Izolacje.com.pl

Termomodernizacja budynków z uwzględnieniem wymagań cieplno-wilgotnościowych od 1 stycznia 2021 roku

Thermomodernisation of buildings taking into account the thermal and humidity requirements applicable from 1st January 2021

Zastosowanie odpowiedniego materiału termoizolacyjnego pozwala na osiągnięcie niskich wartości współczynnika przenikania ciepła.

Zastosowanie odpowiedniego materiału termoizolacyjnego pozwala na osiągnięcie niskich wartości współczynnika przenikania ciepła.

Termomodernizacja dotyczy dostosowania budynku do nowych wymagań ochrony cieplnej i oszczędności energii. Ponadto stanowi zbiór zabiegów mających na celu wyeliminowanie lub znaczne ograniczenie strat ciepła w istniejącym budynku. Jest jednym z elementów modernizacji budynku, który przynosi korzyści finansowe i pokrycie kosztów innych działań.

Zobacz także

Redakcja miesięcznika IZOLACJE Jak projektować budynki według aktualnych warunków technicznych [pobierz PDF]

Jak projektować budynki według aktualnych warunków technicznych [pobierz PDF] Jak projektować budynki według aktualnych warunków technicznych [pobierz PDF]

Jak zaprojektować i wykonać przegrody budynku, aby ich parametry izolacyjności cieplnej spełniały zaostrzone wymagania? Prezentujemy szeroki zakres zagadnień związanych z projektowaniem przegród budynku...

Jak zaprojektować i wykonać przegrody budynku, aby ich parametry izolacyjności cieplnej spełniały zaostrzone wymagania? Prezentujemy szeroki zakres zagadnień związanych z projektowaniem przegród budynku według obowiązujących wymagań cieplno-wilgotnościowych.

Jarosław Guzal Warunki Techniczne muszą być zmienione

Warunki Techniczne muszą być zmienione Warunki Techniczne muszą być zmienione

Dr Ludomir Duda, doradca prezesa Narodowego Funduszu Ochrony Środowiska i Gospodarki Wodnej, mówi o potrzebie termomodernizacji wielu budynków w Polsce oraz kosztach tego przedsięwzięcia, a także o konieczności...

Dr Ludomir Duda, doradca prezesa Narodowego Funduszu Ochrony Środowiska i Gospodarki Wodnej, mówi o potrzebie termomodernizacji wielu budynków w Polsce oraz kosztach tego przedsięwzięcia, a także o konieczności wprowadzenia zmian w przepisach Rozporządzenia Ministra Infrastruktury z dnia 12 kwietnia 2002 r. w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie (Warunków Technicznych).

STYRMANN Sp. z o. o. Ocieplenia dla nowoczesnego budownictwa

Ocieplenia dla nowoczesnego budownictwa Ocieplenia dla nowoczesnego budownictwa

Styropian grafitowy jako materiał do ociepleń jest w ostatnich latach coraz bardziej popularny na polskim rynku – zarówno wśród inwestorów, jak i wykonawców – jego zastosowanie niesie bowiem wiele korzyści.

Styropian grafitowy jako materiał do ociepleń jest w ostatnich latach coraz bardziej popularny na polskim rynku – zarówno wśród inwestorów, jak i wykonawców – jego zastosowanie niesie bowiem wiele korzyści.

 

Abstrakt

W artykule opisano wybrane działania termomodernizacyjne stosowane w istniejących budynkach wraz z przykładami obliczeniowymi uwzgledniającymi wymagania cieplno-wilgotnościowe.

Thermomodernisation of buildings taking into account the thermal and humidity requirements applicable from 1st January 2021

The article describes selected thermo modernization measures applied in existing buildings together with calculation examples taking into account thermal and humidity requirements.

Działania energooszczędne stosowane w budynkach o niskim zużyciu energii można podzielić na trzy podstawowe grupy:

  • Pierwsza to technologie związane z redukcją strat ciepła przez przegrody, a w szczególności:
    - ocieplanie przegród zewnętrznych (podłogi na gruncie, stropy, dach, ściany),
    - dobór stolarki okiennej i drzwiowej z uwzględnieniem wymagań cieplnych według rozporządzenia [1].
  • Druga grupa dotyczy redukcji strat oraz poprawy sprawności systemu instalacyjnego i jest to m.in.:
    - wymiana lub modernizacja grzejników,
    - wymiana lub modernizacja systemu grzewczego (zastosowanie ogrzewania podłogowego, powietrznego itp.),
    - instalacja termostatów,
    - montaż nowoczesnych regulatorów pogodowych bądź pokojowych,
    - izolacja przewodów c.w.u i c.o.,
    - wymiana lub modernizacja systemu wytwarzania ciepłej wody,
    - wymiana lub modernizacja systemu wentylacji (np. zastosowanie wentylacji mechanicznej z odzyskiem ciepła – rekuperatora).
  • Trzecią grupę stanowią prace projektowo-wykonawcze lub modernizacyjne skupiające się na źródle ciepła, do których można zaliczyć:
    - zaprojektowanie i zainstalowanie lub wymianę źródła ciepła (zamiana kotła na nowy cechujący się lepszą sprawnością bądź zamiana źródła lokalnego na miejską sieć ciepłowniczą),
    - zmianę nośnika energii (zamiana kotła na inny, który wytwarza energię, spalając paliwo innego rodzaju, wyjątkiem jest zamiana paliwa w tym samym kotle, który jest przystosowany do spalania kilku rodzajów surowców),
    - zastosowanie technologii wykorzystującej odnawialne źródła energii (OZE) na potrzeby grzewcze (np. pompy ciepła, biopaliwa, kolektory słoneczne),
    - zastosowanie kogeneracji (produkcja jednoczesnego prądu oraz ciepła – dotyczy współdzielni),
    - a także zastosowanie automatyki sterującej źródłem.

Docieplenie przegród zewnętrznych jako podstawowy element termomodernizacji

Aby ilość energii cieplnej potrzebnej do użytkowania budynku zgodnie z jego przeznaczeniem można było utrzymać na racjonalnie niskim poziomie, przewidziano dwie metody pozwalające spełnić wymaganie w nowo projektowanych budynkach:

  • pierwsza polega na takim zaprojektowaniu przegród w budynku, aby wartości współczynników przenikania ciepła U/Uc [W/(m2·K)] przegród zewnętrznych, okien, drzwi oraz technika instalacyjna odpowiadały wymaganiom izolacyjności cieplnej, kryterium w zakresie ochrony cieplnej: Uc  ≤  Uc(max),
  • druga to zaprojektowanie budynku pod kątem zapotrzebowania na nieodnawialną energię pierwotną na jednostkę powierzchni pomieszczeń o regulowanej temperaturze powietrza w budynku, lokalu mieszkalnym lub części budynku stanowiącej samodzielną całość techniczno-użytkową – EP [kWh/(m2·rok)], kryterium w zakresie oszczędności energii: EP    EP(max).

Według rozporządzenia [1] dla budynku produkcyjnego, magazynowego i gospodarczego dopuszcza się większe wartości współczynnika U/Uc niż U(max) oraz Uc(max), jeśli uzasadnia to rachunek efektywności ekonomicznej inwestycji, obejmujący koszt budowy i eksploatacji budynku. Ponadto w budynku mieszkalnym, zamieszkania zbiorowego, użyteczności publicznej, produkcyjnym, magazynowym i gospodarczym podłoga na gruncie w ogrzewanym pomieszczeniu powinna mieć izolację cieplną obwodową z materiału izolacyjnego w postaci warstwy o oporze cieplnym co najmniej 2,0 (m2·K)/W, przy czym opór cieplny warstw podłogowych oblicza się zgodnie z PN-EN ISO 6946:2008 [2] oraz PN-EN ISO 13370:2008 [3].

Według zmian wprowadzonych w rozporządzeniu [1] wymagania dla nowo projektowanych budynków dotyczą jednoczesnego spełnienia dwóch wymagań w zakresie współczynnika przenikania ciepła U [W/(m2·K)] – Uc≤ Uc(max) dla pojedynczych przegród budynku oraz wskaźnika zapotrzebowania na nieodnawialną energię pierwotną EP [kWh/(m2·rok)] – EP ≤ EP(max) dla całego budynku.

RYS. 1. Przykładowy dobór materiałów termoizolacyjnych; rys.: K. Pawłowski

RYS. 1. Przykładowy dobór materiałów termoizolacyjnych; rys.: K. Pawłowski

RYS. 2. Kolejność postępowania w aspekcie ocieplenia na istniejące ocieplenie; rys.: opracowanie własne na podst. [4, 5]

RYS. 2. Kolejność postępowania w aspekcie ocieplenia na istniejące ocieplenie; rys.: opracowanie własne na podst. [4, 5]

Wymagania minimalne, o których mowa w ust. 1 rozporządzenia [1], uznaje się za spełnione dla budynku podlegającego przebudowie – termomodernizacji, jeżeli przegrody oraz wyposażenie techniczne budynku podlegające przebudowie odpowiadają przynajmniej wymaganiom izolacyjności cieplnej określonym w załączniku nr 2 do rozporządzenia [1]. Ponadto należy pamiętać, że budynek powinien być zaprojektowany i wykonany w taki sposób, aby ograniczyć ryzyko przegrzewania budynku w okresie letnim (dotyczy przegród przezroczystych – stolarka okienna). W trakcie projektowania i wykonywania docieplenia przegród zewnętrznych budynku należy pamiętać o wyeliminowaniu zjawiska kondensacji powierzchniowej (ryzyko rozwoju pleśni i grzybów pleśniowych) oraz kondensacji międzywarstwowej.

