Izolacje.com.pl

Zaawansowane wyszukiwanie

Pianki PIR - izolacja ze sztywnej pianki poliuretanowej

PIR foams - insulation of the rigid polyurethane foam

Test pianek PIR
Archiwum autorów

Test pianek PIR


Archiwum autorów

Główną wadą materiałów PUR są właściwości ogniowe. Cecha ta poprawiona została w produktach PIR.

Zobacz także

Rockwool Polska Termomodernizacja domu – na czym polega i jak ją zaplanować?

Termomodernizacja domu – na czym polega i jak ją zaplanować? Termomodernizacja domu – na czym polega i jak ją zaplanować?

Termomodernizacja to szereg działań mających na celu poprawę energochłonności Twojego domu. Niezależnie od zakresu inwestycji, kluczowa dla osiągnięcia spodziewanych efektów jest kolejność prac. Najpierw...

Termomodernizacja to szereg działań mających na celu poprawę energochłonności Twojego domu. Niezależnie od zakresu inwestycji, kluczowa dla osiągnięcia spodziewanych efektów jest kolejność prac. Najpierw należy docieplić ściany i dach, aby ograniczyć zużycie energii, a dopiero potem zmodernizować system grzewczy. Dzięki kompleksowej termomodernizacji domu prawidłowo wykonanej znacznie zmniejszysz koszty utrzymania budynku.

Recticel Insulation Nowoczesne technologie termoizolacyjne Recticel w renowacji budynków historycznych

Nowoczesne technologie termoizolacyjne Recticel w renowacji budynków historycznych Nowoczesne technologie termoizolacyjne Recticel w renowacji budynków historycznych

W dzisiejszych czasach zachowanie dziedzictwa kulturowego i jednoczesne dostosowanie budynków do współczesnych standardów efektywności energetycznej stanowi duże wyzwanie zarówno dla inwestora, projektanta...

W dzisiejszych czasach zachowanie dziedzictwa kulturowego i jednoczesne dostosowanie budynków do współczesnych standardów efektywności energetycznej stanowi duże wyzwanie zarówno dla inwestora, projektanta jak i wykonawcy. Niejednokrotnie w ramach inwestycji, począwszy już od etapu opracowywania projektu, okazuje się, że tradycyjne materiały izolacyjne i metody ich aplikacji nie są wystarczające, aby zapewnić właściwe parametry termiczne i należytą ochronę wartości historycznych budynku.

Sievert Polska Sp. z o.o. System ociepleń quick-mix S-LINE

System ociepleń quick-mix S-LINE System ociepleń quick-mix S-LINE

System ociepleń quick-mix S-LINE to rozwiązanie warte rozważenia zawsze, kiedy zachodzi potrzeba wykonania termomodernizacji ścian zewnętrznych. Umożliwia montaż nowej izolacji termicznej na istniejącym...

System ociepleń quick-mix S-LINE to rozwiązanie warte rozważenia zawsze, kiedy zachodzi potrzeba wykonania termomodernizacji ścian zewnętrznych. Umożliwia montaż nowej izolacji termicznej na istniejącym już systemie ociepleń, który nie spełnia dzisiejszych wymagań pod kątem wartości współczynnika przenikania ciepła U = 0,2 W/(m²·K).

Poliuretany (PUR) są wykorzystywane w budownictwie na różne sposoby i obecnie trudno byłoby wyobrazić sobie bez nich świat. Stosowane są w zasadzie w każdym segmencie nowo budowanego domu – od piwnicy po dach.

Występują także w wyposażeniu domu (np. w lodówkach czy zamrażarkach). Tak wiele zastosowań wynika z bardzo dobrych właściwości termoizolacyjnych, użytkowych oraz różnorodnych metod aplikacji (gotowe płyty z okładziną z blachy, produkty do zalewania, natrysku, uszczelniania pianką jednokomponentową itp.) [1]. Lite poliuretany stosowane są też jako fragmenty mebli, kleje czy wykładziny podłogowe.

Klasyczne poliuretany mają jednak istotną wadę – palność.

Właściwości ogniowe PUR

Mimo znakomitych właściwości izolacyjnych sztywne pianki PUR nie spełniają wymagań najnowszych testów przeprowadzanych przez towarzystwa ubezpieczeniowe, np. testu LPSB 1181 (fot.).

Zwiększenie liczby opóźniaczy palenia powoduje wzrost emisji gazów toksycznych podczas spalania, zwiększa ilość dymu utrudniającego akcję ratowniczą, znacznie pogarsza odporność cieplną i wytrzymałość mechaniczną poliuretanu [2]. Powoduje to, że główne zalety izolacji poliuretanowej, czyli lekkość i wytrzymałość, tracą na wartości.

Mała jest również odporność płyt PUR na przepalanie. Okazuje się jednak, że wiele z tych wad można usunąć dzięki stosowaniu tworzyw spienionych wytwarzanych w wyniku tzw. niekonwencjonalnych reakcji izocyjanianów [3].

Trimeryzacja izocyjanianów

W połowie XX w. badano reakcje izocyjanianów aromatycznych. Z badań wynikało, że związki te mogą pod wpływem odpowiednich katalizatorów tworzyć ugrupowania charakteryzujące się lepszą odpornością termiczną [4].

W klasycznych poliuretanach występują ugrupowania uretanowe (o temp. rozkładu: 150–250°C), mocznikowe (temp. ­rozkładu: 180–250°C), biuretowe i allofanianowe (temp. rozkładu: 120–180°C). Ugrupowania izocyjanurowe i karbodiimidowe mają natomiast temperaturę rozkładu powyżej 270°C. Schemat tych reakcji został przedstawiony na rys. 1.

Grupy izocyjanurowe wprowadza się najczęściej w wyniku cyklotrimeryzacji grup izocyjanianowych. Czasem mogą tworzyć się również sztywne ugrupowania karbodiimidowe.

Od ponad 30 lat cyklotrimeryzacja izocyjanianów jest metodą przemysłową wytwarzania trudnopalnych tworzyw piankowych (tzw. pianek poliizocyjanurowych, pianek PIR lub „polyiso”). Katalizatory cyklotrimeryzacji są cytowane w pracach J.E. 

Kresty i K.C. Frischa [5] oraz w innych publikacjach [6–7]. W aplikacjach przemysłowych największe zastosowanie mają:

  • sole potasowe kwasów karboksylowych (octan potasu, oktanian potasu itp.),
  • aminy III-rzędowe, takie jak pentadietylotriamina (PMDETA), tris (dimetyloaminometylo) fenol, tris (dimetyloaminopropylo) heksahydrotiazyna itp.,
  • IV-rzędowe pochodne amoniowe (np. DABCO TMR, DABCO TMR-2, DABCO TMR-3, Toyocat TRX itp.).

Ze względu na różny charakter działania najczęściej stosuje się mieszaniny wymienionych katalizatorów.

W wypadku nadmiaru grup izocyjanianowych i w obecności grup hydroksylowych reakcje poliaddycji i cyklotrimeryzacji zachodzą prawie równocześnie. Katalizatory cyklotrimeryzacji działają z dużą wydajnością w wyższych temperaturach w przeciwieństwie do typowych katalizatorów reakcji tworzenia poliuretanów. Dlatego do zapoczątkowania procesu wykorzystuje się tę ostatnią reakcję. Bardzo często można zaobserwować dwustopniowy przebieg wzrostu tworzywa piankowego, czyli dwa maksima prędkości wzrostu (rys. 2).

