Izolacje.com.pl

Termomodernizacja budynków z uwzględnieniem wymagań cieplno-wilgotnościowych od 1 stycznia 2021 roku

Thermomodernisation of buildings taking into account the thermal and humidity requirements applicable from 1st January 2021

Zastosowanie odpowiedniego materiału termoizolacyjnego pozwala na osiągnięcie niskich wartości współczynnika przenikania ciepła.

Zastosowanie odpowiedniego materiału termoizolacyjnego pozwala na osiągnięcie niskich wartości współczynnika przenikania ciepła.

Termomodernizacja dotyczy dostosowania budynku do nowych wymagań ochrony cieplnej i oszczędności energii. Ponadto stanowi zbiór zabiegów mających na celu wyeliminowanie lub znaczne ograniczenie strat ciepła w istniejącym budynku. Jest jednym z elementów modernizacji budynku, który przynosi korzyści finansowe i pokrycie kosztów innych działań.

Zobacz także

Nowe podejście do określania minimalnej izolacyjności akustycznej przegród zewnętrznych budynków

Nowe podejście do określania minimalnej izolacyjności akustycznej przegród zewnętrznych budynków Nowe podejście do określania minimalnej izolacyjności akustycznej przegród zewnętrznych budynków

Hałas jest jednym z coraz bardziej znaczących zanieczyszczeń środowiska naturalnego. Jego ograniczanie leży w interesie społeczeństwa, a dopuszczalny poziom jest regulowany polskimi i międzynarodowymi...

Hałas jest jednym z coraz bardziej znaczących zanieczyszczeń środowiska naturalnego. Jego ograniczanie leży w interesie społeczeństwa, a dopuszczalny poziom jest regulowany polskimi i międzynarodowymi przepisami w dziedzinie prawa budowlanego.

Warunki Techniczne muszą być zmienione

Warunki Techniczne muszą być zmienione Warunki Techniczne muszą być zmienione

Dr Ludomir Duda, doradca prezesa Narodowego Funduszu Ochrony Środowiska i Gospodarki Wodnej, mówi o potrzebie termomodernizacji wielu budynków w Polsce oraz kosztach tego przedsięwzięcia, a także o konieczności...

Dr Ludomir Duda, doradca prezesa Narodowego Funduszu Ochrony Środowiska i Gospodarki Wodnej, mówi o potrzebie termomodernizacji wielu budynków w Polsce oraz kosztach tego przedsięwzięcia, a także o konieczności wprowadzenia zmian w przepisach Rozporządzenia Ministra Infrastruktury z dnia 12 kwietnia 2002 r. w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie (Warunków Technicznych).

Akustyka stropów – izolacje z wełny mineralnej

Akustyka stropów – izolacje z wełny mineralnej

Stropy spełniają kilka podstawowych zadań: przenoszą obciążenia użytkowe, ograniczają straty ciepła, ale spełniają także rolę przegród dźwiękochłonnych.

Stropy spełniają kilka podstawowych zadań: przenoszą obciążenia użytkowe, ograniczają straty ciepła, ale spełniają także rolę przegród dźwiękochłonnych.

 

Abstrakt

W artykule opisano wybrane działania termomodernizacyjne stosowane w istniejących budynkach wraz z przykładami obliczeniowymi uwzgledniającymi wymagania cieplno-wilgotnościowe.

Thermomodernisation of buildings taking into account the thermal and humidity requirements applicable from 1st January 2021

The article describes selected thermo modernization measures applied in existing buildings together with calculation examples taking into account thermal and humidity requirements.

Działania energooszczędne stosowane w budynkach o niskim zużyciu energii można podzielić na trzy podstawowe grupy:

  • Pierwsza to technologie związane z redukcją strat ciepła przez przegrody, a w szczególności:
    - ocieplanie przegród zewnętrznych (podłogi na gruncie, stropy, dach, ściany),
    - dobór stolarki okiennej i drzwiowej z uwzględnieniem wymagań cieplnych według rozporządzenia [1].
  • Druga grupa dotyczy redukcji strat oraz poprawy sprawności systemu instalacyjnego i jest to m.in.:
    - wymiana lub modernizacja grzejników,
    - wymiana lub modernizacja systemu grzewczego (zastosowanie ogrzewania podłogowego, powietrznego itp.),
    - instalacja termostatów,
    - montaż nowoczesnych regulatorów pogodowych bądź pokojowych,
    - izolacja przewodów c.w.u i c.o.,
    - wymiana lub modernizacja systemu wytwarzania ciepłej wody,
    - wymiana lub modernizacja systemu wentylacji (np. zastosowanie wentylacji mechanicznej z odzyskiem ciepła – rekuperatora).
  • Trzecią grupę stanowią prace projektowo-wykonawcze lub modernizacyjne skupiające się na źródle ciepła, do których można zaliczyć:
    - zaprojektowanie i zainstalowanie lub wymianę źródła ciepła (zamiana kotła na nowy cechujący się lepszą sprawnością bądź zamiana źródła lokalnego na miejską sieć ciepłowniczą),
    - zmianę nośnika energii (zamiana kotła na inny, który wytwarza energię, spalając paliwo innego rodzaju, wyjątkiem jest zamiana paliwa w tym samym kotle, który jest przystosowany do spalania kilku rodzajów surowców),
    - zastosowanie technologii wykorzystującej odnawialne źródła energii (OZE) na potrzeby grzewcze (np. pompy ciepła, biopaliwa, kolektory słoneczne),
    - zastosowanie kogeneracji (produkcja jednoczesnego prądu oraz ciepła – dotyczy współdzielni),
    - a także zastosowanie automatyki sterującej źródłem.

Docieplenie przegród zewnętrznych jako podstawowy element termomodernizacji

Aby ilość energii cieplnej potrzebnej do użytkowania budynku zgodnie z jego przeznaczeniem można było utrzymać na racjonalnie niskim poziomie, przewidziano dwie metody pozwalające spełnić wymaganie w nowo projektowanych budynkach:

  • pierwsza polega na takim zaprojektowaniu przegród w budynku, aby wartości współczynników przenikania ciepła U/Uc [W/(m2·K)] przegród zewnętrznych, okien, drzwi oraz technika instalacyjna odpowiadały wymaganiom izolacyjności cieplnej, kryterium w zakresie ochrony cieplnej: Uc  ≤  Uc(max),
  • druga to zaprojektowanie budynku pod kątem zapotrzebowania na nieodnawialną energię pierwotną na jednostkę powierzchni pomieszczeń o regulowanej temperaturze powietrza w budynku, lokalu mieszkalnym lub części budynku stanowiącej samodzielną całość techniczno-użytkową – EP [kWh/(m2·rok)], kryterium w zakresie oszczędności energii: EP    EP(max).

Według rozporządzenia [1] dla budynku produkcyjnego, magazynowego i gospodarczego dopuszcza się większe wartości współczynnika U/Uc niż U(max) oraz Uc(max), jeśli uzasadnia to rachunek efektywności ekonomicznej inwestycji, obejmujący koszt budowy i eksploatacji budynku. Ponadto w budynku mieszkalnym, zamieszkania zbiorowego, użyteczności publicznej, produkcyjnym, magazynowym i gospodarczym podłoga na gruncie w ogrzewanym pomieszczeniu powinna mieć izolację cieplną obwodową z materiału izolacyjnego w postaci warstwy o oporze cieplnym co najmniej 2,0 (m2·K)/W, przy czym opór cieplny warstw podłogowych oblicza się zgodnie z PN-EN ISO 6946:2008 [2] oraz PN-EN ISO 13370:2008 [3].

Według zmian wprowadzonych w rozporządzeniu [1] wymagania dla nowo projektowanych budynków dotyczą jednoczesnego spełnienia dwóch wymagań w zakresie współczynnika przenikania ciepła U [W/(m2·K)] – Uc≤ Uc(max) dla pojedynczych przegród budynku oraz wskaźnika zapotrzebowania na nieodnawialną energię pierwotną EP [kWh/(m2·rok)] – EP ≤ EP(max) dla całego budynku.

RYS. 1. Przykładowy dobór materiałów termoizolacyjnych; rys.: K. Pawłowski

RYS. 1. Przykładowy dobór materiałów termoizolacyjnych; rys.: K. Pawłowski

RYS. 2. Kolejność postępowania w aspekcie ocieplenia na istniejące ocieplenie; rys.: opracowanie własne na podst. [4, 5]

RYS. 2. Kolejność postępowania w aspekcie ocieplenia na istniejące ocieplenie; rys.: opracowanie własne na podst. [4, 5]

Wymagania minimalne, o których mowa w ust. 1 rozporządzenia [1], uznaje się za spełnione dla budynku podlegającego przebudowie – termomodernizacji, jeżeli przegrody oraz wyposażenie techniczne budynku podlegające przebudowie odpowiadają przynajmniej wymaganiom izolacyjności cieplnej określonym w załączniku nr 2 do rozporządzenia [1]. Ponadto należy pamiętać, że budynek powinien być zaprojektowany i wykonany w taki sposób, aby ograniczyć ryzyko przegrzewania budynku w okresie letnim (dotyczy przegród przezroczystych – stolarka okienna). W trakcie projektowania i wykonywania docieplenia przegród zewnętrznych budynku należy pamiętać o wyeliminowaniu zjawiska kondensacji powierzchniowej (ryzyko rozwoju pleśni i grzybów pleśniowych) oraz kondensacji międzywarstwowej.

