Izolacje.com.pl

Sposób eksploatacji lokalu mieszkalnego przyczyną uszkodzeń cieplno-wilgotnościowych

Usage of apartments as a cause of temperature- and moisture-related damage

Usterki w mieszkaniach wynikają nie tylko z błędów projektowych czy wykonawczych, ale także z niewłaściwej eksploatacji lokalu.
Archiwum autora

Usterki w mieszkaniach wynikają nie tylko z błędów projektowych czy wykonawczych, ale także z niewłaściwej eksploatacji lokalu.


Archiwum autora

Powszechnie wiadomo, że błędy projektowe oraz wykonawcze wpływają negatywnie na bezpieczeństwo konstrukcji i bezpieczeństwo użytkowania obiektów budowlanych, w tym również budynków mieszkalnych [1]. Jednak eksploatacja pojedynczych lokali mieszkalnych, prowadzona niezgodnie z zasadami wiedzy technicznej, bardzo często jest powodem powstawania uciążliwości eksploatacyjnych, które nieusuwane przyczyniają się do istotnego pogorszenia stanu technicznego budynku jako całości, wpływając na postępującą dekapitalizację poszczególnych elementów konstrukcyjnych oraz wykończeniowych [2], [3], [4].

Zobacz także

Fabryka Styropianu ARBET Ocieplenie na ociepleniu – termomodernizacja według nowych wymagań

Ocieplenie na ociepleniu – termomodernizacja według nowych wymagań Ocieplenie na ociepleniu – termomodernizacja według nowych wymagań

W związku z potrzebą renowacji wielu obiektów budowanych przed laty najczęściej przeprowadza się ponowne docieplanie ocieplonych wcześniej ścian zewnętrznych. Wobec obowiązujących obecnie standardów energooszczędności...

W związku z potrzebą renowacji wielu obiektów budowanych przed laty najczęściej przeprowadza się ponowne docieplanie ocieplonych wcześniej ścian zewnętrznych. Wobec obowiązujących obecnie standardów energooszczędności w starych budynkach konieczne jest bowiem zwiększenie izolacyjności przegród lub naprawa istniejącego ocieplenia.

Rockwool Polska Fala renowacji szansą na rozwój Polski po pandemii – podsumowanie debaty w ramach kampanii Szóste paliwo

Fala renowacji szansą na rozwój Polski po pandemii – podsumowanie debaty w ramach kampanii Szóste paliwo Fala renowacji szansą na rozwój Polski po pandemii – podsumowanie debaty w ramach kampanii Szóste paliwo

Aż 70 proc. spośród 5 mln domów jednorodzinnych w Polsce nie spełnia standardów efektywności energetycznej. Powszechna fala renowacji i możliwości wynikające ze strategii unijnej Green Deal to olbrzymia...

Aż 70 proc. spośród 5 mln domów jednorodzinnych w Polsce nie spełnia standardów efektywności energetycznej. Powszechna fala renowacji i możliwości wynikające ze strategii unijnej Green Deal to olbrzymia szansa dla polskiej gospodarki, nie tylko w kontekście lepszej jakości powietrza, ale również podniesienia innowacyjności, szerokiego zastosowania lokalnych rozwiązań oraz stworzenia kilkuset tysięcy miejsc pracy. W długiej perspektywie czasu to również poprawa komfortu życia, eliminacja ubóstwa energetycznego...

mgr inż. Wojciech Adamik Nowoczesne rozwiązania do walki z hałasem – kompozyt AKU-PRTM

Nowoczesne rozwiązania do walki z hałasem – kompozyt AKU-PRTM Nowoczesne rozwiązania do walki z hałasem – kompozyt  AKU-PRTM

Postęp w budownictwie trwa w najlepsze – nowe domy, fabryki czy też obiekty użyteczności publicznej są wykonywane z materiałów o lepszej izolacyjności termicznej, co przekłada się na mniejsze koszty utrzymania...

Postęp w budownictwie trwa w najlepsze – nowe domy, fabryki czy też obiekty użyteczności publicznej są wykonywane z materiałów o lepszej izolacyjności termicznej, co przekłada się na mniejsze koszty utrzymania obiektu. Niestety czasem zapomina się o izolacji akustycznej, a wymagania normowe często są niewystarczające. Efektem jest to, że zza ściany słyszymy sąsiada, przeszkadza nam jego włączone radio lub telewizor, a w zakładzie pracy hałas przenika do chronionych pomieszczeń.

 

Abstrakt

W artykule przedstawiono opis uszkodzeń cieplno-wilgotnościowych węzła stropowo-ściennego oraz ścian zewnętrznych lokalu mieszkalnego usytuowanego na ostatniej kondygnacji budynku zamieszkania zbiorowego. Opisano zakres zrealizowanych w okresie wcześniejszym prac remontowych mających za zadanie usunięcie występujących uszkodzeń. W pracy zamieszczono wieloparametryczną analizę cieplno-wilgotnościową przeprowadzoną w celu jednoznacznego określenia przyczyn występujących uszkodzeń. Zaproponowano koncepcje rozwiązań mających za zadanie usunięcie uciążliwości eksploatacyjnych.

Usage of apartments as a cause of temperature- and moisture-related damage

The paper presents a description of thermal and moisture-related damage to the floor/wall unit and external walls of a flat located on the top floor of a multi-family residential building. There is a description of the scope of repairs carried out previously to rectify the existing damage. The paper presents a multi-parametric temperature and moisture analysis conducted to determine the exact causes of damage. Certain concepts for resolving usage-related problems are proposed.

Celem artykułu jest przedstawienie wpływu dotychczasowego, niewłaściwego sposobu eksploatacji lokalu mieszkalnego na stan techniczny budynku skutkujący powstaniem rozległych uszkodzeń cieplno-wilgotnościowych. W artykule opisano zaproponowany sposób usunięcia występujących uszkodzeń.

Dane ogólne

Budynek zrealizowany został na przełomie lat 70. i 80. XX wieku w technologii tradycyjnej, uprzemysłowionej, jako całkowicie podpiwniczony, posiadający 2 kondygnacje usługowe oraz 11 kondygnacji mieszkalnych:

  • układ konstrukcyjny stanowiły poprzeczne wielokondygnacyjne ramy żelbetowe, monolityczne rozmieszczone w rozstawie co 600 cm,
  • stropy międzykondygnacyjne wykonano z zastosowaniem wielootworowych płyt kanałowych tzw. płyt żerańskich;
  • stropodach wykonstruowano w sposób zróżnicowany, w obszarze części rzutu budynku jako wentylowany, na części rzutu jako niewentylowany.

W okresie eksploatacji budynek jako całość poddawany był licznym przebudowom oraz pracom o charakterze aranżacyjnym – dotyczy to zarówno lokali usługowych, jak i lokali mieszkalnych usytuowanych na różnych poziomach poszczególnych klatek schodowych.

Dla budynku prowadzona była Książka Obiektu Budowlanego oraz regularnie prowadzone były przeglądy techniczne, w tym branży budowlanej, w wyniku których sporządzane były:

  • Protokoły kontroli stanu sprawności technicznej obiektu budowlanego (tzw. przeglądy roczne)
  • oraz Protokoły kontroli stanu sprawności technicznej i przydatności do użytkowania obiektu budowlanego, estetyki obiektu budowlanego oraz jego otoczenia (tzw. przeglądy 5-letnie).

Na podstawie informacji ustnych uzyskanych od przedstawicieli administratora budynku ustalono, że w okresie minionym usunął on ślady uszkodzeń cieplno-wilgotnościowych w lokalu mieszkalnym na poziomie XI p., w pokoju przy ścianie poprzecznej, zwanego w dalszej części opracowania pokojem szczytowym (PS): skuł tynk, odgrzybił mury oraz odtworzył tynk wraz z powłokami malarskimi.

Ponadto w okresie minionym przeprowadzono wymianę pokrycia papowego poprzedzoną wcześniejszym wykonaniem ocieplenia części górnej stropodachu (wykonanej z płyt panwiowych) wełną mineralną grubości 10 cm - powyższe prace przeprowadzone zostały w 2013 r.

W latach 2014 i 2015 użytkownik lokalu mieszkalnego nie zgłaszał jakichkolwiek zastrzeżeń co do występowania uszkodzeń cieplno-wilgotnościowych w mieszkaniu - brak uszkodzeń dotyczył pokoju szczytowego (PS), pokoju pośredniego (PP), jak również kuchni (KU).

FOT. 1-3. Uszkodzenia cieplno‑wilgotnościowe w pokoju przyległym do ściany szczytowej (PS) w lokalu mieszkalnym w poziomie kondygnacji XI piętra budynku; fot.: archiwum autora

FOT. 1-3. Uszkodzenia cieplno‑wilgotnościowe w pokoju przyległym do ściany szczytowej (PS) w lokalu mieszkalnym w poziomie kondygnacji XI piętra budynku; fot.: archiwum autora

W 2016 r. użytkownik lokalu mieszkalnego ponownie zgłosił występowanie uszkodzeń cieplno-wilgotnościowych, szczególnie intensywnych w pokoju szczytowym (PS) oraz o mniejszej intensywności w pokoju pośrednim (PP).

Opis usterek cieplno-wilgotnościowych

W pokoju szczytowym (PS) stwierdzono występowanie zawilgocenie w narożniku budynku - lokalne ślady zawilgocenia widoczne były zarówno w strefie przysufitowej, jak również w strefie przypodłogowej (FOT. 1-3). Najbardziej intensywne uszkodzenia zidentyfikowano wzdłuż pasma nadprożowego, zarówno na odcinku nad otworem okiennym, jak również w części nad murem pełnościennym.

FOT. 4. Uszkodzenia cieplno-wilgotnościowe w pokoju pomiędzy pokojem przyległym do ściany szczytowej a kuchnią (PP)w lokalu mieszkalnym w poziomie kondygnacji XI piętra budynku; fot.: archiwum autora

FOT. 4. Uszkodzenia cieplno-wilgotnościowe w pokoju pomiędzy pokojem przyległym do ściany szczytowej a kuchnią (PP)w lokalu mieszkalnym w poziomie kondygnacji XI piętra budynku; fot.: archiwum autora

W pokoju pomiędzy pokojem przyległym do ściany szczytowej a kuchnią (PP) stwierdzono zawilgocenie pasma nadprożowego (FOT. 4). Nie zaobserwowano uszkodzeń cieplno-wilgotnościowych na suficie.

W kuchni (K) nie stwierdzono występowania uszkodzeń cieplno-wilgotnościowych wzdłuż pasma nadprożowego, jak również wzdłuż ścian zewnętrznych.

Analiza przyczyn uszkodzeń cieplno­‑wilgotnościowych

W celu ustalenia przyczyn uszkodzeń występujących w lokalu mieszkalnym do szczegółowej analizy cieplno-wilgotnościowej wytypowano wstępnie dwie przegrody [5-28]:

    • stropodach (przegroda pozioma),
    • ścianę zewnętrzną (przegroda pionowa).

