysowaniu.

Redakcja miesięcznika IZOLACJE Tynki gipsowe w pomieszczeniach mokrych i łazienkach

Tynki gipsowe w pomieszczeniach mokrych i łazienkach Tynki gipsowe w pomieszczeniach mokrych i łazienkach

Dobór tynku wewnętrznego do pomieszczeń mokrych lub narażonych na wilgoć nie jest prosty. Takie pomieszczenia mają specjalne wymagania, a rodzaj pokrycia ścian wewnętrznych powinien uwzględniać trudne...

Dobór tynku wewnętrznego do pomieszczeń mokrych lub narażonych na wilgoć nie jest prosty. Takie pomieszczenia mają specjalne wymagania, a rodzaj pokrycia ścian wewnętrznych powinien uwzględniać trudne warunki panujące wewnątrz kuchni czy łazienki. Na szczęście technologia wychodzi inwestorom naprzeciw i efektywne położenie tynku gipsowego w mokrych i wilgotnych pomieszczeniach jest możliwe.

mgr inż. Maciej Rokiel System ETICS – skutki braku analizy dokumentacji projektowej (cz. 4)

System ETICS – skutki braku analizy dokumentacji projektowej (cz. 4) System ETICS – skutki braku analizy dokumentacji projektowej (cz. 4)

Artykuł jest kontynuacją publikacji zamieszczonych kolejno w numerach 3/2022, 4/2022 i 6/2022 miesięcznika IZOLACJE. W tej części skupimy się na tym, jak skutki braku analizy czy wręcz nieprzeczytania...

Artykuł jest kontynuacją publikacji zamieszczonych kolejno w numerach 3/2022, 4/2022 i 6/2022 miesięcznika IZOLACJE. W tej części skupimy się na tym, jak skutki braku analizy czy wręcz nieprzeczytania dokumentacji projektowej mogą wpłynąć na uszkodzenia systemu. Przez „przeczytanie” należy tu także rozumieć zapoznanie się z tekstem kart technicznych stosowanych materiałów.

dr inż. Pavel Zemene, przewodniczący Stowarzyszenia EPS w Republice Czeskiej Bezpieczeństwo pożarowe złożonych systemów izolacji cieplnej ETICS

Bezpieczeństwo pożarowe złożonych systemów izolacji cieplnej ETICS Bezpieczeństwo pożarowe złożonych systemów izolacji cieplnej ETICS

Do bezpieczeństwa pożarowego w budynkach przywiązuje się niezmiernie dużą wagę. Zagadnienie to jest ważne nie tylko ze względu na bezpieczeństwo użytkowników budynku, ale także ze względu na bezpieczną...

Do bezpieczeństwa pożarowego w budynkach przywiązuje się niezmiernie dużą wagę. Zagadnienie to jest ważne nie tylko ze względu na bezpieczeństwo użytkowników budynku, ale także ze względu na bezpieczną eksploatację budynków i ochronę mienia. W praktyce materiały i konstrukcje budowlane muszą spełniać szereg wymagań, związanych między innymi z podstawowymi wymaganiami dotyczącymi stabilności konstrukcji i jej trwałości, izolacyjności termicznej i akustycznej, a także higieny i zdrowia, czy wpływu...

mgr inż. Maciej Rokiel Jak układać płytki wielkoformatowe?

Jak układać płytki wielkoformatowe? Jak układać płytki wielkoformatowe?

Wraz ze wzrostem wielkości płytek (długości ich krawędzi) wzrastają wymogi dotyczące jakości materiałów, precyzji przygotowania podłoża oraz reżimu technologicznego wykonawstwa.