RYS. 3–4. Rozkład temperatury w ścianie ocieplonej od zewnątrz (3) i od wewnątrz (4); rys.: K. Pawłowski

RYS. 3–4. Rozkład temperatury w ścianie ocieplonej od zewnątrz (3) i od wewnątrz (4); rys.: K. Pawłowski

RYS. 5. Ocieplenie poddaszy użytkowych w budynkach istniejących: izolacja cieplna między i pod krokwiami. Oznaczenia: 1 – dachówka ceramiczna, 2 – łata, 3 – kontrłata, 4 – szczelina dobrze wentylowana, 5 – folia wysokoparoprzepuszczalna, 6 – krokiew, 7 – izolacja cieplna (np. wełna mineralna), 8 – dodatkowa warstwa izolacji cieplnej (np. wełna mineralna), 9 – folia paroizolacyjna, 10 – płyta gipsowo­‑kartonowa; rys.: K. Pawłowski

RYS. 5. Ocieplenie poddaszy użytkowych w budynkach istniejących: izolacja cieplna między i pod krokwiami. Oznaczenia: 1 – dachówka ceramiczna, 2 – łata, 3 – kontrłata, 4 – szczelina dobrze wentylowana, 5 – folia wysokoparoprzepuszczalna, 6 – krokiew, 7 – izolacja cieplna (np. wełna mineralna), 8 – dodatkowa warstwa izolacji cieplnej (np. wełna mineralna), 9 – folia paroizolacyjna, 10 – płyta gipsowo­‑kartonowa; rys.: K. Pawłowski

RYS. 6. Ocieplenie poddaszy użytkowych w budynkach istniejących: izolacja cieplna nad krokwiami. Oznaczenia: 1 – dachówka ceramiczna, 2 – łata, 3 – kontrłata lub deskowanie, 4 – szczelina dobrze wentylowana, 5 – folia, 6 – izolacja cieplna (np. płyty PIR/PUR), 7 – folia paroizolacyjna, 8 – deskowanie, 9 – krokiew; rys.: K. Pawłowski

RYS. 6. Ocieplenie poddaszy użytkowych w budynkach istniejących: izolacja cieplna nad krokwiami. Oznaczenia: 1 – dachówka ceramiczna, 2 – łata, 3 – kontrłata lub deskowanie, 4 – szczelina dobrze wentylowana, 5 – folia, 6 – izolacja cieplna (np. płyty PIR/PUR), 7 – folia paroizolacyjna, 8 – deskowanie, 9 – krokiew; rys.: K. Pawłowski

Zastosowanie odpowiedniego materiału termoizolacyjnego pozwala na osiągnięcie niskich wartości współczynnika przenikania ciepła U/Uc [W/(m2·K)] pełnej przegrody i liniowego współczynnika przenikania ciepła Ψ [W/(m·K)] oraz minimalizację ryzyka występowania kondensacji powierzchniowej i międzywarstwowej. Przed wyborem odpowiedniego materiału do izolacji cieplnej należy zwrócić uwagę na takie właściwości, jak:

  • współczynnik przewodzenia ciepła λ [W/(m·K)],
  • gęstość objętościowa,
  • izolacyjność akustyczna,
  • przepuszczalność pary wodnej,
  • współczynnik oporu dyfuzyjnego μ [-],
  • wrażliwość na czynniki biologiczne i chemiczne,
  • ochronę przeciwpożarową.

Na podstawie prowadzonych obliczeń i analiz w tym zakresie zestawiono przykładowy dobór materiałów termoizolacyjnych (RYS. 1).

Najpopularniejszą metodą wykonywania izolacji termicznej ścian stała się metoda lekka–mokra, która ewoluowała w bezspoinowy system ocieplenia określany w skrócie – BSO, a od 2009 r. w Polsce określana jest jako ETICS. Chociaż docieplenie metodą lekką–mokrą wydaje się nieskomplikowane, to w trakcie realizacji i eksploatacji można napotkać na pewne niedoskonałości, ponieważ wiedza dotycząca zasad stosowania ociepleń była relatywnie niska i brakowało doświadczeń wykonawczych oraz nadzór i kontrole podczas robót budowlanych były niewystarczające i mało efektywne. Dlatego ważnym zagadnieniem jest ocena trwałości docieplenia budynku.

Szczególnie jest to istotne w przypadku ponownego docieplenia ocieplonych ścian zewnętrznych w celu spełnienia obecnie obowiązujących przepisów prawnych i wymagań technicznych.

Naprawy ocieplonych elewacji dotyczą zabiegów:

  • kosmetycznych (np. mycie elewacji),
  • powierzchniowych (wzmacnianie struktur tynkarskich i malowanie zabezpieczające),
  • w zakresie usuwania uszkodzonych warstw i ponowne wykonywanie lub wymianę warstw zewnętrznych,
  • w zakresie wykonywania dodatkowego ocieplenia na już istniejącym.

Należy podkreślić, że wykonywanie dodatkowego ocieplenia na już istniejącym stało bardzo ważnym zagadnieniem remontowym wielu istniejących budynków mieszkalnych lub użyteczności publicznej. Dlatego też Instytut Techniki Budowlanej, a także organizacje zrzeszające producentów ociepleń starają się szczegółowo zapoznać z problematyką tego typu realizacji. Zasadne staje się opracowanie wytycznych realizacji ociepleń wykonywanych na ociepleniach istniejących.

W ostatnich latach powstały aprobaty techniczne wydane przez Instytut Techniki Budowlanej w Warszawie dla systemów uwzględniających możliwość mocowania do ścian ocieplonych nowego ocieplenia w zakresie spełnienia obowiązujących wymagań cieplnych. Obecne rozwiązania dotyczą jedynie systemów z zastosowaniem styropianu [4, 5].

Na podstawie prowadzonych analiz i obserwacji własnych oraz wytycznych dotyczących renowacji istniejących systemów dociepleń budynków opracowano algorytm (schemat) postępowania w zakresie ocieplenia na istniejące ocieplenie (RYS. 2).

Natomiast ocieplenie przegród zewnętrznych od wewnątrz projektowane i wykonywane jest w:

  • obiektach zabytkowych (budynki wpisane do rejestru zabytków lub objęte ochroną konserwatorską),
  • obiektach o wartości architektonicznej (ciekawy charakter elewacji lub oryginalny wygląd budynku),
  • obiektach o ograniczonych prawach własności (w przypadku gdy część ścian zewnętrznych znajduje się dokładnie na granicy działki),
  • a także w obiektach użytkowanych czasowo (ogrzewanie czasowe w nieregularnych okresach).

Takie rozwiązanie wiąże się jednak ze zjawiskiem wnikania pary wodnej w strukturę przegrody i jej kondensacji.

Na skutek niskiej temperatury otoczenia spada znacznie temperatura wewnątrz przegrody, powodując kondensację na styku warstwy konstrukcyjnej i izolacji cieplnej. Warstwa izolacji cieplnej od strony wewnętrznej przegrody oddziela konstrukcję muru od środowiska wewnętrznego co wpływa na zmniejszenie pojemności cieplnej całego budynku i powoduje wprowadzenie całej warstwy konstrukcyjnej w strefę przemarzania (RYS. 3–4).

Podstawową zaletą ocieplenia od wewnątrz jest zmniejszenie ilości energii niezbędnej do ogrzania pomieszczeń o żądanej temperaturze oraz skrócenia czasu nagrzewania [6].

Docieplenie poddaszy użytkowych można przeprowadzić wprowadzając dodatkową warstwę izolacji cieplnej pod krokwiami lub zastosować system nadkrokwiowy (RYS. 5 i RYS. 6). Często w związku ze stanem technicznym materiału termoizolacyjnego międzykrokwiami należy podjąć decyzję w zakresie całkowitej wymiany ocieplenia.

Szczegółową analizę modernizacji poddaszy użytkowych przedstawiono m.in. w pracach [6, 7].

Przykładowe rozwiązania materiałowe docieplenia przegród zewnętrznych – studium przypadku

Istnieje wiele rozwiązań materiałowych dociepleń przegród zewnętrznych istniejących budynków. Dobór materiału termoizolacyjnego i technologii wykonania nie powinien być przypadkowy, lecz oparty na podstawie analiz otrzymanych parametrów fizykalnych z uwzględnieniem parametrów powietrza zewnętrznego i wewnętrznego.

Przykład 1. Analiza parametrów fizykalnych ściany zewnętrznej z cegły pełnej przed i po dociepleniu

Do obliczeń wytypowano ścianę zewnętrzną z cegły pełnej gr. 37 cm o współczynniku λ = 0,77 W/(m·K) ocieplonej od zewnątrz:

  • wełna mineralna gr. 10, 12, 15 cm, λ = 0,04 W/(m·K);
  • styropian gr. 10, 12, 15 cm, λ = 0,035 W/(m·K),
  • styropian grafitowy gr. 10, 12, 15 cm, λ = 0,031 W/(m·K),
  • płyta z pianki poliuretanowej gr. 10, 12, 15 cm, λ = 0,022 W/(m·K)

oraz ocieplonej od wewnątrz:

  • lekka odmiana betonu komórkowego gr. 10, 12 cm, λ = 0,042 W/(m·K),
  • płyty klimatyczne gr. 10, 12 cm, λ = 0,059 W/(m·K).

Obliczenia przeprowadzono zgodnie z procedurą według PN-EN ISO 6946:2008 [2].

Wyniki obliczeń współczynnika przenikania ciepła Uc [W/(m2·K)] w zależności od rodzaju i grubości materiału termoizolacyjnego przedstawiono w TABELI 1. Kolorem jasnozielonym zaznaczono w niej warianty obliczeniowe (rozwiązania konstrukcyjno-materiałowe ściany zewnętrznej z cegły pełnej gr. 37 cm z ociepleniem), które spełniają podstawowe kryterium cieplne: Uc [W/(m2·K)]  ≤  UC(max) = 0,20 W/(m2·K).