Ze względu na konstrukcję stropodachu dalszej analizie poddano węzeł stropowo-ścienny bez uwzględnienia wpływu jako warstwy termoizolacyjnej przekrycia z płyt panwiowych z ociepleniem z wełny mineralnej (jasnoniebieski obszar na RYS.), zgodnie ze stosowaną w analizach inżynierskich praktyką przyjęto, że temperatura w obszarze pustki powietrznej (przestrzeń wentylowana) jest równa temperaturze obliczeniowej powietrza zewnętrznego.

Do dalszych obliczeń założono wartości dla I strefy klimatycznej:

    • temperatura zewnętrzna (na zewnątrz budynku) Te = –16°C
    • temperatura wewnętrzna (wewnątrz budynku, w mieszkaniu) Ti = 20°C
    • wilgotność wewnętrzna (wewnątrz budynku, w mieszkaniu) φ = 55%.

Do sprawdzających obliczeń cieplno-wilgotnościowych przyjęto temperatury powietrza zewnętrznego Te oraz wewnętrznego Ti na podstawie [28]. Do obliczenia współczynnika przenikania U ściany zewnętrznej i stropodachu przyjęto dane materiałowe według [21].

Ustalono, że w okresie eksploatacji obiektu, w latach 80. XX wieku mury zewnętrzne budynku zostały ocieplone warstwą styropianu grubości ~5 cm z wyprawą z tynku cementowego według rozwiązań niestosowanej już metody ciężkiej mokrej. W związku z tym współczynnik przenikania ciepła U dla ściany zewnętrznej wyznaczono w sposób przedstawiony w TAB. 1 (linia fioletowa na RYS.).

Uwzględniając konstrukcję płyt stropowych, dalszej analizie poddano dwa przekroje przez strop nad XI piętrem (RYS.):

    • przez żebro płyty stropowej,
    • przez otwór w płycie stropowej.

Zgodnie z dokumentacją projektową stropodach nad stropem XI piętra zrealizowany został jako wentylowany. W związku z tym współczynnik przenikania ciepła U dla stropodachu wyznaczono w sposób następujący: założono, że warstwa powietrza jest dobrze wentylowana (powierzchnia otworów między powietrzem a otoczeniem zewnętrznym jest większa niż 1500 mm2 na m2 powierzchni).

W takiej sytuacji całkowity opór cieplny komponentu budowlanego z dobrze wentylowaną warstwą powietrza oblicza się, pomijając opór cieplny tej warstwy i innych warstw znajdujących się między warstwą powietrza a środowiskiem zewnętrznym i dodając wartość zewnętrznego oporu przejmowania ciepła, odpowiadającej nieruchomemu powietrzu.

Dla powyższych założeń współczynnik przenikania ciepła U dla stropodachu wentylowanego wyznaczono, przyjmując najbardziej niekorzystny przekrój, w sposób przedstawiony w TAB. 2 (linia niebieska na RYS.).

Na podstawie wartości współczynnika przenikania ciepła U wyznaczonego dla ściany zewnętrznej (0,60) i stropodachu (0,62) stwierdzono, że przegrody te mają porównywalne własności cieplne (termoizolacyjne).

Szczegółowa analiza stopnia porażenia korozją biologiczną elementów w obszarze lokalu mieszkalnego wskazała jednoznacznie, że największe uszkodzenia (pod względem jakościowym) występowały wzdłuż pasm nadprożowych, czyli na ścianie zewnętrznej, a nie na suficie, czyli w obszarze stropodachu. Dlatego do dalszej analizy przyjęto jedynie przekrój przez nadproże okienne, uwzględniając jego ocieplenie styropianem w latach 80. XX wieku za pomocą pocienionej warstwy styropianu (linia fioletowa na RYS.).

Z dalszej analizy wykluczono przypadek przekroju przez słup żelbetowej ramy w ścianie szczytowej - zakres występujących uszkodzeń w tym miejscu był zdecydowanie mniejszy niż wzdłuż pasm nadprożowych, co jednoznacznie wskazywało, że większe zaburzenia strumienia ciepła występują w obszarze nadproży okiennych.

Temperaturę powierzchni wewnętrznej koniecznej do uniknięcia krytycznej wilgotności powierzchni i kondensacji międzywarstwowej wyznaczono na podstawie [23]. Norma ta podaje uproszczone metody obliczenia temperatury wewnętrznej powierzchni komponentu budowlanego, poniżej której, przy danej temperaturze i wilgotności powietrza wewnętrznego, prawdopodobny jest rozwój pleśni oraz korozja lub kondensacja pary na powierzchniach nieprzepuszczalnych, np. oknach). Podaje również metody oszacowania ryzyka kondensacji wewnętrznej wskutek dyfuzji pary wodnej.

RYS. Szczegół węzła stropowo-ściennego w poziomie stropu nad XI piętrem budynku (rysunek schematyczny): 1 - płyty z wełny mineralnej gr. 6 cm klejone punktowo lepikiem, 2 - prefabrykowane płyty wielootworowe gr. 24 cm, 3 - tynk cementowo‑wapienny gr. 1,5 cm, 4 - żelbet gr. 20 cm, 5 - suprema gr. 4 cm, 6 - styropian gr. 5 cm, 7 - tynk cementowy gr. 2 cm; rys.: archiwum autora

RYS. Szczegół węzła stropowo-ściennego w poziomie stropu nad XI piętrem budynku (rysunek schematyczny): 1 - płyty z wełny mineralnej gr. 6 cm klejone punktowo lepikiem, 2 - prefabrykowane płyty wielootworowe gr. 24 cm, 3 - tynk cementowo‑wapienny gr. 1,5 cm, 4 - żelbet gr. 20 cm, 5 - suprema gr. 4 cm, 6 - styropian gr. 5 cm, 7 - tynk cementowy gr. 2 cm; rys.: archiwum autora

TABELA 1. Współczynnik przenikania ciepła U dla ściany zewnętrznej - stan istniejący

TABELA 1. Współczynnik przenikania ciepła U dla ściany zewnętrznej - stan istniejący

TABELA 2. Współczynnik przenikania ciepła U dla stropodachu wentylowanego - stan istniejący

TABELA 2. Współczynnik przenikania ciepła U dla stropodachu wentylowanego - stan istniejący

Przegroda budowlana stanowi barierę termiczną, która oddziela przestrzeń o regulowanej temperaturze od środowiska zewnętrznego. Wyniki przeprowadzonych dla ściany zewnętrznej obliczeń pokazały, że uwzględniając parametry normowe:

  • temperatura zewnętrzna (na zewnątrz budynku) Te= –16°C
  • temperatura wewnętrzna (wewnątrz budynku, w mieszkaniu) Ti = +20°C
  • wilgotność wewnętrzna (wewnątrz budynku, w mieszkaniu) φ = 55%,
  • temperatura na powierzchni wewnętrznej muru zewnętrznego jest równa Tw = +16,39°C, co oznacza, że w tym przypadku istniejącej konstrukcji jest ona wyższa od temperatury punktu rosy, jak również punktu pleśni.

Punkt rosy to temperatura wynosząca dla analizowanego przypadku Tr = +10,7°C + 1°C = 11,7°C, przy której gaz osiąga maksymalne nasycenie. Poniżej temperatury punktu rosy następuje przemiana z postaci gazowej w postać ciekłą, czyli skraplanie. Teoretycznie więc dla ściany zewnętrznej w pasmach nadprożowych nie powinny występować uszkodzenia cieplno-wilgotnościowe z uwagi na kryterium punktu rosy Tw = +16,39°C > Tr = +11,7°C.

Temperatura punktu pleśni, wynosząca dla analizowanego przypadku Trp = +14,1°C to temperatura, powyżej której na powierzchni wewnętrznej muru zewnętrznego nie występuje ryzyko rozwoju pleśni (korozji biologicznej). Teoretycznie więc dla ściany zewnętrznej w pasmach nadprożowych nie powinny występować uszkodzenia cieplno-wilgotnościowe z uwagi na kryterium punktu pleśni Tw = +16,39°C > Trp = +14,1°C.

Zakres porażenia korozją biologiczną elementów pasm nadprożowych w obszarze lokalu mieszkalnego pozwolił na stwierdzenie, że w latach minionych parametry eksploatacyjne mieszkania znacznie odbiegały (w kierunku negatywnym) od warunków normowych.

Do najbardziej prawdopodobnych sytuacji, które mogły mieć miejsce w okresie minionym należą:

  • stan istniejący - przypadek 1
    - temperatura wewnętrzna (w mieszkaniu) Ti = +16°C
    - wilgotność wewnętrzna (w mieszkaniu) φ = 65%
  • stan istniejący - przypadek 2
    - temperatura wewnętrzna (w mieszkaniu) Ti = +17°C
    - wilgotność wewnętrzna (w mieszkaniu) φ = 67%
  • stan istniejący - przypadek 3
    - temperatura wewnętrzna (w mieszkaniu) Ti = +18°C
    - wilgotność wewnętrzna (w mieszkaniu) φ = 67%
  • stan istniejący - przypadek 4
    - temperatura wewnętrzna (w mieszkaniu) Ti = +18°C
    - wilgotność wewnętrzna (w mieszkaniu) φ = 60%.

Dla przywołanych powyżej przypadków temperatura na powierzchni wewnętrznej muru zewnętrznego Tw oraz odpowiadające jej temperatura punktu rosy Tr i temperatura punktu pleśni Trp wynoszą odpowiednio:

  • stan istniejący - przypadek 1
    - temperatura wewnętrznej powierzchni muru zewnętrznego wynosi Tw = +12,79°C
    - temperatura punktu rosy wynosi Tr = +9,7°C +1°C = +10,7°C
    - temperatura punktu pleśni wynosi Trp = +12,8°C
  • stan istniejący - przypadek 2
    - temperatura wewnętrznej powierzchni muru zewnętrznego wynosi Tw = +13,69°C
    - temperatura punktu rosy wynosi Tr = +10,8°C +1°C = +11,8°C
    - temperatura punktu pleśni wynosi Trp = +14,2°C
  • stan istniejący - przypadek 3
    - temperatura wewnętrznej powierzchni muru zewnętrznego wynosi Tw = +14,59°C
    - temperatura punktu rosy wynosi Tr = +11,8°C +1°C = +12,8°C
    - temperatura punktu pleśni wynosi Trp = +15,2°C
  • stan istniejący - przypadek 4
    - temperatura wewnętrznej powierzchni muru zewnętrznego wynosi Tw = +14,59°C
    - temperatura punktu rosy wynosi Tr = +10,1°C +1°C = +11,1°C
    - temperatura punktu pleśni wynosi Trp = +13,5°C.