RYS. 3–4. Rozkład temperatury w ścianie ocieplonej od zewnątrz (3) i od wewnątrz (4); rys.: K. Pawłowski

RYS. 3–4. Rozkład temperatury w ścianie ocieplonej od zewnątrz (3) i od wewnątrz (4); rys.: K. Pawłowski

RYS. 5. Ocieplenie poddaszy użytkowych w budynkach istniejących: izolacja cieplna między i pod krokwiami. Oznaczenia: 1 – dachówka ceramiczna, 2 – łata, 3 – kontrłata, 4 – szczelina dobrze wentylowana, 5 – folia wysokoparoprzepuszczalna, 6 – krokiew, 7 – izolacja cieplna (np. wełna mineralna), 8 – dodatkowa warstwa izolacji cieplnej (np. wełna mineralna), 9 – folia paroizolacyjna, 10 – płyta gipsowo­‑kartonowa; rys.: K. Pawłowski

RYS. 5. Ocieplenie poddaszy użytkowych w budynkach istniejących: izolacja cieplna między i pod krokwiami. Oznaczenia: 1 – dachówka ceramiczna, 2 – łata, 3 – kontrłata, 4 – szczelina dobrze wentylowana, 5 – folia wysokoparoprzepuszczalna, 6 – krokiew, 7 – izolacja cieplna (np. wełna mineralna), 8 – dodatkowa warstwa izolacji cieplnej (np. wełna mineralna), 9 – folia paroizolacyjna, 10 – płyta gipsowo­‑kartonowa; rys.: K. Pawłowski

RYS. 6. Ocieplenie poddaszy użytkowych w budynkach istniejących: izolacja cieplna nad krokwiami. Oznaczenia: 1 – dachówka ceramiczna, 2 – łata, 3 – kontrłata lub deskowanie, 4 – szczelina dobrze wentylowana, 5 – folia, 6 – izolacja cieplna (np. płyty PIR/PUR), 7 – folia paroizolacyjna, 8 – deskowanie, 9 – krokiew; rys.: K. Pawłowski

RYS. 6. Ocieplenie poddaszy użytkowych w budynkach istniejących: izolacja cieplna nad krokwiami. Oznaczenia: 1 – dachówka ceramiczna, 2 – łata, 3 – kontrłata lub deskowanie, 4 – szczelina dobrze wentylowana, 5 – folia, 6 – izolacja cieplna (np. płyty PIR/PUR), 7 – folia paroizolacyjna, 8 – deskowanie, 9 – krokiew; rys.: K. Pawłowski

Zastosowanie odpowiedniego materiału termoizolacyjnego pozwala na osiągnięcie niskich wartości współczynnika przenikania ciepła U/Uc [W/(m2·K)] pełnej przegrody i liniowego współczynnika przenikania ciepła Ψ [W/(m·K)] oraz minimalizację ryzyka występowania kondensacji powierzchniowej i międzywarstwowej. Przed wyborem odpowiedniego materiału do izolacji cieplnej należy zwrócić uwagę na takie właściwości, jak:

  • współczynnik przewodzenia ciepła λ [W/(m·K)],
  • gęstość objętościowa,
  • izolacyjność akustyczna,
  • przepuszczalność pary wodnej,
  • współczynnik oporu dyfuzyjnego μ [-],
  • wrażliwość na czynniki biologiczne i chemiczne,
  • ochronę przeciwpożarową.

Na podstawie prowadzonych obliczeń i analiz w tym zakresie zestawiono przykładowy dobór materiałów termoizolacyjnych (RYS. 1).

Najpopularniejszą metodą wykonywania izolacji termicznej ścian stała się metoda lekka–mokra, która ewoluowała w bezspoinowy system ocieplenia określany w skrócie – BSO, a od 2009 r. w Polsce określana jest jako ETICS. Chociaż docieplenie metodą lekką–mokrą wydaje się nieskomplikowane, to w trakcie realizacji i eksploatacji można napotkać na pewne niedoskonałości, ponieważ wiedza dotycząca zasad stosowania ociepleń była relatywnie niska i brakowało doświadczeń wykonawczych oraz nadzór i kontrole podczas robót budowlanych były niewystarczające i mało efektywne. Dlatego ważnym zagadnieniem jest ocena trwałości docieplenia budynku.

Szczególnie jest to istotne w przypadku ponownego docieplenia ocieplonych ścian zewnętrznych w celu spełnienia obecnie obowiązujących przepisów prawnych i wymagań technicznych.

Naprawy ocieplonych elewacji dotyczą zabiegów:

  • kosmetycznych (np. mycie elewacji),
  • powierzchniowych (wzmacnianie struktur tynkarskich i malowanie zabezpieczające),
  • w zakresie usuwania uszkodzonych warstw i ponowne wykonywanie lub wymianę warstw zewnętrznych,
  • w zakresie wykonywania dodatkowego ocieplenia na już istniejącym.

Należy podkreślić, że wykonywanie dodatkowego ocieplenia na już istniejącym stało bardzo ważnym zagadnieniem remontowym wielu istniejących budynków mieszkalnych lub użyteczności publicznej. Dlatego też Instytut Techniki Budowlanej, a także organizacje zrzeszające producentów ociepleń starają się szczegółowo zapoznać z problematyką tego typu realizacji. Zasadne staje się opracowanie wytycznych realizacji ociepleń wykonywanych na ociepleniach istniejących.

W ostatnich latach powstały aprobaty techniczne wydane przez Instytut Techniki Budowlanej w Warszawie dla systemów uwzględniających możliwość mocowania do ścian ocieplonych nowego ocieplenia w zakresie spełnienia obowiązujących wymagań cieplnych. Obecne rozwiązania dotyczą jedynie systemów z zastosowaniem styropianu [4, 5].

Na podstawie prowadzonych analiz i obserwacji własnych oraz wytycznych dotyczących renowacji istniejących systemów dociepleń budynków opracowano algorytm (schemat) postępowania w zakresie ocieplenia na istniejące ocieplenie (RYS. 2).

Natomiast ocieplenie przegród zewnętrznych od wewnątrz projektowane i wykonywane jest w:

  • obiektach zabytkowych (budynki wpisane do rejestru zabytków lub objęte ochroną konserwatorską),
  • obiektach o wartości architektonicznej (ciekawy charakter elewacji lub oryginalny wygląd budynku),
  • obiektach o ograniczonych prawach własności (w przypadku gdy część ścian zewnętrznych znajduje się dokładnie na granicy działki),
  • a także w obiektach użytkowanych czasowo (ogrzewanie czasowe w nieregularnych okresach).

Takie rozwiązanie wiąże się jednak ze zjawiskiem wnikania pary wodnej w strukturę przegrody i jej kondensacji.

Na skutek niskiej temperatury otoczenia spada znacznie temperatura wewnątrz przegrody, powodując kondensację na styku warstwy konstrukcyjnej i izolacji cieplnej. Warstwa izolacji cieplnej od strony wewnętrznej przegrody oddziela konstrukcję muru od środowiska wewnętrznego co wpływa na zmniejszenie pojemności cieplnej całego budynku i powoduje wprowadzenie całej warstwy konstrukcyjnej w strefę przemarzania (RYS. 3–4).

Podstawową zaletą ocieplenia od wewnątrz jest zmniejszenie ilości energii niezbędnej do ogrzania pomieszczeń o żądanej temperaturze oraz skrócenia czasu nagrzewania [6].

Docieplenie poddaszy użytkowych można przeprowadzić wprowadzając dodatkową warstwę izolacji cieplnej pod krokwiami lub zastosować system nadkrokwiowy (RYS. 5 i RYS. 6). Często w związku ze stanem technicznym materiału termoizolacyjnego międzykrokwiami należy podjąć decyzję w zakresie całkowitej wymiany ocieplenia.

Szczegółową analizę modernizacji poddaszy użytkowych przedstawiono m.in. w pracach [6, 7].

Przykładowe rozwiązania materiałowe docieplenia przegród zewnętrznych – studium przypadku

Istnieje wiele rozwiązań materiałowych dociepleń przegród zewnętrznych istniejących budynków. Dobór materiału termoizolacyjnego i technologii wykonania nie powinien być przypadkowy, lecz oparty na podstawie analiz otrzymanych parametrów fizykalnych z uwzględnieniem parametrów powietrza zewnętrznego i wewnętrznego.

Przykład 1. Analiza parametrów fizykalnych ściany zewnętrznej z cegły pełnej przed i po dociepleniu

Do obliczeń wytypowano ścianę zewnętrzną z cegły pełnej gr. 37 cm o współczynniku λ = 0,77 W/(m·K) ocieplonej od zewnątrz:

  • wełna mineralna gr. 10, 12, 15 cm, λ = 0,04 W/(m·K);
  • styropian gr. 10, 12, 15 cm, λ = 0,035 W/(m·K),
  • styropian grafitowy gr. 10, 12, 15 cm, λ = 0,031 W/(m·K),
  • płyta z pianki poliuretanowej gr. 10, 12, 15 cm, λ = 0,022 W/(m·K)

oraz ocieplonej od wewnątrz:

  • lekka odmiana betonu komórkowego gr. 10, 12 cm, λ = 0,042 W/(m·K),
  • płyty klimatyczne gr. 10, 12 cm, λ = 0,059 W/(m·K).

Obliczenia przeprowadzono zgodnie z procedurą według PN-EN ISO 6946:2008 [2].

Wyniki obliczeń współczynnika przenikania ciepła Uc [W/(m2·K)] w zależności od rodzaju i grubości materiału termoizolacyjnego przedstawiono w TABELI 1. Kolorem jasnozielonym zaznaczono w niej warianty obliczeniowe (rozwiązania konstrukcyjno-materiałowe ściany zewnętrznej z cegły pełnej gr. 37 cm z ociepleniem), które spełniają podstawowe kryterium cieplne: Uc [W/(m2·K)]  ≤  UC(max) = 0,20 W/(m2·K).