TABELA 1. Wyniki obliczeń współczynnika przenikania ciepła ściany zewnętrznej z cegły pełnej z ociepleniem

TABELA 1. Wyniki obliczeń współczynnika przenikania ciepła ściany zewnętrznej z cegły pełnej z ociepleniem

Przykład 2. Analiza parametrów fizykalnych połączenia ściany zewnętrznej z oknem przed i po dociepleniu

W celu poszukiwania poprawnego rozwiązania układu materiałowego spełniającego obowiązujące wymagania dla budynku po dociepleniu należy wykonać szczegółowe obliczenia parametrów fizykalnych złączy przegród zewnętrznych w kilku wariantach obliczeniowych. W przykładzie obliczeniowym rozpatrywano połączenie ściany zewnętrznej z oknem w przekroju przez ościeżnicę przy zróżnicowanym usytuowaniu ocieplenia w następujących wariantach:

  • wariant I (RYS. 7–10):
    - ściana zewnętrzna z cegły pełnej gr. 37 cm (λ = 0,77 W/(m·K));
    - tynk gipsowy gr. 1,5 cm (λ = 0,40 W/(m·K));
    - stolarka okienna:
      ♦ przypadek A – o współczynniku przenikania ciepła okna Uw = 1,75 W/(m2·K),
      ♦ przypadek B – Uw = 0,86 W/(m2·K),
RYS. 7–10. Przykładowe graficzne przedstawienie wyników symulacji komputerowej dla połączenia ściany zewnętrznej (bez ocieplenia) z oknem w przekroju przez ościeżnicę: model obliczeniowy (7), linie strumieni cieplnych (adiabaty) (8), izotermy (9), izotermy w zakresie 0–20°C (10); rys.: K. Pawłowski

RYS. 7–10. Przykładowe graficzne przedstawienie wyników symulacji komputerowej dla połączenia ściany zewnętrznej (bez ocieplenia) z oknem w przekroju przez ościeżnicę: model obliczeniowy (7), linie strumieni cieplnych (adiabaty) (8), izotermy (9), izotermy w zakresie 0–20°C (10); rys.: K. Pawłowski

  • wariant II (RYS. 11–14):
    - ściana zewnętrzna z cegły pełnej gr. 37 cm (λ = 0,77 W/(m·K));
    - tynk gipsowy gr. 1,5 cm (λ = 0,40 W/(m·K));
    - izolacja termiczna od zewnątrz: płyty z pianki poliuretanowej gr. 10, 12, 15 i 20 cm (λ = 0,022 W/(m·K));
    - stolarka okienna Uw = 0,86 W/(m2·K);
    - bez węgarka,
RYS. 11–14. Przykładowe graficzne przedstawienie wyników symulacji komputerowej dla połączenia ściany zewnętrznej (z ociepleniem od zewnątrz) z oknem w przekroju przez ościeżnicę bez węgarka: model obliczeniowy (11), linie strumieni cieplnych (adiabaty) (12), izotermy (13), izotermy w zakresie 0–20°C (14); rys.: K. Pawłowski

RYS. 11–14. Przykładowe graficzne przedstawienie wyników symulacji komputerowej dla połączenia ściany zewnętrznej (z ociepleniem od zewnątrz) z oknem w przekroju przez ościeżnicę bez węgarka: model obliczeniowy (11), linie strumieni cieplnych (adiabaty) (12), izotermy (13), izotermy w zakresie 0–20°C (14); rys.: K. Pawłowski

  • wariant III (RYS. 15–18):
    - ściana zewnętrzna z cegły pełnej gr. 37 cm (λ = 0,77 W/(m·K));
    - tynk gipsowy gr. 1,5 cm (λ = 0,40 W/(m·K));
    - izolacja termiczna od zewnątrz: płyty z pianki poliuretanowej gr. 10, 12, 15 i 20 cm (λ = 0,022 W/(m·K));
    - stolarka okienna Uw = 0,86 W/(m2·K);
    - z węgarkiem (ocieplenie zachodzi na ościeżnicę – 4 cm),
RYS. 15–18. Przykładowe graficzne przedstawienie wyników symulacji komputerowej dla połączenia ściany zewnętrznej (z ociepleniem od zewnątrz) z oknem w przekroju przez ościeżnicę z węgarkiem: model obliczeniowy (15), linie strumieni cieplnych (adiabaty) (16), izotermy (17), izotermy w zakresie 0–20°C (18); rys.: K. Pawłowski

RYS. 15–18. Przykładowe graficzne przedstawienie wyników symulacji komputerowej dla połączenia ściany zewnętrznej (z ociepleniem od zewnątrz) z oknem w przekroju przez ościeżnicę z węgarkiem: model obliczeniowy (15), linie strumieni cieplnych (adiabaty) (16), izotermy (17), izotermy w zakresie 0–20°C (18); rys.: K. Pawłowski

  • wariant IV (RYS. 19–22):
    - ściana zewnętrzna z cegły pełnej gr. 37 cm (λ = 0,77 W/(m·K));
    - tynk gipsowy gr. 1,5 cm (λ = 0,40 W/(m·K));
    - izolacja termiczna od wewnątrz: płyty z pianki poliuretanowej gr. 10, 12, 15 i 20 cm (λ = 0,022 W/(m·K));
    - stolarka okienna Uw = 0,86 W/(m2·K);
    - bez węgarka,
RYS. 19–22. Przykładowe graficzne przedstawienie wyników symulacji komputerowej dla połączenia ściany zewnętrznej (z ociepleniem od wewnątrz) z oknem w przekroju przez ościeżnicę bez węgarka: model obliczeniowy (19), linie strumieni cieplnych (adiabaty) (20), izotermy (21), izotermy w zakresie 0–20°C (22); rys.: K. Pawłowski

RYS. 19–22. Przykładowe graficzne przedstawienie wyników symulacji komputerowej dla połączenia ściany zewnętrznej (z ociepleniem od wewnątrz) z oknem w przekroju przez ościeżnicę bez węgarka: model obliczeniowy (19), linie strumieni cieplnych (adiabaty) (20), izotermy (21), izotermy w zakresie 0–20°C (22); rys.: K. Pawłowski

  • wariant V (RYS. 23–26):
    - ściana zewnętrzna z cegły pełnej gr. 37cm (λ = 0,77 W/(m·K));
    - tynk gipsowy gr. 1,5 cm (λ = 0,40 W/(m·K));
    - izolacja termiczna od wewnątrz: płyty z pianki poliuretanowej gr. 10, 12, 15 i 20 cm (λ = 0,022 W/(m·K));
    - stolarka okienna Uw = 0,86 W/(m2·K);
    - z węgarkiem (ocieplenie zachodzi na ościeżnicę – 4 cm).
RYS. 23–26. Przykładowe graficzne przedstawienie wyników symulacji komputerowej dla połączenia ściany zewnętrznej (z ociepleniem od wewnątrz) z oknem w przekroju przez ościeżnicę z węgarkiem: model obliczeniowy (23), linie strumieni cieplnych (adiabaty) (24), izotermy (25), izotermy w zakresie 0–20°C (26); rys.: K. Pawłowski

RYS. 23–26. Przykładowe graficzne przedstawienie wyników symulacji komputerowej dla połączenia ściany zewnętrznej (z ociepleniem od wewnątrz) z oknem w przekroju przez ościeżnicę z węgarkiem: model obliczeniowy (23), linie strumieni cieplnych (adiabaty) (24), izotermy (25), izotermy w zakresie 0–20°C (26); rys.: K. Pawłowski

Dla ww. wariantów określono parametry fizykalne przy zastosowaniu programu komputerowego TRISCO-KOBRU 86 [8] przyjmuje się następujące założenia:

  • modelowanie złączy wykonano zgodnie z zasadami przedstawionymi w PN-EN ISO 10211:2008 [9],
  • opory przejmowania ciepła (Rsi, Rse) przyjęto zgodnie z PN-EN ISO 6946:2008 [2] przy obliczeniach strumieni cieplnych oraz według PN-EN ISO 13788:2003 [10] przy obliczeniach rozkładu temperatur i czynnika temperaturowego ƒRsi(2D),
  • temperatura powietrza wewnętrznego ti = 20°C (pokój dzienny), temperatura powietrza zewnętrznego te = –20°C (III strefa),
  • wartości współczynnika przewodzenia ciepła materiałów budowlanych λ [W/(m·K)] przyjęto według tablic w pracy [11].

Na RYS. 7–10, RYS. 11–14, RYS. 15–18, RYS. 19–22 i RYS. 23–26 przedstawiono graficzne wyniki symulacji komputerowej analizowanego złącza przy zastosowaniu programu komputerowego TRISCO-KOBRU 86 [8], a w TABELI 2 zestawiono wyniki przeprowadzonych obliczeń.

TABELA 2. Wyniki obliczeń parametrów fizykalnych analizowanych złączy ścian zewnętrznych

TABELA 2. Wyniki obliczeń parametrów fizykalnych analizowanych złączy ścian zewnętrznych

Na podstawie przeprowadzonych obliczeń (TABELA 2) można stwierdzić, że analizowane złącza generują dodatkowe straty ciepła określone m.in. w postaci liniowego współczynnika przenikania ciepła Ψi [W/(m·K)] oraz obniżenie temperatury na wewnętrznej powierzchni przegrody tsi,min. [°C]. Parametry fizykalne złączy ścian zewnętrznych po dociepleniu zależą od usytuowania i grubości materiału termoizolacyjnego.