W procesie trimeryzacji wskazane jest użycie składnika poliolowego, ponieważ pomaga ono modyfikować kruche tworzywo izocyjanurowe. Na rys. 3 przedstawiono zależność kruchości sztywnej pianki od nadmiaru grup izocyjanianowych. Ze względów technicznych przedstawiono ją jako zależność od wyrażenia OH/NCO (odwrotność NCO/OH). Ze wzrostem zawartości trimeru izocyjanurowego rośnie ona w teście ASTM D 421 od kilku do ponad 65% [9-10].

Wzrost zawartości ugrupowań izocyjanurowych znacząco wpływa na trudnopalność tworzywa (rys. 4). Wartość wskaźnika tlenowego pianki poliuretanowej niezawierającej opóźniaczy palenia wynosi ok. 20% O2, natomiast wartość wskaźnika tlenowego pianki poliizocyjanurowej (również bez opóźniaczy palenia) – ok. 30% O2 [9–11]. Podobnie korzystnie wpływa zawartość ugrupowań izocyjanurowych na zmniejszenie ilości dymów emitowanych w trakcie palenia tego typu tworzyw (rys. 5). Rośnie również odporność tworzywa na przepalanie (rys. 6) [10]. Wszystkie te zmiany spowodowane są wzrostem odporności termicznej tworzyw i wzrostem ilości termoodpornych grup izocyjanurowych powodujących tworzenie zwęgliny. Ilustruje to rys. 7. Stwierdzono ponadto, że dodatek addytywnych fosforoorganicznych opóźniaczy palenia, takich jak TCEP, TCPP czy TEP, do środowiska reakcji zwiększa wydajność reakcji trimeryzacji [10].

Poliole do pianek PIR

W początkowej fazie badań nad trimeryzacją izocyjanianów badano wpływ budowy użytego składnika wielohydroksylowego (poliolu) na właściwości pianki PIR. Stosowano głównie polioksyalkilenodiole i polioksyalkilenotriole o różnej masie cząsteczkowej. Z pierwszych badań wynikało, że na właściwości pianek PIR najkorzystniej wpływały polioksyetylenowane pochodne alkoholi dwu- i trójwodorotlenowych [11]. Podobne wyniki uzyskano dla aromatycznych alkoholi: polioksyetylenowanego bisfenolu A i polioksyetylenowanej żywicy nowolakowej [12]. Stosowano również aromatyczne poliestrole (APP) otrzymywane przez polikondensację dwukwasów aromatycznych (ortoftalowego, tereftalowego itp.) i glikoli, głównie heksandiolu i glikolu dietylenowego [10]. Stwierdzano dużą wydajność cyklotrimeryzacji oraz dobre właściwości pianek.

W celu znalezienia tanich surowców przeprowadzono trans­estryfikację odpadowych estrów metylowych kwasu tereftalowego, powstałych z produkcji politereftalanu etylenu (odpadów DMT). Tego typu poliole dostarczała dotychczas firma Invista (poliole o specyficznym brązowym zabarwieniu) [13]. Inne tanie poliestrole syntezowano przez transestryfikację glikolem dietylenowym rozdrobnionych butelek PET [14]. Pionierem w tej dziedzinie była firma Oxid. Produkty tego typu można znaleźć także w ofercie firmy Stepan Polska oprócz produkowanych w USA poliestroli z bezwodnika kwasu ortoftalowego i glikolu dietylenowego [15]. Funkcyjność tych produktów waha się najczęściej między 2 a 2,7, natomiast liczba hydroksylowa wynosi 150–400 mg KOH/g) [16–17].

Poliestrole aromatyczne (APP) bardzo korzystnie wpływają na zmniejszenie palności tworzywa. Zwiększają one ilość struktur aromatycznych powodujących tworzenie zwęgliny (ang. char) [18]. Standardowe poliole poliestrowe do wytwarzania pianek PIR mają liczbę hydroksylową (OHV) ok. 240 mg KOH/g (np. Stepanpol PS 2352 – OHV = 240 mg KOH/g [15], Terate 2541 – OHV = 235 mg KOH/g [13], Terol 563 – OHV = 240 mg KOH/g).

W tabeli 1 przedstawiono typową recepturę pianki PIR z aromatycznych polioli poliestrowych o gęstości ok. 32 kg/m³ [19]. Środkiem spieniającym jest n-pentan. Typowy nadmiar izocyjanianu (indeks izocyjanianowy) w tego typu piankach wynosi 200–400.

W ostatnich latach podjęto próby wprowadzenia polioli poliestrowych o mniejszej liczbie hydroksylowej – 160–200 mg KOH/g. Ich aplikacja pozwala zmniejszyć zużycie składnika izocyjanianowego [20]. Funkcyjność tych poliestroli może być poniżej 2. Pojawiają się również informacje o stosowaniu do wytwarzania pianek PIR polioli Mannicha o liczbie hydroksylowej 300–350 mg KOH/g [21]. Są to polioksyalkilenowane produkty kondensacji alkilofenoli (nonylofenoli) z dietanoloaminą i formaliną o umiarkowanej funkcyjności. Poliole te stosowane są głównie jako modyfikatory pianek PIR. Wpływają one na zwiększenie reaktywności, poprawę mieszalności z hydrofobowym poroforem węglowodorowym itd.

W ostatnich latach dużo prac badawczych zostało poświęconych zagadnieniu syntezy polioli z tzw. surowców odnawialnych, najczęściej pochodnych olejów roślinnych syntezowanych przez ich estryfikację, utlenianie wiązań podwójnych itp. [22–24]. W zasadzie wszystkie większe firmy poliuretanowe oferują tego typu produkty (np. Bayer [25]). Panele PIR wytworzone z ich udziałem spełniają wymagania klasy I palności według normy ASTM E-84 (indeks rozprzestrzeniania płomienia poniżej 25, indeks wydzielania dymu poniżej 450).

Inne składniki pianek PIR

Badano wpływ poliizocyjanianu na właściwości pianek PIR. Dla pochodnych TDI nie uzyskano interesujących danych. Natomiast w odniesieniu do polimerycznego MDI najbardziej korzystne zachowanie stwierdzono w izocyjanianach o podwyższonej funkcyjności wprowadzających do polimeru jak najwięcej struktur aromatycznych sprzyjających tworzeniu dużej ilości zwęgliny w trakcie spalania [11]. Mowa o poliizocyjanianach typu polimerycznego MDI o lepkości powyżej 350 m·Pa·s w temperaturze 25°C. Bardziej lepkie produkty – choć korzystniejsze – są trudne w aplikacji [11].

Pianki PIR wymagają odpowiednich pochodnych silikonowych ułatwiających mieszanie składników i pomagających stabilizować układ przed usieciowaniem. Każda z firm produkujących te środki (np. Momentive, Air Products czy Evonik) oferuje produkty tego typu [26].

W przeszłości jako porofory do pianek PIR stosowane były te same środki co do sztywnych pianek poliuretanowych (niskowrzące fluorochlorowęglowodory: CFC 11, CFC 12, HCFC 141B) [6]. Obecnie stosowane są: izomery pentanu (n-pentan, c-pentan, i-pentan oraz ich mieszaniny), fluorowęglowodory o zerowym potencjale niszczenia ozonu (HFC 245fe, HFC 365/227) [27], mrówczan metylu, metylal itp. Pojawiają się informacje o stosowaniu do pentanu dodatku trans-dichloroetylenu. Środek ten nie niszczy ozonu, mimo że zawiera chlor oraz wykazuje mały efekt cieplarniany [28]. Korzystnie wpływa on na zmniejszenie palności pianek PIR. W związku z wprowadzeniem pentanu jako środka spieniającego pojawił się problem adhezji do okładzin [19]. Zapobiegano temu przez wprowadzenie promotorów adhezji bądź użycie nowych polioli poliestrowych, np. Baymer TP.PU 29HB72 lub Baymer TP.PU 30HB01 [19].