Jak zostało to wspomniane wcześniej najbardziej niebezpieczne są przypadki, w których temperatura wewnętrznej powierzchni muru zewnętrznego Tw zaczyna być niższa od temperatura punktu pleśni Trp.

W przypadku analizowanego lokalu mieszkalnego taka sytuacja ma miejsce przy parametrach klimatu wewnętrznego typowego dla:

  • stan istniejący - przypadek 1
    Tw = +12,79°C << Trp = +12,8°C
  • stan istniejący - przypadek 2
    Tw = +13,69°C << Trp = +14,2°C
  • stan istniejący - przypadek 3
    Tw = +14,59°C << Trp = +15,2°C

Doświadczenie wskazuje, że z opisanych powyżej przypadków najbardziej prawdopodobny jest przypadek 3:

  • temperatura wewnętrzna (w mieszkaniu) Ti = +18°C
  • wilgotność wewnętrzna (w mieszkaniu) φ = 67%.

Stan istniejący w zakresie występujących w obszarze pasm nadprożowych uszkodzeń cieplno-wilgotnościowych potwierdził jednoznacznie, że sposób eksploatacji mieszkania, określany jako stan istniejący (przypadki 1, 2 oraz 3) miał w rzeczywistości miejsce.

Jednocześnie należy zauważyć, że rozwój korozji biologicznej na powierzchni tynku następuje bardzo szybko, nawet w przypadku chwilowego pogorszenia, w kierunku negatywnym, warunków eksploatacyjnych mieszkania. W takiej sytuacji krótkotrwałe polepszenie komfortu wewnętrznego, np. poprzez nieznaczne obniżenie wilgotności, co odpowiada przypadkowi 4, nie spowoduje cofnięcia, jak również zatrzymania negatywnych skutków wcześniejszej nieprawidłowej eksploatacji lokalu mieszkalnego.

Udostępnione przez administratora budynku odczyty z podzielników c.o. w lokalu mieszkalnym jednoznacznie wskazały, że w sezonach grzewczych 2014-2015 oraz 2015-2016 nastąpiło drastyczne obniżenie zużycia czynnika grzewczego, co jednoznacznie świadczy o zmniejszeniu temperatury powietrza w lokalu mieszkalnym, w tym do wartości przyjętej w analizie w ramach przypadków 1, 2, 3 oraz 4.

W sezonie grzewczym 2014-2015 zużycie stanowiło zmniejszenie o ponad 70% jednostek pomierzonych na podzielnikach, natomiast w sezonie grzewczym 2015-2016 występowało zmniejszenie zużycia o ponad 62% w porównaniu do średniej wartości z lat 2006-2014.

Dodatkowo należy zauważyć, że również w sezonach grzewczych 2012-2013 oraz 2013-2014 wyniki odczytów zużycia czynnika grzewczego jednoznacznie wskazywały, że miało miejsce istotne obniżanie temperatury powietrza w lokalu mieszkalnym, co bezspornie przyczyniło się do rozwoju korozji biologicznej, której inicjacja nastąpiła wzdłuż pasm nadprożowych, czyli elementów, w których ze względu na konstrukcje najszybciej nastąpiło zaburzenie przepływu strumienia ciepła w postaci przemarzania.

W [27] zamieszczono zalecenie, że należy sprawdzić, czy przegroda spełnienia wymagania dotyczące powierzchniowej kondensacji pary wodnej. Oznacza to, że na wewnętrznej powierzchni nieprzezroczystej przegrody zewnętrznej nie może występować kondensacja pary wodnej umożliwiająca rozwój grzybów pleśniowych. Spełnienie tego warunku jest sprawdzane przy użyciu współczynnika temperaturowego ƒRsi, zdefiniowanego w [23].

Poniżej przedstawiono procedury normowe określania ryzyka rozwoju pleśni na podstawie współczynnika temperaturowego ƒRsi dla całego roku: zgodnie z [27] ocenianą wielkością jest współczynnik temperaturowy ƒRsi na wewnętrznej powierzchni przegrody:

(1)

gdzie:

θsi - temperatura powierzchni wewnętrznej [°C],
θe - temperatura powietrza wewnętrznego [°C],
θi - temperatura powietrza zewnętrznego [°C].

Aby zdiagnozować możliwość rozwoju pleśni dla każdego miesiąca w roku z uwzględnieniem średnich miesięcznych parametrów powietrza zewnętrznego i warunków użytkowania pomieszczeń, wyznacza się współczynnik ƒRsi,min.

W TAB. 3 zamieszczono wyniki obliczeń pokazujące zmienność współczynnika temperaturowego ƒRsi,min przez okres 12 miesięcy dla warunków eksploatacyjnych odpowiadających:

  • warunki normowe:
    - temperatura wewnętrzna (w mieszkaniu) Ti= +20°C = θi
    - wilgotność wewnętrzna (w mieszkaniu) φ = 55%.
TABELA 3. Zmiana współczynnika temperaturowegoƒRsi, min przez okres 12 miesięcy dla parametrów klimatu wewnętrznego: Ti = +20°C, φ = 55% (przypadek normowy)

TABELA 3. Zmiana współczynnika temperaturowegoƒRsi, min przez okres 12 miesięcy dla parametrów klimatu wewnętrznego: Ti = +20°C, φ = 55% (przypadek normowy)

Krytycznym miesiącem jest ten, w którym wartość ƒRsi,min jest największa. W rozważanym przypadku jest to wartość przypadająca na luty (zaznaczona kolorem czerwonym), wówczas dla tego przypadku ƒRsi,min = ƒRsi,max = 0,686.

Możliwość wystąpienia pleśni występuje wówczas, gdy ƒRsi,max > ƒRsi,U. W związku z tym należy obliczyć ƒRsi,U – współczynnik, który charakteryzuje jakość cieplną komponentu budowlanego. Wyznacza się go na podstawie:

(2)

gdzie:

U - wartość współczynnika przenikania dla przegrody
R - oporu przejmowania ciepła na powierzchni wewnętrznej.

Przy szacowaniu ryzyka wzrostu pleśni należy przyjmować wartość Rsi = 0,25 m2×K/W.

Dla powyższych normowych założeń warunek ƒRsi,max > ƒRsi,U nie jest spełniony, ponieważ ƒRsi,max = 0,686 < ƒRsi,U = 0,85. Wartość ƒRsi,U jest wyższa od ƒRsi,max, w związku z tym nie powinno pojawić się ryzyko wystąpienia warunków sprzyjających rozwojowi pleśni i grzybów przez cały rok kalendarzowy.

  • stan istniejący - przypadek 3:
    - temperatura wewnętrzna (w mieszkaniu) Ti = +18°C
    - wilgotność wewnętrzna (w mieszkaniu) φ = 67%.

Wykonując podobną jak w przypadku a analizę współczynnika temperaturowego ƒRsi,min przez okres 12 miesięcy dla warunków klimatu wewnętrznego, które mogą występować w analizowanym mieszkaniu (przypadek 3), otrzymano wartości zamieszczone w TAB. 4.

TABELA 4. Zmiana współczynnika temperaturowego ƒRsi,min przez okres 12 miesięcy dla parametrów klimatu wewnętrznego: Ti = +18°C, φ = 67% (przypadek 3)

TABELA 4. Zmiana współczynnika temperaturowego ƒRsi,min przez okres 12 miesięcy dla parametrów klimatu wewnętrznego: Ti = +18°C, φ = 67% (przypadek 3)

Na podstawie uzyskanych wyników można zauważyć, że ryzyko wystąpienia warunków sprzyjających rozwojowi pleśni i grzybów ma miejsce aż w 5 miesiącach. W zaznaczonych kolorem czerwonym miejscach w TAB. 4 widać, że wartości ƒRsi,min są zbliżone do wartości kryterialnej ƒRsi,U, co oznacza, że dla średnich miesięcznych parametrów powietrza zewnętrznego i warunków użytkowania pomieszczeń przez znaczną część roku istnieje możliwość powstawania życia biologicznego (rozwoju pleśni).

Dla stanu istniejącego - przypadek 4, w którym przedstawiono warunki klimatu wewnętrznego, w których nie powinien wystąpić rozwój pleśni, zmienność w czasie współczynnika temperaturowego ƒRsi,min przez okres 12 miesięcy kształtuje się w sposób przedstawiony w TAB. 5.

TABELA 5. Zmiana współczynnika temperaturowego ƒRsi,min przez okres 12 miesięcy dla parametrów klimatu wewnętrznego: Ti = +18°C, φ = 60% (metoda 1: stan istniejący - przypadek 4)

TABELA 5. Zmiana współczynnika temperaturowego ƒRsi,min przez okres 12 miesięcy dla parametrów klimatu wewnętrznego: Ti = +18°C, φ = 60% (metoda 1: stan istniejący - przypadek 4)

Dla powyższego przypadku warunek ƒRsi,max > ƒRsi,U nie jest spełniony, ponieważ ƒRsi,max = 0,73 < ƒRsi,U = 0,85.

Wartość ƒRsi,U jest wyższa od ƒRsi,max, w związku z tym dla warunków eksploatacyjnych odpowiadających przypadkowi 4 nie powinno być ryzyka wystąpienia warunków sprzyjających rozwojowi pleśni i grzybów przez cały rok kalendarzowy.

W celu przeciwdziałania sytuacji mogącej sprzyjać w przyszłości rozwojowi uszkodzeń cieplno-wilgotnościowych przyjęto 2 metody:

  • metoda 1 - utrzymanie warunków eksploatacyjnych zbliżonych do normowych.

Należy mieć jednak świadomość, że jest to działanie nie do końca doskonałe, ponieważ w praktyce bardzo trudno jest utrzymać w sposób ciągły założoną temperaturę oraz wilgotność. W związku z tym na potrzeby omawianego przypadku wyznaczono parametry klimatu, które z dużym prawdopodobieństwem pozwolą w przyszłości uniknąć korozji biologicznej przegród budowlanych, w tym muru zewnętrznego. Zalecane wartości odpowiadają omawianej wcześniej sytuacji: stan istniejący - przypadek 4:
- temperatura wewnętrzna (wewnątrz budynku, w mieszkaniu) Ti ≥ +18°C
- wilgotność wewnętrzna (wewnątrz budynku, w mieszkaniu) φ ≤ 60%.

W przypadku 4 nie został spełniony warunek ƒRsi,max > ƒRsi,U, w związku z tym dla analizowanego przypadku wartość współczynnika temperaturowego przekracza wartości normowych określonych w [23], co powoduje, że przegroda w całym roku kalendarzowym jest w stanie pobrać i odprowadzić ilość pary wodnej bez ryzyka jej kondensacji powierzchniowej.

  • metoda 2 - ocieplenie murów zewnętrznych według rozwiązania technologii ETICS.

