Izolacje.com.pl

Pianki PIR - izolacja ze sztywnej pianki poliuretanowej

PIR foams - insulation of the rigid polyurethane foam

Test pianek PIR
Archiwum autorów

Test pianek PIR


Archiwum autorów

Główną wadą materiałów PUR są właściwości ogniowe. Cecha ta poprawiona została w produktach PIR.

Zobacz także

PU Polska – Związek Producentów Płyt Warstwowych i Izolacji Płyty warstwowe PUR/PIR w aspekcie wymagań technicznych stawianych lekkiej obudowie

Płyty warstwowe PUR/PIR w aspekcie wymagań technicznych stawianych lekkiej obudowie Płyty warstwowe PUR/PIR w aspekcie wymagań technicznych stawianych lekkiej obudowie

Rozwój technologii budowlanej w ciągu ostatnich kilkudziesięciu lat zmienił oblicze branży w Polsce, umożliwiając szybszą, tańszą i ekologiczną realizację wznoszonych obiektów. Wprowadzając szeroko do...

Rozwój technologii budowlanej w ciągu ostatnich kilkudziesięciu lat zmienił oblicze branży w Polsce, umożliwiając szybszą, tańszą i ekologiczną realizację wznoszonych obiektów. Wprowadzając szeroko do branży rewolucyjny i rewelacyjny produkt, jakim jest płyta warstwowa, zmodernizowaliśmy de facto ideę prefabrykacji i zamianę tradycyjnych, mokrych i pracochłonnych technologii wznoszenia budynków z elementów małogabarytowych lub konstrukcji szalunkowych na szybki, suchy montaż gotowych elementów w...

Saint-Gobain Construction Products Polska/ Isover Nowe wełny ISOVER PRO na poddasza – bez komPROmisów, z mocą welonu

Nowe wełny ISOVER PRO na poddasza – bez komPROmisów, z mocą welonu Nowe wełny ISOVER PRO na poddasza – bez komPROmisów, z mocą welonu

ISOVER wprowadza na rynek nową linię produktów PRO do izolacji cieplnej i akustycznej poddaszy. Super-Mata PLUS PRO i Super-Mata PRO to wełny o bardzo dobrych parametrach termicznych, wyprodukowane w technologii...

ISOVER wprowadza na rynek nową linię produktów PRO do izolacji cieplnej i akustycznej poddaszy. Super-Mata PLUS PRO i Super-Mata PRO to wełny o bardzo dobrych parametrach termicznych, wyprodukowane w technologii Thermitar™ i pokryte jednostronnie welonem szklanym.

Saint-Gobain Construction Products Polska/ Isover Nowość ISOVER! Płyty zespolone EasyTherm – więcej powierzchni użytkowej i doskonały komfort cieplny

Nowość ISOVER! Płyty zespolone EasyTherm – więcej powierzchni użytkowej i doskonały komfort cieplny Nowość ISOVER! Płyty zespolone EasyTherm – więcej powierzchni użytkowej i doskonały komfort cieplny

W nowoczesnym budownictwie wielorodzinnym i komercyjnym nie brakuje wyzwań, a wśród nich ważna jest izolacja termiczna między ogrzewanymi i nieogrzewanymi częściami budynku, jak np. korytarze i klatki...

W nowoczesnym budownictwie wielorodzinnym i komercyjnym nie brakuje wyzwań, a wśród nich ważna jest izolacja termiczna między ogrzewanymi i nieogrzewanymi częściami budynku, jak np. korytarze i klatki schodowe. Kolejną istotną kwestią są oczekiwania inwestorów dotyczące wytrzymałości na uszkodzenia ścian wewnętrznych oraz optymalnego wykorzystania przestrzeni użytkowej. W odpowiedzi na te wszystkie potrzeby inżynierowie Saint-Gobain opracowali płyty zespolone EasyTherm.

Poliuretany (PUR) są wykorzystywane w budownictwie na różne sposoby i obecnie trudno byłoby wyobrazić sobie bez nich świat. Stosowane są w zasadzie w każdym segmencie nowo budowanego domu – od piwnicy po dach.

Występują także w wyposażeniu domu (np. w lodówkach czy zamrażarkach). Tak wiele zastosowań wynika z bardzo dobrych właściwości termoizolacyjnych, użytkowych oraz różnorodnych metod aplikacji (gotowe płyty z okładziną z blachy, produkty do zalewania, natrysku, uszczelniania pianką jednokomponentową itp.) [1]. Lite poliuretany stosowane są też jako fragmenty mebli, kleje czy wykładziny podłogowe.

Klasyczne poliuretany mają jednak istotną wadę – palność.

Właściwości ogniowe PUR

Mimo znakomitych właściwości izolacyjnych sztywne pianki PUR nie spełniają wymagań najnowszych testów przeprowadzanych przez towarzystwa ubezpieczeniowe, np. testu LPSB 1181 (fot.).

Zwiększenie liczby opóźniaczy palenia powoduje wzrost emisji gazów toksycznych podczas spalania, zwiększa ilość dymu utrudniającego akcję ratowniczą, znacznie pogarsza odporność cieplną i wytrzymałość mechaniczną poliuretanu [2]. Powoduje to, że główne zalety izolacji poliuretanowej, czyli lekkość i wytrzymałość, tracą na wartości.

Mała jest również odporność płyt PUR na przepalanie. Okazuje się jednak, że wiele z tych wad można usunąć dzięki stosowaniu tworzyw spienionych wytwarzanych w wyniku tzw. niekonwencjonalnych reakcji izocyjanianów [3].

Trimeryzacja izocyjanianów

W połowie XX w. badano reakcje izocyjanianów aromatycznych. Z badań wynikało, że związki te mogą pod wpływem odpowiednich katalizatorów tworzyć ugrupowania charakteryzujące się lepszą odpornością termiczną [4].

W klasycznych poliuretanach występują ugrupowania uretanowe (o temp. rozkładu: 150–250°C), mocznikowe (temp. ­rozkładu: 180–250°C), biuretowe i allofanianowe (temp. rozkładu: 120–180°C). Ugrupowania izocyjanurowe i karbodiimidowe mają natomiast temperaturę rozkładu powyżej 270°C. Schemat tych reakcji został przedstawiony na rys. 1.

Grupy izocyjanurowe wprowadza się najczęściej w wyniku cyklotrimeryzacji grup izocyjanianowych. Czasem mogą tworzyć się również sztywne ugrupowania karbodiimidowe.

Od ponad 30 lat cyklotrimeryzacja izocyjanianów jest metodą przemysłową wytwarzania trudnopalnych tworzyw piankowych (tzw. pianek poliizocyjanurowych, pianek PIR lub „polyiso”). Katalizatory cyklotrimeryzacji są cytowane w pracach J.E. 

Kresty i K.C. Frischa [5] oraz w innych publikacjach [6–7]. W aplikacjach przemysłowych największe zastosowanie mają:

  • sole potasowe kwasów karboksylowych (octan potasu, oktanian potasu itp.),
  • aminy III-rzędowe, takie jak pentadietylotriamina (PMDETA), tris (dimetyloaminometylo) fenol, tris (dimetyloaminopropylo) heksahydrotiazyna itp.,
  • IV-rzędowe pochodne amoniowe (np. DABCO TMR, DABCO TMR-2, DABCO TMR-3, Toyocat TRX itp.).

Ze względu na różny charakter działania najczęściej stosuje się mieszaniny wymienionych katalizatorów.

W wypadku nadmiaru grup izocyjanianowych i w obecności grup hydroksylowych reakcje poliaddycji i cyklotrimeryzacji zachodzą prawie równocześnie. Katalizatory cyklotrimeryzacji działają z dużą wydajnością w wyższych temperaturach w przeciwieństwie do typowych katalizatorów reakcji tworzenia poliuretanów. Dlatego do zapoczątkowania procesu wykorzystuje się tę ostatnią reakcję. Bardzo często można zaobserwować dwustopniowy przebieg wzrostu tworzywa piankowego, czyli dwa maksima prędkości wzrostu (rys. 2).

W procesie trimeryzacji wskazane jest użycie składnika poliolowego, ponieważ pomaga ono modyfikować kruche tworzywo izocyjanurowe. Na rys. 3 przedstawiono zależność kruchości sztywnej pianki od nadmiaru grup izocyjanianowych. Ze względów technicznych przedstawiono ją jako zależność od wyrażenia OH/NCO (odwrotność NCO/OH). Ze wzrostem zawartości trimeru izocyjanurowego rośnie ona w teście ASTM D 421 od kilku do ponad 65% [9-10].