Wraz ze wzrostem wielkości płytek (długości ich krawędzi) wzrastają wymogi dotyczące jakości materiałów, precyzji przygotowania podłoża oraz reżimu technologicznego wykonawstwa.

dr inż. Krzysztof Pawłowski prof. PBŚ Właściwości cieplno-wilgotnościowe materiałów budowlanych (cz. 2)

Właściwości cieplno-wilgotnościowe materiałów budowlanych (cz. 2) Właściwości cieplno-wilgotnościowe materiałów budowlanych (cz. 2)

Proces wymiany ciepła przez przegrody budowlane jest nieustalony w czasie, co wynika ze zmienności warunków klimatycznych na zewnątrz budynku oraz m.in. nierównomierności pracy urządzeń grzewczych. Opis...

Proces wymiany ciepła przez przegrody budowlane jest nieustalony w czasie, co wynika ze zmienności warunków klimatycznych na zewnątrz budynku oraz m.in. nierównomierności pracy urządzeń grzewczych. Opis matematyczny tego procesu jest bardzo złożony, dlatego w większości rozwiązań inżynierskich stosuje się uproszczony model ustalonego przepływu ciepła.

mgr inż. Jarosław Stankiewicz Zastosowanie kruszyw lekkich w warstwach izolacyjnych

Zastosowanie kruszyw lekkich w warstwach izolacyjnych Zastosowanie kruszyw lekkich w warstwach izolacyjnych

Kruszywa lekkie są materiałem znanym od starożytności. Aktualnie wyrób ten ma liczną grupę odbiorców nie tylko we współczesnym budownictwie, ale i w innych dziedzinach gospodarki. Spowodowane to jest licznymi...

Kruszywa lekkie są materiałem znanym od starożytności. Aktualnie wyrób ten ma liczną grupę odbiorców nie tylko we współczesnym budownictwie, ale i w innych dziedzinach gospodarki. Spowodowane to jest licznymi zaletami tego wyrobu, takimi jak wysoka izolacyjność cieplna, niska gęstość, niepalność i wysoka mrozoodporność, co pozwala stosować go zarówno w budownictwie, ogrodnictwie, jak i innych branżach.

dr inż. Andrzej Konarzewski, mgr Marek Skowron, mgr inż. Mateusz Skowron Przegląd metod recyklingu i utylizacji odpadowej pianki poliuretanowo‑poliizocyjanurowej powstającej przy produkcji wyrobów budowlanych

Przegląd metod recyklingu i utylizacji odpadowej pianki poliuretanowo‑poliizocyjanurowej powstającej przy produkcji wyrobów budowlanych Przegląd metod recyklingu i utylizacji odpadowej pianki poliuretanowo‑poliizocyjanurowej powstającej przy produkcji wyrobów budowlanych

W trakcie szerokiej i różnorodnej produkcji wyrobów budowlanych ze sztywnej pianki poliuretanowo/poliizocyjanurowej powstaje stosunkowo duża ilość odpadów, które muszą zostać usunięte. Jak przeprowadzić...

W trakcie szerokiej i różnorodnej produkcji wyrobów budowlanych ze sztywnej pianki poliuretanowo/poliizocyjanurowej powstaje stosunkowo duża ilość odpadów, które muszą zostać usunięte. Jak przeprowadzić recykling odpadów z pianki?

Joanna Szot Rodzaje stropów w domach jednorodzinnych

Rodzaje stropów w domach jednorodzinnych Rodzaje stropów w domach jednorodzinnych

Strop dzieli budynek na kondygnacje. Jednak to nie jedyne jego zadanie. Ponadto ten poziomy element konstrukcyjny usztywnia konstrukcję domu i przenosi obciążenia. Musi także stanowić barierę dla dźwięków...

Strop dzieli budynek na kondygnacje. Jednak to nie jedyne jego zadanie. Ponadto ten poziomy element konstrukcyjny usztywnia konstrukcję domu i przenosi obciążenia. Musi także stanowić barierę dla dźwięków i ciepła.

P.P.H.U. EURO-MIX sp. z o.o. EURO-MIX – zaprawy klejące w systemach ociepleń

EURO-MIX – zaprawy klejące w systemach ociepleń EURO-MIX – zaprawy klejące w systemach ociepleń

EURO-MIX to producent chemii budowlanej. W asortymencie firmy znajduje się obecnie ponad 30 produktów, m.in. kleje, tynki, zaprawy, szpachlówki, gładzie, system ocieplania ścian na wełnie i na styropianie....