Z inżynierskiego punktu widzenia najbardziej poprawny kierunek działania. W przypadku ocieplenia muru styropianem grubości 10 cm wartość współczynnika przenikania ciepła wynosi 0,22 W/(m2×°K) (TAB. 6) i nie przekracza wartości Umax wynoszącej 0,23 W/(m2×°K).

TABELA 6. Współczynnik przenikania ciepła U dla stropodachu wentylowanego (stan projektowany - metoda 2)

TABELA 6. Współczynnik przenikania ciepła U dla stropodachu wentylowanego (stan projektowany - metoda 2)

Dla ocieplonej przegrody zmieniają się wartości temperatur. Do analizy temperatury punktu rosy i temperatury punktu pleśni przyjęto wartości normowe:

  • temperatura zewnętrzna (na zewnątrz budynku) Te = –16°C
  • temperatura wewnętrzna (wewnątrz budynku, w mieszkaniu) Ti = +20°C
  • wilgotność wewnętrzna (wewnątrz budynku, w mieszkaniu) φ = 55%.

Dla normowych parametrów klimatycznych uzyskano następujące temperatury:

  • temperatura wewnętrznej powierzchni muru zewnętrznego wynosi Tw = +18,69°C
  • temperatura punktu rosy wynosi Tr = +10,7°C +1°C = +11,7°C
  • temperatura punktu pleśni wynosi Trp = +14,1°C.

Biorąc pod uwagę wysoce prawdopodobny sposób eksploatacji mieszkania obliczenia uwzględniające przepływ strumienia ciepła przez przegrodę po jej ociepleniu wykonano dla najbardziej negatywnie prawdopodobnych sytuacji:

  • stan projektowany - metoda 2: przypadek 1
    - temperatura wewnętrzna (w mieszkaniu) Ti = +16°C
    - wilgotność wewnętrzna (w mieszkaniu) φ = 65%
  • stan projektowany - metoda 2: przypadek 2
    - temperatura wewnętrzna (w mieszkaniu) Ti = +17°C
    - wilgotność wewnętrzna (w mieszkaniu) φ = 67%
  • stan projektowany - metoda 2: przypadek 3
    - temperatura wewnętrzna (w mieszkaniu) Ti = +18°C
    - wilgotność wewnętrzna (w mieszkaniu) φ = 67%.

Dla przywołanych powyżej przypadków temperatura na powierzchni wewnętrznej muru zewnętrznego Tw oraz odpowiadające jej temperatura punktu rosy Tr i temperatura punktu pleśni Trp wynoszą odpowiednio:

  • stan projektowany - metoda 2: przypadek 1
    - temperatura wewnętrznej powierzchni muru zewnętrznego wynosi Tw = +14,82°C
    - temperatura punktu rosy wynosi Tr = +9,7°C +1°C = +10,7°C
    - temperatura punktu pleśni wynosi Trp= +12,8°C
  • stan projektowany - metoda 2: przypadek 2
    - temperatura wewnętrznej powierzchni muru zewnętrznego wynosi Tw = +15,79°C
    - temperatura punktu rosy wynosi Tr = +10,8°C +1°C = +11,8°C.
    - temperatura punktu pleśni wynosi Trp = +14,2°C
  • stan projektowany - metoda 2: przypadek 3
    - temperatura wewnętrznej powierzchni muru zewnętrznego wynosi Tw = +16,75°C
    - temperatura punktu rosy wynosi Tr = +11,8°C +1°C = +12,8°C
    - temperatura punktu pleśni wynosi Trp = +15,2°C.

Bazując na przeprowadzonych obliczeniach stwierdzono, że po ociepleniu ścian zewnętrznych nie ma ryzyka powstawania punktu pleśni, gdyż w żadnym z analizowanych przypadków temperatura wewnętrznej powierzchni muru zewnętrznego Tw nie osiągnęła wartości niższej od temperatura punktu pleśni Trp:

  • przypadek 1 Tw = +14,82°C > Trp = +12,8°C
  • przypadek 2 Tw = +15,79°C > Trp = +14,2°C
  • przypadek 3 Tw= +16,75°C > Trp = +15,2°C

W TAB. 7 zamieszczono wyniki obliczeń przedstawiające ryzyko rozwoju pleśni na podstawie współczynnika temperaturowego ƒRsi dla całego roku dla analizowanej przegrody dla warunków eksploatacyjnych odpowiadających metodzie 2: stan projektowany - przypadek 3.

TABELA 7. Zmiana współczynnika temperaturowego fRsi,min przez okres 12 miesięcy dla parametrów klimatu wewnętrznego:Tiφ = 67% (stan projektowany - metoda 2: przypadek 3)

TABELA 7. Zmiana współczynnika temperaturowego fRsi,min przez okres 12 miesięcy dla parametrów klimatu wewnętrznego:Tiφ = 67% (stan projektowany - metoda 2: przypadek 3)

Dla powyższych normowych założeń warunek ƒRsi,max > ƒRsi,U nie jest spełniony, ponieważ pomimo wysokiego ƒRsi,max = 0,84, po ociepleniu przegrody zmianie ulegnie wartość współczynnika U, powodując tym samym zmianę wartości ƒRsi,U = 0,94.

Wartość ƒRsi,U jest wyższa od ƒRsi,max, w związku z tym nie powinno być ryzyka wystąpienia warunków sprzyjających rozwojowi pleśni i grzybów przez cały rok kalendarzowy: ƒRsi,max = 0,84 < ƒRsi,U = 0,94.

Propozycja usunięcia usterek cieplno­‑wilgotnościowych

Ze względu na stan techniczny lokalu mieszkalnego prace remontowe należało przeprowadzić w systemie etapowym, według następujących zaleceń ramowych:

Etap 1 - do realizacji w trybie pilnym:

  • w pokoju szczytowym (PS) oraz w pokoju pośrednim (PP) usunąć ślady zawilgocenia i zagrzybienia poprzez skucie tynku wewnętrznego w pasmach nadprożowych oraz na fragmentach ścian zewnętrznych,
  • po usunięciu tynku fragmenty muru oraz pasm nadprożowych zabezpieczyć preparatem do odkażania zagrzybionych ścian budynków,
  • odsłonięte fragmenty muru oraz pasm nadprożowych zabezpieczyć przeciwgrzybicznie przed wtórnym porażeniem grzybem i rozwojem pleśni,
  • metodą przewietrzania naturalnego przeprowadzić osuszanie pokoi szczytowego (PS) oraz pośredniego (PP),
  • w przypadku stwierdzenia obniżenia tempa osuszania murów zewnętrznych oraz pasma nadprożowego przewietrzanie należy wspomagać dogrzewaniem pomieszczeń stosując nagrzewnice elektryczne oraz obniżaniem wilgotności przy zastosowaniu osuszaczy,
  • po zakończeniu osuszania przeprowadzić kontrolne pomiary wilgotności - proces osuszania należy uznać za zakończony jeżeli przez 3 kolejne dni pomierzona wilgotność masowa Um tynku cementowo-wapiennego na ścianach będzie ≤  0,8%,
  • na odsłoniętych fragmentach muru oraz pasm nadprożowych wykonać porowaty tynk renowacyjny, tzw. przecierkę, nie zaleca się wykonywać gładzi gipsowych.

Etap 2 - do realizacji po zakończeniu prac etapu 1:

  • po zakończeniu prac remontowych przeprowadzić szczegółową kontrolę krotności wymiany powietrza w obszarze całego lokalu mieszkalnego, tak żeby spełnione były wymagania co do wentylacji tego rodzaju pomieszczeń, zamieszczone między innymi w [26] oraz [28].

Etap 3 - do realizacji po zakończeniu prac etapu 1, równolegle z pracami etapu 2:

  • podczas użytkowania lokalu mieszkalnego zapewnić następujące (graniczne) parametry eksploatacyjne:
    temperatura wewnętrzna Ti min= 18,0°C
    wilgotność względna φmax = 60%.

Etap 4 - do docelowej realizacji:

  • wykonać ocieplenie murów zewnętrznych budynku jako całości według technologii ETICS z uwzględnieniem wymagań technicznych zamieszczonych w [16, 17],
  • prace ociepleniowe należy przeprowadzić, uwzględniając konieczność ocieplenia części murów zagłębionych z zastosowaniem polistyrenu ekstrudowanego (styrodur - XPS) o wstępnej grubości 6 cm,
  • należy rozważyć, czy prac ociepleniowych nie należy poprzedzić odtworzeniem izolacji pionowej i poziomej części murów zagłębionych w gruncie,
  • po zakończeniu prac związanych z odtworzeniem izolacji przeciwwilgociowych części murów zagłębionych w gruncie oraz po ociepleniu murów zewnętrznych budynku ukształtować spadki terenu wokół budynku w kierunku na zewnątrz "od budynku".

Etap 5 - do realizacji po zakończeniu prac etapu 4:

  • podczas użytkowania lokalu mieszkalnego zapewnić następujące parametry eksploatacyjne:
    temperatura wewnętrzna Ti min= (19–20)°C
    wilgotność względna φmax = 55%.

Wnioski

  • Bezpośrednią przyczyną powstania uszkodzeń cieplno-wilgotnościowych w pomieszczeniach mieszkania było zaniżenie warunków eksploatacyjnych polegające na długoterminowym obniżeniu temperatury powietrza wewnątrz lokalu mieszkalnego Ti przy jednoczesnej zbyt dużej wilgotności wewnętrznej, szacunkowo powyżej φ = 67%.
  • Ze względu na układ warstw ściany zewnętrznej, charakteryzujący się dużą przewodnością cieplną (niską termoizolacyjnością), nawet krótkotrwałe obniżenie w sezonie grzewczym temperatury w mieszkaniu do ~16,0°C powodowało, że temperatura na powierzchni wewnętrznej muru zewnętrznego była równa ~12,79°C, co skutkowało tym, że była ona niższa od temperatury Trp = 12,8°C będącej temperaturą tzw. punktu pleśni - przy tej temperaturze następuje rozwój korozji biologicznej, co miało miejsce w analizowanym przypadku.
  • Odczyty z podzielników c.o. w lokalu mieszkalnym jednoznacznie wskazywały, że w minionych sezonach grzewczych (ostatnich dwóch latach) nastąpiło drastyczne obniżenie zużycia czynnika grzewczego, co jednoznacznie wskazuje na zmniejszenie temperatury powietrza w lokalu mieszkalnym.