Wzrost zawartości ugrupowań izocyjanurowych znacząco wpływa na trudnopalność tworzywa (rys. 4). Wartość wskaźnika tlenowego pianki poliuretanowej niezawierającej opóźniaczy palenia wynosi ok. 20% O2, natomiast wartość wskaźnika tlenowego pianki poliizocyjanurowej (również bez opóźniaczy palenia) – ok. 30% O2 [9–11]. Podobnie korzystnie wpływa zawartość ugrupowań izocyjanurowych na zmniejszenie ilości dymów emitowanych w trakcie palenia tego typu tworzyw (rys. 5). Rośnie również odporność tworzywa na przepalanie (rys. 6) [10]. Wszystkie te zmiany spowodowane są wzrostem odporności termicznej tworzyw i wzrostem ilości termoodpornych grup izocyjanurowych powodujących tworzenie zwęgliny. Ilustruje to rys. 7. Stwierdzono ponadto, że dodatek addytywnych fosforoorganicznych opóźniaczy palenia, takich jak TCEP, TCPP czy TEP, do środowiska reakcji zwiększa wydajność reakcji trimeryzacji [10].

Poliole do pianek PIR

W początkowej fazie badań nad trimeryzacją izocyjanianów badano wpływ budowy użytego składnika wielohydroksylowego (poliolu) na właściwości pianki PIR. Stosowano głównie polioksyalkilenodiole i polioksyalkilenotriole o różnej masie cząsteczkowej. Z pierwszych badań wynikało, że na właściwości pianek PIR najkorzystniej wpływały polioksyetylenowane pochodne alkoholi dwu- i trójwodorotlenowych [11]. Podobne wyniki uzyskano dla aromatycznych alkoholi: polioksyetylenowanego bisfenolu A i polioksyetylenowanej żywicy nowolakowej [12]. Stosowano również aromatyczne poliestrole (APP) otrzymywane przez polikondensację dwukwasów aromatycznych (ortoftalowego, tereftalowego itp.) i glikoli, głównie heksandiolu i glikolu dietylenowego [10]. Stwierdzano dużą wydajność cyklotrimeryzacji oraz dobre właściwości pianek.

W celu znalezienia tanich surowców przeprowadzono trans­estryfikację odpadowych estrów metylowych kwasu tereftalowego, powstałych z produkcji politereftalanu etylenu (odpadów DMT). Tego typu poliole dostarczała dotychczas firma Invista (poliole o specyficznym brązowym zabarwieniu) [13]. Inne tanie poliestrole syntezowano przez transestryfikację glikolem dietylenowym rozdrobnionych butelek PET [14]. Pionierem w tej dziedzinie była firma Oxid. Produkty tego typu można znaleźć także w ofercie firmy Stepan Polska oprócz produkowanych w USA poliestroli z bezwodnika kwasu ortoftalowego i glikolu dietylenowego [15]. Funkcyjność tych produktów waha się najczęściej między 2 a 2,7, natomiast liczba hydroksylowa wynosi 150–400 mg KOH/g) [16–17].

Poliestrole aromatyczne (APP) bardzo korzystnie wpływają na zmniejszenie palności tworzywa. Zwiększają one ilość struktur aromatycznych powodujących tworzenie zwęgliny (ang. char) [18]. Standardowe poliole poliestrowe do wytwarzania pianek PIR mają liczbę hydroksylową (OHV) ok. 240 mg KOH/g (np. Stepanpol PS 2352 – OHV = 240 mg KOH/g [15], Terate 2541 – OHV = 235 mg KOH/g [13], Terol 563 – OHV = 240 mg KOH/g).

W tabeli 1 przedstawiono typową recepturę pianki PIR z aromatycznych polioli poliestrowych o gęstości ok. 32 kg/m³ [19]. Środkiem spieniającym jest n-pentan. Typowy nadmiar izocyjanianu (indeks izocyjanianowy) w tego typu piankach wynosi 200–400.

W ostatnich latach podjęto próby wprowadzenia polioli poliestrowych o mniejszej liczbie hydroksylowej – 160–200 mg KOH/g. Ich aplikacja pozwala zmniejszyć zużycie składnika izocyjanianowego [20]. Funkcyjność tych poliestroli może być poniżej 2. Pojawiają się również informacje o stosowaniu do wytwarzania pianek PIR polioli Mannicha o liczbie hydroksylowej 300–350 mg KOH/g [21]. Są to polioksyalkilenowane produkty kondensacji alkilofenoli (nonylofenoli) z dietanoloaminą i formaliną o umiarkowanej funkcyjności. Poliole te stosowane są głównie jako modyfikatory pianek PIR. Wpływają one na zwiększenie reaktywności, poprawę mieszalności z hydrofobowym poroforem węglowodorowym itd.

W ostatnich latach dużo prac badawczych zostało poświęconych zagadnieniu syntezy polioli z tzw. surowców odnawialnych, najczęściej pochodnych olejów roślinnych syntezowanych przez ich estryfikację, utlenianie wiązań podwójnych itp. [22–24]. W zasadzie wszystkie większe firmy poliuretanowe oferują tego typu produkty (np. Bayer [25]). Panele PIR wytworzone z ich udziałem spełniają wymagania klasy I palności według normy ASTM E-84 (indeks rozprzestrzeniania płomienia poniżej 25, indeks wydzielania dymu poniżej 450).

Inne składniki pianek PIR

Badano wpływ poliizocyjanianu na właściwości pianek PIR. Dla pochodnych TDI nie uzyskano interesujących danych. Natomiast w odniesieniu do polimerycznego MDI najbardziej korzystne zachowanie stwierdzono w izocyjanianach o podwyższonej funkcyjności wprowadzających do polimeru jak najwięcej struktur aromatycznych sprzyjających tworzeniu dużej ilości zwęgliny w trakcie spalania [11]. Mowa o poliizocyjanianach typu polimerycznego MDI o lepkości powyżej 350 m·Pa·s w temperaturze 25°C. Bardziej lepkie produkty – choć korzystniejsze – są trudne w aplikacji [11].

Pianki PIR wymagają odpowiednich pochodnych silikonowych ułatwiających mieszanie składników i pomagających stabilizować układ przed usieciowaniem. Każda z firm produkujących te środki (np. Momentive, Air Products czy Evonik) oferuje produkty tego typu [26].

W przeszłości jako porofory do pianek PIR stosowane były te same środki co do sztywnych pianek poliuretanowych (niskowrzące fluorochlorowęglowodory: CFC 11, CFC 12, HCFC 141B) [6]. Obecnie stosowane są: izomery pentanu (n-pentan, c-pentan, i-pentan oraz ich mieszaniny), fluorowęglowodory o zerowym potencjale niszczenia ozonu (HFC 245fe, HFC 365/227) [27], mrówczan metylu, metylal itp. Pojawiają się informacje o stosowaniu do pentanu dodatku trans-dichloroetylenu. Środek ten nie niszczy ozonu, mimo że zawiera chlor oraz wykazuje mały efekt cieplarniany [28]. Korzystnie wpływa on na zmniejszenie palności pianek PIR. W związku z wprowadzeniem pentanu jako środka spieniającego pojawił się problem adhezji do okładzin [19]. Zapobiegano temu przez wprowadzenie promotorów adhezji bądź użycie nowych polioli poliestrowych, np. Baymer TP.PU 29HB72 lub Baymer TP.PU 30HB01 [19].

Ze względu na duży koszt fluorowęglowodorów typu HFC ich zużycie jest ograniczane do zastosowań, w których stosowanie palnych poroforów jest niemożliwe – uzyskiwany stopień trudnopalności jest niewystarczający (np. niespełnione są wymagania testu LPCB 1181) lub ewentualnie wymagana jest lepsza izolacyjność.

Woda wykorzystywana jest jako porofor w ograniczonym stopniu z powodu wzrostu kruchości tworzywa i pogorszania adhezji do okładzin [29]. Według autorów dobre wyniki przy spienianiu wodą można osiągnąć za pomocą specjalnych izocyjanianów MDI. Zaletą takiej pianki PIR jest trudnopalność. Pianki PIR spieniane wodą o dobrych właściwościach uzyskiwano przez zastosowanie polioli syntezowanych z udziałem poliestroli z olejów roślinnych. Podkreślano ich korzystne właściwości mechaniczne. Brak jednak szczegółów informacji o ich odporności ogniowej [30]. Opracowane zostały specjalne katalizatory ułatwiające cyklotrimeryzację polimerycznego MDI z dużą wydajnością przy zachowaniu dobrej płynności systemu, np. Jeffcat 110 [31].