TABELA 1. Wyniki obliczeń współczynnika przenikania ciepła ściany zewnętrznej z cegły pełnej z ociepleniem

TABELA 1. Wyniki obliczeń współczynnika przenikania ciepła ściany zewnętrznej z cegły pełnej z ociepleniem

Przykład 2. Analiza parametrów fizykalnych połączenia ściany zewnętrznej z oknem przed i po dociepleniu

W celu poszukiwania poprawnego rozwiązania układu materiałowego spełniającego obowiązujące wymagania dla budynku po dociepleniu należy wykonać szczegółowe obliczenia parametrów fizykalnych złączy przegród zewnętrznych w kilku wariantach obliczeniowych. W przykładzie obliczeniowym rozpatrywano połączenie ściany zewnętrznej z oknem w przekroju przez ościeżnicę przy zróżnicowanym usytuowaniu ocieplenia w następujących wariantach:

  • wariant I (RYS. 7–10):
    - ściana zewnętrzna z cegły pełnej gr. 37 cm (λ = 0,77 W/(m·K));
    - tynk gipsowy gr. 1,5 cm (λ = 0,40 W/(m·K));
    - stolarka okienna:
      ♦ przypadek A – o współczynniku przenikania ciepła okna Uw = 1,75 W/(m2·K),
      ♦ przypadek B – Uw = 0,86 W/(m2·K),
RYS. 7–10. Przykładowe graficzne przedstawienie wyników symulacji komputerowej dla połączenia ściany zewnętrznej (bez ocieplenia) z oknem w przekroju przez ościeżnicę: model obliczeniowy (7), linie strumieni cieplnych (adiabaty) (8), izotermy (9), izotermy w zakresie 0–20°C (10); rys.: K. Pawłowski

RYS. 7–10. Przykładowe graficzne przedstawienie wyników symulacji komputerowej dla połączenia ściany zewnętrznej (bez ocieplenia) z oknem w przekroju przez ościeżnicę: model obliczeniowy (7), linie strumieni cieplnych (adiabaty) (8), izotermy (9), izotermy w zakresie 0–20°C (10); rys.: K. Pawłowski

  • wariant II (RYS. 11–14):
    - ściana zewnętrzna z cegły pełnej gr. 37 cm (λ = 0,77 W/(m·K));
    - tynk gipsowy gr. 1,5 cm (λ = 0,40 W/(m·K));
    - izolacja termiczna od zewnątrz: płyty z pianki poliuretanowej gr. 10, 12, 15 i 20 cm (λ = 0,022 W/(m·K));
    - stolarka okienna Uw = 0,86 W/(m2·K);
    - bez węgarka,
RYS. 11–14. Przykładowe graficzne przedstawienie wyników symulacji komputerowej dla połączenia ściany zewnętrznej (z ociepleniem od zewnątrz) z oknem w przekroju przez ościeżnicę bez węgarka: model obliczeniowy (11), linie strumieni cieplnych (adiabaty) (12), izotermy (13), izotermy w zakresie 0–20°C (14); rys.: K. Pawłowski

RYS. 11–14. Przykładowe graficzne przedstawienie wyników symulacji komputerowej dla połączenia ściany zewnętrznej (z ociepleniem od zewnątrz) z oknem w przekroju przez ościeżnicę bez węgarka: model obliczeniowy (11), linie strumieni cieplnych (adiabaty) (12), izotermy (13), izotermy w zakresie 0–20°C (14); rys.: K. Pawłowski

  • wariant III (RYS. 15–18):
    - ściana zewnętrzna z cegły pełnej gr. 37 cm (λ = 0,77 W/(m·K));
    - tynk gipsowy gr. 1,5 cm (λ = 0,40 W/(m·K));
    - izolacja termiczna od zewnątrz: płyty z pianki poliuretanowej gr. 10, 12, 15 i 20 cm (λ = 0,022 W/(m·K));
    - stolarka okienna Uw = 0,86 W/(m2·K);
    - z węgarkiem (ocieplenie zachodzi na ościeżnicę – 4 cm),
RYS. 15–18. Przykładowe graficzne przedstawienie wyników symulacji komputerowej dla połączenia ściany zewnętrznej (z ociepleniem od zewnątrz) z oknem w przekroju przez ościeżnicę z węgarkiem: model obliczeniowy (15), linie strumieni cieplnych (adiabaty) (16), izotermy (17), izotermy w zakresie 0–20°C (18); rys.: K. Pawłowski

RYS. 15–18. Przykładowe graficzne przedstawienie wyników symulacji komputerowej dla połączenia ściany zewnętrznej (z ociepleniem od zewnątrz) z oknem w przekroju przez ościeżnicę z węgarkiem: model obliczeniowy (15), linie strumieni cieplnych (adiabaty) (16), izotermy (17), izotermy w zakresie 0–20°C (18); rys.: K. Pawłowski

  • wariant IV (RYS. 19–22):
    - ściana zewnętrzna z cegły pełnej gr. 37 cm (λ = 0,77 W/(m·K));
    - tynk gipsowy gr. 1,5 cm (λ = 0,40 W/(m·K));
    - izolacja termiczna od wewnątrz: płyty z pianki poliuretanowej gr. 10, 12, 15 i 20 cm (λ = 0,022 W/(m·K));
    - stolarka okienna Uw = 0,86 W/(m2·K);
    - bez węgarka,
RYS. 19–22. Przykładowe graficzne przedstawienie wyników symulacji komputerowej dla połączenia ściany zewnętrznej (z ociepleniem od wewnątrz) z oknem w przekroju przez ościeżnicę bez węgarka: model obliczeniowy (19), linie strumieni cieplnych (adiabaty) (20), izotermy (21), izotermy w zakresie 0–20°C (22); rys.: K. Pawłowski

RYS. 19–22. Przykładowe graficzne przedstawienie wyników symulacji komputerowej dla połączenia ściany zewnętrznej (z ociepleniem od wewnątrz) z oknem w przekroju przez ościeżnicę bez węgarka: model obliczeniowy (19), linie strumieni cieplnych (adiabaty) (20), izotermy (21), izotermy w zakresie 0–20°C (22); rys.: K. Pawłowski

  • wariant V (RYS. 23–26):
    - ściana zewnętrzna z cegły pełnej gr. 37cm (λ = 0,77 W/(m·K));
    - tynk gipsowy gr. 1,5 cm (λ = 0,40 W/(m·K));
    - izolacja termiczna od wewnątrz: płyty z pianki poliuretanowej gr. 10, 12, 15 i 20 cm (λ = 0,022 W/(m·K));
    - stolarka okienna Uw = 0,86 W/(m2·K);
    - z węgarkiem (ocieplenie zachodzi na ościeżnicę – 4 cm).
RYS. 23–26. Przykładowe graficzne przedstawienie wyników symulacji komputerowej dla połączenia ściany zewnętrznej (z ociepleniem od wewnątrz) z oknem w przekroju przez ościeżnicę z węgarkiem: model obliczeniowy (23), linie strumieni cieplnych (adiabaty) (24), izotermy (25), izotermy w zakresie 0–20°C (26); rys.: K. Pawłowski

RYS. 23–26. Przykładowe graficzne przedstawienie wyników symulacji komputerowej dla połączenia ściany zewnętrznej (z ociepleniem od wewnątrz) z oknem w przekroju przez ościeżnicę z węgarkiem: model obliczeniowy (23), linie strumieni cieplnych (adiabaty) (24), izotermy (25), izotermy w zakresie 0–20°C (26); rys.: K. Pawłowski

Dla ww. wariantów określono parametry fizykalne przy zastosowaniu programu komputerowego TRISCO-KOBRU 86 [8] przyjmuje się następujące założenia:

  • modelowanie złączy wykonano zgodnie z zasadami przedstawionymi w PN-EN ISO 10211:2008 [9],
  • opory przejmowania ciepła (Rsi, Rse) przyjęto zgodnie z PN-EN ISO 6946:2008 [2] przy obliczeniach strumieni cieplnych oraz według PN-EN ISO 13788:2003 [10] przy obliczeniach rozkładu temperatur i czynnika temperaturowego ƒRsi(2D),
  • temperatura powietrza wewnętrznego ti = 20°C (pokój dzienny), temperatura powietrza zewnętrznego te = –20°C (III strefa),
  • wartości współczynnika przewodzenia ciepła materiałów budowlanych λ [W/(m·K)] przyjęto według tablic w pracy [11].

Na RYS. 7–10, RYS. 11–14, RYS. 15–18, RYS. 19–22 i RYS. 23–26 przedstawiono graficzne wyniki symulacji komputerowej analizowanego złącza przy zastosowaniu programu komputerowego TRISCO-KOBRU 86 [8], a w TABELI 2 zestawiono wyniki przeprowadzonych obliczeń.

TABELA 2. Wyniki obliczeń parametrów fizykalnych analizowanych złączy ścian zewnętrznych

TABELA 2. Wyniki obliczeń parametrów fizykalnych analizowanych złączy ścian zewnętrznych

Na podstawie przeprowadzonych obliczeń (TABELA 2) można stwierdzić, że analizowane złącza generują dodatkowe straty ciepła określone m.in. w postaci liniowego współczynnika przenikania ciepła Ψi [W/(m·K)] oraz obniżenie temperatury na wewnętrznej powierzchni przegrody tsi,min. [°C]. Parametry fizykalne złączy ścian zewnętrznych po dociepleniu zależą od usytuowania i grubości materiału termoizolacyjnego.

Należy zwrócić uwagę, że ocieplenie połączenia ściany zewnętrznej z oknem bez węgarka powoduje znacznie wyższe dodatkowe straty ciepła (Φ, L2D, Ψi) oraz obniżenie temperatury na wewnętrznej powierzchni przegrody (tsi,min., ƒRsi.(2D)) w porównaniu z dociepleniem przy zastosowaniu węgarka – TABELA 2.

Takie rozwiązanie powoduje ryzyko występowania kondensacji na wewnętrznej powierzchni przegrody (rozwój pleśni i grzybów pleśniowych), kondensacji międzywarstwowej oraz zwiększenie ilości energii koniecznej do ogrzania pomieszczeń o żądanej temperaturze.