EURO-MIX to producent chemii budowlanej. W asortymencie firmy znajduje się obecnie ponad 30 produktów, m.in. kleje, tynki, zaprawy, szpachlówki, gładzie, system ocieplania ścian na wełnie i na styropianie. Zaprawy klejące EURO-MIX przeznaczone są do przyklejania wełny lub styropianu do podłoża z cegieł ceramicznych, betonu, tynków cementowych i cementowo­-wapiennych, gładzi cementowej, styropianu i wełny mineralnej w temperaturze od 5 do 25°C.

dr inż. Krzysztof Pawłowski prof. PBŚ Układy materiałowe wybranych przegród zewnętrznych w aspekcie wymagań cieplnych (cz. 3)

Układy materiałowe wybranych przegród zewnętrznych w aspekcie wymagań cieplnych (cz. 3) Układy materiałowe wybranych przegród zewnętrznych w aspekcie wymagań cieplnych (cz. 3)

Rozporządzenie w sprawie warunków technicznych [1] wprowadziło od 31 grudnia 2020 r. nowe wymagania dotyczące izolacyjności cieplnej poprzez zaostrzenie wymagań w zakresie wartości granicznych współczynnika...

Rozporządzenie w sprawie warunków technicznych [1] wprowadziło od 31 grudnia 2020 r. nowe wymagania dotyczące izolacyjności cieplnej poprzez zaostrzenie wymagań w zakresie wartości granicznych współczynnika przenikania ciepła Uc(max) [W/(m2·K)] dla przegród zewnętrznych oraz wartości granicznych wskaźnika zapotrzebowania na energię pierwotną EP [kWh/(m2·rok)] dla całego budynku. Jednak w rozporządzeniu nie sformułowano wymagań w zakresie ograniczenia strat ciepła przez złącza przegród zewnętrznych...

mgr inż. arch. Tomasz Rybarczyk Zastosowanie keramzytu w remontowanych stropach i podłogach na gruncie

Zastosowanie keramzytu w remontowanych stropach i podłogach na gruncie Zastosowanie keramzytu w remontowanych stropach i podłogach na gruncie

Są sytuacje i miejsca w budynku, w których nie da się zastosować termoizolacji w postaci wełny mineralnej lub styropianu. Wówczas w rozwiązaniach występują inne, alternatywne materiały, które nadają się...

Są sytuacje i miejsca w budynku, w których nie da się zastosować termoizolacji w postaci wełny mineralnej lub styropianu. Wówczas w rozwiązaniach występują inne, alternatywne materiały, które nadają się również do standardowych rozwiązań. Najczęściej ma to miejsce właśnie w przypadkach, w których zastosowanie styropianu i wełny się nie sprawdzi. Takim materiałem, który może w pewnych miejscach zastąpić wiodące materiały termoizolacyjne, jest keramzyt. Ten materiał ma wiele właściwości, które powodują,...

Sebastian Malinowski Kleje żelowe do płytek – właściwości i zastosowanie

Kleje żelowe do płytek – właściwości i zastosowanie Kleje żelowe do płytek – właściwości i zastosowanie

Kleje żelowe do płytek cieszą się coraz większą popularnością. Produkty te mają świetne parametry techniczne, umożliwiają szybki montaż wszelkiego rodzaju okładzin ceramicznych na powierzchni podłóg oraz...

Kleje żelowe do płytek cieszą się coraz większą popularnością. Produkty te mają świetne parametry techniczne, umożliwiają szybki montaż wszelkiego rodzaju okładzin ceramicznych na powierzchni podłóg oraz ścian.

dr inż. Krzysztof Pawłowski prof. PBŚ Projektowanie cieplne przegród stykających się z gruntem

Projektowanie cieplne przegród stykających się z gruntem Projektowanie cieplne przegród stykających się z gruntem

Dla przegród stykających się z gruntem straty ciepła przez przenikanie należą do trudniejszych w obliczeniu. Strumienie cieplne wypływające z ogrzewanego wnętrza mają swój udział w kształtowaniu rozkładu...

