Izolacje.com.pl

Zaawansowane wyszukiwanie

Jak określać charakterystykę energetyczną budynków?

Miesięczna metoda obliczania zapotrzebowania na ciepło i chłód

Energetyczneswiadectwo.com.pl

Energetyczneswiadectwo.com.pl

Zapotrzebowanie na energię netto do ogrzewania i chłodzenia stanowi istotny składnik ogólnej charakterystyki energetycznej budynków. Ponadto wiele wskaźników opartych na zapotrzebowaniu na energię netto jest podstawą do porównywania koncepcji architektonicznych i szacowania przyszłych kosztów eksploatacji obiektów, w szerszej perspektywie zaś – do oceny wpływu budynków na środowisko. W wybranych przypadkach (dla budynków mieszkalnych wielorodzinnych i zamieszkania zbiorowego) wskaźniki zapotrzebowania na energię cieplną stanowią podstawę przepisów wykonawczych dotyczących ochrony cieplnej jako parametry decydujące o spełnieniu wymagań podstawowych. Tym samym zastąpiły one poprzednio obowiązujące graniczne wartości izolacyjności przegród zewnętrznych, takie jak opór cieplny i współczynnik przenikania ciepła. Dzięki temu podczas oceny projektu architektonicznego coraz większego znaczenia nabierają problemy ochrony cieplnej budynków.

Zobacz także

Recticel Insulation Nowoczesne technologie termoizolacyjne Recticel w renowacji budynków historycznych

Nowoczesne technologie termoizolacyjne Recticel w renowacji budynków historycznych Nowoczesne technologie termoizolacyjne Recticel w renowacji budynków historycznych

W dzisiejszych czasach zachowanie dziedzictwa kulturowego i jednoczesne dostosowanie budynków do współczesnych standardów efektywności energetycznej stanowi duże wyzwanie zarówno dla inwestora, projektanta...

W dzisiejszych czasach zachowanie dziedzictwa kulturowego i jednoczesne dostosowanie budynków do współczesnych standardów efektywności energetycznej stanowi duże wyzwanie zarówno dla inwestora, projektanta jak i wykonawcy. Niejednokrotnie w ramach inwestycji, począwszy już od etapu opracowywania projektu, okazuje się, że tradycyjne materiały izolacyjne i metody ich aplikacji nie są wystarczające, aby zapewnić właściwe parametry termiczne i należytą ochronę wartości historycznych budynku.

Sievert Polska Sp. z o.o. System ociepleń quick-mix S-LINE

System ociepleń quick-mix S-LINE System ociepleń quick-mix S-LINE

System ociepleń quick-mix S-LINE to rozwiązanie warte rozważenia zawsze, kiedy zachodzi potrzeba wykonania termomodernizacji ścian zewnętrznych. Umożliwia montaż nowej izolacji termicznej na istniejącym...

System ociepleń quick-mix S-LINE to rozwiązanie warte rozważenia zawsze, kiedy zachodzi potrzeba wykonania termomodernizacji ścian zewnętrznych. Umożliwia montaż nowej izolacji termicznej na istniejącym już systemie ociepleń, który nie spełnia dzisiejszych wymagań pod kątem wartości współczynnika przenikania ciepła U = 0,2 W/(m²·K).

Paroc Polska Zarządzanie usterkami fasad otynkowanych po sezonie grzewczym i ich wpływ na ocieplenie ścian

Zarządzanie usterkami fasad otynkowanych po sezonie grzewczym i ich wpływ na ocieplenie ścian Zarządzanie usterkami fasad otynkowanych po sezonie grzewczym i ich wpływ na ocieplenie ścian

Wraz z nadejściem cieplejszych dni powinniśmy przeprowadzić kontrolę fasady naszego domu. Śnieg, deszcz oraz skoki temperatur mogą niekorzystnie wpływać na elewacje, pozostawiając defekty, które nie zawsze...

Wraz z nadejściem cieplejszych dni powinniśmy przeprowadzić kontrolę fasady naszego domu. Śnieg, deszcz oraz skoki temperatur mogą niekorzystnie wpływać na elewacje, pozostawiając defekty, które nie zawsze są widoczne na pierwszy rzut oka. Pęknięcia, odbarwienia oraz ubytki tynku, jeśli nie zostaną odpowiednio szybko wychwycone i naprawione, mogą prowadzić do długotrwałych uszkodzeń. Z tego artykułu dowiesz się, jak rozpoznawać i rozwiązywać typowe problemy związane z elewacją, by zapewnić jej długotrwałą...

Obowiązująca od 1 stycznia 2006 r. dyrektywa 2002/91/WE w sprawie charakterystyki energetycznej budynków [1] (EPBD – Energy Performance of Buildings Directive) otwiera nowe pole do analiz zapotrzebowania na energię netto, z uwzględnieniem także energii potrzebnej do chłodzenia budynków. Przedstawiamy podstawowe założenia bilansowej metody miesięcznej zgodnie z obowiązującą normą PN-EN ISO 13790 [2] wchodzącą w skład zestawu norm związanych z dyrektywą.