Spełnienie kryterium w zakresie uniknięcia występowania ryzyka kondensacji powierzchniowej (rozwoju pleśni i grzybów pleśniowych): ƒRsi.(2D)  ≥  ƒRsi.(kryt.), wymaga określenia wartości ƒRsi.(2D) na podstawie temperatury minimalnej na wewnętrznej powierzchni przegrody w miejscu mostka cieplnego (2D) tmin. [°C] oraz wartości ƒRsi.(kryt.) uwzględniającej parametry powietrza wewnętrznego i zewnętrznego (wilgotność i temperatura powietrza).

Wartość maksymalna z 12 miesięcy w odniesieniu do lokalizacji (Bydgoszcz) ƒRsi.(max) = ƒRsi.(kryt.) = 0,785 (luty). Oznacza to, że w każdym miesiącu roku i dla każdych innych wartości temperatur brzegowych dla uniknięcia kondensacji powierzchniowej ƒRsi.(2D) powinien być większy od 0,785.

Należy podkreślić, że na podstawie przeprowadzonych obliczeń (TABELA 2) w wielu przypadkach połączenia ściany zewnętrznej z oknem wystąpi ryzyko kondensacji powierzchniowej (ryzyko rozwoju pleśni i grzybów pleśniowych).

Przykład 3. Analiza parametrów cieplnych stropodachów drewnianych przed i po modernizacji

W pierwszym etapie obliczeń określono współczynnik przenikania ciepła Uc stropodachu drewnianego (nad poddaszem użytkowym) z ociepleniem pomiędzy krokwiami (RYS. 27).

W analizowanej połaci dachowej (stropodachu o konstrukcji drewnianej) zaprojektowano dobrze wentylowaną warstwę powietrza (gr. 3 cm między kontrłatami i gr. 3 cm nad izolacją cieplną), co spełnia to kryterium według pkt. 5.3.4. normy PN-EN ISO 6946:2008 [2]; „całkowity opór cieplny komponentu budowlanego zawierającego dobrze wentylowaną warstwę powietrza należy obliczyć, pomijając opór cieplny warstwy powietrza i wszystkich innych warstw między warstwą powietrza a środowiskiem zewnętrznym oraz dodając zewnętrzny opór przejmowania ciepła, odpowiadający powietrzu nieruchomemu; alternatywnie może być zastosowana wartość Rsi z Tablicy 1 normy”. Obliczenia współczynnika przenikania ciepła U dla przegrody niejednorodnej cieplnie wykonano metodą kresów według PN-EN ISO 6946:2008 [2]. Wyniki obliczeń w zależności od zastosowanego materiału termoizolacyjnego przedstawiono w TABELI 3.

Należy zwrócić uwagę, że przy zastosowaniu ocieplenia gr. 18 lub 20 cm jako izolacji między krokwiami trudno jest spełnić podstawowe kryterium cieplne: Uc [W/(m2·K)]  ≤  UC(max) = 0,15 W/(m2·K) – TABELA 3.

TABELA 3. Zestawienie wyników obliczeń współczynnika przenikania ciepła dachu drewnianego z ociepleniem pomiędzy krokwiami

TABELA 3. Zestawienie wyników obliczeń współczynnika przenikania ciepła dachu drewnianego z ociepleniem pomiędzy krokwiami

RYS. 27. Przykładowe zastosowania pianki poliuretanowej w dachach skośnych drewnianych: izolacja cieplna między krokwiami. Oznaczenia: 1 – dachówka ceramiczna, 2 – łata, 3 – kontrłata, 4 – szczelina dobrze wentylowana, 5 – folia wysokoparoprzepuszczalna, 6 – krokiew, 7 – izolacja cieplna, 8 – folia paroizolacyjna, 9 – płyta gipsowo­‑kartonowa; rys.: K. Pawłowski

RYS. 27. Przykładowe zastosowania pianki poliuretanowej w dachach skośnych drewnianych: izolacja cieplna między krokwiami. Oznaczenia: 1 – dachówka ceramiczna, 2 – łata, 3 – kontrłata, 4 – szczelina dobrze wentylowana, 5 – folia wysokoparoprzepuszczalna, 6 – krokiew, 7 – izolacja cieplna, 8 – folia paroizolacyjna, 9 – płyta gipsowo­‑kartonowa; rys.: K. Pawłowski  

RYS. 28. Przykładowe zastosowania pianki poliuretanowej w dachach skośnych drewnianych: izolacja cieplna między i pod krokwiami. Oznaczenia: 1 – dachówka ceramiczna, 2 – łata, 3 – kontrłata, 4 – szczelina dobrze wentylowana, 5 – folia wysokoparoprzepuszczalna, 6 – krokiew, 7 – izolacja cieplna, 8 – dodatkowa warstwa izolacji cieplnej, 9 – folia paroizolacyjna, 10 – płyta gipsowo­‑kartonowa; rys.: K. Pawłowski

RYS. 28. Przykładowe zastosowania pianki poliuretanowej w dachach skośnych drewnianych: izolacja cieplna między i pod krokwiami. Oznaczenia: 1 – dachówka ceramiczna, 2 – łata, 3 – kontrłata, 4 – szczelina dobrze wentylowana, 5 – folia wysokoparoprzepuszczalna, 6 – krokiew, 7 – izolacja cieplna, 8 – dodatkowa warstwa izolacji cieplnej, 9 – folia paroizolacyjna, 10 – płyta gipsowo­‑kartonowa; rys.: K. Pawłowski

Następnie określono współczynnik przenikania ciepła Uc stropodachu drewnianego (nad poddaszem użytkowym) z ociepleniem pomiędzy krokwiami i pod krokwiami (RYS. 28).

Wyniki obliczeń zestawiono w TABELI 4.

Kolorem jasnozielonym zaznaczono w niej warianty obliczeniowe (rozwiązania konstrukcyjno-materiałowe dachów drewnianych ocieplonych między krokwiami i pod krokwiami), które spełniają podstawowe kryterium cieplne: Uc [W/(m2·K)]  ≤  UC(max) = 0,15 W/(m2·K).

TABELA 4. Zestawienie wyników obliczeń współczynnika przenikania ciepła dachu drewnianego z ociepleniem pomiędzy krokwiami i pod krokwiami

TABELA 4. Zestawienie wyników obliczeń współczynnika przenikania ciepła dachu drewnianego z ociepleniem pomiędzy krokwiami i pod krokwiami

Usprawnienia instalacji w budynku jako przykład działań termomodernizacyjnych

  • Określając energochłonność budynku, należy uwzględnić także sprawności systemów instalacyjnych budynku wynikające z: regulacji i wykorzystania ciepła w przestrzeni ogrzewanej (ηH,e), przesyłu ciepła ze źródła ciepła do przestrzeni ogrzewanej (ηH,d), akumulacji ciepła w elementach pojemnościowych systemu ogrzewania (ηH,s), wytwarzania ciepła z nośnika energii lub energii dostarczanych do źródła ciepła (ηH,g).
  • Instalacja grzewcza w budynku musi spełniać wymagania przepisów techniczno-budowlanych, a także powinna uwzględniać wiedzę techniczną z zakresu rozwiązań energooszczędnych.
  • Projektowany system powinien być systemem wysokosprawnym.
  • Należy zaplanować wysokosprawne źródła ciepła, dołożyć wszelkich starań w celu obniżenia strat na przesyle czynnika grzewczego oraz, jeśli występuje zbiornik akumulacyjny, straty na akumulacji powinny być minimalne, a także optymalnie dobrać elementy odpowiedzialne za regulację i wykorzystanie ciepła.
  • Maksymalne możliwe sprawności można uzyskać według [12] m.in. poprzez stosowanie kotłów kondensacyjnych, pomp ciepła o wysokim współczynniku efektywności (COP), odpowiednie prowadzenie przewodów rozprowadzających czynnik grzejny (zwarta instalacja) oraz ich właściwą izolację cieplną, odpowiednią izolację zbiorników buforowych oraz dobrane do specyfiki ich pracy i użytkowania sterowanie ładowaniem i rozładowaniem, niskotemperaturowe systemy grzejne płaszczyznowe, grzejnikowe lub mieszane, stosowanie wysokosprawnych pomp pomocniczych charakteryzujących się niskim poborem mocy (skutkujące małym zużyciem energii pomocniczej).

Wartość wskaźnika rocznego zapotrzebowanie na nieodnawialną energię pierwotną (EP) określa efektywność całkowitą budynku i służy do sprawdzenia kryterium w zakresie oszczędności energii według rozporządzenia [1]: EP  ≤  EP(max). Dotyczy energii zawartej w źródłach, w tym paliwach i nośnikach, niezbędnej do pokrycia zapotrzebowania na energię końcową, z uwzględnieniem dodatkowych nakładów na dostarczenie tej energii do granicy budynku.

Wartość współczynnika nakładu nieodnawialnej energii pierwotnej na wytworzenie i dostarczenie nośnika energii lub energii dla systemów technicznych wi przyjmuje się na podstawie danych udostępnionych przez dostawcę tego nośnika energii lub energii. Uzyskanie niskich wartości wskazuje na nieznaczne zapotrzebowanie i tym samym wysoką efektywność energetyczną budynku.

Wprowadzenie odnawialnych źródeł energii (OZE) powoduje możliwość wprowadzenia do obliczeń wskaźnika wi poniżej 1, a w konsekwencji uzyskanie niskiej wartości wskaźnika EP.

Na stronach internetowych niektórzy dostawcy ciepła zamieszczają wartości wskaźnika nakładu nieodnawialnej energii pierwotnej. W przypadku braku takich danych przyjmuje się wartości współczynnika wi określone w rozporządzeniu [13].

Podjęte działania termomodernizacyjne w budynkach istniejących powinny być przeprowadzane na podstawie szczegółowej analizy ich stanu technicznego i cieplnego. Natomiast ocenę jakości prac związanych z dociepleniem przegród zewnętrznych należy przeprowadzać na podstawie badań termowizyjnych. Wyniki i analizy w tym zakresie dla osiedla na Górnym Śląsku zaprezentowano w pracy [14].

Istnieje potrzeba prowadzenia obliczeń i analiz dotyczących podejmowanych działań energooszczędnych na etapie ich projektowania, wykonawstwa oraz eksploatacji budynków.