Dla przegród stykających się z gruntem straty ciepła przez przenikanie należą do trudniejszych w obliczeniu. Strumienie cieplne wypływające z ogrzewanego wnętrza mają swój udział w kształtowaniu rozkładu temperatur w gruncie pod budynkiem i jego otoczeniu.

Jacek Sawicki, konsultacja dr inż. Szczepan Marczyński – Clematis Źródło Dobrych Pnączy, prof. Jacek Borowski Roślinne izolacje elewacji

Roślinne izolacje elewacji Roślinne izolacje elewacji

Naturalna zieleń na elewacjach obecna jest od dawna. W formie pnączy pokrywa fasady wielu średniowiecznych budowli, wspina się po murach secesyjnych kamienic, nierzadko zdobi frontony XX-wiecznych budynków...

Naturalna zieleń na elewacjach obecna jest od dawna. W formie pnączy pokrywa fasady wielu średniowiecznych budowli, wspina się po murach secesyjnych kamienic, nierzadko zdobi frontony XX-wiecznych budynków jednorodzinnych czy współczesnych, nowoczesnych obiektów budowlanych, jej istnienie wnosi wyjątkowe zalety estetyczne i użytkowe.

mgr inż. Wojciech Rogala Projektowanie i wznoszenie ścian akustycznych w budownictwie wielorodzinnym na przykładzie przegród z wyrobów silikatowych

Projektowanie i wznoszenie ścian akustycznych w budownictwie wielorodzinnym na przykładzie przegród z wyrobów silikatowych Projektowanie i wznoszenie ścian akustycznych w budownictwie wielorodzinnym na przykładzie przegród z wyrobów silikatowych

Ściany z elementów silikatowych w ciągu ostatnich 20 lat znacznie zyskały na popularności [1]. Stanowią obecnie większość przegród akustycznych w budynkach wielorodzinnych, gdzie z uwagi na wiele źródeł...

Ściany z elementów silikatowych w ciągu ostatnich 20 lat znacznie zyskały na popularności [1]. Stanowią obecnie większość przegród akustycznych w budynkach wielorodzinnych, gdzie z uwagi na wiele źródeł hałasu izolacyjność akustyczna stanowi jeden z głównych czynników wpływających na komfort.

LERG SA Poliole poliestrowe Rigidol®

Poliole poliestrowe Rigidol® Poliole poliestrowe Rigidol®

Od lat obserwujemy dynamicznie rozwijający się trend eko, który stopniowo z mody konsumenckiej zaczął wsiąkać w coraz głębsze dziedziny życia społecznego, by w końcu dotrzeć do korzeni funkcjonowania wielu...

Od lat obserwujemy dynamicznie rozwijający się trend eko, który stopniowo z mody konsumenckiej zaczął wsiąkać w coraz głębsze dziedziny życia społecznego, by w końcu dotrzeć do korzeni funkcjonowania wielu biznesów. Obecnie marki, które chcą odnieść sukces, powinny oferować swoim odbiorcom zdecydowanie więcej niż tylko produkt czy usługę wysokiej jakości.

mgr inż. arch. Tomasz Rybarczyk Prefabrykacja w budownictwie

Prefabrykacja w budownictwie Prefabrykacja w budownictwie

Prefabrykacja w projektowaniu i realizacji budynków jest bardzo nośnym tematem, co przekłada się na duże zainteresowanie wśród projektantów i inwestorów tą tematyką. Obecnie wzrasta realizacja budynków...

Prefabrykacja w projektowaniu i realizacji budynków jest bardzo nośnym tematem, co przekłada się na duże zainteresowanie wśród projektantów i inwestorów tą tematyką. Obecnie wzrasta realizacja budynków z prefabrykatów. Można wśród nich wyróżnić realizacje realizowane przy zastosowaniu elementów prefabrykowanych stosowanych od lat oraz takich, które zostały wyprodukowane na specjalne zamówienie do zrealizowania jednego obiektu.