Zastosowanie pianek PIR

Główne zalety pianek PIR to: trudnopalność i stosunkowo mała emisja dymu w trakcie spalania, podwyższona odporność cieplna oraz dobra stabilność wymiarów w całym zakresie temperatur. Czynnikiem odróżniającym pianki PIR od pianek poliuretanowych jest zdolność tworzenia zwęgliny dającej uzyskiwanej izolacji odporność ogniową na przepalenie. Właśnie ta cecha spowodowała, że już w latach 70. pianki PIR były wykorzystywane w konstrukcjach pojazdów kosmicznych. W połączeniu z odpowiednimi napełniaczami możliwe było uzyskanie spienionych kompozytów PIR o odpowiedniej odporności cieplnej i niepalności.

Pianki PIR stosowane są głównie jako materiał termoizolacyjny. Wypierają one klasyczne sztywne pianki PUR o podwyższonej trudnopalności, tj. pianki klasy B-2 według DIN 4102. Dzięki użyciu tanich aromatycznych polioli poliestrowych niższe są koszty ich wytwarzania. Mają oprócz tego znaczną odporność na przepalanie, co rozszerza ich możliwości aplikacyjne – mogą być używane jako przegroda ogniowa i mogą konkurować z wełną mineralną.

Na przełomie lat 70. i 80. w USA (Hunter Panels) i Wielkiej Brytanii (Hexacal – ICI) produkowane były pianki PIR w postaci płyt izolacyjnych z użyciem Freonu 11 (CFC 11) jako środka spieniającego. W 1987 r. powołano w USA i Kanadzie stowarzyszenie PIMA (Polyisocyanurate Insulation Manufacturers Associacion), które skupia głównych producentów PIR.

Pianki PIR produkuje się najczęściej jako:

  • panele w okładzinach sztywnych z blachy stalowej, blachy aluminiowej, płyt gipsowo-kartonowych, drewnianych płyt OSB itp.,
  • płyty w okładzinach elastycznych (np. z folii aluminiowej, papieru, papy itp.),
  • bloki pianki PIR cięte na arkusze o określonej grubości,
  • systemy do wytwarzania izolacji „in situ” bądź wyrobów prefabrykowanych.

Ostatnie wymienione typy pianek służą najczęściej do izolacji urządzeń i rurociągów o temperaturach pracy ciągłej powyżej 120°C (a często powyżej 150°C). Czynnikiem spieniającym w tych materiałach są głównie fluorowęglowodory, które gwarantują bezpieczną pracę. W produkcji gotowych otulin (łubków) termoizolacyjnych wykorzystuje się węglowodory (zwłaszcza c-pentan). Produkcja otulin termoizolacyjnych ma w Polsce długą tradycję. W latach 80. wytwarzano otuliny termoizolacyjne na rurociągi zasilające do energetyki (temp. pracy do 150°C), a także otuliny do izolacji cystern do przewozu ciekłej siarki.

Wyroby z pianki PIR wytwarzane są najczęściej metodą ciągłą w zakładach, które dotychczas produkowały wyroby ze sztywną pianką PUR [32–33]. Dotyczy to zwłaszcza produkcji paneli z okładziną z blachy. Szybkość tych linii na ogół nie przekracza 10 m/min podczas wytwarzania najcieńszych wyrobów (gr. ok. 30 mm). W produkcji paneli grubych (200 mm) prędkość ta jest znacznie mniejsza [32]. Ze względu na gorszą adhezję pianki PIR do blachy konieczne jest stosowanie podwyższonej temperatury tunelu (60–70°C) lub stosowanie specjalnego primera na blachę dolną, który eliminuje konieczność podwyższania temperatury tunelu i wydłużania czasu stabilizacji gotowych płyt [33]. Gęstość rdzenia piankowego tych paneli wynosi ok. 40 kg/m³. Wymagana przyczepność do okładzin musi być większa od 0,1 MPa. W tabeli 2 zamieszczono parametry paneli otrzymanych przy użyciu różnych środków spieniających [31, 35].

Firma Huntsman wprowadziła technologię INSPIRE, która nie wymaga stosowania primera na blachę [33]. Technologia ta składa się z 3 różnych systemów PIR określanych jako technologie niskiego, średniego i wysokiego indeksu izocyjanianowego. Środkiem spieniającym w tych technologiach są izomery pentanu. Wszystkie płyty wytworzone według tych technologii zostały sklasyfikowane jako B-s2,d0 w teście SBI (EN 13823:2002 [34]). Niektóre z właściwości płyt tej technologii podano w tabeli 3 [35]. Są one typowe dla rdzenia piankowego paneli. Inne firmy, takie jak DOW [32] czy Nestan (Bayer), mają w ofercie podobne systemy [33].

Panele z pianki PIR w okładzinach sztywnych stosowane są do budowy pawilonów handlowych, budynków produkcyjnych, magazynów itp. Wyroby te umożliwiają znaczne skrócenie czasu budowy nowych obiektów. Ich izolacyjność cieplna właściwie nie ulega zmianom ze względu na dobrą osłonę antydyfuzyjną, którą są okładziny blaszane [37].

Innym przykładem stosowania pianek PIR jest wytwarzanie płyt w okładzinach elastycznych metodą ciągłą. Podobnie jak w panelach, jako porofor stosowane są najczęściej izomery pentanu. Produkcja odbywa się na zautomatyzowanych liniach ciągłych o bardzo dużej prędkości (60 m/min), które są wyposażone w pełną automatykę gwarantującą bezpieczeństwo procesu. Typowe płyty w okładzinach elastycznych mają wartość współczynnika przewodzenia ciepła l na poziomie 0,023 W/(m·K). W wypadku osłon antydyfuzyjnych (z folii aluminiowej, folii polietylenowej) wartość współczynnika przewodzenia ciepła tych płyt rośnie nieznacznie w trakcie eksploatacji [37]. Dzięki dużej zawartości komórek zamkniętych chłonność wody (podobnie jak w sztywnych piankach PUR) nie jest duża i nie zmienia się po osiągnięciu stanu równowagi [1, 37].

Płyty PIR w okładzinach elastycznych stosowane są do izolacji dachów spadzistych i płaskich, izolacji ścian budynków, podłóg oraz różnych izolacji przemysłowych i handlowych. Ostatnią grupą gotowych wyrobów z pianki PIR są wycinane z nich bloki i płyty (bez okładzin). W tabeli 4 zamieszczono przykładowo właściwości płyt ELFOAM P200 wyciętych z bloków produkowanych w USA przez firmę Elliott [38]. Aplikacja tych płyt podobna jest do aplikacji płyt styropianowych. Stosuje się je tam, gdzie wymagana jest podwyższona odporność cieplna i trudnopalność izolacji.

W ostatnich latach w polskiej literaturze pojawiły się publikacje dotyczące zastosowania i właściwości pianek PIR [39–42].

Podsumowanie

Pianki poliizocyjanurowe (PIR) powstały w wyniku modyfikacji struktury polimeru uretanowego. Za pomocą reakcji cyklotrimeryzacji wprowadzono do makrocząsteczki poliuretanu pierścienie izocyjanurowe mające znacznie wyższą odporność termiczną w stosunku do innych wiązań występujących w polimerze. Pierścienie izocyjanurowe poprawiły odporność termiczną polimeru przy zachowaniu niskiej wartości współczynnika przewodzenia ciepła pianek oraz niskiej chłonności wody. Obecność tych pierścieni w strukturze polimeru spowodowała również skłonność do tworzenia pod wpływem wysokiej temperatury i płomienia stałej powłoki (zwęgliny) o niskim przewodzeniu ciepła odpornej na utlenianie. Powłoka zwęgliny chroni wnętrze pianek PIR przed destrukcją i rozszerzaniem się płomienia. Zjawisko to poprawia również odporność pianki na przepalanie. Istotną cechą pianek PIR jest możliwość wykorzystania do ich syntezy surowców wtórnych i odtwarzalnych, a także możliwość ich produkcji z wykorzystaniem wysokowydajnych urządzeń do produkcji pianki poliuretanowej. Wykorzystanie pianek PIR do prefabrykacji elementów budowlanych ułatwia i skraca czas ich montażu. Wszystkie te czynniki powodują, że pianki PIR stają się ważnym materiałem izolacyjnym o dużej dynamice rozwoju.