Podsumowanie i wnioski

Dobór działań termomodernizacyjnych w istniejących budynkach jest procesem złożonym, obejmującym m.in. zagadnienia materiałów budowlanych, fizyki budowli oraz instalacji budowlanych.

Jakość cieplna obudowy budynku jest oceniana przez określenie wartości współczynników Uc, które wykorzystywane są do dalszych obliczeń w zakresie analizy cieplno-wilgotnościowej przegród i całego budynku (np. współczynnik strat ciepła przez przenikanie Htr [W/K], zapotrzebowanie na energię użytkową EU, energię końcową EK i pierwotną EP [kWh/(m2·rok)]).

Należy także podkreślić, że przy dociepleniu przegród zewnętrznych i ich złączy trzeba uwzględniać kryteria w zakresie: izolacyjności cieplnej, kondensacji powierzchniowej i międzywarstwowej, izolacyjności akustycznej, ochrony przeciwpożarowej oraz nośności i trwałości konstrukcji. Niektóre układy warstw materiałowych spełniają wymagania w zakresie izolacyjności cieplnej (Uc  ≤  Uc(max)), jednak po przeprowadzeniu analizy w zakresie wymagań wilgotnościowych, akustycznych lub przeciwpożarowych usytuowanie warstwy izolacji cieplnej w dowolnym położeniu przegrody jest niedopuszczalne.

Istotne staje się także miarodajne określenie parametrów fizykalnych (cieplno-wilgotnościowych) złączy budowlanych, których wartości zależą od usytuowania i grubości materiału termoizolacyjnego oraz położenia stolarki okiennej w ścianie zewnętrznej (TABELA 2). Posługiwanie się wartościami przybliżonymi i orientacyjnymi, np. w oparciu o PN-EN ISO 14683:2008 [15], jest nieuzasadnione, ponieważ nie uwzględniają zmiany układów materiałowych oraz rodzaju i grubości izolacji cieplnej. Szczegółowe obliczenia i analizy w zakresie ocieplenia elementów obudowy budynków istniejących przedstawiono m.in. w pracach [6], [16].

Całokształt działań termomodernizacyjnych budynków powinien obejmować także usprawnienie lub wymianę elementów instancji szczególnie centralnego ogrzewania i przygotowania ciepłej wody użytkowej oraz wprowadzenie odnawialnych źródeł energii (OZE). Takie kompleksowe podejście do dostosowania budynków do wymagań w zakresie oszczędności energii (EP  ≤  EP(max)) i ochrony cieplnej budynków (Uc  ≤  UC(max)) sprawia, że wartość wskaźnika zapotrzebowania budynku na energię pierwotną (EP) jest stosunkowa niska, a emisja CO2 (ECO2) do atmosfery jest maksymalnie ograniczona.

Literatura

  1. Rozporządzenie Ministra Infrastruktury i Budownictwa z dnia 14 listopada 2017 r. zmieniające rozporządzenie w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie (DzU z 2017 r. poz. 2285).
  2. PN-EN ISO 6946:2008, "Komponenty budowlane i elementy budynku. Opór cieplny i współczynnik przenikania ciepła. Metoda obliczania".
  3. PN-EN ISO 13370:2008, "Cieplne właściwości użytkowe budynków. Wymiana ciepła przez grunt. Metoda obliczania".
  4. P. Gałek, "Metody docieplenia budynków na starych systemach ociepleń",  "Wyzwania współczesnego budownictwa w dziedzinie izolacji" – materiały konferencyjne, Dom Wydawniczy MEDIUM, Warszawa 2012.
  5. "Ocieplenie na ocieplenia – zalecenia dotyczące renowacji istniejącego systemu ETCS", Stowarzyszenie na Rzecz Systemów Ociepleń, wydanie I, Warszawa 2012.
  6. M. Wesołowska, K. Pawłowski, "Aspekty związane z dostosowaniem obiektów istniejących do standardów budownictwa energooszczędnego", praca wydana w ramach projektu finansowanego ze środków funduszy norweskich i środków krajowych, Agencja Reklamowa TOP, Włocławek 2016.
  7. M. Wesołowska, K. Pawłowski, P. Rożek, "Modernizacja poddaszy użytkowych", "IZOLACJE" 11/12/2019, s. 34–43.
  8. Program komputerowy TRISCO-KOBRU 86, PHYSIBEL c.V, Belgia.
  9. PN-EN ISO 10211:2008, "Mostki cieplne w budynkach. Strumienie ciepła i temperatury powierzchni. Obliczenia szczegółowe".
  10. PN-EN ISO 13788:2003, "Cieplno-wilgotnościowe właściwości komponentów budowlanych i elementów budynku. Temperatura powierzchni wewnętrznej umożliwiająca uniknięcie krytycznej wilgotności powierzchni wewnętrznej kondensacji. Metody obliczania".
  11. K. Pawłowski, "Projektowanie przegród zewnętrznych w świetle aktualnych warunków technicznych dotyczących budynków. Obliczenia cieplno-wilgotnościowe przegród zewnętrznych i ich złączy", Grupa MEDIUM, Warszawa 2016.
  12. "Poradnik w zakresie poprawy charakterystyki energetycznej budynków", Ministerstwo Infrastruktury i Budownictwa, Warszawa 2016.
  13. Rozporządzenie Ministra Inwestycji i Rozwoju z dnia 6 września 2019 r. zmieniające rozporządzenie w sprawie metodologii wyznaczania charakterystyki energetycznej budynku lub części budynku oraz świadectw charakterystyki energetycznej (DzU z 2019 r. poz. 1829).
  14. A. Ostańska, "Increasing The Energy Efficiency of Dwelling Houses: Case Study of Residentia; Quarter in Upper Silesia, Poland", "Budownictwo i Architektura" 18(1)/2019, s. 23–32.
  15. PN-EN ISO 14683:2008, "Mostki cieplne w budynkach. Liniowy współczynnik przenikania ciepła. Metody uproszczone i wartości orientacyjne".
  16. M. Wesołowska, P. Szczepaniak, K. Pawłowski, A. Kaczmarek, "Zagadnienia fizykalne w termomodernizacji i remontach obiektów budowlanych", Wydawnictwa Uczelniane Uniwersytetu Technologiczno-Przyrodniczego w Bydgoszczy, Bydgoszcz 2019.

Chcesz być na bieżąco? Zapisz się do naszego newslettera!

Komentarze

Powiązane

dr inż. Mariusz Gaczek, mgr inż. Paweł Gaciek, dr inż. Mariusz Garecki Mechaniczne mocowanie systemów ocieplania ścian ETICS - oddziaływanie wiatru

Mechaniczne mocowanie systemów ocieplania ścian ETICS - oddziaływanie wiatru Mechaniczne mocowanie systemów ocieplania ścian ETICS - oddziaływanie wiatru

Prawidłowe mocowanie systemów ETICS do podłoży nośnych jest jednym z podstawowych warunków krótko- i długotrwałej stabilności tych ociepleń na zewnętrznych ścianach budynków. Na mocowanie wpływ ma kilka...

Prawidłowe mocowanie systemów ETICS do podłoży nośnych jest jednym z podstawowych warunków krótko- i długotrwałej stabilności tych ociepleń na zewnętrznych ścianach budynków. Na mocowanie wpływ ma kilka czynników, a jednym z najważniejszych jest określenie (w procesie projektowania ocieplenia) niezbędnej liczby łączników mechanicznych przypadających na 1 m2 powierzchni termoizolacji, przyjmując mechaniczny sposób mocowania ocieplenia.

mgr inż. arch. Tomasz Rybarczyk Sposoby realizacji oparcia stropów na ścianach w zakresie konstrukcji i izolacji

Sposoby realizacji oparcia stropów na ścianach w zakresie konstrukcji i izolacji Sposoby realizacji oparcia stropów na ścianach w zakresie konstrukcji i izolacji

W budownictwie ogólnym stosowanych jest wiele systemów stropowych. Najbardziej popularne są stropy gęstożebrowe (np. Teriva), żelbetowe wylewane na mokro, a także stropy półprefabrykowane (np. z płyt stropowych...

W budownictwie ogólnym stosowanych jest wiele systemów stropowych. Najbardziej popularne są stropy gęstożebrowe (np. Teriva), żelbetowe wylewane na mokro, a także stropy półprefabrykowane (np. z płyt stropowych typu filigran lub 2K) lub prefabrykowane (np. z płyt kanałowych, płyt żerańskich).

dr inż. Paweł Krause, dr inż. Agnieszka Szymanowska-Gwiżdż Nowoczesne rozwiązania elewacyjne

Nowoczesne rozwiązania elewacyjne Nowoczesne rozwiązania elewacyjne

Tradycyjna forma elewacji wynika z konstrukcji budynku (np. murowej, drewnianej, drewniano-murowe, kamiennej) i jest jej elementem. Może występować także w postaci licowanej współczesną wyprawą tynkarską...

Tradycyjna forma elewacji wynika z konstrukcji budynku (np. murowej, drewnianej, drewniano-murowe, kamiennej) i jest jej elementem. Może występować także w postaci licowanej współczesną wyprawą tynkarską czy okładziną (ceramiczną, drewnianą, kamienną, stalową, z tworzyw sztucznych), nierzadko z bogatymi detalami architektonicznymi, charakterystycznymi dla okresu powstania budynku, zmodyfikowanymi lub dodanymi obecnie. Do tej grupy można zaliczyć także współczesne rozwiązania ścian żelbetowych z surowymi...

mgr inż. Piotr Idzikowski Konserwacje i renowacje systemów ociepleń

Konserwacje i renowacje systemów ociepleń Konserwacje i renowacje systemów ociepleń

Trwałość ocieplonej elewacji związana jest przede wszystkim z przestrzeganiem technologii wykonania robót. Jeśli prace przebiegały zgodnie z wytycznymi producenta, czyli stosowano systemowe produkty zgodnie...