Literatura

  1. M. Gajzler, M. Puklińska, A. Dziadosz, "Wpływ rozwiązań projektowych na wielkość kosztów w cyklu życia inwestycji budowlanej", Archiwum Instytutu Inżynierii Lądowej, Wydawnictwo Politechniki Poznańskiej, Poznań 2012, s. 123-130.
  2. A. Dziadosz, O. Kapliński, M. Rejment, "Łączne koszty budynku w cyklu życia inwestycji budowlanej", Wydawnictwo Uczelniane Uniwersytetu Technologiczno-Przyrodniczego w Bydgoszczy, Bydgoszcz 2015, s. 127-134.
  3. E. Kucharska-Stasiak, "Metody pomiaru zużycia obiektów budowlanych", "Materiały Budowlane", 2/1995, s. 29-38.
  4. M. Substyk, "Utrzymanie i kontrola okresowa obiektów budowlanych", Wydawnictwo ODDK, Warszawa 2012.
  5. R. Antczak-Jarząbska, "Influence of external climate on natural ventilation", PHD Interdisciplinary Journal, 2015.
  6. T. Godycki-Ćwirko, Z. Łosicki, L. Niedostatkiewicz, J. Matyskiewicz, M. Kin, "Systemowa analiza rozwiązań materiałowo-konstrukcyjnych docieplonych zewnętrznych przegród budynków w aspekcie oszczędności energii", praca badawcza nr 917043, Politechnika Gdańska, Wydział Budownictwa Lądowego, Instytut Technologii i Materiałów Budowlanych, Gdańsk 1991.
  7. J. Hoła, Z. Makowski, "Wybrane problemy dotyczące zabezpieczeń przeciwwilgociowych ścian w istniejących obiektach murowanych, XXIV Konferencja Naukowo­‑Techniczna "Awarie Budowlane 2007", Szczecin-Międzyzdroje, s. 109-114.
  8. J. Kwiatkowski, "Metody oceny ryzyka wystąpienia kondensacji pary wodnej na wewnętrznych powierzchniach przegród", "Building and Civil Engineering" 2010.
  9. P. Markiewicz, "Detale projektowe dla architektów", Wydawnictwo Archiplus, Warszawa 2009.
  10. A. Marszałek, K. Sołtyński, "Człowiek w warunkach obciążenia termicznego", CIOP-PIB, Warszawa 2001.
  11. M. Niedostatkiewicz, "Błędy projektowe i wykonawcze systemów ociepleniowych w technologii BSO (Bezspoinowy System Ocieplania) jako przyczyny utrudnień eksploatacyjnych budynków mieszkalnych", [w:] "Wybrane zagadnienia z budownictwa ogólnego", Wydawnictwo Europejskiej Uczelni Społeczno-Technicznej, Radom 2014, s. 137-146.
  12. M. Niedostatkiewicz, "Dachu stropodachy tarasy. Remonty i wzmacnianie”, Polskie Centrum Budownictwa Difin i Muller, Warszawa 2015, s. 1-178.
  13. W. Płoński, J.A. Pogorzelski, "Fizyka budowli - zasady projektowania przegród budowlanych w zakresie cieplno­‑wilgotnościowym", Wydawnictwo ARKADY, Warszawa 1979.
  14. M. Wesołowska, P. Szczepaniak, "Nowe wymagania w ocenie wilgotnościowej przegród", "IZOLACJE" 3/2009.
  15. Instrukcja ITB nr 334/1996, "Ocieplanie ścian zewnętrznych metodą lekką", Wydawnictwo Instytutu Techniki Budowlanej, Warszawa 1996.
  16. Instrukcja ITB nr 334/2002, "Bezspoinowy system ocieplania ścian zewnętrznych budynków", Wydawnictwo Instytutu Techniki Budowlanej, Warszawa 2002.
  17. Instrukcja ITB nr 418/2006, "Warunki techniczne wykonania i odbioru robót budowlanych, część C: Zabezpieczenia i izolacje, zeszyt 8: Bezspoinowy system ocieplania ścian zewnętrznych budynków", Wydawnictwo Instytutu Techniki Budowlanej, Warszawa 2006.
  18. PN-B-02025:2001, "Obliczanie sezonowego zapotrzebowania na ciepło do ogrzewania budynków mieszkalnych i zamieszkania zbiorowego".
  19. PN-EN ISO 6946:2008, "Komponenty budowlane i elementy budynku. Opór cieplny i współczynnik przenikania ciepła. Metoda obliczania".
  20. PN-EN ISO 10456:2008, "Materiały i wyroby budowlane. Procedury określania deklarowanych i obliczeniowych wartości cieplnych".
  21. PN-EN 12524:2003, "Materiały i wyroby budowlane. Właściwości cieplno-wilgotnościowe. Tabelaryczne wartości obliczeniowe".
  22. PN-82/B-02403, "Ogrzewnictwo. Temperatury obliczeniowe zewnętrzne".
  23. PN-EN ISO 13788:2003, "Cieplno-wilgotnościowe właściwości komponentów budowlanych i elementów budynku. Temperatura powierzchni wewnętrznej konieczna do uniknięcia krytycznej wilgotności powierzchni i kondensacja międzywarstwowa. Metody obliczania".
  24. PN-B-02025:2001, "Obliczanie sezonowego zapotrzebowania na ciepło do ogrzewania budynkach mieszkalnych i zamieszkania zbiorowego".
  25. PN-EN ISO 14683, "Mostki cieplne w budynkach. Liniowy współczynnik przenikania ciepła. Metody uproszczone i wartości orientacyjne".
  26. PN-EN ISO 7730:2006(U), "Ergonomia. Środowisko termiczne umiarkowane. Analityczne wyznaczenie i interpretacja komfortu termicznego z zastosowaniem obliczania wskaźnika PMV i PPD oraz kryteriów lokalnego komfortu termicznego".
  27. Rozporządzenie Ministra Infrastruktury z dnia 6 grudnia 2008 r. w sprawie metodologii obliczania charakterystyki energetycznej budynku i lokalu mieszkalnego lub części budynku stanowiącej samodzielną całość techniczno-użytkową oraz sposobu sporządzania i wzorów świadectw charakterystyki energetycznej ICH (DzU nr 201, poz. 1240).
  28. Rozporządzenie Ministra Infrastruktury z dnia 12 kwietnia 2002 r. w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie (DzU nr 75 z 2002 r., poz. 690 wraz z późniejszymi zmianami).

Chcesz być na bieżąco? Zapisz się do naszego newslettera!

Galeria zdjęć

Tytuł
przejdź do galerii

Komentarze

Powiązane

Nicola Hariasz Szerokie zastosowanie płyt gipsowo-kartonowych w systemie suchej zabudowy

Szerokie zastosowanie płyt gipsowo-kartonowych w systemie suchej zabudowy Szerokie zastosowanie płyt gipsowo-kartonowych w systemie suchej zabudowy

System suchej zabudowy jest metodą wykończenia wnętrz, która nie wymaga użycia wody zarobowej, niezbędnej w procesie wiązania tradycyjnych materiałów budowlanych, takich jak beton czy tynk. Głównym elementem...

System suchej zabudowy jest metodą wykończenia wnętrz, która nie wymaga użycia wody zarobowej, niezbędnej w procesie wiązania tradycyjnych materiałów budowlanych, takich jak beton czy tynk. Głównym elementem tego rodzaju zabudowy są płyty gipsowo­‑kartonowe. Obecnie są one szeroko stosowane zarówno w obiektach biurowych, hotelowych, usługowych, jak i mieszkaniowych.

prof. dr hab. inż. Krzysztof Schabowicz, dr inż. Paweł Sulik, mgr inż. Łukasz Zawiślak Elewacja wentylowana podczas oddziaływania pożarem

Elewacja wentylowana podczas oddziaływania pożarem Elewacja wentylowana podczas oddziaływania pożarem

Elewacje wentylowane pozwalają na kształtowanie zewnętrznych paneli z różnych materiałów, struktur, faktur czy kolorów. Ze względu na wysoką estetykę są one coraz częściej stosowane jako okładziny ścian...

Elewacje wentylowane pozwalają na kształtowanie zewnętrznych paneli z różnych materiałów, struktur, faktur czy kolorów. Ze względu na wysoką estetykę są one coraz częściej stosowane jako okładziny ścian zewnętrznych budynków nowo budowanych, lecz również doskonale sprawdzają się w przypadku budynków poddawanych remontom.

dr hab. inż. prof. PŚ Łukasz Drobiec, mgr inż. Julia Blazy Współczesne niemetaliczne zbrojenia rozproszone stosowane w konstrukcjach betonowych

Współczesne niemetaliczne zbrojenia rozproszone stosowane w konstrukcjach betonowych Współczesne niemetaliczne zbrojenia rozproszone stosowane w konstrukcjach betonowych

W ciągu ostatnich trzech dekad obserwuje się bardzo szybki rozwój technologii związanych z betonem. Z prostego i wszechstronnego materiału konstrukcyjnego stał się on materiałem wysokowartościowym (High...

W ciągu ostatnich trzech dekad obserwuje się bardzo szybki rozwój technologii związanych z betonem. Z prostego i wszechstronnego materiału konstrukcyjnego stał się on materiałem wysokowartościowym (High Performance Concrete), który można dostosować do konkretnych zastosowań zgodnie z postawionymi wymaganiami.

dr inż. Krzysztof Pawłowski, prof. uczelni Ocieplenie ścian zewnętrznych płytami styropianowymi – wybrane aspekty projektowe

Ocieplenie ścian zewnętrznych płytami styropianowymi – wybrane aspekty projektowe Ocieplenie ścian zewnętrznych płytami styropianowymi – wybrane aspekty projektowe

Zmieniające się wymagania powodują, że na etapie projektowania i wykonywania pojawiają się nowe rozwiązania konstrukcyjno-materiałowe ścian zewnętrznych. Najczęściej stosowanymi technologiami wznoszenia...

Zmieniające się wymagania powodują, że na etapie projektowania i wykonywania pojawiają się nowe rozwiązania konstrukcyjno-materiałowe ścian zewnętrznych. Najczęściej stosowanymi technologiami wznoszenia ścian zewnętrznych budynków w Polsce są technologia murowana, drewniana lub prefabrykowana.

Nicola Hariasz Rodzaje i właściwości farb mineralnych przeznaczonych do malowania elewacji

Rodzaje i właściwości farb mineralnych przeznaczonych do malowania elewacji Rodzaje i właściwości farb mineralnych przeznaczonych do malowania elewacji

Podczas odświeżania starej elewacji lub ocieplania ścian zewnętrznych bardzo ważną kwestię stanowi dobór farby elewacyjnej. Na renowację warto się zdecydować, gdy fasada wraz z upływem lat straciła swoją...

Podczas odświeżania starej elewacji lub ocieplania ścian zewnętrznych bardzo ważną kwestię stanowi dobór farby elewacyjnej. Na renowację warto się zdecydować, gdy fasada wraz z upływem lat straciła swoją pierwotną barwę, uległa zabrudzeniu lub po prostu nie spełnia oczekiwań inwestora.