Ze względu na duży koszt fluorowęglowodorów typu HFC ich zużycie jest ograniczane do zastosowań, w których stosowanie palnych poroforów jest niemożliwe – uzyskiwany stopień trudnopalności jest niewystarczający (np. niespełnione są wymagania testu LPCB 1181) lub ewentualnie wymagana jest lepsza izolacyjność.

Woda wykorzystywana jest jako porofor w ograniczonym stopniu z powodu wzrostu kruchości tworzywa i pogorszania adhezji do okładzin [29]. Według autorów dobre wyniki przy spienianiu wodą można osiągnąć za pomocą specjalnych izocyjanianów MDI. Zaletą takiej pianki PIR jest trudnopalność. Pianki PIR spieniane wodą o dobrych właściwościach uzyskiwano przez zastosowanie polioli syntezowanych z udziałem poliestroli z olejów roślinnych. Podkreślano ich korzystne właściwości mechaniczne. Brak jednak szczegółów informacji o ich odporności ogniowej [30]. Opracowane zostały specjalne katalizatory ułatwiające cyklotrimeryzację polimerycznego MDI z dużą wydajnością przy zachowaniu dobrej płynności systemu, np. Jeffcat 110 [31].

Zastosowanie pianek PIR

Główne zalety pianek PIR to: trudnopalność i stosunkowo mała emisja dymu w trakcie spalania, podwyższona odporność cieplna oraz dobra stabilność wymiarów w całym zakresie temperatur. Czynnikiem odróżniającym pianki PIR od pianek poliuretanowych jest zdolność tworzenia zwęgliny dającej uzyskiwanej izolacji odporność ogniową na przepalenie. Właśnie ta cecha spowodowała, że już w latach 70. pianki PIR były wykorzystywane w konstrukcjach pojazdów kosmicznych. W połączeniu z odpowiednimi napełniaczami możliwe było uzyskanie spienionych kompozytów PIR o odpowiedniej odporności cieplnej i niepalności.

Pianki PIR stosowane są głównie jako materiał termoizolacyjny. Wypierają one klasyczne sztywne pianki PUR o podwyższonej trudnopalności, tj. pianki klasy B-2 według DIN 4102. Dzięki użyciu tanich aromatycznych polioli poliestrowych niższe są koszty ich wytwarzania. Mają oprócz tego znaczną odporność na przepalanie, co rozszerza ich możliwości aplikacyjne – mogą być używane jako przegroda ogniowa i mogą konkurować z wełną mineralną.

Na przełomie lat 70. i 80. w USA (Hunter Panels) i Wielkiej Brytanii (Hexacal – ICI) produkowane były pianki PIR w postaci płyt izolacyjnych z użyciem Freonu 11 (CFC 11) jako środka spieniającego. W 1987 r. powołano w USA i Kanadzie stowarzyszenie PIMA (Polyisocyanurate Insulation Manufacturers Associacion), które skupia głównych producentów PIR.

Pianki PIR produkuje się najczęściej jako:

  • panele w okładzinach sztywnych z blachy stalowej, blachy aluminiowej, płyt gipsowo-kartonowych, drewnianych płyt OSB itp.,
  • płyty w okładzinach elastycznych (np. z folii aluminiowej, papieru, papy itp.),
  • bloki pianki PIR cięte na arkusze o określonej grubości,
  • systemy do wytwarzania izolacji „in situ” bądź wyrobów prefabrykowanych.

Ostatnie wymienione typy pianek służą najczęściej do izolacji urządzeń i rurociągów o temperaturach pracy ciągłej powyżej 120°C (a często powyżej 150°C). Czynnikiem spieniającym w tych materiałach są głównie fluorowęglowodory, które gwarantują bezpieczną pracę. W produkcji gotowych otulin (łubków) termoizolacyjnych wykorzystuje się węglowodory (zwłaszcza c-pentan). Produkcja otulin termoizolacyjnych ma w Polsce długą tradycję. W latach 80. wytwarzano otuliny termoizolacyjne na rurociągi zasilające do energetyki (temp. pracy do 150°C), a także otuliny do izolacji cystern do przewozu ciekłej siarki.

Wyroby z pianki PIR wytwarzane są najczęściej metodą ciągłą w zakładach, które dotychczas produkowały wyroby ze sztywną pianką PUR [32–33]. Dotyczy to zwłaszcza produkcji paneli z okładziną z blachy. Szybkość tych linii na ogół nie przekracza 10 m/min podczas wytwarzania najcieńszych wyrobów (gr. ok. 30 mm). W produkcji paneli grubych (200 mm) prędkość ta jest znacznie mniejsza [32]. Ze względu na gorszą adhezję pianki PIR do blachy konieczne jest stosowanie podwyższonej temperatury tunelu (60–70°C) lub stosowanie specjalnego primera na blachę dolną, który eliminuje konieczność podwyższania temperatury tunelu i wydłużania czasu stabilizacji gotowych płyt [33]. Gęstość rdzenia piankowego tych paneli wynosi ok. 40 kg/m³. Wymagana przyczepność do okładzin musi być większa od 0,1 MPa. W tabeli 2 zamieszczono parametry paneli otrzymanych przy użyciu różnych środków spieniających [31, 35].

Firma Huntsman wprowadziła technologię INSPIRE, która nie wymaga stosowania primera na blachę [33]. Technologia ta składa się z 3 różnych systemów PIR określanych jako technologie niskiego, średniego i wysokiego indeksu izocyjanianowego. Środkiem spieniającym w tych technologiach są izomery pentanu. Wszystkie płyty wytworzone według tych technologii zostały sklasyfikowane jako B-s2,d0 w teście SBI (EN 13823:2002 [34]). Niektóre z właściwości płyt tej technologii podano w tabeli 3 [35]. Są one typowe dla rdzenia piankowego paneli. Inne firmy, takie jak DOW [32] czy Nestan (Bayer), mają w ofercie podobne systemy [33].

Panele z pianki PIR w okładzinach sztywnych stosowane są do budowy pawilonów handlowych, budynków produkcyjnych, magazynów itp. Wyroby te umożliwiają znaczne skrócenie czasu budowy nowych obiektów. Ich izolacyjność cieplna właściwie nie ulega zmianom ze względu na dobrą osłonę antydyfuzyjną, którą są okładziny blaszane [37].

Innym przykładem stosowania pianek PIR jest wytwarzanie płyt w okładzinach elastycznych metodą ciągłą. Podobnie jak w panelach, jako porofor stosowane są najczęściej izomery pentanu. Produkcja odbywa się na zautomatyzowanych liniach ciągłych o bardzo dużej prędkości (60 m/min), które są wyposażone w pełną automatykę gwarantującą bezpieczeństwo procesu. Typowe płyty w okładzinach elastycznych mają wartość współczynnika przewodzenia ciepła l na poziomie 0,023 W/(m·K). W wypadku osłon antydyfuzyjnych (z folii aluminiowej, folii polietylenowej) wartość współczynnika przewodzenia ciepła tych płyt rośnie nieznacznie w trakcie eksploatacji [37]. Dzięki dużej zawartości komórek zamkniętych chłonność wody (podobnie jak w sztywnych piankach PUR) nie jest duża i nie zmienia się po osiągnięciu stanu równowagi [1, 37].