Literatura

  1. „The Polyurethanes Book”, ed. D. Randall, S. Lee, John Wiley&Sons, UK 2002.
  2. L. Żabski, „Pianki poliuretanowo-izocyjanurowe – nowy materiał termoizolacyjny dla budownictwa”, „Materiały Budowlane”, nr 1/2005, s. 46–47.
  3. H. Ulrich, „Unconventional Chemistry of Isocyanates”, „Journal of Elastomers and Plastics”, vol. 3 (2)/1971, pp. 97–111.
  4. K. Tokumoto, Y. Tamano, K.M. Gay, R. Van Maris, „An Insight into the Characteristics of Trimerisation Catalysts for Polyisocyanurate Foam Systems”, [w:] materiały konferencji „Polyurethanes 2005. Technical and Trade Fair Conference”, Houston – Texas, October 2005.
  5. J.E. Kresta, K.C. Frisch, „Comparative Studies of Isocyanurate and Isocyanurate-Urethane Foams”, „Journal of Cellular Plastics”, vol. 11 (2)/1975, pp. 267–278.
  6. H.E. Reymore, P.S. Carleton, R.A. Kolakowski, A.A.S. Sayigh, „Isocyanu rate Foams: Chemistry, Properties and Processing”, „Journal of Cellular Plastics”, vol. 11 (6)/1975, pp. 328–344.
  7. Y. Imai, G. Hattori, „Trimerization Catalysts for Isocyanurate Foams”, [w:] materiały konferencji „1980 International Urethane Conference”, Strasbourg 1980.
  8. G.F. Baumann, W. Dietrich, „Isocyanurate Rigid Foam: Relationship Between Structure and Properties”, „Journal of Cellular Plastics”, vol. 17 (3)/1981, pp. 144–147.
  9. T. Nawata, J.E. Kresta, K.C. Frisch, „Comparative Studies of Isocyanurate and Isocyanurate­‑Urethane Foams”, „Journal of Cellular Plastics”, vol. 11 (5)/1975, pp. 267–277.
  10. H.E. Reymore, R.J. Lockwood, H. Ulrich, „Novel Isocyanurate Foams Containing No Flame Retardant Additives”, „Journal of Cellular Plastics”, vol. 14 (6)/1978, pp. 332–340.
  11. M.J. Skowronski, A. DeLeon, „Isocyanurate Foam The Role of the Polyol”, „Journal of Cellular Plastics”, 15 (3)/1979, pp. 152–157.
  12. L. Żabski, A. Żyliński, W. Walczyk, B. Haszczyc, J. Papiński, „Flammability and Some Physical Properties of Rigid Poly(urethane-isocyanurate) Foams obtained from Aromatic Polyols”, [w:] materiały konferencji „Nehorlavost Polymernych Materialov”, Vol. 2, Dom Techniky CSVTS, Bratislava 1983, s. 18–128.
  13. „Terate polyols”, informacja techniczna firmy Invista, 2010.
  14. „Terol polyester polyols”, informacja techniczna firmy Oxid, 2007.
  15. „Stepanpol polyester polyols”, informacja techniczna firmy Stepan, 2011.
  16. A. DeLeon, D. Sheih, „PET Based Polyester Polyols; Do They Perform?”, [w:] materiały konferencji „Utech Asia ’97”, Crain Communications Ltd, London 1997.
  17. A. DeLeon, F. Lagrou, „New Aromatic Polyester Polyols for Hydrocarbon Blown Foams”, [w:] materiały konferencji „Utech 2000”,The Hague March 2000.
  18. R. Brooks, „Urethanes Technology International”, vol. 16 (1)/1999, pp. 34–43.
  19. J. Kusan-Bindel, „New foam formulations for PIR insulation boards”, [w:] materiały konferencji „Utech Conference”, Maastricht 2006.
  20. R. Sewell, R. Stubbs, L. Hickey, D. Norberg, „Novel Polyester Polyols – Helping MDI Go Further in Rigid Foams”, [w:] materiały konferencji „Utech Conference”, Maastricht 2006.
  21. J. Feighan, R. Steward, S.Singh, T. AbiSaleh, „Spray Foam Beyond HCFC-141b”, [w:] materiały konferencji „The API Polyurethanes Conference”, Salt Lake City 2002, s. 237–246.
  22. S. Schilling, D. Wardius, K. Lorentz, „Novel Natural Oil Polyols and Their Use in Rigid Polyurethane Insulating Foams”, [w:] materiały konferencji „Polyurethanes 2007. Technical Conference”,Orlando – Florida, September 2007.
  23. A. Guo, D. Demydov, W. Zhang, Z.S. Petrovic, „Polyols and Polyurethanes from Hydroformylation of Soybean Oil”, „Journal of Polymers and the Environment”, vol. 10 (1–2)/2002, pp. 49–52.
  24. Z.S. Petrovic, W. Zhang, I. Javni, „Structure and Properties of Polyurethanes Prepared from Triglyceride Polyols by Ozonolysis”, „Biomacromolecules”, vol. 6/2005, pp. 713–719.
  25. D.F. Sounik, „Novel Natural-Oil Based Rigid Foams for Demanding Applications: A Class I Polyisocyanurate Foam for Insulated Metal Building Panels”, [w:] materiały konferencji „Polyurethanes 2008. Technical Conference”, San Antonio – Texas, September 2008.
  26. Ch. Eilbracht, C. Schiller, P. Hohl, „Often Overlooked Factors in PIR Surfactant Development”, [w:] materiały konferencji „Polyurethanes 2005. Technical and Trade Fair Conference”, Houston – Texas, October 2005.
  27. T.W. Volz, M.J. Skowronski, „Comparison of Blowing Agent Performance in Isocyanurate Foams Used in the Production of Rigid Faced Continuous Panels”, [w:] materiały konferencji „Polyurethanes 2008. Technical Conference”, San Antonio – Texas, September 2008.
  28. J. Wu, C. Bertelo, L.Caron, „Trans-1,2-dichloroethylene for improving fire performance of urethane foam”, [w:] materiały konferencji „The API Polyurethanes 2003 Conference”, Orlando – Florida 2003, s. 454–462.
  29. H. Inohara, H. Nanno, T. Kimura, K. Yoshida, K. Yamamoto, „Newly Developed Superior Flame Retardant All Water- Blown Polyisocyanurate Foams”, [w:] materiały konferencji „Polyurethanes 2007. Technical Conference”, Orlando – Florida, September 2007.
  30. U. Stirna, U. Cabulis, I. Beverte, „Water-blown polyisocyanurate foams from vegetable oil (oleochemical) polyols”, [w:] materiały konferencji „Utech Conference”, Maastricht 2006.
  31. R.R. Romero, R.A. Grigsby, E.L. Rister, J.K. Pratt, D. Ridgway, „A Study of the Reaction Kinetics of Polyisocyanurate Foam Formulations using Real-Time FTIR”, [w:] materiały konferencji „The API Polyurethanes Expo 2004 Conference”, Las Vegas, October 2004, s. 71–80.
  32. P. Golini, P. Keller, I. Stuckemeier, L. Bertucelli, F. Pignagnoli, „Advances in polyurethane and polyisocyanurate solutions for the metal-faced insulating panels’ industry”, [w:] materiały konferencji „Utech Conference”, Maastricht 2006.
  33. A. van der Wal, „Novel High performance PIR-Systems for Continuous Panels with Easy Processing”, [w:] materiały konferencji „Utech Conference”, Maastricht 2006.
  34. EN 13823:2002, „Single Burning Item”.
  35. K. Dedecker, A. Abati, D. Stragapede, J. Gimeno, „New INSPIRE (R) adhesive-free PIR technology for sandwich panels”, [w:] materiały konferencji „Utech Conference”, Maastricht 2009.
  36. EN ISO 11925-2:2002, „Reaction to fire tests for building products. Part 2: Ignitability when subjected to direct impingement of flame”.
  37. Federation of European Rigid Polyurethane Foam Associations, Report No. 1, October 2006.
  38. Informacja techniczna firmy Elliott.
  39. L. Żabski, J. Papiński, „Pianki poliuretanowo-izocyjanurowe PIR”, „IZOLACJE”, nr 10/2002, s. 66–67.
  40. J. Sawicki, „Pianki izolacyjne PIR w budownictwie” (12.11.2010).
  41. J. Grabowski, „Pianki PIR a bezpieczeństwo ogniowe”, „IZOLACJE”, nr 3/2011, s. 46–47.
  42. A. Pietluszenko, „Płyty termoizolacyjne z PIR-u w miękkich okładzinach – właściwości i zastosowanie”, „IZOLACJE”, nr 10/2010, s. 20–21.