Bilans energetyczny

Zakłada się, że bez względu na rodzaj przyjętej metody bilans energetyczny rozpatrywany jest rozdzielnie na poziomie budynku oraz na poziomie instalacji technicznych. W bilansie cieplnym budynku uwzględnia się energię do ogrzewania oraz chłodzenia na podstawie bilansu cieplnego pojedynczej strefy lub poszczególnych stref termicznych. W skład bilansu cieplnego strefy stanowiącego o zapotrzebowaniu na energię do ogrzewania lub chłodzenia na poziomie budynku wchodzą straty bądź zyski ciepła wynikające z:

  • wymiany ciepła na drodze przewodzenia pomiędzy strefą o założonej temperaturze wewnętrznej a środowiskiem zewnętrznym, związanej z różnicą temperatur powietrza wewnętrznego w strefie i powietrza zewnętrznego,
  • wymiany ciepła na drodze wentylacji (wywołanej wentylacją naturalną lub mechaniczną) pomiędzy strefą o założonej temperaturze wewnętrznej a środowiskiem zewnętrznym, związanej z różnicą temperatur powietrza wewnętrznego w strefie i powietrza nawiewanego (z uwzględnieniem ewentualnego odzysku ciepła),
  • wymiany ciepła na drodze przewodzenia oraz na drodze wentylacji pomiędzy strefą o założonej temperaturze wewnętrznej a strefą sąsiednią, związanej z różnicą temperatur powietrza wewnętrznego w obu strefach (z uwzględnieniem ewentualnego odzysku ciepła),
  • zysków ciepła od osób, urządzeń, oświetlenia oraz ciepła traconego z lub do instalacji ogrzewania, chłodzenia, przygotowania ciepłej wody bądź wentylacji,
  • zysków ciepła od promieniowania słonecznego, bezpośredniego (przez elementy przeszklone) lub pośredniego (przez absorpcję ciepła na zewnętrznych powierzchniach przegród pełnych),
  • magazynowania lub oddawania ciepła przez elementy konstrukcji (jedynie w wypadku metody dynamicznej).

Na poziomie instalacji (poza zapotrzebowaniem na energię do ogrzewania lub chłodzenia) w bilansie cieplnym uwzględniana jest: energia pochodząca z systemów energii odnawialnej, strata energii wynikająca ze sprawności wytwarzania, magazynowania, przesyłu, emisji i regulacji, energia pomocnicza niezbędna do zasilania systemu grzewczego, chłodniczego lub wentylacyjnego, dodatkowa energia wyprodukowana przez system grzewczy lub chłodniczy w przypadku systemów kogeneracyjnych.

Wybór metody obliczeniowej

Obliczenia zapotrzebowania na ciepło bądź chłód dokonywane są najczęściej przy użyciu dwóch rodzajów metod: quasi-statycznych bądź dynamicznych. Metody quasi-statyczne określają bilans cieplny dla odpowiednio długiego okresu obliczeniowego (najczęściej jednego miesiąca lub sezonu grzewczego). W metodach tych nie jest możliwe pełne rozpatrzenie efektów chwilowych, które są uwzględniane poprzez współczynniki wykorzystania zysków lub strat ciepła. Metody dynamiczne, określające bilans cieplny dla krótkich okresów (przeważnie 1 godz.), pozwalają na dokładniejsze wzięcie pod uwagę efektów związanych z magazynowaniem energii ciepła lub chłodu w elementach konstrukcji budynku.

Szczególnie istotne różnice w sposobie uwzględnienia wykorzystania zysków ciepła można zaobserwować w pomieszczeniach o znacznych okresowych zyskach ciepła oraz wykorzystania uzysku energii do przestrzeni nieogrzewanych, np. ogrodów zimowych. Ważna jest też masa termiczna budynku i sposób jego użytkowania. W ramach procedur obliczeniowych określonych w normie PN-EN ISO 13790 [2], zależnie od stopnia złożoności, istnieje możliwość wyboru spośród następujących trzech metod:

  • miesięcznej metody quasi-statycznej,
  • uproszczonej,
  • godzinowej metody dynamicznej (godzinowej quasi-statycznej), s
  • zczegółowej metody symulacyjnej.

Metoda miesięczna daje poprawne wyniki jedynie w obliczeniach w cyklu rocznym (w odniesieniu do sezonu grzewczego i chłodniczego). Jeśli chodzi o poszczególne miesiące, a w szczególności okresy przejściowe pomiędzy sezonami grzewczym a chłodniczym, wyniki uzyskane metodą statyczną obarczone są istotnymi błędami. Uproszczona godzinowa metoda dynamiczna zalecana jest w celu lepszego uwzględnienia zmiennego w ciągu dnia sposobu użytkowania obiektu. W szczególności gdy zakłada się zmienną w ciągu doby temperaturę powietrza wewnętrznego oraz sterowanie temperaturą (w zależności od warunków wewnętrznych i zewnętrznych), wielkością strumienia powietrza wentylacyjnego lub urządzeniami zacieniającymi. Metoda ta daje poprawne wyniki dla poszczególnych miesięcy. W przypadku obiektów złożonych w celu otrzymania właściwej charakterystyki energetycznej w poszczególnych godzinach niezbędne jest skorzystanie ze szczegółowej metody symulacyjnej. Stopień złożoności może wynikać z charakteru, funkcji i sposobu użytkowania, a także rozwiązań konstrukcyjnych i przestrzennych.

Procedura obliczeniowa

Określanie granic przestrzeni ogrzewanej Granicami przestrzeni ogrzewanej są wszystkie elementy budynku oddzielające przestrzeń ogrzewaną od środowiska zewnętrznego albo od sąsiednich ogrzewanych lub nieogrzewanych przestrzeni. Jeśli dla całego budynku zakładana jest temperatura stała, a wewnętrzne i słoneczne zyski ciepła są stosunkowo niewielkie i równomiernie rozłożone w całym budynku, dopuszcza się stosowanie obliczeń jak dla modelu jednostrefowego (bez podziału na poszczególne strefy). Oznacza to, że całą przestrzeń budynku traktuje się jako jedną strefę termiczną (objętość powietrza o właściwościach jednorodnych). Podział na strefy nie jest wymagany, gdy:

  • temperatura stref nie różni się o więcej niż 4 K,
  • strefa obsługiwana jest przez tę samą instalację grzewczą bądź chłodniczą,
  • instalacja wentylacji mechanicznej (o ile występuje) obsługuje co najmniej 80% powierzchni analizowanej przestrzeni,
  • różnice w wielkości strumienia powietrza wentylacyjnego między poszczególnymi strefami są nie większe niż czterokrotna ilość dla najmniejszej wymiany lub drzwi pomiędzy strefami są często otwierane.