Należy zwrócić uwagę, że ocieplenie połączenia ściany zewnętrznej z oknem bez węgarka powoduje znacznie wyższe dodatkowe straty ciepła (Φ, L2D, Ψi) oraz obniżenie temperatury na wewnętrznej powierzchni przegrody (tsi,min., ƒRsi.(2D)) w porównaniu z dociepleniem przy zastosowaniu węgarka – TABELA 2.

Takie rozwiązanie powoduje ryzyko występowania kondensacji na wewnętrznej powierzchni przegrody (rozwój pleśni i grzybów pleśniowych), kondensacji międzywarstwowej oraz zwiększenie ilości energii koniecznej do ogrzania pomieszczeń o żądanej temperaturze.

Spełnienie kryterium w zakresie uniknięcia występowania ryzyka kondensacji powierzchniowej (rozwoju pleśni i grzybów pleśniowych): ƒRsi.(2D)  ≥  ƒRsi.(kryt.), wymaga określenia wartości ƒRsi.(2D) na podstawie temperatury minimalnej na wewnętrznej powierzchni przegrody w miejscu mostka cieplnego (2D) tmin. [°C] oraz wartości ƒRsi.(kryt.) uwzględniającej parametry powietrza wewnętrznego i zewnętrznego (wilgotność i temperatura powietrza).

Wartość maksymalna z 12 miesięcy w odniesieniu do lokalizacji (Bydgoszcz) ƒRsi.(max) = ƒRsi.(kryt.) = 0,785 (luty). Oznacza to, że w każdym miesiącu roku i dla każdych innych wartości temperatur brzegowych dla uniknięcia kondensacji powierzchniowej ƒRsi.(2D) powinien być większy od 0,785.

Należy podkreślić, że na podstawie przeprowadzonych obliczeń (TABELA 2) w wielu przypadkach połączenia ściany zewnętrznej z oknem wystąpi ryzyko kondensacji powierzchniowej (ryzyko rozwoju pleśni i grzybów pleśniowych).

Przykład 3. Analiza parametrów cieplnych stropodachów drewnianych przed i po modernizacji

W pierwszym etapie obliczeń określono współczynnik przenikania ciepła Uc stropodachu drewnianego (nad poddaszem użytkowym) z ociepleniem pomiędzy krokwiami (RYS. 27).

W analizowanej połaci dachowej (stropodachu o konstrukcji drewnianej) zaprojektowano dobrze wentylowaną warstwę powietrza (gr. 3 cm między kontrłatami i gr. 3 cm nad izolacją cieplną), co spełnia to kryterium według pkt. 5.3.4. normy PN-EN ISO 6946:2008 [2]; „całkowity opór cieplny komponentu budowlanego zawierającego dobrze wentylowaną warstwę powietrza należy obliczyć, pomijając opór cieplny warstwy powietrza i wszystkich innych warstw między warstwą powietrza a środowiskiem zewnętrznym oraz dodając zewnętrzny opór przejmowania ciepła, odpowiadający powietrzu nieruchomemu; alternatywnie może być zastosowana wartość Rsi z Tablicy 1 normy”. Obliczenia współczynnika przenikania ciepła U dla przegrody niejednorodnej cieplnie wykonano metodą kresów według PN-EN ISO 6946:2008 [2]. Wyniki obliczeń w zależności od zastosowanego materiału termoizolacyjnego przedstawiono w TABELI 3.

Należy zwrócić uwagę, że przy zastosowaniu ocieplenia gr. 18 lub 20 cm jako izolacji między krokwiami trudno jest spełnić podstawowe kryterium cieplne: Uc [W/(m2·K)]  ≤  UC(max) = 0,15 W/(m2·K) – TABELA 3.

TABELA 3. Zestawienie wyników obliczeń współczynnika przenikania ciepła dachu drewnianego z ociepleniem pomiędzy krokwiami

TABELA 3. Zestawienie wyników obliczeń współczynnika przenikania ciepła dachu drewnianego z ociepleniem pomiędzy krokwiami

RYS. 27. Przykładowe zastosowania pianki poliuretanowej w dachach skośnych drewnianych: izolacja cieplna między krokwiami. Oznaczenia: 1 – dachówka ceramiczna, 2 – łata, 3 – kontrłata, 4 – szczelina dobrze wentylowana, 5 – folia wysokoparoprzepuszczalna, 6 – krokiew, 7 – izolacja cieplna, 8 – folia paroizolacyjna, 9 – płyta gipsowo­‑kartonowa; rys.: K. Pawłowski

RYS. 27. Przykładowe zastosowania pianki poliuretanowej w dachach skośnych drewnianych: izolacja cieplna między krokwiami. Oznaczenia: 1 – dachówka ceramiczna, 2 – łata, 3 – kontrłata, 4 – szczelina dobrze wentylowana, 5 – folia wysokoparoprzepuszczalna, 6 – krokiew, 7 – izolacja cieplna, 8 – folia paroizolacyjna, 9 – płyta gipsowo­‑kartonowa; rys.: K. Pawłowski  

RYS. 28. Przykładowe zastosowania pianki poliuretanowej w dachach skośnych drewnianych: izolacja cieplna między i pod krokwiami. Oznaczenia: 1 – dachówka ceramiczna, 2 – łata, 3 – kontrłata, 4 – szczelina dobrze wentylowana, 5 – folia wysokoparoprzepuszczalna, 6 – krokiew, 7 – izolacja cieplna, 8 – dodatkowa warstwa izolacji cieplnej, 9 – folia paroizolacyjna, 10 – płyta gipsowo­‑kartonowa; rys.: K. Pawłowski

RYS. 28. Przykładowe zastosowania pianki poliuretanowej w dachach skośnych drewnianych: izolacja cieplna między i pod krokwiami. Oznaczenia: 1 – dachówka ceramiczna, 2 – łata, 3 – kontrłata, 4 – szczelina dobrze wentylowana, 5 – folia wysokoparoprzepuszczalna, 6 – krokiew, 7 – izolacja cieplna, 8 – dodatkowa warstwa izolacji cieplnej, 9 – folia paroizolacyjna, 10 – płyta gipsowo­‑kartonowa; rys.: K. Pawłowski

Następnie określono współczynnik przenikania ciepła Uc stropodachu drewnianego (nad poddaszem użytkowym) z ociepleniem pomiędzy krokwiami i pod krokwiami (RYS. 28).

Wyniki obliczeń zestawiono w TABELI 4.

Kolorem jasnozielonym zaznaczono w niej warianty obliczeniowe (rozwiązania konstrukcyjno-materiałowe dachów drewnianych ocieplonych między krokwiami i pod krokwiami), które spełniają podstawowe kryterium cieplne: Uc [W/(m2·K)]  ≤  UC(max) = 0,15 W/(m2·K).

TABELA 4. Zestawienie wyników obliczeń współczynnika przenikania ciepła dachu drewnianego z ociepleniem pomiędzy krokwiami i pod krokwiami

TABELA 4. Zestawienie wyników obliczeń współczynnika przenikania ciepła dachu drewnianego z ociepleniem pomiędzy krokwiami i pod krokwiami

Usprawnienia instalacji w budynku jako przykład działań termomodernizacyjnych

  • Określając energochłonność budynku, należy uwzględnić także sprawności systemów instalacyjnych budynku wynikające z: regulacji i wykorzystania ciepła w przestrzeni ogrzewanej (ηH,e), przesyłu ciepła ze źródła ciepła do przestrzeni ogrzewanej (ηH,d), akumulacji ciepła w elementach pojemnościowych systemu ogrzewania (ηH,s), wytwarzania ciepła z nośnika energii lub energii dostarczanych do źródła ciepła (ηH,g).
  • Instalacja grzewcza w budynku musi spełniać wymagania przepisów techniczno-budowlanych, a także powinna uwzględniać wiedzę techniczną z zakresu rozwiązań energooszczędnych.
  • Projektowany system powinien być systemem wysokosprawnym.
  • Należy zaplanować wysokosprawne źródła ciepła, dołożyć wszelkich starań w celu obniżenia strat na przesyle czynnika grzewczego oraz, jeśli występuje zbiornik akumulacyjny, straty na akumulacji powinny być minimalne, a także optymalnie dobrać elementy odpowiedzialne za regulację i wykorzystanie ciepła.
  • Maksymalne możliwe sprawności można uzyskać według [12] m.in. poprzez stosowanie kotłów kondensacyjnych, pomp ciepła o wysokim współczynniku efektywności (COP), odpowiednie prowadzenie przewodów rozprowadzających czynnik grzejny (zwarta instalacja) oraz ich właściwą izolację cieplną, odpowiednią izolację zbiorników buforowych oraz dobrane do specyfiki ich pracy i użytkowania sterowanie ładowaniem i rozładowaniem, niskotemperaturowe systemy grzejne płaszczyznowe, grzejnikowe lub mieszane, stosowanie wysokosprawnych pomp pomocniczych charakteryzujących się niskim poborem mocy (skutkujące małym zużyciem energii pomocniczej).

Wartość wskaźnika rocznego zapotrzebowanie na nieodnawialną energię pierwotną (EP) określa efektywność całkowitą budynku i służy do sprawdzenia kryterium w zakresie oszczędności energii według rozporządzenia [1]: EP  ≤  EP(max). Dotyczy energii zawartej w źródłach, w tym paliwach i nośnikach, niezbędnej do pokrycia zapotrzebowania na energię końcową, z uwzględnieniem dodatkowych nakładów na dostarczenie tej energii do granicy budynku.

Wartość współczynnika nakładu nieodnawialnej energii pierwotnej na wytworzenie i dostarczenie nośnika energii lub energii dla systemów technicznych wi przyjmuje się na podstawie danych udostępnionych przez dostawcę tego nośnika energii lub energii. Uzyskanie niskich wartości wskazuje na nieznaczne zapotrzebowanie i tym samym wysoką efektywność energetyczną budynku.