Chcesz być na bieżąco? Zapisz się do naszego newslettera!

Galeria zdjęć

Tytuł
przejdź do galerii

Komentarze

  • Marcin Marcin, 25.11.2019r., 16:35:07 W którym miesięczniku ukazał się ten artykuł?
  • Redakcja Redakcja, 26.11.2019r., 08:34:27 To artykuł z wydania 6/2012

Powiązane

dr inż. Iwona Kata , mgr Zofia Stasica , mgr inż. Witold Charyasz, mgr inż. Krzysztof Szafran Korozja biologiczna i problem degradacji środków biobójczych stosowanych w materiałach budowlanych

Korozja biologiczna i problem degradacji środków biobójczych stosowanych w materiałach budowlanych Korozja biologiczna i problem degradacji środków biobójczych stosowanych w materiałach budowlanych

Biokorozja materiałów budowlanych to powszechne zjawisko, występujące zarówno na elewacjach budynków, jak i wewnątrz pomieszczeń. Skuteczne zabezpieczenie przed biokorozją jest dość trudne. Rozwiązaniem...

Biokorozja materiałów budowlanych to powszechne zjawisko, występujące zarówno na elewacjach budynków, jak i wewnątrz pomieszczeń. Skuteczne zabezpieczenie przed biokorozją jest dość trudne. Rozwiązaniem jest stosowanie środków ochrony powłok, które zawierają substancje czynne, aktywnie hamujące rozrost mikroorganizmów.

dr inż. Andrzej Konarzewski Materiałowe współczynniki bezpieczeństwa płyt warstwowych

Materiałowe współczynniki bezpieczeństwa płyt warstwowych Materiałowe współczynniki bezpieczeństwa płyt warstwowych

Materiałowe współczynniki bezpieczeństwa ɣM powinny odzwierciedlać zmienność właściwości mechanicznych płyt warstwowych, na co wskazują wyniki badań typu i zakładowej kontroli produkcji. Autor publikacji...

Materiałowe współczynniki bezpieczeństwa ɣM powinny odzwierciedlać zmienność właściwości mechanicznych płyt warstwowych, na co wskazują wyniki badań typu i zakładowej kontroli produkcji. Autor publikacji objaśnia jak je wyznaczać.

dr inż. Paweł Sulik Bezpieczeństwo pożarowe pasów międzykondygnacyjnych

Bezpieczeństwo pożarowe pasów międzykondygnacyjnych Bezpieczeństwo pożarowe pasów międzykondygnacyjnych

Pasy międzykondygnacyjne stanowią naturalnie ukształtowaną część ścian zewnętrznych budynków, co oznacza, że muszą one przede wszystkim spełnić wymagania jak dla ścian zewnętrznych.

Pasy międzykondygnacyjne stanowią naturalnie ukształtowaną część ścian zewnętrznych budynków, co oznacza, że muszą one przede wszystkim spełnić wymagania jak dla ścian zewnętrznych.

dr hab. inż. prof. PŚ Łukasz Drobiec, dr inż. Wojciech Mazur , mgr inż. Remigiusz Jokiel Badania wpływu wzmocnienia powierzchniowego systemem FRCM na wytrzymałość na ściskanie murów z autoklawizowanego betonu komórkowego

Badania wpływu wzmocnienia powierzchniowego systemem FRCM na wytrzymałość na ściskanie murów z autoklawizowanego betonu komórkowego Badania wpływu wzmocnienia powierzchniowego systemem FRCM na wytrzymałość na ściskanie murów z autoklawizowanego betonu komórkowego

Celem badań przedstawionych w artykule jest określenie wpływu wzmocnienia powierzchniowego systemem FRCM na wytrzymałość na ściskanie murów wykonanych z autoklawizowanego betonu komórkowego.

Celem badań przedstawionych w artykule jest określenie wpływu wzmocnienia powierzchniowego systemem FRCM na wytrzymałość na ściskanie murów wykonanych z autoklawizowanego betonu komórkowego.

dr inż. Paweł Krause, dr inż. Agnieszka Szymanowska-Gwiżdż, dr inż. Bożena Orlik-Kożdoń, dr inż. Tomasz Steidl Stan ochrony cieplnej elementów przyziemia w budownictwie jednorodzinnym

Stan ochrony cieplnej elementów przyziemia w budownictwie jednorodzinnym Stan ochrony cieplnej elementów przyziemia w budownictwie jednorodzinnym

Stan ochrony cieplnej elementów przyziemia w niepodpiwniczonych budynkach jednorodzinnych w istotnym stopniu zależy od izolacyjności cieplnej ściany fundamentowej i podłogi na gruncie. Rozwiązania projektowe...

Stan ochrony cieplnej elementów przyziemia w niepodpiwniczonych budynkach jednorodzinnych w istotnym stopniu zależy od izolacyjności cieplnej ściany fundamentowej i podłogi na gruncie. Rozwiązania projektowe ścian przyziemia w budynkach nieposiadających podpiwniczenia, posadowionych na ławach fundamentowych, są realizowane w zróżnicowany sposób.

mgr inż. Bartłomiej Monczyński Ochrona budynków przed naturalnymi źródłami promieniowania jonizującego

Ochrona budynków przed naturalnymi źródłami promieniowania jonizującego Ochrona budynków przed naturalnymi źródłami promieniowania jonizującego

Pojęcie promieniotwórczości (radioaktywności) w percepcji społecznej wiąże się przede wszystkim z zagrożeniem wynikającym z wykorzystywania energii jądrowej do celów wojskowych, energetycznych lub medycznych...

Pojęcie promieniotwórczości (radioaktywności) w percepcji społecznej wiąże się przede wszystkim z zagrożeniem wynikającym z wykorzystywania energii jądrowej do celów wojskowych, energetycznych lub medycznych [1]. Wciąż mało kto zdaje sobie sprawę, że niemal 3/4 dawki promieniowania jonizującego, jaką otrzymuje w ciągu roku przeciętny Polak, pochodzi ze źródeł naturalnych [2].

Nicola Hariasz Sufity podwieszane o podwyższonych właściwościach akustycznych

Sufity podwieszane o podwyższonych właściwościach akustycznych Sufity podwieszane o podwyższonych właściwościach akustycznych

Sufity podwieszane mogą stanowić ciekawy i nowoczesny element aranżacji wnętrza. Choć najczęściej kojarzą się z białymi klasycznymi modułami, są dostępne niemal w każdym kolorze i różnej stylistyce.

Sufity podwieszane mogą stanowić ciekawy i nowoczesny element aranżacji wnętrza. Choć najczęściej kojarzą się z białymi klasycznymi modułami, są dostępne niemal w każdym kolorze i różnej stylistyce.

mgr inż. Ismena Gawęda Wymagania techniczne wobec obiektów rolniczych o konstrukcji stalowej

Wymagania techniczne wobec obiektów rolniczych o konstrukcji stalowej Wymagania techniczne wobec obiektów rolniczych o konstrukcji stalowej

Popularne ostatnimi czasy w rolnictwie hale o konstrukcji stalowej (RYS. 1, FOT. 1) sprawdzają się jako specjalistyczne powierzchnie magazynowe pasz i przechowalnie płodów rolnych (w tym również w warunkach...

Popularne ostatnimi czasy w rolnictwie hale o konstrukcji stalowej (RYS. 1, FOT. 1) sprawdzają się jako specjalistyczne powierzchnie magazynowe pasz i przechowalnie płodów rolnych (w tym również w warunkach chłodni czy mroźni) oraz powierzchnie przetwórcze.

mgr inż. Bartosz Witkowski, prof. dr hab. inż. Krzysztof Schabowicz Izolacje a współczesna prefabrykacja w budynkach kubaturowych

Izolacje a współczesna prefabrykacja w budynkach kubaturowych Izolacje a współczesna prefabrykacja w budynkach kubaturowych

Prefabrykacja, w szczególności ta stosowana w budownictwie mieszkaniowym, znana jest w Polsce już od początku lat 50. ubiegłego wieku, kiedy to po drugiej wojnie światowej rozpoczęła się odbudowa miast...