Wybrane dla Ciebie

Odkryj trendy projektowania elewacji »

Odkryj trendy projektowania elewacji » Odkryj trendy projektowania elewacji »

Jak estetycznie wykończyć ściany - wewnątrz i na zewnątrz? »

Jak estetycznie wykończyć ściany - wewnątrz i na zewnątrz? » Jak estetycznie wykończyć ściany - wewnątrz i na zewnątrz? »

Przeciekający dach? Jak temu zapobiec »

Przeciekający dach? Jak temu zapobiec » Przeciekający dach? Jak temu zapobiec »

Dach biosolarny - co to jest? »

Dach biosolarny - co to jest? » Dach biosolarny - co to jest? »

Zobacz, które płyty termoizolacyjne skutecznie ochronią dom przed zimnem »

Zobacz, które płyty termoizolacyjne skutecznie ochronią dom przed zimnem » Zobacz, które płyty termoizolacyjne skutecznie ochronią dom przed zimnem »

Jak poprawić izolacyjność akustyczną ścian murowanych »

Jak poprawić izolacyjność akustyczną ścian murowanych »  Jak poprawić izolacyjność akustyczną ścian murowanych »

Wszystko, co powinieneś wiedzieć o izolacjach natryskowych »

Wszystko, co powinieneś wiedzieć o izolacjach natryskowych » Wszystko, co powinieneś wiedzieć o izolacjach natryskowych »

Przekonaj się, jak inni izolują pianką poliuretanową »

Przekonaj się, jak inni izolują pianką poliuretanową » Przekonaj się, jak inni izolują pianką poliuretanową »

Na czym polega fenomen technologii białej wanny »

Na czym polega fenomen technologii białej wanny » Na czym polega fenomen technologii białej wanny »

Podpowiadamy, jak wybrać system ociepleń

Podpowiadamy, jak wybrać system ociepleń Podpowiadamy, jak wybrać system ociepleń

Podpowiadamy, jak skutecznie przeprowadzić renowacje piwnicy »

Podpowiadamy, jak skutecznie przeprowadzić renowacje piwnicy » Podpowiadamy, jak skutecznie przeprowadzić renowacje piwnicy »

300% rozciągliwości membrany - TAK! »

300% rozciągliwości membrany - TAK! » 300% rozciągliwości membrany - TAK! »

Copyright © 2004-2019 Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Spółka komandytowa, nr KRS: 0000537655. Wszelkie prawa, w tym Autora, Wydawcy i Producenta bazy danych zastrzeżone. Jakiekolwiek dalsze rozpowszechnianie artykułów zabronione. Korzystanie z serwisu i zamieszczonych w nim utworów i danych wyłącznie na zasadach określonych w Zasadach korzystania z serwisu.
Portal Budowlany - Izolacje.com.pl

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim urządzeniu końcowym. W każdym momencie możesz dokonać zmiany ustawień przeglądarki dotyczących cookies. Nim Państwo zaczną korzystać z naszego serwisu prosimy o zapoznanie się z naszą polityką prywatności oraz Informacją o Cookies. Więcej szczegółów w naszej Polityce Prywatności oraz Informacji o Cookies. Administratorem Państwa danych osobowych jest Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Sp.K., nr KRS: 0000537655, z siedzibą w 04-112 Warszawa, ul. Karczewska 18, tel. +48 22 810-21-24, właściciel strony www.izolacje.com.pl. Twoje Dane Osobowe będą chronione zgodnie z wytycznymi polityki prywatności www.izolacje.com.pl oraz zgodnie z Rozporządzeniem Parlamentu Europejskiego i Rady (UE) 2016/679 z dnia 27 kwietnia 2016r i z Ustawą o ochronie danych osobowych Dz.U. 2018 poz. 1000 z dnia 10 maja 2018r.