Wprowadzenie odnawialnych źródeł energii (OZE) powoduje możliwość wprowadzenia do obliczeń wskaźnika wi poniżej 1, a w konsekwencji uzyskanie niskiej wartości wskaźnika EP.

Na stronach internetowych niektórzy dostawcy ciepła zamieszczają wartości wskaźnika nakładu nieodnawialnej energii pierwotnej. W przypadku braku takich danych przyjmuje się wartości współczynnika wi określone w rozporządzeniu [13].

Podjęte działania termomodernizacyjne w budynkach istniejących powinny być przeprowadzane na podstawie szczegółowej analizy ich stanu technicznego i cieplnego. Natomiast ocenę jakości prac związanych z dociepleniem przegród zewnętrznych należy przeprowadzać na podstawie badań termowizyjnych. Wyniki i analizy w tym zakresie dla osiedla na Górnym Śląsku zaprezentowano w pracy [14].

Istnieje potrzeba prowadzenia obliczeń i analiz dotyczących podejmowanych działań energooszczędnych na etapie ich projektowania, wykonawstwa oraz eksploatacji budynków.

Podsumowanie i wnioski

Dobór działań termomodernizacyjnych w istniejących budynkach jest procesem złożonym, obejmującym m.in. zagadnienia materiałów budowlanych, fizyki budowli oraz instalacji budowlanych.

Jakość cieplna obudowy budynku jest oceniana przez określenie wartości współczynników Uc, które wykorzystywane są do dalszych obliczeń w zakresie analizy cieplno-wilgotnościowej przegród i całego budynku (np. współczynnik strat ciepła przez przenikanie Htr [W/K], zapotrzebowanie na energię użytkową EU, energię końcową EK i pierwotną EP [kWh/(m2·rok)]).

Należy także podkreślić, że przy dociepleniu przegród zewnętrznych i ich złączy trzeba uwzględniać kryteria w zakresie: izolacyjności cieplnej, kondensacji powierzchniowej i międzywarstwowej, izolacyjności akustycznej, ochrony przeciwpożarowej oraz nośności i trwałości konstrukcji. Niektóre układy warstw materiałowych spełniają wymagania w zakresie izolacyjności cieplnej (Uc  ≤  Uc(max)), jednak po przeprowadzeniu analizy w zakresie wymagań wilgotnościowych, akustycznych lub przeciwpożarowych usytuowanie warstwy izolacji cieplnej w dowolnym położeniu przegrody jest niedopuszczalne.

Istotne staje się także miarodajne określenie parametrów fizykalnych (cieplno-wilgotnościowych) złączy budowlanych, których wartości zależą od usytuowania i grubości materiału termoizolacyjnego oraz położenia stolarki okiennej w ścianie zewnętrznej (TABELA 2). Posługiwanie się wartościami przybliżonymi i orientacyjnymi, np. w oparciu o PN-EN ISO 14683:2008 [15], jest nieuzasadnione, ponieważ nie uwzględniają zmiany układów materiałowych oraz rodzaju i grubości izolacji cieplnej. Szczegółowe obliczenia i analizy w zakresie ocieplenia elementów obudowy budynków istniejących przedstawiono m.in. w pracach [6], [16].

Całokształt działań termomodernizacyjnych budynków powinien obejmować także usprawnienie lub wymianę elementów instancji szczególnie centralnego ogrzewania i przygotowania ciepłej wody użytkowej oraz wprowadzenie odnawialnych źródeł energii (OZE). Takie kompleksowe podejście do dostosowania budynków do wymagań w zakresie oszczędności energii (EP  ≤  EP(max)) i ochrony cieplnej budynków (Uc  ≤  UC(max)) sprawia, że wartość wskaźnika zapotrzebowania budynku na energię pierwotną (EP) jest stosunkowa niska, a emisja CO2 (ECO2) do atmosfery jest maksymalnie ograniczona.

Literatura

  1. Rozporządzenie Ministra Infrastruktury i Budownictwa z dnia 14 listopada 2017 r. zmieniające rozporządzenie w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie (DzU z 2017 r. poz. 2285).
  2. PN-EN ISO 6946:2008, "Komponenty budowlane i elementy budynku. Opór cieplny i współczynnik przenikania ciepła. Metoda obliczania".
  3. PN-EN ISO 13370:2008, "Cieplne właściwości użytkowe budynków. Wymiana ciepła przez grunt. Metoda obliczania".
  4. P. Gałek, "Metody docieplenia budynków na starych systemach ociepleń",  "Wyzwania współczesnego budownictwa w dziedzinie izolacji" – materiały konferencyjne, Dom Wydawniczy MEDIUM, Warszawa 2012.
  5. "Ocieplenie na ocieplenia – zalecenia dotyczące renowacji istniejącego systemu ETCS", Stowarzyszenie na Rzecz Systemów Ociepleń, wydanie I, Warszawa 2012.
  6. M. Wesołowska, K. Pawłowski, "Aspekty związane z dostosowaniem obiektów istniejących do standardów budownictwa energooszczędnego", praca wydana w ramach projektu finansowanego ze środków funduszy norweskich i środków krajowych, Agencja Reklamowa TOP, Włocławek 2016.
  7. M. Wesołowska, K. Pawłowski, P. Rożek, "Modernizacja poddaszy użytkowych", "IZOLACJE" 11/12/2019, s. 34–43.
  8. Program komputerowy TRISCO-KOBRU 86, PHYSIBEL c.V, Belgia.
  9. PN-EN ISO 10211:2008, "Mostki cieplne w budynkach. Strumienie ciepła i temperatury powierzchni. Obliczenia szczegółowe".
  10. PN-EN ISO 13788:2003, "Cieplno-wilgotnościowe właściwości komponentów budowlanych i elementów budynku. Temperatura powierzchni wewnętrznej umożliwiająca uniknięcie krytycznej wilgotności powierzchni wewnętrznej kondensacji. Metody obliczania".
  11. K. Pawłowski, "Projektowanie przegród zewnętrznych w świetle aktualnych warunków technicznych dotyczących budynków. Obliczenia cieplno-wilgotnościowe przegród zewnętrznych i ich złączy", Grupa MEDIUM, Warszawa 2016.
  12. "Poradnik w zakresie poprawy charakterystyki energetycznej budynków", Ministerstwo Infrastruktury i Budownictwa, Warszawa 2016.
  13. Rozporządzenie Ministra Inwestycji i Rozwoju z dnia 6 września 2019 r. zmieniające rozporządzenie w sprawie metodologii wyznaczania charakterystyki energetycznej budynku lub części budynku oraz świadectw charakterystyki energetycznej (DzU z 2019 r. poz. 1829).
  14. A. Ostańska, "Increasing The Energy Efficiency of Dwelling Houses: Case Study of Residentia; Quarter in Upper Silesia, Poland", "Budownictwo i Architektura" 18(1)/2019, s. 23–32.
  15. PN-EN ISO 14683:2008, "Mostki cieplne w budynkach. Liniowy współczynnik przenikania ciepła. Metody uproszczone i wartości orientacyjne".
  16. M. Wesołowska, P. Szczepaniak, K. Pawłowski, A. Kaczmarek, "Zagadnienia fizykalne w termomodernizacji i remontach obiektów budowlanych", Wydawnictwa Uczelniane Uniwersytetu Technologiczno-Przyrodniczego w Bydgoszczy, Bydgoszcz 2019.

Chcesz być na bieżąco? Zapisz się do naszego newslettera!

Komentarze

Powiązane

Trwałość murów licowych

Trwałość murów licowych Trwałość murów licowych

W artykule zostanie przedstawione ujęcie trwałości murów licowych w opracowywanym do wdrożenia w Polsce Eurokodzie EN 1996 „Projektowanie konstrukcji murowych” [1]. Problematyka ta ujęta jest w części...

W artykule zostanie przedstawione ujęcie trwałości murów licowych w opracowywanym do wdrożenia w Polsce Eurokodzie EN 1996 „Projektowanie konstrukcji murowych” [1]. Problematyka ta ujęta jest w części II „Uwarunkowania projektowe, dobór materiałów i wykonawstwo konstrukcji murowych”, która wskazuje również wiele norm związanych (m.in. grupy norm EN 771 [2], EN 998 [3] i pośrednio EN 845 [4]). Jednak w tej grupie norm zawarte są tylko ogólne wytyczne dotyczące zasad doboru materiałów. Doświadczenia...

Tynki gipsowe stosowane we wnętrzach – rodzaje i właściwości

Tynki gipsowe stosowane we wnętrzach – rodzaje i właściwości Tynki gipsowe stosowane we wnętrzach – rodzaje i właściwości

Tynki wewnętrzne, zwane także wyprawami tynkarskimi, to powłoki wykonane z zapraw przeznaczonych do pokrywania lub kształtowania powierzchni ścian i stropów. Należy jednak pamiętać, że tynk to nie tylko...

Tynki wewnętrzne, zwane także wyprawami tynkarskimi, to powłoki wykonane z zapraw przeznaczonych do pokrywania lub kształtowania powierzchni ścian i stropów. Należy jednak pamiętać, że tynk to nie tylko element zwiększający estetykę i wytrzymałość powierzchni ściany, lecz także czynnik zapewniający odpowiedni mikroklimat w pomieszczeniach, stanowiący o komforcie jego użytkowania. Aby te funkcje mógł pełnić w każdym wnętrzu, jego rodzaj należy starannie dobrać w zależności od podłoża oraz przewidywanego...