Prefabrykacja, w szczególności ta stosowana w budownictwie mieszkaniowym, znana jest w Polsce już od początku lat 50. ubiegłego wieku, kiedy to po drugiej wojnie światowej rozpoczęła się odbudowa miast i znacząco wzrósł popyt na nowe mieszkania. To, co w świadomości może najbardziej być kojarzone z prefabrykacją zastosowaną w budynkach to tzw. wielka płyta, czyli połączenie żelbetowych ścian konstrukcyjnych ze ścianami osłonowymi z gazobetonu.

dr inż. Marcin Górski, dr inż. Bernard Kotala, mgr inż. Rafał Białozor Rodzaje i właściwości zbrojeń niemetalicznych

Rodzaje i właściwości zbrojeń niemetalicznych Rodzaje i właściwości zbrojeń niemetalicznych

Kompozyty włókniste, również w Polsce nazywane z angielskiego FRP (Fibre Reinforced Polymers), śmiało wkroczyły w świat konstrukcji budowlanych na początku lat 90. ubiegłego wieku, głównie w krajach Europy...

Kompozyty włókniste, również w Polsce nazywane z angielskiego FRP (Fibre Reinforced Polymers), śmiało wkroczyły w świat konstrukcji budowlanych na początku lat 90. ubiegłego wieku, głównie w krajach Europy Zachodniej, a także w Japonii, Stanach Zjednoczonych i Kanadzie. Pojawiły się niemal równocześnie dwie grupy produktów – materiały do wzmocnień konstrukcji oraz pręty do zbrojenia betonu.

Monika Hyjek Pożar ściany z barierami ogniowymi

Pożar ściany z barierami ogniowymi Pożar ściany z barierami ogniowymi

Od lat 80. XX wieku ilość materiałów ociepleniowych na ścianach zewnętrznych budynku stale rośnie. Grubość izolacji w jednej z popularniejszych w Europie metod ocieplania (ETICS) przez ten okres zwiększyła...

Od lat 80. XX wieku ilość materiałów ociepleniowych na ścianach zewnętrznych budynku stale rośnie. Grubość izolacji w jednej z popularniejszych w Europie metod ocieplania (ETICS) przez ten okres zwiększyła się 3–4-krotnie. W przypadku stosowania palnych izolacji cieplnych jest to równoznaczne ze wzrostem zagrożenia pożarowego.

mgr inż. Bartłomiej Monczyński Tynki stosowane na zawilgoconych przegrodach – tynki regulujące zawilgocenie

Tynki stosowane na zawilgoconych przegrodach – tynki regulujące zawilgocenie Tynki stosowane na zawilgoconych przegrodach – tynki regulujące zawilgocenie

Jednym z ostatnich, ale zazwyczaj nieodzownym elementem prac renowacyjnych w uszkodzonych przez wilgoć i sole obiektach budowlanych jest wykonanie nowych tynków wewnętrznych i/lub zewnętrznych.

Jednym z ostatnich, ale zazwyczaj nieodzownym elementem prac renowacyjnych w uszkodzonych przez wilgoć i sole obiektach budowlanych jest wykonanie nowych tynków wewnętrznych i/lub zewnętrznych.

Röben Polska Sp. z o.o. i Wspólnicy Sp. K. Ekoceramika na dachy i elewacje

Ekoceramika na dachy i elewacje Ekoceramika na dachy i elewacje

Wyjątkowo trwała, a na dodatek bezpieczna dla środowiska i naszego zdrowia. Znamy ją od tysięcy lat, należy do najbardziej ekologicznych materiałów budowlanych – po prostu ceramika!

Wyjątkowo trwała, a na dodatek bezpieczna dla środowiska i naszego zdrowia. Znamy ją od tysięcy lat, należy do najbardziej ekologicznych materiałów budowlanych – po prostu ceramika!

Nicola Hariasz Ściany podwyższające komfort akustyczny w pomieszczeniu

Ściany podwyższające komfort akustyczny w pomieszczeniu Ściany podwyższające komfort akustyczny w pomieszczeniu

Hałas jest powszechnym problemem obniżającym komfort życia nie tylko w domu, ale także w pracy. O tym, czy może być niebezpieczny, decyduje nie tylko jego natężenie, ale również czas jego trwania. Szkodliwe...

Hałas jest powszechnym problemem obniżającym komfort życia nie tylko w domu, ale także w pracy. O tym, czy może być niebezpieczny, decyduje nie tylko jego natężenie, ale również czas jego trwania. Szkodliwe dla zdrowia mogą być nawet gwar i szum towarzyszące nam na co dzień w biurze czy w centrum handlowym.

dr inż. Paweł Krause, dr inż. Rosita Norvaišienė Rozkład temperatury systemu ETICS z zastosowaniem styropianu i wełny – badania laboratoryjne

Rozkład temperatury systemu ETICS z zastosowaniem styropianu i wełny – badania laboratoryjne Rozkład temperatury systemu ETICS z zastosowaniem styropianu i wełny – badania laboratoryjne

Ochrona cieplna ścian zewnętrznych jest nie tylko jednym z podstawowych zagadnień związanych z oszczędnością energii, ale wiąże się również z komfortem użytkowania pomieszczeń przeznaczonych na pobyt ludzi....

Ochrona cieplna ścian zewnętrznych jest nie tylko jednym z podstawowych zagadnień związanych z oszczędnością energii, ale wiąże się również z komfortem użytkowania pomieszczeń przeznaczonych na pobyt ludzi. Zapewnienie odpowiedniego komfortu cieplnego pomieszczeń, nieposiadających w większości przypadków instalacji chłodzenia, dotyczy całego roku, a nie tylko okresu ogrzewczego.

mgr Kamil Kiejna Bezpieczeństwo pożarowe w aspekcie stosowania tzw. barier ogniowych w ociepleniach ze styropianu – artykuł polemiczny

Bezpieczeństwo pożarowe w aspekcie stosowania tzw. barier ogniowych w ociepleniach ze styropianu – artykuł polemiczny Bezpieczeństwo pożarowe w aspekcie stosowania tzw. barier ogniowych w ociepleniach ze styropianu – artykuł polemiczny

Niniejszy artykuł jest polemiką do tekstu M. Hyjek „Pożar ściany z barierami ogniowymi”, opublikowanego w styczniowym numerze „IZOLACJI” (nr 1/2021), który w ocenie Polskiego Stowarzyszenia Producentów...

Niniejszy artykuł jest polemiką do tekstu M. Hyjek „Pożar ściany z barierami ogniowymi”, opublikowanego w styczniowym numerze „IZOLACJI” (nr 1/2021), który w ocenie Polskiego Stowarzyszenia Producentów Styropianu, wskutek tendencyjnego i wybiórczego przedstawienia wyników badań przeprowadzonych przez Łukasiewicz – Instytut Ceramiki i Materiałów Budowlanych (ICiMB), może wprowadzać w błąd co do rzeczywistego poziomu bezpieczeństwa pożarowego systemów ETICS z płytami styropianowymi oraz rzekomych korzyści...

dr inż. Marcin Górski, dr inż. Bernard Kotala, mgr inż. Rafał Białozor Zbrojenia niemetaliczne – zbrojenia tekstylne i pręty kompozytowe

Zbrojenia niemetaliczne – zbrojenia tekstylne i pręty kompozytowe Zbrojenia niemetaliczne – zbrojenia tekstylne i pręty kompozytowe

Zbrojenie niemetaliczne jest odporne na korozję, nie ulega degradacji pod wpływem czynników atmosferycznych. Wykazuje także odporność na chlorki, kwasy, agresję chemiczną środowiska.

Zbrojenie niemetaliczne jest odporne na korozję, nie ulega degradacji pod wpływem czynników atmosferycznych. Wykazuje także odporność na chlorki, kwasy, agresję chemiczną środowiska.

mgr inż. Bartłomiej Monczyński Redukcja zasolenia przegród budowlanych za pomocą kompresów

Redukcja zasolenia przegród budowlanych za pomocą kompresów Redukcja zasolenia przegród budowlanych za pomocą kompresów

Jednym z najbardziej niekorzystnych zjawisk związanych z obecnością soli i wilgoci w układzie porów materiałów budowlanych jest krystalizacja soli [1–2] (FOT. 1).