W pozostałych wypadkach budynek należy podzielić na poszczególne strefy termiczne. Jeżeli nie ma wymiany energii pomiędzy strefami na drodze przewodzenia lub wymiany powietrza, każda ze stref może być potraktowana niezależnie. Zapotrzebowanie na ciepło lub chłód można wtedy wyznaczać, używając procedury obliczeń jednostrefowych i przyjmując adiabatyczne granice między strefami. Zapotrzebowanie na energię dla całego budynku jest wtedy sumą zapotrzebowania energii obliczonych dla wszystkich stref. Jeśli istnieje możliwość wymiany energii między strefami, należy to uwzględnić w obliczeniach dla poszczególnych stref.

Określanie temperatury pojedynczej strefy

W przypadku obliczeń jednostrefowych, gdy temperatura poszczególnych przestrzeni nie jest jednakowa, należy wyznaczyć ją jako średnią ważoną (1) dla ogrzewania oraz (2) dla chłodzenia:

gdzie:

Θint,H,set – jest wymaganą dla ogrzewania temperaturą strefy s,

Af,s – jest powierzchnią strefy s.

gdzie:

Θint,C,set – jest wymaganą dla chłodzenia temperaturą strefy s,

Af,s – jest powierzchnią strefy s.

Ustalanie długości sezonu grzewczego i chłodniczego – metoda miesięczna Długość sezonu grzewczego obliczana jest jako suma długości odpowiednich okresów ogrzewania w odniesieniu do każdego miesiąca fH,m:

gdzie:

fH – to długość okresu w poszczególnych miesiącach, w których dana strefa jest ogrzewana, określana na podstawie zależności:

gdzie:

QH,nd – jest miesięcznym zapotrzebowaniem na energię do ogrzewania,

QC,nd – jest miesięcznym zapotrzebowaniem na energię do chłodzenia,

QV,pre–heat – jest miesięcznym zapotrzebowaniem na energię do wstępnego podgrzania powietrza wentylacyjnego,

QV,pre–cool – jest miesięcznym zapotrzebowaniem na energię do wstępnego schłodzenia powietrza wentylacyjnego. Długość sezonu chłodniczego obliczana jest jako suma długości odpowiednich okresów chłodzenia dla każdego miesiąca fC,m:

gdzie:

fC – to długość okresu w poszczególnych miesiącach, w których dana strefa jest chłodzona, wyznaczana z następującej zależności:

gdzie:

QH,nd – jest miesięcznym zapotrzebowaniem na energię do ogrzewania,

QC,nd – jest miesięcznym zapotrzebowaniem na energię do chłodzenia.

Wyznaczanie zapotrzebowania na energię do ogrzewania dla pojedynczej strefy – metoda miesięczna

Zapotrzebowanie na energię do ogrzewania ciągłego wyznaczane jest na podstawie następującej zależności:

gdzie:

QH,nd,cont – jest zapotrzebowaniem na energię do ogrzewania ciągłego,

QH,ht – są całkowitymi stratami ciepła dla trybu ogrzewania (równanie 9),

QH,gn – są całkowitymi zyskami ciepła dla trybu ogrzewania (równanie 13),

ηH,gn – jest bezwymiarowym współczynnikiem wykorzystania zysków ciepła.

Wyznaczanie zapotrzebowania na energię do chłodzenia dla pojedynczej strefy – metoda miesięczna

Zapotrzebowanie na energię do chłodzenia ciągłego wyznaczane jest z następującej zależności:

gdzie:

QC,nd,cont – jest zapotrzebowaniem na energię do chłodzenia ciągłego,

QC,ht – są całkowitymi stratami ciepła dla trybu chłodzenia (równanie 9),

QC,gn – są całkowitymi zyskami ciepła dla trybu chłodzenia (równanie 13),

ηC,gn – jest bezwymiarowym współczynnikiem wykorzystania strat ciepła.

Całkowite straty ciepła w odniesieniu do każdej strefy budynku i każdego kroku czasowego wynoszą:

gdzie:

Qtr – są całkowitymi stratami ciepła przez przenikanie,

Qve – są całkowitymi stratami ciepła na podgrzanie powietrza wentylacyjnego.

Całkowite straty ciepła przez przenikanie oblicza się następująco:

gdzie:

ρaca – jest pojemnością cieplną jednostkowej objętości powietrza,

qve,k,mn – jest uśrednionym po czasie strumieniem powietrza wentylacyjnego [m3/s],

bve,k – jest współczynnikiem uwzględniającym różnice między temperaturą powietrza nawiewanego a temperaturą zewnętrzną,

Θe – jest średnią temperaturą zewnętrzną dla danego okresu obliczeniowego,

t – jest długością okresu obliczeniowego.

Całkowite zyski ciepła dla każdej strefy budynku i każdego kroku czasowego wynoszą:

gdzie:

Qint – jest sumą wewnętrznych zysków ciepła,

Qsol – jest sumą zysków ciepła od promieniowania słonecznego.