Trwałość ocieplonej elewacji związana jest przede wszystkim z przestrzeganiem technologii wykonania robót. Jeśli prace przebiegały zgodnie z wytycznymi producenta, czyli stosowano systemowe produkty zgodnie z zapisami w ich kartach technicznych i właściwie je dobrano do warunków użytkowania, to ocieploną elewacją można będzie cieszyć się przez kilkadziesiąt lat. Warunkami niezbędnym takiego stanu rzeczy są jednak okresowe kontrole i naprawy.

dr hab. inż., prof. UWM Robert Wójcik Klasyfikacja metod docieplania od wewnątrz

Klasyfikacja metod docieplania od wewnątrz Klasyfikacja metod docieplania od wewnątrz

W podstawowym nurcie zainteresowań dociepleniami od wewnątrz pozostają głównie budynki zabytkowe, pełniące pierwotnie różne funkcje, w tym niemieszkalne, które nie mogą być docieplane od zewnątrz. Gruntownej...

W podstawowym nurcie zainteresowań dociepleniami od wewnątrz pozostają głównie budynki zabytkowe, pełniące pierwotnie różne funkcje, w tym niemieszkalne, które nie mogą być docieplane od zewnątrz. Gruntownej poprawy termoizolacyjności przegród zewnętrznych wymagają budynki przemysłowe, rolnicze, wojskowe, magazynowe, które obecnie przystosowuje się do funkcji mieszkalnych, biurowych, handlowych, o wysokich wymaganiach w zakresie komfortu cieplnego.

dr inż. Wojciech Mazur Elementy konstrukcyjne z ceramiki budowlanej

Elementy konstrukcyjne z ceramiki budowlanej Elementy konstrukcyjne z ceramiki budowlanej

Elementy ceramiczne zaliczane są do najstarszych wyrobów wytwarzanych przez człowieka i stosowanych w budownictwie. Ich historia sięga bowiem 4000 lat p.n.e. Wiele cywilizacji wprowadzało kolejne modyfikację...

Elementy ceramiczne zaliczane są do najstarszych wyrobów wytwarzanych przez człowieka i stosowanych w budownictwie. Ich historia sięga bowiem 4000 lat p.n.e. Wiele cywilizacji wprowadzało kolejne modyfikację elementów ceramicznych i nowe zastosowania, co pozwoliło na stworzenie ich bardzo bogatego asortymentu.

dr inż. Jan Antoni Rubin, dr inż. Bożena Orlik-Kożdoń Biodeterioracja pleśniowa mikrośrodowiska mieszkalnego człowieka

Biodeterioracja pleśniowa mikrośrodowiska mieszkalnego człowieka Biodeterioracja pleśniowa mikrośrodowiska mieszkalnego człowieka

Grzyby pleśniowe, ze względu na specyfikę morfologiczną, biochemiczną i fizjologiczną, są organizmami dominującymi w szeroko pojętym mikrośrodowisku mieszkalnym człowieka. Grzyby te rozwijają się w zasadzie...

Grzyby pleśniowe, ze względu na specyfikę morfologiczną, biochemiczną i fizjologiczną, są organizmami dominującymi w szeroko pojętym mikrośrodowisku mieszkalnym człowieka. Grzyby te rozwijają się w zasadzie na wszystkich podłożach organicznych i nieorganicznych w warunkach ich silnego zawilgocenia

mgr inż. arch. Tomasz Rybarczyk Porównanie najpopularniejszych systemów stropowych w kontekście stosowanych materiałów izolacyjnych

Porównanie najpopularniejszych systemów stropowych w kontekście stosowanych materiałów izolacyjnych Porównanie najpopularniejszych systemów stropowych w kontekście stosowanych materiałów izolacyjnych

Istnieje bardzo wiele systemów stropowych. Wybór stropu zależy od projektanta konstrukcji. To projektant-architekt powinien w tym zakresie dokonać wpisu do projektu po konsultacji z projektantem konstrukcji,...

Istnieje bardzo wiele systemów stropowych. Wybór stropu zależy od projektanta konstrukcji. To projektant-architekt powinien w tym zakresie dokonać wpisu do projektu po konsultacji z projektantem konstrukcji, który na podstawie danych szczegółowych dobierze odpowiednie rozwiązanie. To właśnie projektant konstrukcji, w zależności od cech geometrycznych budynku (kształtu rzutu budynku, rozpiętości w świetle podpór i przewidywanego obciążenia) dobiera odpowiedni system stropowy oraz jego wysokość konstrukcyjną....

dr inż. Paweł Sulik, mgr inż. Bartłomiej Sędłak Ogólne zasady dotyczące badań odporności ogniowej elementów drewnianych

Ogólne zasady dotyczące badań odporności ogniowej elementów drewnianych Ogólne zasady dotyczące badań odporności ogniowej elementów drewnianych

Wykorzystanie drewna w budownictwie ma bardzo szerokie i wieloletnie tradycje, które w XX wieku, z uwagi na rozpowszechnienie stali i żelbetu oraz palność drewna, zostało w wielu krajach, w tym w Polsce,...

Wykorzystanie drewna w budownictwie ma bardzo szerokie i wieloletnie tradycje, które w XX wieku, z uwagi na rozpowszechnienie stali i żelbetu oraz palność drewna, zostało w wielu krajach, w tym w Polsce, ograniczone.

dr hab. inż. Maria Wesołowska, dr inż. Krzysztof Pawłowski, prof. uczelni, mgr inż. Paulina Rożek Modernizacja poddaszy użytkowych

Modernizacja poddaszy użytkowych Modernizacja poddaszy użytkowych

Poddasze jest szczególną częścią budynku, w której kumulują się wszystkie wymagania dotyczące obiektów budowlanych.

Poddasze jest szczególną częścią budynku, w której kumulują się wszystkie wymagania dotyczące obiektów budowlanych.

dr inż. Marek Niemas Nowe podejście do określania minimalnej izolacyjności akustycznej przegród zewnętrznych budynków

Nowe podejście do określania minimalnej izolacyjności akustycznej przegród zewnętrznych budynków Nowe podejście do określania minimalnej izolacyjności akustycznej przegród zewnętrznych budynków

Hałas jest jednym z coraz bardziej znaczących zanieczyszczeń środowiska naturalnego. Jego ograniczanie leży w interesie społeczeństwa, a dopuszczalny poziom jest regulowany polskimi i międzynarodowymi...

Hałas jest jednym z coraz bardziej znaczących zanieczyszczeń środowiska naturalnego. Jego ograniczanie leży w interesie społeczeństwa, a dopuszczalny poziom jest regulowany polskimi i międzynarodowymi przepisami w dziedzinie prawa budowlanego.

dr inż. Paweł Sulik, mgr inż. Bartłomiej Sędłak Badania w zakresie odporności ogniowej elementów drewnianych

Badania w zakresie odporności ogniowej elementów drewnianych Badania w zakresie odporności ogniowej elementów drewnianych

Badania w zakresie odporności ogniowej elementów drewnianych przeprowadzane są w ściśle określonych warunkach. Oprócz właściwego dla danego elementu oraz jego zamierzonego zastosowania sposobu nagrzewania...

Badania w zakresie odporności ogniowej elementów drewnianych przeprowadzane są w ściśle określonych warunkach. Oprócz właściwego dla danego elementu oraz jego zamierzonego zastosowania sposobu nagrzewania komory badawczej istotne jest zachowanie odpowiedniego ciśnienia w piecu oraz zapewnienie odpowiednich warunków środowiskowych przez cały czas badania.

dr inż. Rafał Nowak Zasady projektowania i doboru nadproży

Zasady projektowania i doboru nadproży Zasady projektowania i doboru nadproży

Nadproża są jednym z podstawowych składników konstrukcji budynku od początków ich powstawania. Miały na celu umożliwienie kształtowania otworów drzwiowych i okiennych. Początkowo jako nadproża stosowano...

Nadproża są jednym z podstawowych składników konstrukcji budynku od początków ich powstawania. Miały na celu umożliwienie kształtowania otworów drzwiowych i okiennych. Początkowo jako nadproża stosowano pojedyncze elementy konstrukcyjne jak kamienie, a ocena ich nośności była jedynie eksperymentalna. Jednakże takie nadproża pozwalały jedynie na kształtowanie małych otworów, dlatego poszukiwano lepszych rozwiązań.

dr inż. Iwona Galman, dr inż. Radosław Jasiński Połączenia ścian murowych za pomocą kleju poliuretanowego

Połączenia ścian murowych za pomocą kleju poliuretanowego Połączenia ścian murowych za pomocą kleju poliuretanowego

Norma 1996-1-1+A1:2013-05P [1] wymaga, żeby ściany wzajemnie prostopadłe lub ukośne łączone były ze sobą w sposób zapewniający przekazanie z jednej ściany na drugą obciążeń pionowych i poziomych. Może...

Norma 1996-1-1+A1:2013-05P [1] wymaga, żeby ściany wzajemnie prostopadłe lub ukośne łączone były ze sobą w sposób zapewniający przekazanie z jednej ściany na drugą obciążeń pionowych i poziomych. Może to być zrealizowane przez: przewiązanie muru, łączniki lub zbrojenie przedłużone w każdą ze ścian.

dr inż. Maciej Robakiewicz Trwałość i niezawodność termomodernizacji budynków

Trwałość i niezawodność termomodernizacji budynków Trwałość i niezawodność termomodernizacji budynków

Projektowanie termomodernizacji budynków koncentruje się na doborze materiału i grubości ocieplenia, doborze okien oraz nośnika i źródła ciepła do ogrzewania, czyli na głównych elementach decydujących...