Płyty PIR w okładzinach elastycznych stosowane są do izolacji dachów spadzistych i płaskich, izolacji ścian budynków, podłóg oraz różnych izolacji przemysłowych i handlowych. Ostatnią grupą gotowych wyrobów z pianki PIR są wycinane z nich bloki i płyty (bez okładzin). W tabeli 4 zamieszczono przykładowo właściwości płyt ELFOAM P200 wyciętych z bloków produkowanych w USA przez firmę Elliott [38]. Aplikacja tych płyt podobna jest do aplikacji płyt styropianowych. Stosuje się je tam, gdzie wymagana jest podwyższona odporność cieplna i trudnopalność izolacji.

W ostatnich latach w polskiej literaturze pojawiły się publikacje dotyczące zastosowania i właściwości pianek PIR [39–42].

Podsumowanie

Pianki poliizocyjanurowe (PIR) powstały w wyniku modyfikacji struktury polimeru uretanowego. Za pomocą reakcji cyklotrimeryzacji wprowadzono do makrocząsteczki poliuretanu pierścienie izocyjanurowe mające znacznie wyższą odporność termiczną w stosunku do innych wiązań występujących w polimerze. Pierścienie izocyjanurowe poprawiły odporność termiczną polimeru przy zachowaniu niskiej wartości współczynnika przewodzenia ciepła pianek oraz niskiej chłonności wody. Obecność tych pierścieni w strukturze polimeru spowodowała również skłonność do tworzenia pod wpływem wysokiej temperatury i płomienia stałej powłoki (zwęgliny) o niskim przewodzeniu ciepła odpornej na utlenianie. Powłoka zwęgliny chroni wnętrze pianek PIR przed destrukcją i rozszerzaniem się płomienia. Zjawisko to poprawia również odporność pianki na przepalanie. Istotną cechą pianek PIR jest możliwość wykorzystania do ich syntezy surowców wtórnych i odtwarzalnych, a także możliwość ich produkcji z wykorzystaniem wysokowydajnych urządzeń do produkcji pianki poliuretanowej. Wykorzystanie pianek PIR do prefabrykacji elementów budowlanych ułatwia i skraca czas ich montażu. Wszystkie te czynniki powodują, że pianki PIR stają się ważnym materiałem izolacyjnym o dużej dynamice rozwoju.

Literatura

  1. „The Polyurethanes Book”, ed. D. Randall, S. Lee, John Wiley&Sons, UK 2002.
  2. L. Żabski, „Pianki poliuretanowo-izocyjanurowe – nowy materiał termoizolacyjny dla budownictwa”, „Materiały Budowlane”, nr 1/2005, s. 46–47.
  3. H. Ulrich, „Unconventional Chemistry of Isocyanates”, „Journal of Elastomers and Plastics”, vol. 3 (2)/1971, pp. 97–111.
  4. K. Tokumoto, Y. Tamano, K.M. Gay, R. Van Maris, „An Insight into the Characteristics of Trimerisation Catalysts for Polyisocyanurate Foam Systems”, [w:] materiały konferencji „Polyurethanes 2005. Technical and Trade Fair Conference”, Houston – Texas, October 2005.
  5. J.E. Kresta, K.C. Frisch, „Comparative Studies of Isocyanurate and Isocyanurate-Urethane Foams”, „Journal of Cellular Plastics”, vol. 11 (2)/1975, pp. 267–278.
  6. H.E. Reymore, P.S. Carleton, R.A. Kolakowski, A.A.S. Sayigh, „Isocyanu rate Foams: Chemistry, Properties and Processing”, „Journal of Cellular Plastics”, vol. 11 (6)/1975, pp. 328–344.
  7. Y. Imai, G. Hattori, „Trimerization Catalysts for Isocyanurate Foams”, [w:] materiały konferencji „1980 International Urethane Conference”, Strasbourg 1980.
  8. G.F. Baumann, W. Dietrich, „Isocyanurate Rigid Foam: Relationship Between Structure and Properties”, „Journal of Cellular Plastics”, vol. 17 (3)/1981, pp. 144–147.
  9. T. Nawata, J.E. Kresta, K.C. Frisch, „Comparative Studies of Isocyanurate and Isocyanurate­‑Urethane Foams”, „Journal of Cellular Plastics”, vol. 11 (5)/1975, pp. 267–277.
  10. H.E. Reymore, R.J. Lockwood, H. Ulrich, „Novel Isocyanurate Foams Containing No Flame Retardant Additives”, „Journal of Cellular Plastics”, vol. 14 (6)/1978, pp. 332–340.
  11. M.J. Skowronski, A. DeLeon, „Isocyanurate Foam The Role of the Polyol”, „Journal of Cellular Plastics”, 15 (3)/1979, pp. 152–157.
  12. L. Żabski, A. Żyliński, W. Walczyk, B. Haszczyc, J. Papiński, „Flammability and Some Physical Properties of Rigid Poly(urethane-isocyanurate) Foams obtained from Aromatic Polyols”, [w:] materiały konferencji „Nehorlavost Polymernych Materialov”, Vol. 2, Dom Techniky CSVTS, Bratislava 1983, s. 18–128.
  13. „Terate polyols”, informacja techniczna firmy Invista, 2010.
  14. „Terol polyester polyols”, informacja techniczna firmy Oxid, 2007.
  15. „Stepanpol polyester polyols”, informacja techniczna firmy Stepan, 2011.
  16. A. DeLeon, D. Sheih, „PET Based Polyester Polyols; Do They Perform?”, [w:] materiały konferencji „Utech Asia ’97”, Crain Communications Ltd, London 1997.
  17. A. DeLeon, F. Lagrou, „New Aromatic Polyester Polyols for Hydrocarbon Blown Foams”, [w:] materiały konferencji „Utech 2000”,The Hague March 2000.
  18. R. Brooks, „Urethanes Technology International”, vol. 16 (1)/1999, pp. 34–43.
  19. J. Kusan-Bindel, „New foam formulations for PIR insulation boards”, [w:] materiały konferencji „Utech Conference”, Maastricht 2006.
  20. R. Sewell, R. Stubbs, L. Hickey, D. Norberg, „Novel Polyester Polyols – Helping MDI Go Further in Rigid Foams”, [w:] materiały konferencji „Utech Conference”, Maastricht 2006.
  21. J. Feighan, R. Steward, S.Singh, T. AbiSaleh, „Spray Foam Beyond HCFC-141b”, [w:] materiały konferencji „The API Polyurethanes Conference”, Salt Lake City 2002, s. 237–246.
  22. S. Schilling, D. Wardius, K. Lorentz, „Novel Natural Oil Polyols and Their Use in Rigid Polyurethane Insulating Foams”, [w:] materiały konferencji „Polyurethanes 2007. Technical Conference”,Orlando – Florida, September 2007.
  23. A. Guo, D. Demydov, W. Zhang, Z.S. Petrovic, „Polyols and Polyurethanes from Hydroformylation of Soybean Oil”, „Journal of Polymers and the Environment”, vol. 10 (1–2)/2002, pp. 49–52.
  24. Z.S. Petrovic, W. Zhang, I. Javni, „Structure and Properties of Polyurethanes Prepared from Triglyceride Polyols by Ozonolysis”, „Biomacromolecules”, vol. 6/2005, pp. 713–719.
  25. D.F. Sounik, „Novel Natural-Oil Based Rigid Foams for Demanding Applications: A Class I Polyisocyanurate Foam for Insulated Metal Building Panels”, [w:] materiały konferencji „Polyurethanes 2008. Technical Conference”, San Antonio – Texas, September 2008.
  26. Ch. Eilbracht, C. Schiller, P. Hohl, „Often Overlooked Factors in PIR Surfactant Development”, [w:] materiały konferencji „Polyurethanes 2005. Technical and Trade Fair Conference”, Houston – Texas, October 2005.
  27. T.W. Volz, M.J. Skowronski, „Comparison of Blowing Agent Performance in Isocyanurate Foams Used in the Production of Rigid Faced Continuous Panels”, [w:] materiały konferencji „Polyurethanes 2008. Technical Conference”, San Antonio – Texas, September 2008.
  28. J. Wu, C. Bertelo, L.Caron, „Trans-1,2-dichloroethylene for improving fire performance of urethane foam”, [w:] materiały konferencji „The API Polyurethanes 2003 Conference”, Orlando – Florida 2003, s. 454–462.
  29. H. Inohara, H. Nanno, T. Kimura, K. Yoshida, K. Yamamoto, „Newly Developed Superior Flame Retardant All Water- Blown Polyisocyanurate Foams”, [w:] materiały konferencji „Polyurethanes 2007. Technical Conference”, Orlando – Florida, September 2007.
  30. U. Stirna, U. Cabulis, I. Beverte, „Water-blown polyisocyanurate foams from vegetable oil (oleochemical) polyols”, [w:] materiały konferencji „Utech Conference”, Maastricht 2006.
  31. R.R. Romero, R.A. Grigsby, E.L. Rister, J.K. Pratt, D. Ridgway, „A Study of the Reaction Kinetics of Polyisocyanurate Foam Formulations using Real-Time FTIR”, [w:] materiały konferencji „The API Polyurethanes Expo 2004 Conference”, Las Vegas, October 2004, s. 71–80.
  32. P. Golini, P. Keller, I. Stuckemeier, L. Bertucelli, F. Pignagnoli, „Advances in polyurethane and polyisocyanurate solutions for the metal-faced insulating panels’ industry”, [w:] materiały konferencji „Utech Conference”, Maastricht 2006.
  33. A. van der Wal, „Novel High performance PIR-Systems for Continuous Panels with Easy Processing”, [w:] materiały konferencji „Utech Conference”, Maastricht 2006.
  34. EN 13823:2002, „Single Burning Item”.
  35. K. Dedecker, A. Abati, D. Stragapede, J. Gimeno, „New INSPIRE (R) adhesive-free PIR technology for sandwich panels”, [w:] materiały konferencji „Utech Conference”, Maastricht 2009.
  36. EN ISO 11925-2:2002, „Reaction to fire tests for building products. Part 2: Ignitability when subjected to direct impingement of flame”.
  37. Federation of European Rigid Polyurethane Foam Associations, Report No. 1, October 2006.
  38. Informacja techniczna firmy Elliott.
  39. L. Żabski, J. Papiński, „Pianki poliuretanowo-izocyjanurowe PIR”, „IZOLACJE”, nr 10/2002, s. 66–67.
  40. J. Sawicki, „Pianki izolacyjne PIR w budownictwie” (12.11.2010).
  41. J. Grabowski, „Pianki PIR a bezpieczeństwo ogniowe”, „IZOLACJE”, nr 3/2011, s. 46–47.
  42. A. Pietluszenko, „Płyty termoizolacyjne z PIR-u w miękkich okładzinach – właściwości i zastosowanie”, „IZOLACJE”, nr 10/2010, s. 20–21.