Wewnętrzne zyski ciepła wynoszą:

gdzie:

btr,l – jest współczynnikiem redukcji, który należy przyjmować zgodnie z prPN-prEN ISO 13789 [4],

Φsol,mn,k – jest średnią mocą wewnętrznych zysków ciepła w analizowanej przestrzeni ogrzewanej,

Φsol,mn,u,l – jest średnią mocą wewnętrznych zysków ciepła w sąsiedniej przestrzeni nieogrzewanej,

t – jest długością okresu obliczeniowego.

Przy wyznaczaniu zysków wewnętrznych uwzględnia się zyski ciepła od przebywających w pomieszczeniach osób, sprzętu, oświetlenia, ciepłej wody, urządzeń obsługujących systemy grzewcze chłodnicze i wentylacyjne oraz od procesów mogących być źródłem wewnętrznych zysków ciepła. Zyski ciepła od promieniowania słonecznego oblicza się następująco:

gdzie:

btr,l – jest współczynnikiem redukcji, który należy przyjmować zgodnie z prPN-prEN ISO 13789 [4],

Φsol,mn,k – jest średnią mocą zysków ciepła od promieniowania słonecznego do analizowanej przestrzeni ogrzewanej,

Φsol,mn,u,l – jest średnią mocą zysków ciepła od promieniowania słonecznego do sąsiedniej przestrzeni nieogrzewanej,

t – jest długością okresu obliczeniowego.

Strumień zysków ciepła od promieniowania słonecznego wyznacza się z uwzględnieniem ograniczenia dopływu promieniowania słonecznego przez elementy zacieniające oraz promieniowania cieplnego przegród budynku zgodnie z zależnością:

gdzie:

Fsh,ob,k – jest współczynnikiem zacienienia,

Asol,k – jest efektywną powierzchnią skupiającą zorientowaną o danej orientacji i kącie nachylenia,

Isol,k – jest gęstością strumienia promieniowania słonecznego,

Fr,k – jest współczynnikiem promieniowania cieplnego przegród zależnym od kąta nachylenia danej powierzchni,

Φr,k – jest strumieniem promieniowania cieplnego przegród budynku. Wyznaczanie współczynnika wykorzystania zysków ciepła.

Współczynnik wykorzystania zysków ciepła ηH,gn jest stosunkiem zysków do strat ciepła do ogrzewania oraz parametru numerycznego γH zależnego od stałej czasowej budynku τ.

gdzie:

aH0 = 1 – dla metody miesięcznej,

τ – jest stałą czasową budynku.

Wyznaczanie współczynnika wykorzystania strat ciepła

Współczynnik wykorzystania strat ciepła ηC,ls jest funkcją zysków do strat ciepła do chłodzenia γC oraz parametru numerycznego aC zależnego od stałej czasowej budynku τ. Jeżeli γC>1 oraz γC ≠ 1, to:

gdzie:

aC,O = 1 – dla metody miesięcznej,

τ – jest stałą czasową budynku.

Obliczanie stałej czasowej budynku (lub strefy)

Stałą czasową wyznacza się na podstawie wzoru:

gdzie:

Cm – jest wewnętrzną masą termiczną budynku lub strefy,

Htr,adj – jest całkowitym współczynnikiem strat ciepła przez przenikanie,

Hve,adj – jest całkowitym współczynnikiem strat ciepła na podgrzanie powietrza wentylacyjnego. 

Omówienie metody 

Podstawowym założeniem przedstawionej metody bilansowej wyznaczania zapotrzebowania na ciepło i chłód jest przyjęcie w obliczeniach uśrednionych danych wejściowych w odniesieniu do okresu obliczeniowego (dla warunków Polski np. w odniesieniu do 1 mies.). Podstawowe uproszczenie polega na wprowadzeniu współczynników wykorzystania świadczących o statycznym charakterze metody. Może to wywoływać istotne niedokładności w obliczeniach dotyczących tzw. okresów przejściowych (początek i koniec sezonu grzewczego) oraz w odniesieniu do budynków o skomplikowanym układzie funkcjonalno-systemowym lub użytkowanych w sposób nietypowy. Szczególnie istotnych różnic należy oczekiwać w przypadku budynków „ciężkich”, w których masa termiczna konstrukcji odgrywa istotną rolę w akumulacji ciepła i chłodu w odniesieniu do zysków ciepła (wewnętrznych oraz od promieniowania słonecznego).

Bez względu na rodzaj przyjętej metody przed przystąpieniem do obliczeń konieczne jest podzielenie kubatury budynku na przestrzenie o tych samych lub zbliżonych warunkach wewnętrznych wraz z ewentualnym łączeniem wybranych przestrzeni we wspólne strefy termiczne. W przypadku przestrzeni scalonych należy dodatkowo wyznaczyć temperaturę wymaganą dla nowo powstałej strefy. Kolejnym krokiem jest ustalenie długości okresu ogrzewania i chłodzenia. W przypadku budynków o jednakowej funkcji i konstrukcji oraz obsługiwanej przez jeden system techniczny jest to zadanie stosunkowo łatwe. Problemy pojawiają się w momencie, gdy pewne wybrane strefy znacznie odbiegają od pozostałych, np. pod względem wielkości zysków ciepła, izolacyjności przegród zewnętrznych lub masy termicznej. Wtedy okresy ogrzewania i chłodzenia mogą być przesunięte w czasie, w drastycznych przypadkach zaś mogą w ogóle nie występować (np. w pomieszczeniach o dużych zyskach ciepła).