Materiały do systemów ociepleń ETICS

Materiały do systemów ociepleń ETICS Materiały do systemów ociepleń ETICS

Gdy patrzymy na ścianę wyklejoną termoizolacją, z której robotnicy zdejmują kolejne niezwiązane z podłożem płyty, zadajemy sobie pytanie: czy rzeczywiście dobór materiałów i ich wbudowanie są łatwe?

Gdy patrzymy na ścianę wyklejoną termoizolacją, z której robotnicy zdejmują kolejne niezwiązane z podłożem płyty, zadajemy sobie pytanie: czy rzeczywiście dobór materiałów i ich wbudowanie są łatwe?

Gładzie gipsowe w budownictwie

Gładzie gipsowe w budownictwie Gładzie gipsowe w budownictwie

Gładź jest ostatnią wierzchnią warstwą powierzchni tynkowanej, nadającą jej wysoką estetykę, wykonywaną z zaprawy lub masy tynkarskiej. Najbardziej szlachetna odmiana gładzi do wykonywania powłok wewnętrznych...

Gładź jest ostatnią wierzchnią warstwą powierzchni tynkowanej, nadającą jej wysoką estetykę, wykonywaną z zaprawy lub masy tynkarskiej. Najbardziej szlachetna odmiana gładzi do wykonywania powłok wewnętrznych w obiektach budowlanych to suche zaprawy tynkarskie wytwarzane na spoiwie gipsowym – tzw. gładzie gipsowe. Gładzie gipsowe stosuje się na powierzchniach ścian i sufitów w celu ich wyrównania, a dzięki temu uzyskania wysokiej jakości podłoży gładkich przeznaczonych do malowania lub tapetowania.

Płyty gipsowo-kartonowe w pomieszczeniach wilgotnych

Płyty gipsowo-kartonowe w pomieszczeniach wilgotnych Płyty gipsowo-kartonowe w pomieszczeniach wilgotnych

Historia obecności płyt gipsowo-kartonowych w Polsce ma już pięćdziesięcioletnią tradycję. Należy jednak zaznaczyć, że ten pierwszy okres stosowania (od 1957 do 1990 r.) bardzo zaszkodził opinii o przydatności...

Historia obecności płyt gipsowo-kartonowych w Polsce ma już pięćdziesięcioletnią tradycję. Należy jednak zaznaczyć, że ten pierwszy okres stosowania (od 1957 do 1990 r.) bardzo zaszkodził opinii o przydatności płyt gipsowo-kartonowych na polskich budowach. W tym pierwszym okresie była dostępna jedynie płyta, nie było natomiast żadnych akcesoriów ani kleju gipsowego czy gipsu szpachlowego, nie mówiąc już o profilach. Płyta g-k miała zastępować mokre tynki wewnętrzne, co dobitnie podkreśla obowiązująca...

Jak zwiększyć efektywność energetyczną budynków?

Jak zwiększyć efektywność energetyczną budynków? Jak zwiększyć efektywność energetyczną budynków?

Materiały zmiennofazowe (PCM, ang. phase change materials) wkomponowane w różny sposób w strukturę budynku zwiększają jego pojemność (bezwładność) cieplną. Duża pojemność cieplna konstrukcji budynku (zdolność...

Materiały zmiennofazowe (PCM, ang. phase change materials) wkomponowane w różny sposób w strukturę budynku zwiększają jego pojemność (bezwładność) cieplną. Duża pojemność cieplna konstrukcji budynku (zdolność do akumulacji ciepła) przyczynia się zaś do poprawy jego efektywności energetycznej, co przejawia się zmniejszeniem zużycia energii niezbędnej do zapewnienia i utrzymania komfortu cieplnego. Pozwala też na wykorzystanie energii ze źródeł odnawialnych bez dodatkowych kosztów inwestycyjnych.

Dom podziemny

Dom podziemny Dom podziemny

Budownictwo podziemne jest oszczędne i ekologiczne. Dom może harmonijnie współgrać z otoczeniem. W Polsce ta technologia jest jeszcze mało znana.

Budownictwo podziemne jest oszczędne i ekologiczne. Dom może harmonijnie współgrać z otoczeniem. W Polsce ta technologia jest jeszcze mało znana.

Izolacje aerożelowe

Izolacje aerożelowe Izolacje aerożelowe

Rosnące koszty wytwarzania energii konwencjonalnej oraz polityka UE zmierzająca do ograniczania zużycia energii i emisji gazów w krajach członkowskich skłaniają do poszukiwania coraz bardziej efektywnych...

Rosnące koszty wytwarzania energii konwencjonalnej oraz polityka UE zmierzająca do ograniczania zużycia energii i emisji gazów w krajach członkowskich skłaniają do poszukiwania coraz bardziej efektywnych termoizolacji, nawet mimo stosunkowo dużego kosztu ich wytwarzania. Takim materiałem izolacyjnym, który wydaje się spełniać rosnące wymagania, jest aerożel – materiał nanoporowaty, ultralekki i transparentny.

Tynki zewnętrzne z cementu romańskiego

Tynki zewnętrzne z cementu romańskiego Tynki zewnętrzne z cementu romańskiego

Zaprawy tynkarskie na bazie cementu romańskiego były powszechnie stosowane w budownictwie miejskim na przełomie XIX i XX w. Miały za zadanie chronić konstrukcję budynków przed wpływem czynników atmosferycznych...

Zaprawy tynkarskie na bazie cementu romańskiego były powszechnie stosowane w budownictwie miejskim na przełomie XIX i XX w. Miały za zadanie chronić konstrukcję budynków przed wpływem czynników atmosferycznych i zanieczyszczeń środowiska, a jednocześnie pełnić funkcję dekoracyjną. Po ich ponad 100-letniej eksploatacji można stwierdzić, że w przeważającej większości obserwowanych obiektów wygrały próbę czasu i zachowały funkcję wypraw bez specjalnych reperacji. Jednakże w wielu wypadkach wpływy atmosferyczne...

Nowe wymagania w ocenie wilgotnościowej przegród

Nowe wymagania w ocenie wilgotnościowej przegród Nowe wymagania w ocenie wilgotnościowej przegród

Od 1 stycznia 2009 r. obowiązuje znowelizowane rozporządzenie w sprawie warunków technicznych, jakim powinny opowiadać budynki i ich usytuowanie [12]. Ustawodawcy zaprezentowali w nim m.in. nowe podejście...

Od 1 stycznia 2009 r. obowiązuje znowelizowane rozporządzenie w sprawie warunków technicznych, jakim powinny opowiadać budynki i ich usytuowanie [12]. Ustawodawcy zaprezentowali w nim m.in. nowe podejście do oceny wilgotnościowej przegród. Jako właściwą wskazali normę PN-EN ISO 13788 [11], która od momentu jej wprowadzenia w 2001 r. miała status normy dobrowolnego stosowania. W związku z tym już wcześniej została wdrożona do procesu dydaktycznego na wielu uczelniach technicznych. Prowadzono również...

Termowizja jako weryfikacja jakości prac izolacyjnych

Termowizja jako weryfikacja jakości prac izolacyjnych Termowizja jako weryfikacja jakości prac izolacyjnych

Uzyskanie rzetelnej informacji o jakości i prawidłowości wykonanej w budynku izolacji termicznej może nie być proste. Istniejące budynki bardzo często nie mają dokumentacji lub jest ona niekompletna, a...

Uzyskanie rzetelnej informacji o jakości i prawidłowości wykonanej w budynku izolacji termicznej może nie być proste. Istniejące budynki bardzo często nie mają dokumentacji lub jest ona niekompletna, a dodatkowy problem mogą stanowić dokonane w trakcie realizacji zmiany technologii czy materiałów w stosunku do zaplanowanych w projekcie. Aby zatem dokonać poprawnej oceny, należy wykonać dodatkowe badania, najlepiej metodą bezinwazyjną. Taka bezinwazyjna weryfikacja prac izolacyjnych nie jest możliwa...

Izolacja aerożelowa na tle izolacji tradycyjnych

Izolacja aerożelowa na tle izolacji tradycyjnych Izolacja aerożelowa na tle izolacji tradycyjnych

Jedną ze współczesnych tendencji europejskich jest ograniczanie zużycia energii cieplnej w sektorze budowlanym, a co za tym idzie minimalizacja strat ciepła i zaostrzanie wymogów izolacyjności cieplnej....

Jedną ze współczesnych tendencji europejskich jest ograniczanie zużycia energii cieplnej w sektorze budowlanym, a co za tym idzie minimalizacja strat ciepła i zaostrzanie wymogów izolacyjności cieplnej. Zwiększenie parametrów izolacyjnych przegród budynku jest często bardzo trudne do uzyskania (przy istniejących grubych ścianach powoduje ograniczenie dopływu światła dziennego) lub wiąże się z wieloma kompromisami architektonicznymi i funkcjonalnymi (np. zmniejszeniem powierzchni użytkowej lub wysokości...

Nowe inwestycje a ochrona środowiska przed drganiami

Nowe inwestycje a ochrona środowiska przed drganiami Nowe inwestycje a ochrona środowiska przed drganiami

W ostatnich latach nastąpił intensywny rozwój budownictwa kubaturowego i komunikacyjnego. Nowym inwestycjom mogą towarzyszyć oddziaływania, przed którymi należy chronić środowisko. Jednym z takich oddziaływań...

W ostatnich latach nastąpił intensywny rozwój budownictwa kubaturowego i komunikacyjnego. Nowym inwestycjom mogą towarzyszyć oddziaływania, przed którymi należy chronić środowisko. Jednym z takich oddziaływań jest wpływ wibracji, czyli drgań mechanicznych (zwanych dalej krótko drganiami), na budynki i ludzi w nich przebywających (tzw. wpływy dynamiczne).