Danuta Baprawska Najważniejsze parametry farb wewnętrznych

Najważniejsze parametry farb wewnętrznych Najważniejsze parametry farb wewnętrznych

Malowanie jest najłatwiejszym sposobem na zmianę wystroju wnętrza, dlatego coraz częściej odświeżamy swoje domy i mieszkania właśnie w ten sposób. Rośnie popularność malowania, a co za tym idzie – oferta...

Malowanie jest najłatwiejszym sposobem na zmianę wystroju wnętrza, dlatego coraz częściej odświeżamy swoje domy i mieszkania właśnie w ten sposób. Rośnie popularność malowania, a co za tym idzie – oferta produktowa. Warto wiedzieć, jakimi kryteriami się kierować przy wyborze odpowiedniej farby wewnętrznej.

dr hab. inż. prof. PŚ Łukasz Drobiec, dr inż. Radosław Jasiński, dr inż. Wojciech Mazur Nowoczesne nadproża stosowane w budownictwie

Nowoczesne nadproża stosowane w budownictwie Nowoczesne nadproża stosowane w budownictwie

Przekrycie otworów w ścianach lub murach (obronnych lub ochronnych) było i jest problemem, z którym budownictwo borykało się od samego początku stosowania konstrukcji murowych.

Przekrycie otworów w ścianach lub murach (obronnych lub ochronnych) było i jest problemem, z którym budownictwo borykało się od samego początku stosowania konstrukcji murowych.

mgr inż. Bartłomiej Monczyński Tynki stosowane na zawilgoconych przegrodach – tynki renowacyjne

Tynki stosowane na zawilgoconych przegrodach – tynki renowacyjne Tynki stosowane na zawilgoconych przegrodach – tynki renowacyjne

Wykonanie nowych tynków jest jednym z nieodzownych elementów prac renowacyjnych prowadzonych w zawilgoconych obiektach budowlanych. Z uwagi na właściwości tzw. tynków tradycyjnych w takim przypadku zalecane...

Wykonanie nowych tynków jest jednym z nieodzownych elementów prac renowacyjnych prowadzonych w zawilgoconych obiektach budowlanych. Z uwagi na właściwości tzw. tynków tradycyjnych w takim przypadku zalecane jest stosowanie specjalistycznych tynków przeznaczonych do prowadzenia prac renowacyjnych.

dr inż. Krzysztof Pawłowski, prof. uczelni Projektowanie ścian zewnętrznych z uwzględnieniem wymagań cieplno-wilgotnościowych od 1 stycznia 2021 r.

Projektowanie ścian zewnętrznych z uwzględnieniem wymagań cieplno-wilgotnościowych od 1 stycznia 2021 r. Projektowanie ścian zewnętrznych z uwzględnieniem wymagań cieplno-wilgotnościowych od 1 stycznia 2021 r.

Artykuł przedstawia rozwiązania konstrukcyjno-materiałowe ścian zewnętrznych i przykłady obliczeniowe dotyczące ich parametrów fizykalnych w aspekcie wymagań cieplno-wilgotnościowych według rozporządzenia...

Artykuł przedstawia rozwiązania konstrukcyjno-materiałowe ścian zewnętrznych i przykłady obliczeniowe dotyczące ich parametrów fizykalnych w aspekcie wymagań cieplno-wilgotnościowych według rozporządzenia Ministra Infrastruktury i Budownictwa z dnia 14.11.2017 r. zmieniającego rozporządzenie ws warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie, które będą obowiązywać od 1.01.2021 r.

prof. dr hab. inż. Krzysztof Schabowicz, mgr inż. Łukasz Zawiślak, mgr inż. Paweł Staniów Elewacje wentylowane – porównanie numeryczne w zakresie termicznym

Elewacje wentylowane – porównanie numeryczne w zakresie termicznym Elewacje wentylowane – porównanie numeryczne w zakresie termicznym

Zwiększające się wymagania stawiane ochronie środowiska, wzmagają rozwój budownictwa zrównoważonego. Elewacje wentylowane mogą stanowić korzystną energetycznie alternatywę dla elewacji standardowych, tj....

Zwiększające się wymagania stawiane ochronie środowiska, wzmagają rozwój budownictwa zrównoważonego. Elewacje wentylowane mogą stanowić korzystną energetycznie alternatywę dla elewacji standardowych, tj. elewacji w systemie ETICS.

mgr inż. Bartłomiej Monczyński Tynki stosowane na zawilgoconych przegrodach – tynki ofiarne

Tynki stosowane na zawilgoconych przegrodach – tynki ofiarne Tynki stosowane na zawilgoconych przegrodach – tynki ofiarne

W budynkach, których mury zawierają znaczne ilości wilgoci oraz szkodliwych soli budowlanych, trwałe i stabilne tynkowanie przy użyciu tynków tradycyjnych z reguły nie jest możliwe – tynki wapienne na...

W budynkach, których mury zawierają znaczne ilości wilgoci oraz szkodliwych soli budowlanych, trwałe i stabilne tynkowanie przy użyciu tynków tradycyjnych z reguły nie jest możliwe – tynki wapienne na tego typu podłożach w krótkim czasie ulegają uszkodzeniu, z kolei zastosowanie tynków cementowych (z uwagi na ich szczelność i wysoką wytrzymałość) prowadzi do uszkodzenia otynkowanego muru lub przylegających elementów budynku.

Nicola Hariasz Zalety zastosowania systemu mocującego w postaci kotew chemicznych

Zalety zastosowania systemu mocującego w postaci kotew chemicznych Zalety zastosowania systemu mocującego w postaci kotew chemicznych

Kotwy to specjalne łączniki, pozwalające na uzyskanie trwałego połączenia różnego rodzaju elementów budowlanych. Służą do mocowania elementów stalowych, aluminiowych czy drewnianych do podłoży betonowych...

Kotwy to specjalne łączniki, pozwalające na uzyskanie trwałego połączenia różnego rodzaju elementów budowlanych. Służą do mocowania elementów stalowych, aluminiowych czy drewnianych do podłoży betonowych i murowych. Wyróżnia się kotwy mechaniczne (wykorzystujące siłę rozporu kotwy) oraz kotwy chemiczne (zwane również wklejanymi).

mgr Robert Zaorski Osiadanie materiałów izolacyjnych używanych do ocieplania metodą wdmuchiwania

Osiadanie materiałów izolacyjnych używanych do ocieplania metodą wdmuchiwania Osiadanie materiałów izolacyjnych używanych do ocieplania metodą wdmuchiwania

Wdmuchiwane materiały izolacyjne zyskują ogromną popularność. Inwestorzy mogą wybierać z szerokiej gamy materiałów takich jak: celuloza, wełny mineralne lub wełny drzewne. Instaluje się je za pomocą maszyn...

Wdmuchiwane materiały izolacyjne zyskują ogromną popularność. Inwestorzy mogą wybierać z szerokiej gamy materiałów takich jak: celuloza, wełny mineralne lub wełny drzewne. Instaluje się je za pomocą maszyn do wdmuchiwania, dzięki którym przy minimalnym nakładzie pracy i w krótkim czasie można uzyskać szczelną i ciągłą warstwę izolacji o dowolnej grubości. Wystarczy jeden rodzaj materiału, by na stropie budynku ułożyć ocieplenie o grubości 45 cm oraz ocieplić jego połać dachową warstwą o grubości...

Nicola Hariasz Właściwości i zastosowanie keramzytu

Właściwości i zastosowanie keramzytu Właściwości i zastosowanie keramzytu

Keramzyt zyskuje na popularności w budownictwie głównie dzięki bardzo dobrym właściwościom fizyko-mechanicznym i użytkowym. Do jego licznych zalet należy lekkość, łatwość transportu, niska nasiąkliwość,...

Keramzyt zyskuje na popularności w budownictwie głównie dzięki bardzo dobrym właściwościom fizyko-mechanicznym i użytkowym. Do jego licznych zalet należy lekkość, łatwość transportu, niska nasiąkliwość, odporność na działanie kwasów, grzybów, pleśni oraz gryzoni. Jest mrozoodporny, ognioodporny, neutralny biologicznie, niepalny i stosunkowo wytrzymały.

mgr inż. Piotr Olgierd Korycki Bezpieczeństwo pożarowe w obiektach halowych

Bezpieczeństwo pożarowe w obiektach halowych Bezpieczeństwo pożarowe w obiektach halowych

W budownictwie halowym, przemysłowym i użyteczności publicznej najbardziej poszukiwane są materiały spełniające rygorystyczne normy w zakresie wymagań bezpieczeństwa pożarowego, izolacyjności termicznej...

W budownictwie halowym, przemysłowym i użyteczności publicznej najbardziej poszukiwane są materiały spełniające rygorystyczne normy w zakresie wymagań bezpieczeństwa pożarowego, izolacyjności termicznej oraz akustycznej. Takimi wyrobami, spełniającymi wyszukane wymagania inwestorów, architektów oraz wykonawców, są wysokiej jakości płyty warstwowe w okładzinach metalowych. Stosowanie tych płyt umożliwiają ich właściwości, bogata paleta kolorystyczna oraz różnorodna gama profilowań blach okładzinowych.

dr inż. Artur Nowoświat , dr inż. Leszek Dulak Wpływ zanieczyszczenia paneli dźwiękochłonnych na ich własności akustyczne

Wpływ zanieczyszczenia paneli dźwiękochłonnych na ich własności akustyczne Wpływ zanieczyszczenia paneli dźwiękochłonnych na ich własności akustyczne

W niniejszym artykule autorzy przedstawiają wyniki badań, dotyczące wpływu stopnia zanieczyszczenia perforowanych paneli dźwiękochłonnych pyłem cementowym na wybrane parametry akustyczne.

W niniejszym artykule autorzy przedstawiają wyniki badań, dotyczące wpływu stopnia zanieczyszczenia perforowanych paneli dźwiękochłonnych pyłem cementowym na wybrane parametry akustyczne.

Józef Macech Akustyka w budownictwie mieszkaniowym a wymagania dotyczące energooszczędności obowiązujące od 1 stycznia 2021 r.

Akustyka w budownictwie mieszkaniowym a wymagania dotyczące energooszczędności obowiązujące od 1 stycznia 2021 r. Akustyka w budownictwie mieszkaniowym a wymagania dotyczące energooszczędności obowiązujące od 1 stycznia 2021 r.

Ochrona przed hałasem i drganiami została zapisana w najważniejszych aktach prawnych, regulujących kwestie budownictwa, gdzie wymieniana jest wśród wymagań, jakie powinny spełniać obiekty budowlane. Oznacza...

Ochrona przed hałasem i drganiami została zapisana w najważniejszych aktach prawnych, regulujących kwestie budownictwa, gdzie wymieniana jest wśród wymagań, jakie powinny spełniać obiekty budowlane. Oznacza to, że izolacyjność akustyczna ścian jest nie mniej istotna niż nośność konstrukcji, energooszczędność czy bezpieczeństwo pożarowe. W związku z tym, w dobie rosnących wymagań wobec izolacyjności cieplnej budynków, a co za tym idzie konieczności zwiększania grubości stosowanych do ocieplenia materiałów,...