Wyznaczanie zapotrzebowania na energię do ogrzewania i chłodzenia (z uwzględnieniem jedynie ciepła jawnego) oparte jest na podstawowych równaniach bilansowych: bilansie strat i zysków ciepła. Zarówno straty, jak i zyski wyznaczane są na podstawie wartości uśrednionych. Są to parametry środowiska zewnętrznego (średnie temperatury bądź średnie sumy promieniowania) i wewnętrznego (zyski ciepła lub krotność wymiany powietrza wentylacyjnego).

Zyski wewnętrzne są przeważnie zgodne w czasie ze stratami na podgrzanie powietrza wentylacyjnego, jednak w przypadku zysków od promieniowania słonecznego jest to zależne od funkcji budynku. Z punktu widzenia energochłonności ważne jest nie tylko, jaki procent zysków (ciepła lub chłodu) jesteśmy w stanie w budynku zmagazynować, lecz także na ile ta dodatkowa energia jest w stanie pokryć rzeczywiste zapotrzebowanie. Trzy metody obliczeniowe zaproponowane w normie PN-EN ISO 13790 [2] charakteryzują się zupełnie innym stopniem złożoności rozwiązania. Dotyczy to zarówno poziomu szczegółowości danych wejściowych i założeń na etapie definiowania modelu, jak i dokładności otrzymanych wyników, ich wiarygodności i możliwości uogólnienia. Spodziewane różnice wynikają głównie z dynamicznej reakcji budynku na zjawiska chwilowe związane z okresowymi zyskami ciepła oraz dynamiką cieplną obudowy zależną od masy termicznej.

Podsumowanie

W artykule omówiono podstawowe założenia dotyczące wyznaczania zapotrzebowania na ciepło i chłód budynków według miesięcznej metody bilansowej. W założeniach jest ona najbardziej zbliżona do obowiązującej obecnie metody określonej w normie PN-B-02025 [3]. Ze względu na istotne uproszczenia nie może ona jednak znaleźć zastosowania we wszystkich typach budynków. Zamieszczone w najnowszej wersji normy PN- -EN ISO 13790 [2] pozostałe algorytmy obliczeniowe pozwalają na znacznie większą swobodę wyboru stopnia złożoności modelu. Konsekwencją może się okazać jednak brak odpowiednich danych, określanych często na poziomie krajowym. W związku z tym decyzja w sprawie wyboru metody powinna być kompromisem pomiędzy rzeczywistym wyposażeniem technicznym budynków w Polsce, zachowaniem proporcji między długością sezonu grzewczego i chłodniczego oraz dostępnością odpowiednich danych i narzędzi obliczeniowych. Godne zastanowienia byłoby zróżnicowanie zalecanych metod w zależności od rodzaju obiektu i obsługujących go instalacji technicznych, a także pozostawienie możliwości zmiany przyjętej metody w latach późniejszych.

Literatura

  1. Dyrektywa 2002/91/WE Parlamentu Europejskiego i Rady Europy z dnia 16 grudnia 2002 r. w sprawie charakterystyki energetycznej budynków (DzUrz WE L 1 z 04.01.2003 r., s. 65–71).
  2. PN-EN ISO 13790:2008 „Energetyczne właściwości użytkowe budynków. Obliczanie zużycia energii do ogrzewania i chłodzenia”.
  3. PN-B-02025:2001 „Obliczanie sezonowego zapotrzebowania na ciepło do ogrzewania budynków mieszkalnych i zamieszkania zbiorowego”.
  4. PN-prEN ISO 13789:2008 „Cieplne właściwości użytkowe budynków. Współczynnik przenoszenia ciepła przez przenikanie i wentylację. Metoda obliczania”. 

CZERWIEC 2008

Chcesz być na bieżąco? Zapisz się do naszego newslettera!

Komentarze

Powiązane

dr inż. Krzysztof Pawłowski prof. PBŚ Projektowanie cieplne przegród stykających się z gruntem

Projektowanie cieplne przegród stykających się z gruntem Projektowanie cieplne przegród stykających się z gruntem

Dla przegród stykających się z gruntem straty ciepła przez przenikanie należą do trudniejszych w obliczeniu. Strumienie cieplne wypływające z ogrzewanego wnętrza mają swój udział w kształtowaniu rozkładu...

Dla przegród stykających się z gruntem straty ciepła przez przenikanie należą do trudniejszych w obliczeniu. Strumienie cieplne wypływające z ogrzewanego wnętrza mają swój udział w kształtowaniu rozkładu temperatur w gruncie pod budynkiem i jego otoczeniu.

Jacek Sawicki, konsultacja dr inż. Szczepan Marczyński – Clematis Źródło Dobrych Pnączy, prof. Jacek Borowski Roślinne izolacje elewacji

Roślinne izolacje elewacji Roślinne izolacje elewacji

Naturalna zieleń na elewacjach obecna jest od dawna. W formie pnączy pokrywa fasady wielu średniowiecznych budowli, wspina się po murach secesyjnych kamienic, nierzadko zdobi frontony XX-wiecznych budynków...

Naturalna zieleń na elewacjach obecna jest od dawna. W formie pnączy pokrywa fasady wielu średniowiecznych budowli, wspina się po murach secesyjnych kamienic, nierzadko zdobi frontony XX-wiecznych budynków jednorodzinnych czy współczesnych, nowoczesnych obiektów budowlanych, jej istnienie wnosi wyjątkowe zalety estetyczne i użytkowe.

mgr inż. Wojciech Rogala Projektowanie i wznoszenie ścian akustycznych w budownictwie wielorodzinnym na przykładzie przegród z wyrobów silikatowych

Projektowanie i wznoszenie ścian akustycznych w budownictwie wielorodzinnym na przykładzie przegród z wyrobów silikatowych Projektowanie i wznoszenie ścian akustycznych w budownictwie wielorodzinnym na przykładzie przegród z wyrobów silikatowych

Ściany z elementów silikatowych w ciągu ostatnich 20 lat znacznie zyskały na popularności [1]. Stanowią obecnie większość przegród akustycznych w budynkach wielorodzinnych, gdzie z uwagi na wiele źródeł...