Właściwości akustyczne stropów i układów podłogowych

Właściwości akustyczne stropów i układów podłogowych Właściwości akustyczne stropów i układów podłogowych

Zapewnienie należytej ochrony przed hałasem jest jednym z podstawowych wymagań użytkowych stawianych obiektom budowlanym. Zostało ono sformułowane w Dyrektywie Unii Europejskiej 89/106/EEC92 oraz w Dokumencie...

Zapewnienie należytej ochrony przed hałasem jest jednym z podstawowych wymagań użytkowych stawianych obiektom budowlanym. Zostało ono sformułowane w Dyrektywie Unii Europejskiej 89/106/EEC92 oraz w Dokumencie Interpretacyjnym „Wymaganie podstawowe nr 5. Ochrona przed hałasem”. Podobne zapisy, włączające ponadto ochronę przeciwdrganiową, znajdują się w podstawowych aktach prawnych dotyczących budownictwa, do których należą: ustawa Prawo budowlane i związane z nią Rozporządzenie Ministra Infrastruktury...

Wpływ liniowych mostków cieplnych na parametry fizykalne ścian zewnętrznych budynku

Wpływ liniowych mostków cieplnych na parametry fizykalne ścian zewnętrznych budynku Wpływ liniowych mostków cieplnych na parametry fizykalne ścian zewnętrznych budynku

Podstawowym problemem w procedurach obliczeniowych jest sposób uwzględniania liniowych mostków cieplnych. Z tego względu zjawisko występowania mostka cieplnego jest zwykle niedostrzegane i pomijane przez...

Podstawowym problemem w procedurach obliczeniowych jest sposób uwzględniania liniowych mostków cieplnych. Z tego względu zjawisko występowania mostka cieplnego jest zwykle niedostrzegane i pomijane przez projektantów, architektów i konstruktorów.

Wymogi prawne związane z ewidencją materiałów zawierających azbest

Wymogi prawne związane z ewidencją materiałów zawierających azbest Wymogi prawne związane z ewidencją materiałów zawierających azbest

W związku z zagrożeniem dla zdrowia i życia powodowanym przez azbest wprowadzono w Polsce wiele przepisów regulujących postępowanie z wyrobami zawierającymi ten materiał.

W związku z zagrożeniem dla zdrowia i życia powodowanym przez azbest wprowadzono w Polsce wiele przepisów regulujących postępowanie z wyrobami zawierającymi ten materiał.

Jak określać charakterystykę energetyczną budynków?

Jak określać charakterystykę energetyczną budynków? Jak określać charakterystykę energetyczną budynków?

Zapotrzebowanie na energię netto do ogrzewania i chłodzenia stanowi istotny składnik ogólnej charakterystyki energetycznej budynków. Ponadto wiele wskaźników opartych na zapotrzebowaniu na energię netto...

Zapotrzebowanie na energię netto do ogrzewania i chłodzenia stanowi istotny składnik ogólnej charakterystyki energetycznej budynków. Ponadto wiele wskaźników opartych na zapotrzebowaniu na energię netto jest podstawą do porównywania koncepcji architektonicznych i szacowania przyszłych kosztów eksploatacji obiektów, w szerszej perspektywie zaś – do oceny wpływu budynków na środowisko. W wybranych przypadkach (dla budynków mieszkalnych wielorodzinnych i zamieszkania zbiorowego) wskaźniki zapotrzebowania...

Przepisy techniczne dotyczące ochrony przed hałasem w budynkach mieszkalnych i użyteczności publicznej

Przepisy techniczne dotyczące ochrony przed hałasem w budynkach mieszkalnych i użyteczności publicznej Przepisy techniczne dotyczące ochrony przed hałasem w budynkach mieszkalnych i użyteczności publicznej

Celem ochrony przeciwdźwiękowej w budynkach mieszkalnych i użyteczności publicznej jest zapewnienie takich warunków akustycznych, „aby poziom hałasu, na który będą narażeni użytkownicy [budynku – B.S.]...

Celem ochrony przeciwdźwiękowej w budynkach mieszkalnych i użyteczności publicznej jest zapewnienie takich warunków akustycznych, „aby poziom hałasu, na który będą narażeni użytkownicy [budynku – B.S.] lub ludzie znajdujący się w ich sąsiedztwie, nie stanowił zagrożenia dla ich zdrowia, a także umożliwiał im pracę, odpoczynek i sen w zadowalających warunkach”. Ten cel, zacytowany z rozporządzenia w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie [20, 24], przedstawiony...

Aerożel: amerykańska izolacja już w Polsce

Aerożel: amerykańska izolacja już w Polsce Aerożel: amerykańska izolacja już w Polsce

"Aerożel jest stosunkowo starym materiałem – wynaleziono go w 1931 r. jego objętość stanowi w ponad 90% powietrze, co czyni go najskuteczniejszym izolatorem o najniższej wartości współczynnika przewodzenia...

"Aerożel jest stosunkowo starym materiałem – wynaleziono go w 1931 r. jego objętość stanowi w ponad 90% powietrze, co czyni go najskuteczniejszym izolatorem o najniższej wartości współczynnika przewodzenia ciepła λ" - tłumaczą Jarosławowi Guzalowi Szymon Markiewicz – dyrektor handlowy, i Dariusz Krakowski – przedstawiciel handlowy firmy Aerogels Poland Nanotechnology Sp. z o.o.

Zjawisko wysadziny zmarzlinowej – metody zapobiegania

Zjawisko wysadziny zmarzlinowej – metody zapobiegania Zjawisko wysadziny zmarzlinowej – metody zapobiegania

Wysadzina zmarzlinowa to zjawisko polegające na podnoszeniu się ku górze powierzchni przemarzającej gruntu spoistego (gliny, iłu) wskutek zamarzania wody gruntowej podciąganej kapilarnie do strefy przemarzania,...

Wysadzina zmarzlinowa to zjawisko polegające na podnoszeniu się ku górze powierzchni przemarzającej gruntu spoistego (gliny, iłu) wskutek zamarzania wody gruntowej podciąganej kapilarnie do strefy przemarzania, a dokładniej: na skutek kolejno tworzących się w podłożu soczewek lodu.

Ściany zewnętrzne w systemach elewacji wentylowanych

Ściany zewnętrzne w systemach elewacji wentylowanych Ściany zewnętrzne w systemach elewacji wentylowanych

Wentylacja ścian zewnętrznych ocieplanych w technologiach lekkich-suchych pozornie stanowi niewiele znaczący fragment globalnego systemu wentylacji obiektu. W rzeczywistości jest to istotny jego składnik,...

Wentylacja ścian zewnętrznych ocieplanych w technologiach lekkich-suchych pozornie stanowi niewiele znaczący fragment globalnego systemu wentylacji obiektu. W rzeczywistości jest to istotny jego składnik, bo w takich strefach zachodzą skomplikowane zjawiska klimatyczne związane ze zmianami tempa dyfuzji powietrza suchego i pary wodnej oraz migracją wilgoci, adekwatne do warunków cieplno-wilgotnościowych panujących po obu stronach ścian. Zjawiska te rzutują na jakość konstrukcji obiektu i kształtują...

Uciążliwa pleśń na ścianie - skąd się bierze i jak ją zwalczać?

Uciążliwa pleśń na ścianie - skąd się bierze i jak ją zwalczać? Uciążliwa pleśń na ścianie - skąd się bierze i jak ją zwalczać?

Na obecność pleśni na ścianach wpływa wiele czynników, które tworzą sprzyjający klimat dla jej rozwoju. Pleśń najlepiej rozwija się w środowisku o podwyższonym zawilgoceniu i umiarkowanych temperaturach....

Na obecność pleśni na ścianach wpływa wiele czynników, które tworzą sprzyjający klimat dla jej rozwoju. Pleśń najlepiej rozwija się w środowisku o podwyższonym zawilgoceniu i umiarkowanych temperaturach. Na ścianach wewnątrz pomieszczeń są to miejsca występowania tzw. mostków termicznych, spowodowane brakiem docieplenia muru, gdzie na styku powierzchni ściany z otoczeniem występuje zjawisko skraplania się wilgoci.

Jak izolować ściany zewnętrzne budynków?

Jak izolować ściany zewnętrzne budynków? Jak izolować ściany zewnętrzne budynków?

Inwestor czy właściciel budynku powinien zadbać o to, by budynek spełniał minimalne wymagania dotyczące izolacyjności cieplnej, wskazane w Rozporządzeniu Ministra Infrastruktury z dnia 12 kwietnia 2002...

Inwestor czy właściciel budynku powinien zadbać o to, by budynek spełniał minimalne wymagania dotyczące izolacyjności cieplnej, wskazane w Rozporządzeniu Ministra Infrastruktury z dnia 12 kwietnia 2002 r. w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie (DzU z 2002 r. nr 75, poz. 690 z późn. zm.). W jego interesie jest jednak rozważenie zastosowania lepszej ochrony cieplnej, niż wymagana w przepisach, tzn. wyboru takich rozwiązań, których efektywność ekonomiczna...

Termowizja – zasady ogólne, środowisko pomiarowe, budowa kamer, przykłady zastosowania

Termowizja – zasady ogólne, środowisko pomiarowe, budowa kamer, przykłady zastosowania Termowizja – zasady ogólne, środowisko pomiarowe, budowa kamer, przykłady zastosowania

Celem artykułu jest przybliżenie czytelnikom tematyki związanej z promieniowaniem podczerwonym, budową kamer i wykonywaniem pomiarów termowizyjnych.

Celem artykułu jest przybliżenie czytelnikom tematyki związanej z promieniowaniem podczerwonym, budową kamer i wykonywaniem pomiarów termowizyjnych.