Chcesz być na bieżąco? Zapisz się do naszego newslettera!

Galeria zdjęć

Tytuł
przejdź do galerii

Komentarze

  • Marcin Marcin, 25.11.2019r., 16:35:07 W którym miesięczniku ukazał się ten artykuł?
  • Redakcja Redakcja, 26.11.2019r., 08:34:27 To artykuł z wydania 6/2012

Powiązane

dr hab. inż. Tomasz Tański, Roman Węglarz Prawidłowy dobór stalowych elementów konstrukcyjnych i materiałów lekkiej obudowy w środowiskach korozyjnych według wytycznych DAFA

Prawidłowy dobór stalowych elementów konstrukcyjnych i materiałów lekkiej obudowy w środowiskach korozyjnych według wytycznych DAFA Prawidłowy dobór stalowych elementów konstrukcyjnych i materiałów lekkiej obudowy w środowiskach korozyjnych według wytycznych DAFA

W świetle zawiłości norm, wymogów projektowych oraz tych istotnych z punktu widzenia inwestora okazuje się, że problem doboru właściwego materiału staje się bardzo złożony. Materiały odpowiadające zarówno...

W świetle zawiłości norm, wymogów projektowych oraz tych istotnych z punktu widzenia inwestora okazuje się, że problem doboru właściwego materiału staje się bardzo złożony. Materiały odpowiadające zarówno za estetykę, jak i przeznaczenie obiektu, m.in. w budownictwie przemysłowym, muszą sprostać wielu wymogom technicznym oraz wizualnym.

dr inż. Jarosław Mucha Współczesne metody inwentaryzacji i badań nieniszczących konstrukcji obiektów i budynków

Współczesne metody inwentaryzacji i badań nieniszczących konstrukcji obiektów i budynków Współczesne metody inwentaryzacji i badań nieniszczących konstrukcji obiektów i budynków

Projektowanie jest początkowym etapem realizacji wszystkich inwestycji budowlanych, mającym decydujący wpływ na kształt, funkcjonalność obiektu, optymalność rozwiązań technicznych, koszty realizacji, niezawodność...

Projektowanie jest początkowym etapem realizacji wszystkich inwestycji budowlanych, mającym decydujący wpływ na kształt, funkcjonalność obiektu, optymalność rozwiązań technicznych, koszty realizacji, niezawodność i trwałość w zakładanym okresie użytkowania. Często realizacja projektowanych inwestycji wykonywana jest w połączeniu z wykorzystaniem obiektów istniejących, które są w złym stanie technicznym, czy też nie posiadają aktualnej dokumentacji technicznej. Prawidłowe, skuteczne i optymalne projektowanie...

mgr inż. Cezariusz Magott, mgr inż. Maciej Rokiel Dokumentacja techniczna prac renowacyjnych – podstawowe zasady (cz. 1)

Dokumentacja techniczna prac renowacyjnych – podstawowe zasady (cz. 1) Dokumentacja techniczna prac renowacyjnych – podstawowe zasady (cz. 1)

Kontynuując zagadnienia związane z analizą dokumentacji technicznej skupiamy się tym razem na omówieniu dokumentacji robót renowacyjnych.

Kontynuując zagadnienia związane z analizą dokumentacji technicznej skupiamy się tym razem na omówieniu dokumentacji robót renowacyjnych.

dr inż. Bartłomiej Monczyński Trudności i ograniczenia związane z wykonywaniem wtórnej hydroizolacji poziomej metodą iniekcji

Trudności i ograniczenia związane z wykonywaniem wtórnej hydroizolacji poziomej metodą iniekcji Trudności i ograniczenia związane z wykonywaniem wtórnej hydroizolacji poziomej metodą iniekcji

Wykonywanie wtórnych hydroizolacji przeciw wilgoci kapilarnej metodą iniekcji można porównać do ocieplania budynku. Obie technologie nie są szczególnie trudne, dopóki mamy do czynienia z pojedynczą przegrodą.

Wykonywanie wtórnych hydroizolacji przeciw wilgoci kapilarnej metodą iniekcji można porównać do ocieplania budynku. Obie technologie nie są szczególnie trudne, dopóki mamy do czynienia z pojedynczą przegrodą.

Materiały prasowe news Rynek silikatów – 10 lat rozwoju

Rynek silikatów – 10 lat rozwoju Rynek silikatów – 10 lat rozwoju

Wdrażanie nowych rozwiązań w branży budowlanej wymaga czasu oraz dużego nakładu energii. Polski rynek nie jest zamknięty na innowacje, jednak podchodzi do nich z ostrożnością i ocenia przede wszystkim...