Ściany z elementów silikatowych w ciągu ostatnich 20 lat znacznie zyskały na popularności [1]. Stanowią obecnie większość przegród akustycznych w budynkach wielorodzinnych, gdzie z uwagi na wiele źródeł hałasu izolacyjność akustyczna stanowi jeden z głównych czynników wpływających na komfort.

LERG SA Poliole poliestrowe Rigidol®

Poliole poliestrowe Rigidol® Poliole poliestrowe Rigidol®

Od lat obserwujemy dynamicznie rozwijający się trend eko, który stopniowo z mody konsumenckiej zaczął wsiąkać w coraz głębsze dziedziny życia społecznego, by w końcu dotrzeć do korzeni funkcjonowania wielu...

Od lat obserwujemy dynamicznie rozwijający się trend eko, który stopniowo z mody konsumenckiej zaczął wsiąkać w coraz głębsze dziedziny życia społecznego, by w końcu dotrzeć do korzeni funkcjonowania wielu biznesów. Obecnie marki, które chcą odnieść sukces, powinny oferować swoim odbiorcom zdecydowanie więcej niż tylko produkt czy usługę wysokiej jakości.

mgr inż. arch. Tomasz Rybarczyk Prefabrykacja w budownictwie

Prefabrykacja w budownictwie Prefabrykacja w budownictwie

Prefabrykacja w projektowaniu i realizacji budynków jest bardzo nośnym tematem, co przekłada się na duże zainteresowanie wśród projektantów i inwestorów tą tematyką. Obecnie wzrasta realizacja budynków...

Prefabrykacja w projektowaniu i realizacji budynków jest bardzo nośnym tematem, co przekłada się na duże zainteresowanie wśród projektantów i inwestorów tą tematyką. Obecnie wzrasta realizacja budynków z prefabrykatów. Można wśród nich wyróżnić realizacje realizowane przy zastosowaniu elementów prefabrykowanych stosowanych od lat oraz takich, które zostały wyprodukowane na specjalne zamówienie do zrealizowania jednego obiektu.

dr inż. Gerard Brzózka Płyty warstwowe o wysokich wskaźnikach izolacyjności akustycznej – studium przypadku

Płyty warstwowe o wysokich wskaźnikach izolacyjności akustycznej – studium przypadku Płyty warstwowe o wysokich wskaźnikach izolacyjności akustycznej – studium przypadku

Płyty warstwowe zastosowane jako przegrody akustyczne stanowią rozwiązanie charakteryzujące się dobrymi własnościami izolacyjnymi głównie w paśmie średnich, jak również wysokich częstotliwości, przy obciążeniu...

Płyty warstwowe zastosowane jako przegrody akustyczne stanowią rozwiązanie charakteryzujące się dobrymi własnościami izolacyjnymi głównie w paśmie średnich, jak również wysokich częstotliwości, przy obciążeniu niewielką masą powierzchniową. W wielu zastosowaniach wyparły typowe rozwiązania przegród masowych (np. z ceramiki, elementów wapienno­ piaskowych, betonu, żelbetu czy gipsu), które cechują się kilkukrotnie wyższymi masami powierzchniowymi.

dr hab. inż. Tomasz Tański, Roman Węglarz Prawidłowy dobór stalowych elementów konstrukcyjnych i materiałów lekkiej obudowy w środowiskach korozyjnych według wytycznych DAFA

Prawidłowy dobór stalowych elementów konstrukcyjnych i materiałów lekkiej obudowy w środowiskach korozyjnych według wytycznych DAFA Prawidłowy dobór stalowych elementów konstrukcyjnych i materiałów lekkiej obudowy w środowiskach korozyjnych według wytycznych DAFA

W świetle zawiłości norm, wymogów projektowych oraz tych istotnych z punktu widzenia inwestora okazuje się, że problem doboru właściwego materiału staje się bardzo złożony. Materiały odpowiadające zarówno...

W świetle zawiłości norm, wymogów projektowych oraz tych istotnych z punktu widzenia inwestora okazuje się, że problem doboru właściwego materiału staje się bardzo złożony. Materiały odpowiadające zarówno za estetykę, jak i przeznaczenie obiektu, m.in. w budownictwie przemysłowym, muszą sprostać wielu wymogom technicznym oraz wizualnym.

dr inż. Jarosław Mucha Współczesne metody inwentaryzacji i badań nieniszczących konstrukcji obiektów i budynków

Współczesne metody inwentaryzacji i badań nieniszczących konstrukcji obiektów i budynków Współczesne metody inwentaryzacji i badań nieniszczących konstrukcji obiektów i budynków

Projektowanie jest początkowym etapem realizacji wszystkich inwestycji budowlanych, mającym decydujący wpływ na kształt, funkcjonalność obiektu, optymalność rozwiązań technicznych, koszty realizacji, niezawodność...