Najnowsze produkty i technologie

Kupuj i sprzedawaj materiały izolacyjne na platformie merXu

Kupuj i sprzedawaj materiały izolacyjne na platformie merXu Kupuj i sprzedawaj materiały izolacyjne na platformie merXu

Nowoczesne rozwiązania oraz narzędzia pomagają w prowadzeniu działalności i pozwalają firmom pozostać konkurencyjnym na rynku budowlanym. Jakie funkcjonalności wyróżniają merXu?

Nowoczesne rozwiązania oraz narzędzia pomagają w prowadzeniu działalności i pozwalają firmom pozostać konkurencyjnym na rynku budowlanym. Jakie funkcjonalności wyróżniają merXu?

Materiały do hydroizolacji fundamentów z ochroną przeciwko przenikaniu radioaktywnego radonu

Materiały do hydroizolacji fundamentów z ochroną przeciwko przenikaniu radioaktywnego radonu Materiały do hydroizolacji fundamentów z ochroną przeciwko przenikaniu radioaktywnego radonu

Poza technicznymi i sztucznymi źródłami promieniowania, będącymi najczęściej przedmiotem rozmaitych dyskusji, często mamy także do czynienia ze źródłami promieniowania pochodzenia naturalnego. Należy do...

Poza technicznymi i sztucznymi źródłami promieniowania, będącymi najczęściej przedmiotem rozmaitych dyskusji, często mamy także do czynienia ze źródłami promieniowania pochodzenia naturalnego. Należy do nich emisja radonu – radioaktywnego gazu szlachetnego pochodzącego z gruntu. Do uszczelnienia budowli przeciwko wnikaniu tego szkodliwego dla zdrowia gazu przeznaczone są zarówno samoprzylepne membrany bitumiczno‑polimerowe KÖSTER KSK SY 15, jak i dwuskładnikowe, bitumiczno‑polimerowe masy uszczelniające...

THERMANO według nowych wymagań budowlanych 2021

THERMANO według nowych wymagań budowlanych 2021 THERMANO według nowych wymagań budowlanych 2021

Płyty Thermano to najbardziej uniwersalny materiał do termoizolacji budynków i pomieszczeń. Posiadają wiele atutów, które odgrywają kluczową rolę przy realizacjach różnego rodzaju. Pozwalają również na...

Płyty Thermano to najbardziej uniwersalny materiał do termoizolacji budynków i pomieszczeń. Posiadają wiele atutów, które odgrywają kluczową rolę przy realizacjach różnego rodzaju. Pozwalają również na spełnienie wymagań wynikających z nowych Warunków Technicznych obowiązujących od 2021 roku.

Pasywne systemy mocowań do elewacji wentylowanych

Pasywne systemy mocowań do elewacji wentylowanych Pasywne systemy mocowań do elewacji wentylowanych

AGS zajmuje się projektowaniem i produkcją innowacyjnych i niespotykanych dotąd na rynku systemów mocowań do elewacji wentylowanych, elewacji klinkierowych i ciężkich okładzin. Dynamiczny rozwój spółki...

AGS zajmuje się projektowaniem i produkcją innowacyjnych i niespotykanych dotąd na rynku systemów mocowań do elewacji wentylowanych, elewacji klinkierowych i ciężkich okładzin. Dynamiczny rozwój spółki oraz ciągłe rozbudowywanie i ulepszanie oferty produktowej przyczyniły się do uzyskania prawa ochrony własności intelektualnej oraz Krajowej Oceny Technicznej.

Co zyskasz z nowymi oknami dachowymi?

Co zyskasz z nowymi oknami dachowymi? Co zyskasz z nowymi oknami dachowymi?

Szacuje się, że budynki w Europie pochłaniają aż 40% całkowitego zużycia energii, z czego najwięcej przeznaczone jest na ogrzewanie. Dążenie do poprawy efektywności energetycznej budynków znajduje swoje...

Szacuje się, że budynki w Europie pochłaniają aż 40% całkowitego zużycia energii, z czego najwięcej przeznaczone jest na ogrzewanie. Dążenie do poprawy efektywności energetycznej budynków znajduje swoje odzwierciedlenie nie tylko w nowych przepisach, ale też w rozwiązaniach w segmencie stolarki okiennej. Mają one spełnić oczekiwania inwestorów, którzy troszczą się o swój portfel, ale też o zdrowie i komfort użytkowania wnętrz.

Zmiany w Warunkach Technicznych – wybierz najcieplejszy produkt?

Zmiany w Warunkach Technicznych – wybierz najcieplejszy produkt? Zmiany w Warunkach Technicznych – wybierz najcieplejszy produkt?

Najpopularniejszym tradycyjnym materiałem izolacyjnym do dachów skośnych jest wełna mineralna. Mineralna wełna szklana climowool to jeden z najbardziej ekologicznych produktów dostępnych na rynku. Dzięki...

Najpopularniejszym tradycyjnym materiałem izolacyjnym do dachów skośnych jest wełna mineralna. Mineralna wełna szklana climowool to jeden z najbardziej ekologicznych produktów dostępnych na rynku. Dzięki procesowi produkcyjnemu wykorzystującemu wyłącznie naturalne surowce mamy gwarancję, że dom został ocieplony produktem przyjaznym dla środowiska i mieszkańców, a jego jakość i wysoki parametr termoizolacyjny zagwarantują nie tylko cieplejszy dom zimą, ale i chłodniejszy latem.

Ocieplenie poddasza – energooszczędność i komfort

Ocieplenie poddasza – energooszczędność i komfort Ocieplenie poddasza – energooszczędność i komfort

Od nowoczesnego domu oczekujemy komfortu mieszkania i niskich rachunków za eksploatację. Jeden z kluczowych elementów, który wpływa na realizację powyższych oczekiwań, to skuteczna izolacja poddasza.

Od nowoczesnego domu oczekujemy komfortu mieszkania i niskich rachunków za eksploatację. Jeden z kluczowych elementów, który wpływa na realizację powyższych oczekiwań, to skuteczna izolacja poddasza.

Platforma merXu.com – jak z niej korzystać?

Platforma merXu.com – jak z niej korzystać? Platforma merXu.com – jak z niej korzystać?

Na uruchomionej niedawno platformie www.merXu.com, na której firmy mogą handlować pomiędzy sobą towarami przemysłowymi i okołobudowlanymi, znajdziemy już kilkaset tysięcy ofert dotyczących m.in. materiałów...

Na uruchomionej niedawno platformie www.merXu.com, na której firmy mogą handlować pomiędzy sobą towarami przemysłowymi i okołobudowlanymi, znajdziemy już kilkaset tysięcy ofert dotyczących m.in. materiałów budowlanych, instalacji, izolacji czy artykułów elektrotechnicznych i oświetleniowych. Warto przyjrzeć się temu marketplace’owi, który wielu polskim firmom może dać szansę na znaczne poszerzenie grona kontrahentów – nie tylko w Polsce, ale i za granicą. Jakie funkcjonalności pomocne w prowadzeniu...

Iniekcja uszczelniająca żelem akrylowym KÖSTER Injektion Gel G4 żelbetowej płyty fundamentowej podziemnej hali pieca do wytopu szkła

Iniekcja uszczelniająca żelem akrylowym KÖSTER Injektion Gel G4 żelbetowej płyty fundamentowej podziemnej hali pieca do wytopu szkła Iniekcja uszczelniająca żelem akrylowym KÖSTER Injektion Gel G4 żelbetowej płyty fundamentowej podziemnej hali pieca do wytopu szkła

W ramach prowadzonych prac modernizacyjnych i okresowej wymiany pieca do wytopu szkła podjęto decyzję o usunięciu powstałych podczas dotychczasowej eksploatacji nieszczelności płyty fundamentowej. Płyta...

W ramach prowadzonych prac modernizacyjnych i okresowej wymiany pieca do wytopu szkła podjęto decyzję o usunięciu powstałych podczas dotychczasowej eksploatacji nieszczelności płyty fundamentowej. Płyta o wymiarach w świetle ścian 35,50x36,27 m i grubości 1,60 m wykazywała liczne i okresowo intensywne przecieki, które powodowały konieczność tymczasowego odprowadzania przenikających wód gruntowych systemem rowków powierzchniowych wyciętych w płycie do studzienek zbiorczych i odpompowywania. Powierzchnia...

Copyright © 2004-2019 Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Spółka komandytowa, nr KRS: 0000537655. Wszelkie prawa, w tym Autora, Wydawcy i Producenta bazy danych zastrzeżone. Jakiekolwiek dalsze rozpowszechnianie artykułów zabronione. Korzystanie z serwisu i zamieszczonych w nim utworów i danych wyłącznie na zasadach określonych w Zasadach korzystania z serwisu.
Portal Budowlany - Elektro.Info.pl

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim urządzeniu końcowym. W każdym momencie możesz dokonać zmiany ustawień przeglądarki dotyczących cookies. Nim Państwo zaczną korzystać z naszego serwisu prosimy o zapoznanie się z naszą polityką prywatności oraz Informacją o Cookies. Więcej szczegółów w naszej Polityce Prywatności oraz Informacji o Cookies. Administratorem Państwa danych osobowych jest Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Sp.K., nr KRS: 0000537655, z siedzibą w 04-112 Warszawa, ul. Karczewska 18, tel. +48 22 810-21-24, właściciel strony www.izolacje.com.pl. Twoje Dane Osobowe będą chronione zgodnie z wytycznymi polityki prywatności www.izolacje.com.pl oraz zgodnie z Rozporządzeniem Parlamentu Europejskiego i Rady (UE) 2016/679 z dnia 27 kwietnia 2016r i z Ustawą o ochronie danych osobowych Dz.U. 2018 poz. 1000 z dnia 10 maja 2018r.