Wdrażanie nowych rozwiązań w branży budowlanej wymaga czasu oraz dużego nakładu energii. Polski rynek nie jest zamknięty na innowacje, jednak podchodzi do nich z ostrożnością i ocenia przede wszystkim pod kątem korzyści – finansowych, wykonawczych czy wizualnych. Producenci materiałów budowlanych, chcąc dopasować ofertę do potrzeb i wymagań polskich inwestycji, od wielu lat kontynuują pracę edukacyjną, legislacyjną oraz komunikacyjną z pozostałymi uczestnikami procesu budowlanego. Czy działania te...

MIWO – Stowarzyszenie Producentów Wełny Mineralnej: Szklanej i Skalnej Wełna mineralna zwiększa bezpieczeństwo pożarowe w domach drewnianych

Wełna mineralna zwiększa bezpieczeństwo pożarowe w domach drewnianych Wełna mineralna zwiększa bezpieczeństwo pożarowe  w domach drewnianych

W Polsce budynki drewniane to przede wszystkim domy jednorodzinne. Jak pokazują dane GUS, na razie stanowią 1% wszystkich budynków mieszkalnych oddanych do użytku w ciągu ostatniego roku, ale ich popularność...

W Polsce budynki drewniane to przede wszystkim domy jednorodzinne. Jak pokazują dane GUS, na razie stanowią 1% wszystkich budynków mieszkalnych oddanych do użytku w ciągu ostatniego roku, ale ich popularność wzrasta. Jednak drewno używane jest nie tylko przy budowie domów szkieletowych, w postaci więźby dachowej znajduje się też niemal w każdym domu budowanym w technologii tradycyjnej. Dlatego istotne jest, aby zwracać uwagę na bezpieczeństwo pożarowe budynków. W zwiększeniu jego poziomu pomaga izolacja...

dr inż. Krzysztof Pawłowski prof. PBŚ Projektowanie złączy budowlanych w aspekcie cieplno-wilgotnościowym (cz. 6)

Projektowanie złączy budowlanych w aspekcie cieplno-wilgotnościowym (cz. 6) Projektowanie złączy budowlanych w aspekcie cieplno-wilgotnościowym (cz. 6)

Integralną częścią projektowania budynków o niskim zużyciu energii (NZEB) jest minimalizacja strat ciepła przez ich elementy obudowy (przegrody zewnętrzne i złącza budowlane). Złącza budowlane, nazywane...

Integralną częścią projektowania budynków o niskim zużyciu energii (NZEB) jest minimalizacja strat ciepła przez ich elementy obudowy (przegrody zewnętrzne i złącza budowlane). Złącza budowlane, nazywane także mostkami cieplnymi (termicznymi), powstają m.in. w wyniku połączenia przegród budynku. Generują dodatkowe straty ciepła przez przegrody budowlane.

dr inż. Bartłomiej Monczyński Zastosowanie betonu wodonieprzepuszczalnego przy renowacji zawilgoconych budowli (cz. 41)

Zastosowanie betonu wodonieprzepuszczalnego przy renowacji zawilgoconych budowli (cz. 41) Zastosowanie betonu wodonieprzepuszczalnego przy renowacji zawilgoconych budowli (cz. 41)

Wykonanie hydroizolacji wtórnej w postaci nieprzepuszczalnej dla wody konstrukcji betonowej jest rozwiązaniem dopuszczalnym, jednak technicznie bardzo złożonym, a jego skuteczność, bardziej niż w przypadku...

Wykonanie hydroizolacji wtórnej w postaci nieprzepuszczalnej dla wody konstrukcji betonowej jest rozwiązaniem dopuszczalnym, jednak technicznie bardzo złożonym, a jego skuteczność, bardziej niż w przypadku jakiejkolwiek innej metody, determinowana jest przez prawidłowe zaprojektowanie oraz wykonanie – szczególnie istotne jest zapewnienie szczelności złączy, przyłączy oraz przepustów.

mgr inż. Cezariusz Magott, mgr inż. Maciej Rokiel Analiza dokumentacji technicznej prac renowacyjnych (cz. 2). Studium przypadku

Analiza dokumentacji technicznej prac renowacyjnych (cz. 2). Studium przypadku Analiza dokumentacji technicznej prac renowacyjnych (cz. 2). Studium przypadku

Wybór rozwiązania materiałowego i kompleksowej technologii naprawy obiektu poddanego ekspertyzie musi wynikać z wcześniej wykonanych badań. Rezultaty badań wstępnych w wielu przypadkach narzucają sposób...

Wybór rozwiązania materiałowego i kompleksowej technologii naprawy obiektu poddanego ekspertyzie musi wynikać z wcześniej wykonanych badań. Rezultaty badań wstępnych w wielu przypadkach narzucają sposób rozwiązania izolacji fundamentów.

Sebastian Malinowski Izolacje akustyczne w biurach

Izolacje akustyczne w biurach Izolacje akustyczne w biurach

Ekonomia pracy wymaga obecnie otwartych, ułatwiających komunikację środowisk biurowych. Odpowiednia akustyka w pomieszczeniach typu open space tworzy atmosferę, która sprzyja zarówno swobodnej wymianie...

Ekonomia pracy wymaga obecnie otwartych, ułatwiających komunikację środowisk biurowych. Odpowiednia akustyka w pomieszczeniach typu open space tworzy atmosferę, która sprzyja zarówno swobodnej wymianie informacji pomiędzy pracownikami, jak i ich koncentracji. Nie każdy jednak wie, że bardzo duży wpływ ma na to konstrukcja sufitu.

dr inż. Beata Anwajler, mgr inż. Anna Piwowar Bioniczny kompozyt komórkowy o właściwościach izolacyjnych

Bioniczny kompozyt komórkowy o właściwościach izolacyjnych Bioniczny kompozyt komórkowy o właściwościach izolacyjnych

Współcześnie uwaga badaczy oraz polityków z całego świata została zwrócona na globalny problem negatywnego oddziaływania energetyki na środowisko naturalne. Szczególnym zagadnieniem stało się zjawisko...

Współcześnie uwaga badaczy oraz polityków z całego świata została zwrócona na globalny problem negatywnego oddziaływania energetyki na środowisko naturalne. Szczególnym zagadnieniem stało się zjawisko zwiększania efektu cieplarnianego, które jest wskazywane jako skutek działalności człowieka. Za nadrzędną przyczynę tego zjawiska uznaje się emisję gazów cieplarnianych (głównie dwutlenku węgla) związaną ze spalaniem paliw kopalnych oraz ubóstwem, które powoduje trudności w zaspakajaniu podstawowych...

Fiberglass Fabrics s.c. Wiele zastosowań siatki z włókna szklanego

Wiele zastosowań siatki z włókna szklanego Wiele zastosowań siatki z włókna szklanego

Siatka z włókna szklanego jest wykorzystywana w systemach ociepleniowych jako warstwa zbrojąca tynków zewnętrznych. Ma za zadanie zapobiec ich pękaniu oraz powstawaniu rys podczas użytkowania. Siatka z...