Jednym z najbardziej niekorzystnych zjawisk związanych z obecnością soli i wilgoci w układzie porów materiałów budowlanych jest krystalizacja soli [1–2] (FOT. 1).

dr inż. Krzysztof Pawłowski, prof. uczelni Termomodernizacja budynków – ocieplenie i docieplenie elementów obudowy budynków

Termomodernizacja budynków – ocieplenie i docieplenie elementów obudowy budynków Termomodernizacja budynków – ocieplenie i docieplenie elementów obudowy budynków

Termomodernizacja dotyczy dostosowania budynku do nowych wymagań ochrony cieplnej i oszczędności energii. Ponadto stanowi zbiór zabiegów mających na celu wyeliminowanie lub znaczne ograniczenie strat ciepła...

Termomodernizacja dotyczy dostosowania budynku do nowych wymagań ochrony cieplnej i oszczędności energii. Ponadto stanowi zbiór zabiegów mających na celu wyeliminowanie lub znaczne ograniczenie strat ciepła w istniejącym budynku. Jest jednym z elementów modernizacji budynku, który przynosi korzyści finansowe i pokrycie kosztów innych działań.

dr inż. Artur Miszczuk Ocieplenie podłóg na gruncie i stropów nad nieogrzewanymi piwnicami

Ocieplenie podłóg na gruncie i stropów nad nieogrzewanymi piwnicami Ocieplenie podłóg na gruncie i stropów nad nieogrzewanymi piwnicami

Od 1 stycznia 2021 r. obowiązują zaostrzone Warunki Techniczne (WT 2021) dla nowo budowanych obiektów, a także budynków zaprojektowanych według wcześniej obowiązującego standardu WT 2017 – zgodnie z wymaganiami...

Od 1 stycznia 2021 r. obowiązują zaostrzone Warunki Techniczne (WT 2021) dla nowo budowanych obiektów, a także budynków zaprojektowanych według wcześniej obowiązującego standardu WT 2017 – zgodnie z wymaganiami proekologicznej polityki UE. Graniczne wartości współczynnika przenikania ciepła dla podłóg na gruncie i stropów nad pomieszczeniami nieogrzewanymi nie zostały jednak (w WT 2021) zmienione.

dr inż. arch. Karolina Kurtz-Orecka Ściany zewnętrzne według zaostrzonych wymagań izolacyjności termicznej

Ściany zewnętrzne według zaostrzonych wymagań izolacyjności termicznej Ściany zewnętrzne według zaostrzonych wymagań izolacyjności termicznej

Początek roku 2021 w branży budowlanej przyniósł kolejne zaostrzenie przepisów techniczno-budowlanych, ostatnie z planowanych, które wynikało z implementacji zapisów dyrektywy unijnej w sprawie charakterystyki...

Początek roku 2021 w branży budowlanej przyniósł kolejne zaostrzenie przepisów techniczno-budowlanych, ostatnie z planowanych, które wynikało z implementacji zapisów dyrektywy unijnej w sprawie charakterystyki energetycznej budynków [1, 2], potocznie zwanej dyrektywą EPBD.

dr inż. Adam Ujma Ściany zewnętrzne z elewacjami wentylowanymi i ich izolacyjność cieplna

Ściany zewnętrzne z elewacjami wentylowanymi i ich izolacyjność cieplna Ściany zewnętrzne z elewacjami wentylowanymi i ich izolacyjność cieplna

Ściany zewnętrzne z elewacjami wykonanymi w formie konstrukcji z warstwami wentylowanymi coraz częściej znajdują zastosowanie w nowych budynków, ale również z powodzeniem mogą być wykorzystane przy modernizacji...

Ściany zewnętrzne z elewacjami wykonanymi w formie konstrukcji z warstwami wentylowanymi coraz częściej znajdują zastosowanie w nowych budynków, ale również z powodzeniem mogą być wykorzystane przy modernizacji istniejących obiektów. Dają one szerokie możliwości dowolnego kształtowania materiałowego elewacji, z wykorzystaniem elementów metalowych, z tworzywa sztucznego, szkła, kamienia naturalnego, drewna i innych. Pewną niedogodnością tego rozwiązania jest konieczność uwzględnienia w obliczeniach...

mgr inż. arch. Tomasz Rybarczyk Ściany jednowarstwowe według WT 2021

Ściany jednowarstwowe według WT 2021 Ściany jednowarstwowe według WT 2021

Elementom zewnętrznym budynków, a więc również ścianom, stawiane są coraz wyższe wymagania, m.in. pod względem izolacyjności cieplnej. Zmiany obowiązujące od 1 stycznia 2021 roku dotyczą wymagań w zakresie...

Elementom zewnętrznym budynków, a więc również ścianom, stawiane są coraz wyższe wymagania, m.in. pod względem izolacyjności cieplnej. Zmiany obowiązujące od 1 stycznia 2021 roku dotyczą wymagań w zakresie izolacyjności cieplnej, a wynikające z rozporządzenia w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie powodują, że odtąd trzeba budować budynki ze ścianami o wyższej termoizolacyjności niż budowano dotychczas.

dr inż. Bożena Orlik-Kożdoń, dr inż. Tomasz Steidl Docieplanie budynków od wewnątrz – wymagania prawne i zalecenia do projektowania

Docieplanie budynków od wewnątrz – wymagania prawne i zalecenia do projektowania Docieplanie budynków od wewnątrz – wymagania prawne i zalecenia do projektowania

Obowiązujące w Polsce wymagania prawne związane z docieplaniem budynków od wewnątrz obejmują zarówno przepisy podstawowe zdefiniowane w dokumentach unijnych, jak i wymagania szczegółowe, zawarte w dokumentach...

Obowiązujące w Polsce wymagania prawne związane z docieplaniem budynków od wewnątrz obejmują zarówno przepisy podstawowe zdefiniowane w dokumentach unijnych, jak i wymagania szczegółowe, zawarte w dokumentach krajowych. A ich realizację umożliwiają dostępne na rynku rozwiązania technologiczno-materiałowe.

Najnowsze produkty i technologie

MediaMarkt Laptop na raty – czy warto wybrać tę opcję?

Laptop na raty – czy warto wybrać tę opcję? Laptop na raty – czy warto wybrać tę opcję?

Zakup nowego laptopa to spory wydatek. Może się zdarzyć, że staniemy przed dylematem: tańszy sprzęt, mniej odpowiadający naszym potrzebom, czy droższy, lepiej je spełniający, ale na raty? Często wybór...

Zakup nowego laptopa to spory wydatek. Może się zdarzyć, że staniemy przed dylematem: tańszy sprzęt, mniej odpowiadający naszym potrzebom, czy droższy, lepiej je spełniający, ale na raty? Często wybór tańszego rozwiązania, jest pozorną oszczędnością. Niższa efektywność pracy, mniejsza żywotność, nie mówiąc już o ograniczonych parametrach technicznych. Jeśli szukamy sprzętu, który posłuży nam naprawdę długo, dobrze do zakupu laptopa podejść jak do inwestycji - niezależnie, czy kupujemy go przede wszystkim...

PU Polska – Związek Producentów Płyt Warstwowych i Izolacji Płyty warstwowe PUR/PIR w aspekcie wymagań technicznych stawianych lekkiej obudowie

Płyty warstwowe PUR/PIR w aspekcie wymagań technicznych stawianych lekkiej obudowie Płyty warstwowe PUR/PIR w aspekcie wymagań technicznych stawianych lekkiej obudowie

Rozwój technologii budowlanej w ciągu ostatnich kilkudziesięciu lat zmienił oblicze branży w Polsce, umożliwiając szybszą, tańszą i ekologiczną realizację wznoszonych obiektów. Wprowadzając szeroko do...

Rozwój technologii budowlanej w ciągu ostatnich kilkudziesięciu lat zmienił oblicze branży w Polsce, umożliwiając szybszą, tańszą i ekologiczną realizację wznoszonych obiektów. Wprowadzając szeroko do branży rewolucyjny i rewelacyjny produkt, jakim jest płyta warstwowa, zmodernizowaliśmy de facto ideę prefabrykacji i zamianę tradycyjnych, mokrych i pracochłonnych technologii wznoszenia budynków z elementów małogabarytowych lub konstrukcji szalunkowych na szybki, suchy montaż gotowych elementów w...