Projektowanie termomodernizacji budynków koncentruje się na doborze materiału i grubości ocieplenia, doborze okien oraz nośnika i źródła ciepła do ogrzewania, czyli na głównych elementach decydujących o efektach i kosztach termomodernizacji. Niedoceniane są problemy eksploatacji wykonanych ulepszeń budynku, czyli zapewnienie niezbędnej trwałości i niezawodności elementów termomodernizacji, a to może powodować, że w czasie eksploatacji będą powstawać trudne do usunięcia wady i uszkodzenia.

dr inż. Małgorzata Niziurska, mgr inż. Barbara Chruściel, mgr inż. Michał Wieczorek Badania systemów ociepleń na bazie EPS w dużej skali z uwzględnieniem pasów MW

Badania systemów ociepleń na bazie EPS w dużej skali z uwzględnieniem pasów MW Badania systemów ociepleń na bazie EPS w dużej skali z uwzględnieniem pasów MW

Bezpieczeństwo pożarowe budynków jest jednym z siedmiu podstawowych wymagań stawianych budynkom [1]. Stało się ono również bardzo ważnym tematem, szczególnie w odniesieniu do materiałów stosowanych na...

Bezpieczeństwo pożarowe budynków jest jednym z siedmiu podstawowych wymagań stawianych budynkom [1]. Stało się ono również bardzo ważnym tematem, szczególnie w odniesieniu do materiałów stosowanych na elewacjach, które po pożarach we Frankfurcie (2012) i Grenfell Tower w Londynie (2017) zostały objęte unijnymi programami badawczymi.

prof. dr hab. inż. Krzysztof Schabowicz Starzenie się okładzin elewacji wentylowanych z płyt włóknisto-cementowych

Starzenie się okładzin elewacji wentylowanych z płyt włóknisto-cementowych Starzenie się okładzin elewacji wentylowanych z płyt włóknisto-cementowych

Elewacja wentylowana jest to zespół odpowiednio dobranych elementów tworzący kompletny system elewacyjny. Na system ten składają się: podkonstrukcja zwana inaczej rusztem, izolacja termiczna, szczelina...

Elewacja wentylowana jest to zespół odpowiednio dobranych elementów tworzący kompletny system elewacyjny. Na system ten składają się: podkonstrukcja zwana inaczej rusztem, izolacja termiczna, szczelina wentylacyjna i okładzina elewacyjna, wykonywana obecnie najczęściej z płyt włóknisto-cementowych.

www.lampy.it Sposób na oświetlenie elewacji budynku – o czym pamiętać, żeby było pięknie i bezpiecznie?

Sposób na oświetlenie elewacji budynku – o czym pamiętać, żeby było pięknie i bezpiecznie? Sposób na oświetlenie elewacji budynku – o czym pamiętać, żeby było pięknie i bezpiecznie?

O oświetleniu we wnętrzach pamiętamy zawsze i od jego zaplanowania niejednokrotnie rozpoczynamy aranżację przestrzeni w domu. Natomiast nieco bardziej po macoszemu traktuje się często oświetlenie elewacji....

O oświetleniu we wnętrzach pamiętamy zawsze i od jego zaplanowania niejednokrotnie rozpoczynamy aranżację przestrzeni w domu. Natomiast nieco bardziej po macoszemu traktuje się często oświetlenie elewacji. A to poważny błąd, bo zapewnienie światła na zewnątrz budynku spełnia także szereg kluczowych funkcji.

Nicola Hariasz Modernizacja bloków z wielkiej płyty

Modernizacja bloków z wielkiej płyty Modernizacja bloków z wielkiej płyty

Bloki mieszkalne z wielkiej płyty już na stałe wpisały się w krajobraz Polski i pozostałych krajów dawnego bloku wschodniego. Choć kiedyś były symbolem luksusu, dzisiaj są częściej obiektem żartów i źródłem...

Bloki mieszkalne z wielkiej płyty już na stałe wpisały się w krajobraz Polski i pozostałych krajów dawnego bloku wschodniego. Choć kiedyś były symbolem luksusu, dzisiaj są częściej obiektem żartów i źródłem niepokoju na temat ich stanu technicznego. Rozkwit budownictwa mieszkaniowego z wielkiej płyty przypada w Polsce na lata 70. Jednak jego historia sięga znacznie dalej. Pierwszym osiedlem wybudowanym w tej technologii było osiedle Betondorp w Amsterdamie, którego nazwa w języku niderlandzkim oznacza...

dr Jarosław Gil Prognozowanie izolacyjności akustycznej

Prognozowanie izolacyjności akustycznej Prognozowanie izolacyjności akustycznej

Jaką izolacyjność akustyczną mają ściany z cegieł o różnej grubości? Poznaj przepisy określone w polskich i międzynarodowych normach.

Jaką izolacyjność akustyczną mają ściany z cegieł o różnej grubości? Poznaj przepisy określone w polskich i międzynarodowych normach.

mgr inż. Bartłomiej Monczyński Transport wody w postaci ciekłej w porowatych materiałach budowlanych

Transport wody w postaci ciekłej w porowatych materiałach budowlanych Transport wody w postaci ciekłej w porowatych materiałach budowlanych

Do zawilgocenia przyziemnej części budynku może dojść na skutek wnikania i akumulacji wody w postaci pary wodnej lub przez przenikanie wody w postaci ciekłej [1].

Do zawilgocenia przyziemnej części budynku może dojść na skutek wnikania i akumulacji wody w postaci pary wodnej lub przez przenikanie wody w postaci ciekłej [1].

mgr inż. Maciej Rokiel Ocena techniczna systemów ETICS i przyczyny uszkodzeń

Ocena techniczna systemów ETICS i przyczyny uszkodzeń Ocena techniczna systemów ETICS i przyczyny uszkodzeń

Jedną z najbardziej popularnych metod docieplania zarówno istniejących, jak i nowo budowanych budynków jest system ETICS (złożony system izolacji ścian zewnętrznych budynku), zwany wcześniej bezspoinowym...

Jedną z najbardziej popularnych metod docieplania zarówno istniejących, jak i nowo budowanych budynków jest system ETICS (złożony system izolacji ścian zewnętrznych budynku), zwany wcześniej bezspoinowym systemem ociepleń (BSO), a jeszcze wcześniej metodą lekką mokrą.

dr inż. Krzysztof Pawłowski, prof. uczelni Projektowanie przegród poziomych z uwzględnieniem wymagań cieplno-wilgotnościowych od 1 stycznia 2021 roku

Projektowanie przegród poziomych z uwzględnieniem wymagań cieplno-wilgotnościowych od 1 stycznia 2021 roku Projektowanie przegród poziomych z uwzględnieniem wymagań cieplno-wilgotnościowych od 1 stycznia 2021 roku

Projektowanie poziomych przegród zewnętrznych budynku o niskim zużyciu energii (NZEB) jest kompleksowym działaniem projektanta i wymaga znajomości szczegółowych zagadnień z zakresu fizyki budowli, budownictwa...

Projektowanie poziomych przegród zewnętrznych budynku o niskim zużyciu energii (NZEB) jest kompleksowym działaniem projektanta i wymaga znajomości szczegółowych zagadnień z zakresu fizyki budowli, budownictwa ogólnego, materiałów budowlanych oraz przepisów prawnych w zakresie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie.

dr inż. Krzysztof Pawłowski, prof. uczelni Projektowanie przegród poziomych z uwzględnieniem wymagań cieplno-wilgotnościowych od 1 stycznia 2021 roku

Projektowanie przegród poziomych z uwzględnieniem wymagań cieplno-wilgotnościowych od 1 stycznia 2021 roku Projektowanie przegród poziomych z uwzględnieniem wymagań cieplno-wilgotnościowych od 1 stycznia 2021 roku

Projektowanie poziomych przegród zewnętrznych budynku o niskim zużyciu energii (NZEB) jest kompleksowym działaniem projektanta i wymaga znajomości szczegółowych zagadnień z zakresu fizyki budowli, budownictwa...

Projektowanie poziomych przegród zewnętrznych budynku o niskim zużyciu energii (NZEB) jest kompleksowym działaniem projektanta i wymaga znajomości szczegółowych zagadnień z zakresu fizyki budowli, budownictwa ogólnego, materiałów budowlanych oraz przepisów prawnych w zakresie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie.

Wybrane dla Ciebie

Korzyści z czyszczenia urządzeniami wysokociśnieniowymi ▶️

Korzyści z czyszczenia urządzeniami wysokociśnieniowymi ▶️ Korzyści z czyszczenia urządzeniami wysokociśnieniowymi ▶️

Prawidłowe ocieplenie elewacji

Prawidłowe ocieplenie elewacji Prawidłowe ocieplenie elewacji

Wszystko na temat dachów »

Wszystko na temat dachów » Wszystko na temat dachów »

Jaką geomembranę PVC wybrać?

Jaką geomembranę PVC wybrać? Jaką geomembranę PVC wybrać?

Kredyty preferencyjne ze środków unijnych? »

Kredyty preferencyjne ze środków unijnych? » Kredyty preferencyjne ze środków unijnych? »

Jest nowa receptura hydroizolacji! »

Jest nowa receptura hydroizolacji! » Jest nowa receptura hydroizolacji! »

Kiedy fotowoltaika się opłaca?

Kiedy fotowoltaika się opłaca? Kiedy fotowoltaika się opłaca?

Ciepło zimą, zimno latem - poprawna izolacja

Ciepło zimą, zimno latem - poprawna izolacja Ciepło zimą, zimno latem - poprawna izolacja

Kompleksowa ceramika dla domu

Kompleksowa ceramika dla domu Kompleksowa ceramika dla domu

Skuteczna izolacja dachu płaskiego »

Skuteczna izolacja dachu płaskiego » Skuteczna izolacja dachu płaskiego »

Czego użyć do naprawy balkonu lub tarasu?

Czego użyć do naprawy balkonu lub tarasu? Czego użyć do naprawy balkonu lub tarasu?