Siatka z włókna szklanego jest wykorzystywana w systemach ociepleniowych jako warstwa zbrojąca tynków zewnętrznych. Ma za zadanie zapobiec ich pękaniu oraz powstawaniu rys podczas użytkowania. Siatka z włókna szklanego pozwala na przedłużenie żywotności całego systemu ociepleniowego w danym budynku. W sklepie internetowym FFBudowlany.pl oferujemy szeroki wybór różnych gramatur oraz sposobów aplikacji tego produktu.

dr inż. Krzysztof Pawłowski prof. PBŚ Całkowite przenikanie ciepła przez elementy obudowy budynku (cz. 7)

Całkowite przenikanie ciepła przez elementy obudowy budynku (cz. 7) Całkowite przenikanie ciepła przez elementy obudowy budynku (cz. 7)

W celu ustalenia bilansu energetycznego budynku niezbędna jest znajomość określania współczynnika strat ciepła przez przenikanie przez elementy obudowy budynku z uwzględnieniem przepływu ciepła w polu...

W celu ustalenia bilansu energetycznego budynku niezbędna jest znajomość określania współczynnika strat ciepła przez przenikanie przez elementy obudowy budynku z uwzględnieniem przepływu ciepła w polu jednowymiarowym (1D), dwuwymiarowym (2D) oraz trójwymiarowym (3D).

Redakcja miesięcznika IZOLACJE Fasady wentylowane w budynkach wysokich i wysokościowych

Fasady wentylowane w budynkach wysokich i wysokościowych Fasady wentylowane w budynkach wysokich i wysokościowych

Projektowanie obiektów wielopiętrowych wiąże się z większymi wyzwaniami w zakresie ochrony przed ogniem, wiatrem oraz stratami cieplnymi – szczególnie, jeśli pod uwagę weźmiemy popularny typ konstrukcji...

Projektowanie obiektów wielopiętrowych wiąże się z większymi wyzwaniami w zakresie ochrony przed ogniem, wiatrem oraz stratami cieplnymi – szczególnie, jeśli pod uwagę weźmiemy popularny typ konstrukcji ścian zewnętrznych wykańczanych fasadą wentylowaną. O jakich zjawiskach fizycznych i obciążeniach mowa? W jaki sposób determinują one dobór odpowiedniej izolacji budynku?

inż. Izabela Dziedzic-Polańska Fibrobeton – kompozyt cementowy do zadań specjalnych

Fibrobeton – kompozyt cementowy do zadań specjalnych Fibrobeton – kompozyt cementowy do zadań specjalnych

Beton jest najczęściej używanym materiałem budowlanym na świecie i jest stosowany w prawie każdym typie konstrukcji. Beton jest niezbędnym materiałem budowlanym ze względu na swoją trwałość, wytrzymałość...

Beton jest najczęściej używanym materiałem budowlanym na świecie i jest stosowany w prawie każdym typie konstrukcji. Beton jest niezbędnym materiałem budowlanym ze względu na swoją trwałość, wytrzymałość i wyjątkową długowieczność. Może wytrzymać naprężenia ściskające i rozciągające oraz trudne warunki pogodowe bez uszczerbku dla stabilności architektonicznej. Wytrzymałość betonu na ściskanie w połączeniu z wytrzymałością materiału wzmacniającego na rozciąganie poprawia ogólną jego trwałość. Beton...

prof. dr hab. inż. Łukasz Drobiec Projektowanie wzmocnień konstrukcji murowych z użyciem systemu FRCM (cz. 1)

Projektowanie wzmocnień konstrukcji murowych z użyciem systemu FRCM (cz. 1) Projektowanie wzmocnień konstrukcji murowych z użyciem systemu FRCM (cz. 1)

Wzmocnienie systemem FRCM polega na utworzeniu konstrukcji zespolonej: muru lub żelbetu ze wzmocnieniem, czyli kilkumilimetrową warstwą zaprawy z dodatkowym zbrojeniem. Jako zbrojenie stosuje się siatki...

Wzmocnienie systemem FRCM polega na utworzeniu konstrukcji zespolonej: muru lub żelbetu ze wzmocnieniem, czyli kilkumilimetrową warstwą zaprawy z dodatkowym zbrojeniem. Jako zbrojenie stosuje się siatki z włókien węglowych, siatki PBO (poliparafenilen-benzobisoxazol), siatki z włóknami szklanymi, aramidowymi, bazaltowymi oraz stalowymi o wysokiej wytrzymałości (UHTSS – Ultra High Tensile Strength Steel). Zbrojenie to jest osadzane w tzw. mineralnej matrycy cementowej, w której dopuszcza się niewielką...

mgr inż. Cezariusz Magott, mgr inż. Maciej Rokiel Analiza dokumentacji technicznej prac renowacyjnych (cz.3). Przykłady realizacji

Analiza dokumentacji technicznej prac renowacyjnych (cz.3). Przykłady realizacji Analiza dokumentacji technicznej prac renowacyjnych (cz.3). Przykłady realizacji

W artykule opisano szczegóły poprawnego wykonywania iniekcji w kontekście jakości prac renowacyjnych. Kiedy należy wykonać ocenę przegrody pod kątem możliwości wykonania iniekcji?

W artykule opisano szczegóły poprawnego wykonywania iniekcji w kontekście jakości prac renowacyjnych. Kiedy należy wykonać ocenę przegrody pod kątem możliwości wykonania iniekcji?

Paweł Siemieniuk Rodzaje stropów w budynkach jednorodzinnych

Rodzaje stropów w budynkach jednorodzinnych Rodzaje stropów w budynkach jednorodzinnych

Zadaniem stropu jest przede wszystkim podział budynku na kondygnacje. Ponieważ jednak nie jest to jego jedyna funkcja, rodzaj tej poziomej przegrody musi być dobrze przemyślany, i to już na etapie projektowania...

Zadaniem stropu jest przede wszystkim podział budynku na kondygnacje. Ponieważ jednak nie jest to jego jedyna funkcja, rodzaj tej poziomej przegrody musi być dobrze przemyślany, i to już na etapie projektowania domu. Taka decyzja jest praktycznie nieodwracalna, gdyż po wybudowaniu domu trudno ją zmienić.

inż. Izabela Dziedzic-Polańska Ekologiczne i ekonomiczne ujęcie termomodernizacji budynków mieszkalnych

Ekologiczne i ekonomiczne ujęcie termomodernizacji budynków mieszkalnych Ekologiczne i ekonomiczne ujęcie termomodernizacji budynków mieszkalnych

Termomodernizacja budynku jest ważna ze względu na jej korzyści dla środowiska i ekonomii. Właściwie wykonana termomodernizacja może znacznie zmniejszyć zapotrzebowanie budynku na energię i zmniejszyć...

Termomodernizacja budynku jest ważna ze względu na jej korzyści dla środowiska i ekonomii. Właściwie wykonana termomodernizacja może znacznie zmniejszyć zapotrzebowanie budynku na energię i zmniejszyć emisję gazów cieplarnianych związanych z ogrzewaniem i chłodzeniem. Ponadto, zmniejszenie kosztów ogrzewania i chłodzenia może przyczynić się do zmniejszenia kosztów eksploatacyjnych budynku, co może przełożyć się na zwiększenie jego wartości.

prof. dr hab. inż. Łukasz Drobiec Projektowanie wzmocnień konstrukcji murowych z wykorzystaniem systemu FRCM (cz. 2)

Projektowanie wzmocnień konstrukcji murowych z wykorzystaniem systemu FRCM (cz. 2) Projektowanie wzmocnień konstrukcji murowych z wykorzystaniem systemu FRCM (cz. 2)

Artykuł jest kontynuacją tekstu opublikowanego w numerze 2/2023 miesięcznika IZOLACJE.