Projektowanie jest początkowym etapem realizacji wszystkich inwestycji budowlanych, mającym decydujący wpływ na kształt, funkcjonalność obiektu, optymalność rozwiązań technicznych, koszty realizacji, niezawodność i trwałość w zakładanym okresie użytkowania. Często realizacja projektowanych inwestycji wykonywana jest w połączeniu z wykorzystaniem obiektów istniejących, które są w złym stanie technicznym, czy też nie posiadają aktualnej dokumentacji technicznej. Prawidłowe, skuteczne i optymalne projektowanie...

mgr inż. Cezariusz Magott, mgr inż. Maciej Rokiel Dokumentacja techniczna prac renowacyjnych – podstawowe zasady (cz. 1)

Dokumentacja techniczna prac renowacyjnych – podstawowe zasady (cz. 1) Dokumentacja techniczna prac renowacyjnych – podstawowe zasady (cz. 1)

Kontynuując zagadnienia związane z analizą dokumentacji technicznej skupiamy się tym razem na omówieniu dokumentacji robót renowacyjnych.

Kontynuując zagadnienia związane z analizą dokumentacji technicznej skupiamy się tym razem na omówieniu dokumentacji robót renowacyjnych.

dr inż. Bartłomiej Monczyński Trudności i ograniczenia związane z wykonywaniem wtórnej hydroizolacji poziomej metodą iniekcji

Trudności i ograniczenia związane z wykonywaniem wtórnej hydroizolacji poziomej metodą iniekcji Trudności i ograniczenia związane z wykonywaniem wtórnej hydroizolacji poziomej metodą iniekcji

Wykonywanie wtórnych hydroizolacji przeciw wilgoci kapilarnej metodą iniekcji można porównać do ocieplania budynku. Obie technologie nie są szczególnie trudne, dopóki mamy do czynienia z pojedynczą przegrodą.

Wykonywanie wtórnych hydroizolacji przeciw wilgoci kapilarnej metodą iniekcji można porównać do ocieplania budynku. Obie technologie nie są szczególnie trudne, dopóki mamy do czynienia z pojedynczą przegrodą.

Materiały prasowe news Rynek silikatów – 10 lat rozwoju

Rynek silikatów – 10 lat rozwoju Rynek silikatów – 10 lat rozwoju

Wdrażanie nowych rozwiązań w branży budowlanej wymaga czasu oraz dużego nakładu energii. Polski rynek nie jest zamknięty na innowacje, jednak podchodzi do nich z ostrożnością i ocenia przede wszystkim...

Wdrażanie nowych rozwiązań w branży budowlanej wymaga czasu oraz dużego nakładu energii. Polski rynek nie jest zamknięty na innowacje, jednak podchodzi do nich z ostrożnością i ocenia przede wszystkim pod kątem korzyści – finansowych, wykonawczych czy wizualnych. Producenci materiałów budowlanych, chcąc dopasować ofertę do potrzeb i wymagań polskich inwestycji, od wielu lat kontynuują pracę edukacyjną, legislacyjną oraz komunikacyjną z pozostałymi uczestnikami procesu budowlanego. Czy działania te...

MIWO – Stowarzyszenie Producentów Wełny Mineralnej: Szklanej i Skalnej Wełna mineralna zwiększa bezpieczeństwo pożarowe w domach drewnianych

Wełna mineralna zwiększa bezpieczeństwo pożarowe w domach drewnianych Wełna mineralna zwiększa bezpieczeństwo pożarowe  w domach drewnianych

W Polsce budynki drewniane to przede wszystkim domy jednorodzinne. Jak pokazują dane GUS, na razie stanowią 1% wszystkich budynków mieszkalnych oddanych do użytku w ciągu ostatniego roku, ale ich popularność...

W Polsce budynki drewniane to przede wszystkim domy jednorodzinne. Jak pokazują dane GUS, na razie stanowią 1% wszystkich budynków mieszkalnych oddanych do użytku w ciągu ostatniego roku, ale ich popularność wzrasta. Jednak drewno używane jest nie tylko przy budowie domów szkieletowych, w postaci więźby dachowej znajduje się też niemal w każdym domu budowanym w technologii tradycyjnej. Dlatego istotne jest, aby zwracać uwagę na bezpieczeństwo pożarowe budynków. W zwiększeniu jego poziomu pomaga izolacja...

dr inż. Krzysztof Pawłowski prof. PBŚ Projektowanie złączy budowlanych w aspekcie cieplno-wilgotnościowym (cz. 6)

Projektowanie złączy budowlanych w aspekcie cieplno-wilgotnościowym (cz. 6) Projektowanie złączy budowlanych w aspekcie cieplno-wilgotnościowym (cz. 6)

Integralną częścią projektowania budynków o niskim zużyciu energii (NZEB) jest minimalizacja strat ciepła przez ich elementy obudowy (przegrody zewnętrzne i złącza budowlane). Złącza budowlane, nazywane...

Integralną częścią projektowania budynków o niskim zużyciu energii (NZEB) jest minimalizacja strat ciepła przez ich elementy obudowy (przegrody zewnętrzne i złącza budowlane). Złącza budowlane, nazywane także mostkami cieplnymi (termicznymi), powstają m.in. w wyniku połączenia przegród budynku. Generują dodatkowe straty ciepła przez przegrody budowlane.

dr inż. Bartłomiej Monczyński Zastosowanie betonu wodonieprzepuszczalnego przy renowacji zawilgoconych budowli (cz. 41)

Zastosowanie betonu wodonieprzepuszczalnego przy renowacji zawilgoconych budowli (cz. 41) Zastosowanie betonu wodonieprzepuszczalnego przy renowacji zawilgoconych budowli (cz. 41)

Wykonanie hydroizolacji wtórnej w postaci nieprzepuszczalnej dla wody konstrukcji betonowej jest rozwiązaniem dopuszczalnym, jednak technicznie bardzo złożonym, a jego skuteczność, bardziej niż w przypadku...