Indywidualne usługi w zakresie produkcji dowolnych elementów z tworzyw sztucznych » »

Indywidualne usługi w zakresie produkcji dowolnych elementów z tworzyw sztucznych » » Indywidualne usługi w zakresie produkcji dowolnych elementów z tworzyw sztucznych » »

Porównaj ceny styropianu i oszczędzaj »

Porównaj ceny styropianu i oszczędzaj » Porównaj ceny styropianu i oszczędzaj »

Zalety ocieplania styropianem pasywnym »

Zalety ocieplania styropianem pasywnym » Zalety ocieplania styropianem pasywnym »

Izolacja natryskowa budynków »

Izolacja natryskowa budynków » Izolacja natryskowa budynków »

Uprawnienia budowlane 2021 Część 1. Poradnik z kluczem. 523 pytania i 20 testów egzaminacyjnych

Uprawnienia budowlane 2021 Część 1. Poradnik z kluczem. 523 pytania i 20 testów egzaminacyjnych Uprawnienia budowlane 2021 Część 1. Poradnik z kluczem. 523 pytania i 20 testów egzaminacyjnych

Część B: Roboty wykończeniowe, zeszyt 17: Podłogi zewnętrzne z desek kompozytowych

Część B: Roboty wykończeniowe, zeszyt 17: Podłogi zewnętrzne z desek kompozytowych Część B: Roboty wykończeniowe, zeszyt 17: Podłogi zewnętrzne z desek kompozytowych

Warunki techniczne jakim powinny odpowiadać budynki i ich usytuowanie 2021

Warunki techniczne jakim powinny odpowiadać budynki i ich usytuowanie 2021 Warunki techniczne jakim powinny odpowiadać budynki i ich usytuowanie 2021

Najnowsze produkty i technologie

merXu Produkty Pan Fitinka na merXu

Produkty Pan Fitinka na merXu Produkty Pan Fitinka na merXu

merXu to internetowa platforma sprzedażowa, która ułatwia kontakty handlowe B2B przedsiębiorcom z 5 krajów Europy Środkowo-Wschodniej. Jedną z nich jest Pan Fitinka, czeski dostawca produktów z branży...

merXu to internetowa platforma sprzedażowa, która ułatwia kontakty handlowe B2B przedsiębiorcom z 5 krajów Europy Środkowo-Wschodniej. Jedną z nich jest Pan Fitinka, czeski dostawca produktów z branży grzewczej, wentylacyjnej, klimatyzacyjnej, wodno-kanalizacyjnej oraz armatury sanitarnej.

homebook.pl Trendy wnętrzarskie przydatne w urządzaniu sypialni. Czego nie może w niej zabraknąć?

Trendy wnętrzarskie przydatne w urządzaniu sypialni. Czego nie może w niej zabraknąć? Trendy wnętrzarskie przydatne w urządzaniu sypialni. Czego nie może w niej zabraknąć?

Każdego roku projektanci wnętrz i designerzy prezentują nowe trendy, które wyznaczają kierunki zmian, dokonywanych w wystroju naszych mieszkań i domów. Nie inaczej jest w 2021 roku. Zobacz, co w trawie...

Każdego roku projektanci wnętrz i designerzy prezentują nowe trendy, które wyznaczają kierunki zmian, dokonywanych w wystroju naszych mieszkań i domów. Nie inaczej jest w 2021 roku. Zobacz, co w trawie piszczy i które tendencje okażą się godne tego, aby zaimplementować je również w swoich czterech ścianach. Przed Tobą kilka najciekawszych tendencji, którym zdecydowanie warto bliżej się przyjrzeć.

Kingspan Profesjonalne systemy barier ochronnych

Profesjonalne systemy barier ochronnych Profesjonalne systemy barier ochronnych

Prawidłowo zaprojektowany system ścieżek komunikacyjnych w dużych obiektach przemysłowych to podstawowa zasada bezpiecznej pracy oraz poruszania się po fabryce czy magazynie. Systemy wytrzymałych oraz...

Prawidłowo zaprojektowany system ścieżek komunikacyjnych w dużych obiektach przemysłowych to podstawowa zasada bezpiecznej pracy oraz poruszania się po fabryce czy magazynie. Systemy wytrzymałych oraz odpornych na uderzenia słupków i barier ochronnych pozwalają zmniejszyć ryzyko wypadków i poprawiają komfort pracowników.

Bauder Polska Sp. z o. o. BauderECO – nowoczesna termoizolacja dachowa

BauderECO – nowoczesna termoizolacja dachowa BauderECO – nowoczesna termoizolacja dachowa

Ekologiczna termoizolacja dachowa składająca się w dwóch trzecich z biomasy zapewnia bardzo dobre właściwości izolacyjne oraz zdrowy klimat dla mieszkańców.

Ekologiczna termoizolacja dachowa składająca się w dwóch trzecich z biomasy zapewnia bardzo dobre właściwości izolacyjne oraz zdrowy klimat dla mieszkańców.

Xella Polska Sp. z o.o. Multipor ETICS  - materiał nowej generacji do ocieplania ścian domu

Multipor ETICS  - materiał nowej generacji do ocieplania ścian domu Multipor ETICS  - materiał nowej generacji do ocieplania ścian domu

Większość nowo budowanych domów - zarówno jedno-, jak i wielorodzinnych - ma dwuwarstwowe ściany zewnętrzne, składające się z muru i ocieplenia. Do wykonania warstwy termicznej takich ścian stosuje się...

Większość nowo budowanych domów - zarówno jedno-, jak i wielorodzinnych - ma dwuwarstwowe ściany zewnętrzne, składające się z muru i ocieplenia. Do wykonania warstwy termicznej takich ścian stosuje się przeważnie płyty styropianowe. Rzadziej do tego celu wykorzystuje się - droższe od nich - płyty z wełny mineralnej. Od połowy 2019 roku oba te materiały ociepleniowe mają dużą konkurencję w postaci mineralnych płyt izolacyjnych Multipor ETICS.

merXu Chemia budowlana do wypełniania pęknięć i rys

Chemia budowlana do wypełniania pęknięć i rys Chemia budowlana do wypełniania pęknięć i rys

Uszczelniacze i silikony to produkty chemii budowlanej przydatne podczas remontu albo wykańczania mieszkania, a także podczas codziennego użytkowania budynku, kiedy zachodzi konieczność przeprowadzenia...

Uszczelniacze i silikony to produkty chemii budowlanej przydatne podczas remontu albo wykańczania mieszkania, a także podczas codziennego użytkowania budynku, kiedy zachodzi konieczność przeprowadzenia drobnych napraw w domu lub ogrodzie. Zobacz ofertę z kategorii chemii budowlanej na merXu.

Kärcher PRO Korzyści dla branży budowlanej tej wiosny

PRO Korzyści dla branży budowlanej tej wiosny PRO Korzyści dla branży budowlanej tej wiosny

Branża budowalna dynamicznie rozwija się w naszym kraju. Jest to specyficzny biznes, który wymaga rozwiązań dopasowanych do trudnych warunków pracy na budowie. Zdajemy sobie z tego sprawę. Nasze sprzęty...

Branża budowalna dynamicznie rozwija się w naszym kraju. Jest to specyficzny biznes, który wymaga rozwiązań dopasowanych do trudnych warunków pracy na budowie. Zdajemy sobie z tego sprawę. Nasze sprzęty właśnie takie są. Tej wiosny Kärcher oferuje budowlańcom najlepsze modele swoich urządzeń w atrakcyjnych, obniżonych cenach. Oferta PRO Korzyści to szeroki wybór sprzętów – urządzenia wysokociśnieniowe z podgrzewaniem wody HDS oraz bez niego HD, odkurzacze NT do suchych i mokrych zabrudzeń radzące...

STYRMANN Sp. z o. o. Ocieplenia dla nowoczesnego budownictwa

Ocieplenia dla nowoczesnego budownictwa Ocieplenia dla nowoczesnego budownictwa

Styropian grafitowy jako materiał do ociepleń jest w ostatnich latach coraz bardziej popularny na polskim rynku – zarówno wśród inwestorów, jak i wykonawców – jego zastosowanie niesie bowiem wiele korzyści.

Styropian grafitowy jako materiał do ociepleń jest w ostatnich latach coraz bardziej popularny na polskim rynku – zarówno wśród inwestorów, jak i wykonawców – jego zastosowanie niesie bowiem wiele korzyści.

merXu Izolacja cieplna i hydroizolacje na merXu

Izolacja cieplna i hydroizolacje na merXu Izolacja cieplna i hydroizolacje na merXu

Oprócz wyboru wysokiej jakości materiałów budowlanych do wzniesienia ścian czy budowy dachu ważna jest także odpowiednia izolacja przegród – zarówno termiczna, jak i przeciwwilgociowa.

Oprócz wyboru wysokiej jakości materiałów budowlanych do wzniesienia ścian czy budowy dachu ważna jest także odpowiednia izolacja przegród – zarówno termiczna, jak i przeciwwilgociowa.

Copyright © 2004-2019 Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Spółka komandytowa, nr KRS: 0000537655. Wszelkie prawa, w tym Autora, Wydawcy i Producenta bazy danych zastrzeżone. Jakiekolwiek dalsze rozpowszechnianie artykułów zabronione. Korzystanie z serwisu i zamieszczonych w nim utworów i danych wyłącznie na zasadach określonych w Zasadach korzystania z serwisu.
Portal Budowlany - Izolacje.com.pl

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim urządzeniu końcowym. W każdym momencie możesz dokonać zmiany ustawień przeglądarki dotyczących cookies. Nim Państwo zaczną korzystać z naszego serwisu prosimy o zapoznanie się z naszą polityką prywatności oraz Informacją o Cookies. Więcej szczegółów w naszej Polityce Prywatności oraz Informacji o Cookies. Administratorem Państwa danych osobowych jest Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Sp.K., nr KRS: 0000537655, z siedzibą w 04-112 Warszawa, ul. Karczewska 18, tel. +48 22 810-21-24, właściciel strony www.izolacje.com.pl. Twoje Dane Osobowe będą chronione zgodnie z wytycznymi polityki prywatności www.izolacje.com.pl oraz zgodnie z Rozporządzeniem Parlamentu Europejskiego i Rady (UE) 2016/679 z dnia 27 kwietnia 2016r i z Ustawą o ochronie danych osobowych Dz.U. 2018 poz. 1000 z dnia 10 maja 2018r.