Artykuł jest kontynuacją tekstu opublikowanego w numerze 2/2023 miesięcznika IZOLACJE.

dr inż. Gerard Brzózka Propozycja modyfikacji projektowania rezonansowych układów pochłaniających

Propozycja modyfikacji projektowania rezonansowych układów pochłaniających Propozycja modyfikacji projektowania rezonansowych układów pochłaniających

Podstawy do projektowania rezonansowych układów pochłaniających zostały zaproponowane w odniesieniu do rezonatorów komorowych perforowanych i szczelinowych przez Smithsa i Kostena już w 1951 r. [1]. Jej...

Podstawy do projektowania rezonansowych układów pochłaniających zostały zaproponowane w odniesieniu do rezonatorów komorowych perforowanych i szczelinowych przez Smithsa i Kostena już w 1951 r. [1]. Jej szeroką interpretację w polskiej literaturze przedstawili profesorowie Sadowski i Żyszkowski [2, 3]. Pewną uciążliwość tej propozycji stanowiła konieczność korzystania z nomogramów, co determinuje stosunkowo małą dokładność.

Adrian Hołub Uszkodzenia stropów – monitoring przemieszczeń, ugięć i spękań

Uszkodzenia stropów – monitoring przemieszczeń, ugięć i spękań Uszkodzenia stropów – monitoring przemieszczeń, ugięć i spękań

Corocznie słyszymy o katastrofach budowlanych związanych z zawaleniem stropów w budynkach o różnej funkcjonalności. Przed wystąpieniem o roszczenia do wykonawcy w odniesieniu do uszkodzeń stropu niezbędne...

Corocznie słyszymy o katastrofach budowlanych związanych z zawaleniem stropów w budynkach o różnej funkcjonalności. Przed wystąpieniem o roszczenia do wykonawcy w odniesieniu do uszkodzeń stropu niezbędne jest określenie, co było przyczyną destrukcji. Często jest to nie jeden, a zespół czynników nakładających się na siebie. Ważne jest zbadanie, czy błędy powstały na etapie projektowania, wykonawstwa czy nieprawidłowego użytkowania.

mgr inż. Cezariusz Magott, mgr inż. Maciej Rokiel Analiza dokumentacji technicznej prac renowacyjnych (cz. 4). Uszczelnienia typu wannowego

Analiza dokumentacji technicznej prac renowacyjnych (cz. 4). Uszczelnienia typu wannowego Analiza dokumentacji technicznej prac renowacyjnych (cz. 4). Uszczelnienia typu wannowego

W przypadku izolacji typu wannowego trzeba zwrócić szczególną uwagę na stan przegród. Chodzi o stan powierzchni oraz wilgotność. Jeżeli do budowy ścian fundamentowych piwnic nie zastosowano materiałów...

W przypadku izolacji typu wannowego trzeba zwrócić szczególną uwagę na stan przegród. Chodzi o stan powierzchni oraz wilgotność. Jeżeli do budowy ścian fundamentowych piwnic nie zastosowano materiałów całkowicie nieodpornych na wilgoć (np. beton komórkowy), to nie powinno być problemów związanych z bezpieczeństwem budynku, chociaż rozwiązanie z zewnętrzną powłoką uszczelniającą jest o wiele bardziej korzystne.

Farby KABE Nowoczesne systemy ociepleń KABE THERM z tynkami natryskowymi AKORD

Nowoczesne systemy ociepleń KABE THERM z tynkami natryskowymi AKORD Nowoczesne systemy ociepleń KABE THERM  z tynkami natryskowymi AKORD

Bogata oferta systemów ociepleń KABE THERM zawiera kompletny zestaw systemów ociepleń z tynkami do natryskowego (mechanicznego) wykonywania ochronno-dekoracyjnych, cienkowarstwowych wypraw tynkarskich....

Bogata oferta systemów ociepleń KABE THERM zawiera kompletny zestaw systemów ociepleń z tynkami do natryskowego (mechanicznego) wykonywania ochronno-dekoracyjnych, cienkowarstwowych wypraw tynkarskich. Natryskowe tynki cienkowarstwowe AKORD firmy Farby KABE, w stosunku do tynków wykonywanych ręcznie, wyróżniają się łatwą aplikacją, wysoką wydajnością, a przede wszystkim wyjątkowo równomierną i wyraźną fakturą.

Wybrane dla Ciebie

Zajrzyj do centrów hydroizolacji SIKA »

Zajrzyj do centrów hydroizolacji SIKA » Zajrzyj do centrów hydroizolacji SIKA »

Systemowa termomodernizacja to ciepło i estetyka »

Systemowa termomodernizacja to ciepło i estetyka » Systemowa termomodernizacja to ciepło i estetyka »

Płyty XPS – następca styropianu »

Płyty XPS – następca styropianu » Płyty XPS – następca styropianu »

Dach biosolarny - co to jest? »

Dach biosolarny - co to jest? » Dach biosolarny - co to jest? »

Usuń pleśń ze swojego domu »

Usuń pleśń ze swojego domu » Usuń pleśń ze swojego domu »

Budowanie szkieletowe czy modułowe? »

Budowanie szkieletowe czy modułowe? » Budowanie szkieletowe czy modułowe? »

Termomodernizacja z poszanowaniem wartości zabytków »

Termomodernizacja z poszanowaniem wartości zabytków » Termomodernizacja z poszanowaniem wartości zabytków »

Przekonaj się, jak inni izolują pianką poliuretanową »

Przekonaj się, jak inni izolują pianką poliuretanową » Przekonaj się, jak inni izolują pianką poliuretanową »

Papa dachowa, która oczyszcza powietrze »

Papa dachowa, która oczyszcza powietrze » Papa dachowa, która oczyszcza powietrze »

Podpowiadamy, jak wybrać system ociepleń

Podpowiadamy, jak wybrać system ociepleń Podpowiadamy, jak wybrać system ociepleń

Podpowiadamy, jak skutecznie przeprowadzić renowacje piwnicy »

Podpowiadamy, jak skutecznie przeprowadzić renowacje piwnicy » Podpowiadamy, jak skutecznie przeprowadzić renowacje piwnicy »

Prawidłowe wykonanie elewacji w systemie ETICS to jakość, żywotność i estetyka »

Prawidłowe wykonanie elewacji w systemie ETICS to jakość, żywotność i estetyka » Prawidłowe wykonanie elewacji w systemie ETICS to jakość, żywotność i estetyka »

Copyright © 2004-2019 Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Spółka komandytowa, nr KRS: 0000537655. Wszelkie prawa, w tym Autora, Wydawcy i Producenta bazy danych zastrzeżone. Jakiekolwiek dalsze rozpowszechnianie artykułów zabronione. Korzystanie z serwisu i zamieszczonych w nim utworów i danych wyłącznie na zasadach określonych w Zasadach korzystania z serwisu.
Portal Budowlany - Izolacje.com.pl

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim urządzeniu końcowym. W każdym momencie możesz dokonać zmiany ustawień przeglądarki dotyczących cookies. Nim Państwo zaczną korzystać z naszego serwisu prosimy o zapoznanie się z naszą polityką prywatności oraz Informacją o Cookies. Więcej szczegółów w naszej Polityce Prywatności oraz Informacji o Cookies. Administratorem Państwa danych osobowych jest Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Sp.K., nr KRS: 0000537655, z siedzibą w 04-112 Warszawa, ul. Karczewska 18, tel. +48 22 810-21-24, właściciel strony www.izolacje.com.pl. Twoje Dane Osobowe będą chronione zgodnie z wytycznymi polityki prywatności www.izolacje.com.pl oraz zgodnie z Rozporządzeniem Parlamentu Europejskiego i Rady (UE) 2016/679 z dnia 27 kwietnia 2016r i z Ustawą o ochronie danych osobowych Dz.U. 2018 poz. 1000 z dnia 10 maja 2018r.