Redakcja miesięcznika IZOLACJE Fala renowacji – korzyści wynikające z kompleksowej modernizacji energetycznej budynków

Fala renowacji – korzyści wynikające z kompleksowej modernizacji energetycznej budynków Fala renowacji – korzyści wynikające z kompleksowej modernizacji energetycznej budynków

Trwająca od kilku miesięcy pandemia COVID-19 staje się wyzwaniem dla wielu pokoleń, wpływającym na kondycję społeczeństwa i sytuację gospodarczą. Konieczne są środki i decyzje, które w perspektywie zarówno...

Trwająca od kilku miesięcy pandemia COVID-19 staje się wyzwaniem dla wielu pokoleń, wpływającym na kondycję społeczeństwa i sytuację gospodarczą. Konieczne są środki i decyzje, które w perspektywie zarówno krótko-, jak i długoterminowej pomogą gospodarce oraz zapewnią społeczeństwu zrównoważony rozwój. Takimi działaniami są inwestycje w efektywność energetyczną budynków. Są one podstawą dobrobytu, zdrowia obywateli oraz stanowią punkt wyjścia dla rozwoju innowacyjnych gałęzi gospodarki związanych...

dr inż. Beata Wilk-Słomka, dr inż. Janusz Belok Szklana fasada o podwójnym przepływie powietrza – aspekt energetyczny

Szklana fasada o podwójnym przepływie powietrza – aspekt energetyczny Szklana fasada o podwójnym przepływie powietrza – aspekt energetyczny

We współczesnej architekturze bardzo często spotykamy się z budynkami o wysokim udziale powierzchni przezroczystych w obudowie zewnętrznej. W szczególności dotyczy to obiektów użyteczności publicznej,...

We współczesnej architekturze bardzo często spotykamy się z budynkami o wysokim udziale powierzchni przezroczystych w obudowie zewnętrznej. W szczególności dotyczy to obiektów użyteczności publicznej, biurowców, ale także coraz częściej budynków jednorodzinnych. Przede wszystkim jest to związane z dużą estetyką takiego rozwiązania. Należy jednak pamiętać, że rosnące wymagania w zakresie efektywności energetycznej budynków narzucają konieczność stosowania rozwiązań energooszczędnych.

dr inż. Krzysztof Pawłowski, prof. uczelni Nowoczesne materiały termoizolacyjne – przykładowe zastosowania z uwzględnieniem wymagań cieplno-wilgotnościowych od 1 stycznia 2021 r.

Nowoczesne materiały termoizolacyjne – przykładowe zastosowania z uwzględnieniem wymagań cieplno-wilgotnościowych od 1 stycznia 2021 r. Nowoczesne materiały termoizolacyjne – przykładowe zastosowania z uwzględnieniem wymagań cieplno-wilgotnościowych od 1 stycznia 2021 r.

Przedstawiamy analizę parametrów technicznych nowoczesnych rozwiązań materiałów termoizolacyjnych oraz próbę określenia ich wpływu na parametry fizykalne elementów obudowy budynków o niskim zużyciu energii...

Przedstawiamy analizę parametrów technicznych nowoczesnych rozwiązań materiałów termoizolacyjnych oraz próbę określenia ich wpływu na parametry fizykalne elementów obudowy budynków o niskim zużyciu energii (NZEB).

prof. dr hab. inż. Walery Jezierski, mgr inż. Joanna Borowska Bilans cieplny fragmentu ściany osłonowej z oknem przy różnej orientacji

Bilans cieplny fragmentu ściany osłonowej z oknem przy różnej orientacji Bilans cieplny fragmentu ściany osłonowej z oknem przy różnej orientacji

Artykuł przedstawia autorskie badanie bilansu cieplnego fragmentu ściany osłonowej z jednoskrzydłowym oknem z PVC w budynku mieszkalnym zależne od pola powierzchni okna, szerokości elementów ramy, współczynników...

Artykuł przedstawia autorskie badanie bilansu cieplnego fragmentu ściany osłonowej z jednoskrzydłowym oknem z PVC w budynku mieszkalnym zależne od pola powierzchni okna, szerokości elementów ramy, współczynników przenikania ciepła oszklenia i ramy oraz przepuszczalności energii promieniowania słonecznego dla orientacji północnej w warunkach klimatycznych Białegostoku.

dr inż. Marek Jabłoński, dr hab. inż. Marcin Koniorczyk Gęstość materiału a izolacyjność akustyczna przegród betonowych – analiza statystyczna

Gęstość materiału a izolacyjność akustyczna przegród betonowych – analiza statystyczna Gęstość materiału a izolacyjność akustyczna przegród betonowych – analiza statystyczna

Jednym z istotnych zagadnień dotyczących izolacyjności od dźwięków powietrznych, które należy uwzględnić przy projektowaniu, jest dobór rozwiązań materiałowo­‑konstrukcyjnych przegród wewnętrznych zapewniający...

Jednym z istotnych zagadnień dotyczących izolacyjności od dźwięków powietrznych, które należy uwzględnić przy projektowaniu, jest dobór rozwiązań materiałowo­‑konstrukcyjnych przegród wewnętrznych zapewniający uzyskanie wymaganej izolacyjności akustycznej między pomieszczeniami.

Nicola Hariasz Tynki dekoracyjne i nowoczesne metody wykończenia ścian zewnętrznych

Tynki dekoracyjne i nowoczesne metody wykończenia ścian zewnętrznych Tynki dekoracyjne i nowoczesne metody wykończenia ścian zewnętrznych

Elewacja pełni ważną rolę w wyglądzie każdego budynku, definiując przy tym charakter całej konstrukcji. Jest elementem, który bezpośrednio wpływa na sposób, w jaki odbierany jest dany obiekt, a także pomaga...

Elewacja pełni ważną rolę w wyglądzie każdego budynku, definiując przy tym charakter całej konstrukcji. Jest elementem, który bezpośrednio wpływa na sposób, w jaki odbierany jest dany obiekt, a także pomaga podkreślić jego estetykę i indywidualizm. Z tego powodu warto zapoznać się z najnowszymi metodami wykończenia ścian zewnętrznych, które w łatwy sposób potrafią nadać piękny wygląd każdej elewacji.

dr inż. Iwona Kata , mgr Zofia Stasica , mgr inż. Witold Charyasz, mgr inż. Krzysztof Szafran Korozja biologiczna i problem degradacji środków biobójczych stosowanych w materiałach budowlanych

Korozja biologiczna i problem degradacji środków biobójczych stosowanych w materiałach budowlanych Korozja biologiczna i problem degradacji środków biobójczych stosowanych w materiałach budowlanych

Biokorozja materiałów budowlanych to powszechne zjawisko, występujące zarówno na elewacjach budynków, jak i wewnątrz pomieszczeń. Skuteczne zabezpieczenie przed biokorozją jest dość trudne. Rozwiązaniem...

Biokorozja materiałów budowlanych to powszechne zjawisko, występujące zarówno na elewacjach budynków, jak i wewnątrz pomieszczeń. Skuteczne zabezpieczenie przed biokorozją jest dość trudne. Rozwiązaniem jest stosowanie środków ochrony powłok, które zawierają substancje czynne, aktywnie hamujące rozrost mikroorganizmów.

Wybrane dla Ciebie

Sprawdzona chemia budowlana do prac glazurniczych i nie tylko »

Sprawdzona chemia budowlana do prac glazurniczych i nie tylko » Sprawdzona chemia budowlana do prac glazurniczych i nie tylko »

Termoizolacja na każdą kieszeń »

Termoizolacja na każdą kieszeń » Termoizolacja na każdą kieszeń »

Dachy, elewacje i posadzki – zaizolujesz jednym produktem! »

Dachy, elewacje i posadzki – zaizolujesz jednym produktem! » Dachy, elewacje i posadzki – zaizolujesz jednym produktem! »

Gwarantowane bezpieczeństwo w Twoim centrum logistycznym i nie tylko! »

Gwarantowane bezpieczeństwo w Twoim centrum logistycznym i nie tylko! » Gwarantowane bezpieczeństwo w Twoim centrum logistycznym i nie tylko! »

Skorzystaj z bezpłatnej wyceny stropu »

Skorzystaj z bezpłatnej wyceny stropu » Skorzystaj z bezpłatnej wyceny stropu »

Komfort cieplny i zdrowy dom w jednym »

Komfort cieplny i zdrowy dom w jednym » Komfort cieplny i zdrowy dom w jednym »

Innowacyjne rozwiązanie dla komfortowego ciepła i montażu »

Innowacyjne rozwiązanie dla komfortowego ciepła i montażu » Innowacyjne rozwiązanie dla komfortowego ciepła i montażu »

Oryginalny wygląd i izolacja w jednym »

Oryginalny wygląd i izolacja w jednym » Oryginalny wygląd i izolacja w jednym »

Izolacja, dzięki której ściana oddycha »

Izolacja, dzięki której ściana oddycha » Izolacja, dzięki której ściana oddycha »

Czy wiesz jak zapobiec rozprzestrzenianiu ognia? »

Czy wiesz jak zapobiec rozprzestrzenianiu ognia? » Czy wiesz jak zapobiec rozprzestrzenianiu ognia? »

Nowoczesne płyty warstwowe o wysokich parametrach użytkowych »

Nowoczesne płyty warstwowe o wysokich parametrach użytkowych » Nowoczesne płyty warstwowe o wysokich parametrach użytkowych »

System ociepleń na miarę Twoich potrzeb »

System ociepleń na miarę Twoich potrzeb » System ociepleń na miarę Twoich potrzeb »

Rozwiązania izolacji zapewniające ochronę termiczną i nie tylko »

Rozwiązania izolacji zapewniające ochronę termiczną i nie tylko » Rozwiązania izolacji zapewniające ochronę termiczną i nie tylko »

Odpowiedni strop = bezpieczeństwo i komfort »

Odpowiedni strop = bezpieczeństwo i komfort » Odpowiedni strop = bezpieczeństwo i komfort »

Jak unikać przecieków? »

Jak unikać przecieków? » Jak unikać przecieków? »

Uprawnienia budowlane 2021 Część 1. Poradnik z kluczem. 523 pytania i 20 testów egzaminacyjnych

Uprawnienia budowlane 2021 Część 1. Poradnik z kluczem. 523 pytania i 20 testów egzaminacyjnych Uprawnienia budowlane 2021 Część 1. Poradnik z kluczem. 523 pytania i 20 testów egzaminacyjnych

Część B: Roboty wykończeniowe, zeszyt 17: Podłogi zewnętrzne z desek kompozytowych

Część B: Roboty wykończeniowe, zeszyt 17: Podłogi zewnętrzne z desek kompozytowych Część B: Roboty wykończeniowe, zeszyt 17: Podłogi zewnętrzne z desek kompozytowych

Warunki techniczne jakim powinny odpowiadać budynki i ich usytuowanie 2021

Warunki techniczne jakim powinny odpowiadać budynki i ich usytuowanie 2021 Warunki techniczne jakim powinny odpowiadać budynki i ich usytuowanie 2021

Poszerzaj wiedzę – rozpoczęła się rekrutacja na studia II stopnia!