Balex Metal Sp. z o. o. System rynnowy Zenit – orynnowanie premium

System rynnowy Zenit – orynnowanie premium System rynnowy Zenit – orynnowanie premium

Wielu inwestorów, wybierając orynnowanie, zwraca wyłącznie uwagę na kolor czy kształt rynien i rur spustowych. Oczywiście estetyka jest ważna, ale nie to jest głównym zadaniem systemu rynnowego. Ma on...

Wielu inwestorów, wybierając orynnowanie, zwraca wyłącznie uwagę na kolor czy kształt rynien i rur spustowych. Oczywiście estetyka jest ważna, ale nie to jest głównym zadaniem systemu rynnowego. Ma on przede wszystkim bezpiecznie odprowadzać wodę deszczową i roztopową z dachu, a o tym decydują detale. Zadbała o nie firma Balex Metal. System rynnowy Zenit jest dopracowany do perfekcji. Równie świetnie się prezentuje.

BREVIS S.C. Insolio - nawiewnik montowany bez konieczności frezowania szczelin

Insolio - nawiewnik montowany bez konieczności frezowania szczelin Insolio - nawiewnik montowany bez konieczności frezowania szczelin

Nawiewniki okienne to urządzenia mechaniczne zapewniające stały, a zarazem regulowany dopływ świeżego powietrza bez potrzeby otwierania okien. Ich montaż to jedna z najprostszych metod zapewnienia prawidłowego...

Nawiewniki okienne to urządzenia mechaniczne zapewniające stały, a zarazem regulowany dopływ świeżego powietrza bez potrzeby otwierania okien. Ich montaż to jedna z najprostszych metod zapewnienia prawidłowego działania wentylacji grawitacyjnej, mechanicznej wywiewnej i hybrydowej (połączenie obu poprzednich typów). Wiele osób rezygnowało z ich instalacji z powodu konieczności ingerencji w konstrukcję ramy okna. Na szczęście to już przeszłość - od kilku lat na rynku dostępne są modele montowane na...

PETRALANA Zastosowanie przeciwogniowe, termiczne, akustyczne – płyty PETRATOP i PETRALAMELA-FG

Zastosowanie przeciwogniowe, termiczne, akustyczne – płyty PETRATOP i PETRALAMELA-FG Zastosowanie przeciwogniowe, termiczne, akustyczne – płyty PETRATOP i PETRALAMELA-FG

PETRATOP i PETRALAMELA-FG to produkty stworzone z myślą o efektywnej izolacji termicznej oraz akustycznej oraz bezpieczeństwie pożarowym garaży i piwnic. Rozwiązanie to zapobiega wymianie wysokiej temperatury...

PETRATOP i PETRALAMELA-FG to produkty stworzone z myślą o efektywnej izolacji termicznej oraz akustycznej oraz bezpieczeństwie pożarowym garaży i piwnic. Rozwiązanie to zapobiega wymianie wysokiej temperatury z górnych kondygnacji budynków z niską temperaturą, która panuje bliżej gruntu.

VITCAS Polska Sp. z o.o. Jakich materiałów użyć do izolacji cieplnej kominka?

Jakich materiałów użyć do izolacji cieplnej kominka? Jakich materiałów użyć do izolacji cieplnej kominka?

Kominek to od lat znany i ceniony element wyposażenia domu. Nie tylko daje ciepło w chłodne wieczory, ale również stwarza niepowtarzalny klimat w pomieszczeniu. Obserwowanie pomarańczowych płomieni pozwala...

Kominek to od lat znany i ceniony element wyposażenia domu. Nie tylko daje ciepło w chłodne wieczory, ale również stwarza niepowtarzalny klimat w pomieszczeniu. Obserwowanie pomarańczowych płomieni pozwala zrelaksować się po ciężkim dniu pracy. Taka aura sprzyja również długim rozmowom w gronie najbliższych. Aby kominek był bezpieczny w użytkowaniu, należy zadbać o jego odpowiednią izolację termiczną. Dlaczego zabezpieczenie kominka jest tak ważne i jakich materiałów izolacyjnych użyć? Na te pytania...

Recticel Insulation Płyty termoizolacyjne EUROTHANE G – efektywne docieplenie budynku od wewnątrz

Płyty termoizolacyjne EUROTHANE G – efektywne docieplenie budynku od wewnątrz Płyty termoizolacyjne EUROTHANE G – efektywne docieplenie budynku od wewnątrz

Termomodernizacja jest jednym z podstawowych zadań podejmowanych w ramach modernizacji budynków. W odniesieniu do ścian docieplenie wykonuje się od zewnątrz, zgodnie z podstawowymi zasadami fizyki budowli....

Termomodernizacja jest jednym z podstawowych zadań podejmowanych w ramach modernizacji budynków. W odniesieniu do ścian docieplenie wykonuje się od zewnątrz, zgodnie z podstawowymi zasadami fizyki budowli. Czasami jednak nie ma możliwości wykonania docieplenia na fasadach, np. na budynkach zabytkowych, obiektach z utrudnionym dostępem do elewacji czy na budynkach usytuowanych w granicy. W wielu takich przypadkach jest jednak możliwe wykonanie docieplenia ścian od wewnątrz.

Ocmer Jak wygląda budowa hali magazynowej?

Jak wygląda budowa hali magazynowej? Jak wygląda budowa hali magazynowej?

Budowa obiektu halowego to wieloetapowy proces, w którym każdy krok musi zostać precyzyjnie zaplanowany i umiejscowiony w czasie. Jak wyglądają kolejne fazy takiego przedsięwzięcia? Wyjaśniamy, jak przebiega...

Budowa obiektu halowego to wieloetapowy proces, w którym każdy krok musi zostać precyzyjnie zaplanowany i umiejscowiony w czasie. Jak wyglądają kolejne fazy takiego przedsięwzięcia? Wyjaśniamy, jak przebiega budowa hali magazynowej i z jakich etapów składa się cały proces.

Parati Płyta fundamentowa i jej zalety – wszystko, co trzeba wiedzieć

Płyta fundamentowa i jej zalety – wszystko, co trzeba wiedzieć Płyta fundamentowa i jej zalety – wszystko, co trzeba wiedzieć

Budowa domu jest zadaniem niezwykle trudnym, wymagającym od inwestora podjęcia wielu decyzji, bezpośrednio przekładających się na efekt. Dokłada on wszelkich starań, żeby budynek był w pełni funkcjonalny,...

Budowa domu jest zadaniem niezwykle trudnym, wymagającym od inwestora podjęcia wielu decyzji, bezpośrednio przekładających się na efekt. Dokłada on wszelkich starań, żeby budynek był w pełni funkcjonalny, wygodny oraz wytrzymały. A jak pokazuje praktyka, aby osiągnąć ten cel, należy rozpocząć od podstaw. Właśnie to zagwarantuje nam solidna płyta fundamentowa.

Copyright © 2004-2019 Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Spółka komandytowa, nr KRS: 0000537655. Wszelkie prawa, w tym Autora, Wydawcy i Producenta bazy danych zastrzeżone. Jakiekolwiek dalsze rozpowszechnianie artykułów zabronione. Korzystanie z serwisu i zamieszczonych w nim utworów i danych wyłącznie na zasadach określonych w Zasadach korzystania z serwisu.
Portal Budowlany - Izolacje.com.pl

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim urządzeniu końcowym. W każdym momencie możesz dokonać zmiany ustawień przeglądarki dotyczących cookies. Nim Państwo zaczną korzystać z naszego serwisu prosimy o zapoznanie się z naszą polityką prywatności oraz Informacją o Cookies. Więcej szczegółów w naszej Polityce Prywatności oraz Informacji o Cookies. Administratorem Państwa danych osobowych jest Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Sp.K., nr KRS: 0000537655, z siedzibą w 04-112 Warszawa, ul. Karczewska 18, tel. +48 22 810-21-24, właściciel strony www.izolacje.com.pl. Twoje Dane Osobowe będą chronione zgodnie z wytycznymi polityki prywatności www.izolacje.com.pl oraz zgodnie z Rozporządzeniem Parlamentu Europejskiego i Rady (UE) 2016/679 z dnia 27 kwietnia 2016r i z Ustawą o ochronie danych osobowych Dz.U. 2018 poz. 1000 z dnia 10 maja 2018r.