Poszerzaj wiedzę – rozpoczęła się rekrutacja na studia II stopnia! Poszerzaj wiedzę – rozpoczęła się rekrutacja na studia II stopnia!

Sprawdź jakie korzyści płyną z energii odnawialnej »

Sprawdź jakie korzyści płyną z energii odnawialnej » Sprawdź jakie korzyści płyną z energii odnawialnej »

Bogata oferta stalowych pokryć modułowych – sprawdź!

Bogata oferta stalowych pokryć modułowych – sprawdź! Bogata oferta stalowych pokryć modułowych – sprawdź!

Najnowsze produkty i technologie

sfmeble.pl Jak urządzić pokój nastolatka na poddaszu?

Jak urządzić pokój nastolatka na poddaszu? Jak urządzić pokój nastolatka na poddaszu?

Planowanie aranżacji pokoju młodzieżowego na poddaszu to zadanie, które zdecydowanie nie należy do łatwych. Wnętrza pod skosem niosą ze sobą spore utrudnienia, które trzeba sprytnie obejść, aby dobrze...

Planowanie aranżacji pokoju młodzieżowego na poddaszu to zadanie, które zdecydowanie nie należy do łatwych. Wnętrza pod skosem niosą ze sobą spore utrudnienia, które trzeba sprytnie obejść, aby dobrze wykorzystać dostępne miejsce. Do tego coraz bardziej świadomi swoich gustów nastolatkowie chcą móc decydować i mieć wpływ na wystrój pokoju, w którym będą przebywać większość czasu. Jak to wszystko skutecznie pogodzić, aby uzyskać wygodną i funkcjonalną przestrzeń? Podpowiadamy!

merXu Z węgla na gaz – jaki kocioł gazowy wybrać – duży wybór na platformie merXu

Z węgla na gaz – jaki kocioł gazowy wybrać – duży wybór na platformie merXu Z węgla na gaz – jaki kocioł gazowy wybrać – duży wybór na platformie merXu

Ogrzewanie gazowe to najczęściej obecnie wybierana alternatywa dla kotłów na paliwa stałe. Za taką zmianą przemawiają nie tylko względy ekologiczne, ale także wygoda i możliwość skorzystania z dofinansowania....

Ogrzewanie gazowe to najczęściej obecnie wybierana alternatywa dla kotłów na paliwa stałe. Za taką zmianą przemawiają nie tylko względy ekologiczne, ale także wygoda i możliwość skorzystania z dofinansowania. Na jaki jednak kocioł gazowy się zdecydować? Jak wybrać odpowiedni? Podpowiadamy, z jakich rozwiązań skorzystasz na platformie merXu.

NEONET Termowentylator - budowa, działanie i zastosowanie

Termowentylator - budowa, działanie i zastosowanie Termowentylator - budowa, działanie i zastosowanie

Odpowiednia temperatura panująca we wnętrzu ma niebagatelny wpływ na nasze samopoczucie. Nic więc dziwnego w tym, że gdy w pomieszczeniu jest zbyt zimno lub zbyt gorąco, nie czujemy się najlepiej. Urządzeniem,...

Odpowiednia temperatura panująca we wnętrzu ma niebagatelny wpływ na nasze samopoczucie. Nic więc dziwnego w tym, że gdy w pomieszczeniu jest zbyt zimno lub zbyt gorąco, nie czujemy się najlepiej. Urządzeniem, które w sposób doraźny pozwala na osiągnięcie komfortu termicznego jest termowentylator. Na czym polega jego działanie?

Canada Rubber Polska Naprawa pokryć dachowych

Naprawa pokryć dachowych Naprawa pokryć dachowych

Tradycyjny remont dachu pokrytego papą wiąże się z koniecznością zrywania istniejącego pokrycia, co niesie za sobą koszty związane z jego utylizacją, a także naraża odsłonięte elementy konstrukcyjne na...

Tradycyjny remont dachu pokrytego papą wiąże się z koniecznością zrywania istniejącego pokrycia, co niesie za sobą koszty związane z jego utylizacją, a także naraża odsłonięte elementy konstrukcyjne na działanie negatywnych warunków pogodowych. Naprawa przez montaż kolejnych warstw papy oznacza dodatkowe dociążenie dachu, sięgające nawet do 10 kg/m2.

Rockwool Polska Fala renowacji szansą na rozwój Polski po pandemii – podsumowanie debaty w ramach kampanii Szóste paliwo

Fala renowacji szansą na rozwój Polski po pandemii – podsumowanie debaty w ramach kampanii Szóste paliwo Fala renowacji szansą na rozwój Polski po pandemii – podsumowanie debaty w ramach kampanii Szóste paliwo

Aż 70 proc. spośród 5 mln domów jednorodzinnych w Polsce nie spełnia standardów efektywności energetycznej. Powszechna fala renowacji i możliwości wynikające ze strategii unijnej Green Deal to olbrzymia...

Aż 70 proc. spośród 5 mln domów jednorodzinnych w Polsce nie spełnia standardów efektywności energetycznej. Powszechna fala renowacji i możliwości wynikające ze strategii unijnej Green Deal to olbrzymia szansa dla polskiej gospodarki, nie tylko w kontekście lepszej jakości powietrza, ale również podniesienia innowacyjności, szerokiego zastosowania lokalnych rozwiązań oraz stworzenia kilkuset tysięcy miejsc pracy. W długiej perspektywie czasu to również poprawa komfortu życia, eliminacja ubóstwa energetycznego...

dr inż. Krzysztof Pogan, WestWood® Kunststofftechnik GmbH Rozwiązania dla parkingów wielopoziomowych i podziemnych

Rozwiązania dla parkingów wielopoziomowych i podziemnych Rozwiązania dla parkingów wielopoziomowych i podziemnych

Parkingi wielopoziomowe i podziemne to niewątpliwie budowle, których nie można porównać do powszechnie spotykanych w budownictwie tradycyjnych budowli żelbetowych. Swoimi właściwościami przypominają one...

Parkingi wielopoziomowe i podziemne to niewątpliwie budowle, których nie można porównać do powszechnie spotykanych w budownictwie tradycyjnych budowli żelbetowych. Swoimi właściwościami przypominają one raczej budowle drogowe, jak np. mosty. Zatem muszą one spełniać wysokie wymagania w zakresie trwałości – powinny możliwie długo pozostać odporne na oddziaływanie warunków zewnętrznych i służyć przez długi czas.

Bauder Polska Sp. z o. o. Nowoczesne rozwiązania na dachy płaskie

Nowoczesne rozwiązania na dachy płaskie Nowoczesne rozwiązania na dachy płaskie

Szczelny dach płaski to gwarancja bezpieczeństwa dla użytkowników budynku oraz pewność wieloletniej i bezawaryjnej trwałości pokrycia. Obecnie od materiałów do izolacji i renowacji dachów wymaga się coraz...

Szczelny dach płaski to gwarancja bezpieczeństwa dla użytkowników budynku oraz pewność wieloletniej i bezawaryjnej trwałości pokrycia. Obecnie od materiałów do izolacji i renowacji dachów wymaga się coraz więcej – powinny być nie tylko wysokiej jakości, ale także przyjazne dla środowiska.

Sopro Polska Sp. z o.o. Renowacja drewnianej podłogi – jak zrobić to dobrze?

Renowacja drewnianej podłogi – jak zrobić to dobrze? Renowacja drewnianej podłogi – jak zrobić to dobrze?

Renowacja starej podłogi drewnianej nie należy do łatwych zadań, zwłaszcza jeżeli chcemy na niej ułożyć płytki ceramiczne. Tego typu prace wymagają wiedzy i doświadczenia, ale równie ważny jest dobór odpowiednich...

Renowacja starej podłogi drewnianej nie należy do łatwych zadań, zwłaszcza jeżeli chcemy na niej ułożyć płytki ceramiczne. Tego typu prace wymagają wiedzy i doświadczenia, ale równie ważny jest dobór odpowiednich materiałów.

Fabryka Styropianu ARBET Ocieplenie na ociepleniu – termomodernizacja według nowych wymagań

Ocieplenie na ociepleniu – termomodernizacja według nowych wymagań Ocieplenie na ociepleniu – termomodernizacja według nowych wymagań

W związku z potrzebą renowacji wielu obiektów budowanych przed laty najczęściej przeprowadza się ponowne docieplanie ocieplonych wcześniej ścian zewnętrznych. Wobec obowiązujących obecnie standardów energooszczędności...

W związku z potrzebą renowacji wielu obiektów budowanych przed laty najczęściej przeprowadza się ponowne docieplanie ocieplonych wcześniej ścian zewnętrznych. Wobec obowiązujących obecnie standardów energooszczędności w starych budynkach konieczne jest bowiem zwiększenie izolacyjności przegród lub naprawa istniejącego ocieplenia.

Copyright © 2004-2019 Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Spółka komandytowa, nr KRS: 0000537655. Wszelkie prawa, w tym Autora, Wydawcy i Producenta bazy danych zastrzeżone. Jakiekolwiek dalsze rozpowszechnianie artykułów zabronione. Korzystanie z serwisu i zamieszczonych w nim utworów i danych wyłącznie na zasadach określonych w Zasadach korzystania z serwisu.
Portal Budowlany - Izolacje.com.pl

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim urządzeniu końcowym. W każdym momencie możesz dokonać zmiany ustawień przeglądarki dotyczących cookies. Nim Państwo zaczną korzystać z naszego serwisu prosimy o zapoznanie się z naszą polityką prywatności oraz Informacją o Cookies. Więcej szczegółów w naszej Polityce Prywatności oraz Informacji o Cookies. Administratorem Państwa danych osobowych jest Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Sp.K., nr KRS: 0000537655, z siedzibą w 04-112 Warszawa, ul. Karczewska 18, tel. +48 22 810-21-24, właściciel strony www.izolacje.com.pl. Twoje Dane Osobowe będą chronione zgodnie z wytycznymi polityki prywatności www.izolacje.com.pl oraz zgodnie z Rozporządzeniem Parlamentu Europejskiego i Rady (UE) 2016/679 z dnia 27 kwietnia 2016r i z Ustawą o ochronie danych osobowych Dz.U. 2018 poz. 1000 z dnia 10 maja 2018r.