Wykonanie hydroizolacji wtórnej w postaci nieprzepuszczalnej dla wody konstrukcji betonowej jest rozwiązaniem dopuszczalnym, jednak technicznie bardzo złożonym, a jego skuteczność, bardziej niż w przypadku jakiejkolwiek innej metody, determinowana jest przez prawidłowe zaprojektowanie oraz wykonanie – szczególnie istotne jest zapewnienie szczelności złączy, przyłączy oraz przepustów.

mgr inż. Cezariusz Magott, mgr inż. Maciej Rokiel Analiza dokumentacji technicznej prac renowacyjnych (cz. 2). Studium przypadku

Analiza dokumentacji technicznej prac renowacyjnych (cz. 2). Studium przypadku Analiza dokumentacji technicznej prac renowacyjnych (cz. 2). Studium przypadku

Wybór rozwiązania materiałowego i kompleksowej technologii naprawy obiektu poddanego ekspertyzie musi wynikać z wcześniej wykonanych badań. Rezultaty badań wstępnych w wielu przypadkach narzucają sposób...

Wybór rozwiązania materiałowego i kompleksowej technologii naprawy obiektu poddanego ekspertyzie musi wynikać z wcześniej wykonanych badań. Rezultaty badań wstępnych w wielu przypadkach narzucają sposób rozwiązania izolacji fundamentów.

Sebastian Malinowski Izolacje akustyczne w biurach

Izolacje akustyczne w biurach Izolacje akustyczne w biurach

Ekonomia pracy wymaga obecnie otwartych, ułatwiających komunikację środowisk biurowych. Odpowiednia akustyka w pomieszczeniach typu open space tworzy atmosferę, która sprzyja zarówno swobodnej wymianie...

Ekonomia pracy wymaga obecnie otwartych, ułatwiających komunikację środowisk biurowych. Odpowiednia akustyka w pomieszczeniach typu open space tworzy atmosferę, która sprzyja zarówno swobodnej wymianie informacji pomiędzy pracownikami, jak i ich koncentracji. Nie każdy jednak wie, że bardzo duży wpływ ma na to konstrukcja sufitu.

dr inż. Beata Anwajler, mgr inż. Anna Piwowar Bioniczny kompozyt komórkowy o właściwościach izolacyjnych

Bioniczny kompozyt komórkowy o właściwościach izolacyjnych Bioniczny kompozyt komórkowy o właściwościach izolacyjnych

Współcześnie uwaga badaczy oraz polityków z całego świata została zwrócona na globalny problem negatywnego oddziaływania energetyki na środowisko naturalne. Szczególnym zagadnieniem stało się zjawisko...

Współcześnie uwaga badaczy oraz polityków z całego świata została zwrócona na globalny problem negatywnego oddziaływania energetyki na środowisko naturalne. Szczególnym zagadnieniem stało się zjawisko zwiększania efektu cieplarnianego, które jest wskazywane jako skutek działalności człowieka. Za nadrzędną przyczynę tego zjawiska uznaje się emisję gazów cieplarnianych (głównie dwutlenku węgla) związaną ze spalaniem paliw kopalnych oraz ubóstwem, które powoduje trudności w zaspakajaniu podstawowych...

Fiberglass Fabrics s.c. Wiele zastosowań siatki z włókna szklanego

Wiele zastosowań siatki z włókna szklanego Wiele zastosowań siatki z włókna szklanego

Siatka z włókna szklanego jest wykorzystywana w systemach ociepleniowych jako warstwa zbrojąca tynków zewnętrznych. Ma za zadanie zapobiec ich pękaniu oraz powstawaniu rys podczas użytkowania. Siatka z...

Siatka z włókna szklanego jest wykorzystywana w systemach ociepleniowych jako warstwa zbrojąca tynków zewnętrznych. Ma za zadanie zapobiec ich pękaniu oraz powstawaniu rys podczas użytkowania. Siatka z włókna szklanego pozwala na przedłużenie żywotności całego systemu ociepleniowego w danym budynku. W sklepie internetowym FFBudowlany.pl oferujemy szeroki wybór różnych gramatur oraz sposobów aplikacji tego produktu.

dr inż. Krzysztof Pawłowski prof. PBŚ Całkowite przenikanie ciepła przez elementy obudowy budynku (cz. 7)

Całkowite przenikanie ciepła przez elementy obudowy budynku (cz. 7) Całkowite przenikanie ciepła przez elementy obudowy budynku (cz. 7)

W celu ustalenia bilansu energetycznego budynku niezbędna jest znajomość określania współczynnika strat ciepła przez przenikanie przez elementy obudowy budynku z uwzględnieniem przepływu ciepła w polu...

W celu ustalenia bilansu energetycznego budynku niezbędna jest znajomość określania współczynnika strat ciepła przez przenikanie przez elementy obudowy budynku z uwzględnieniem przepływu ciepła w polu jednowymiarowym (1D), dwuwymiarowym (2D) oraz trójwymiarowym (3D).

Redakcja miesięcznika IZOLACJE Fasady wentylowane w budynkach wysokich i wysokościowych

Fasady wentylowane w budynkach wysokich i wysokościowych Fasady wentylowane w budynkach wysokich i wysokościowych

Projektowanie obiektów wielopiętrowych wiąże się z większymi wyzwaniami w zakresie ochrony przed ogniem, wiatrem oraz stratami cieplnymi – szczególnie, jeśli pod uwagę weźmiemy popularny typ konstrukcji...

Projektowanie obiektów wielopiętrowych wiąże się z większymi wyzwaniami w zakresie ochrony przed ogniem, wiatrem oraz stratami cieplnymi – szczególnie, jeśli pod uwagę weźmiemy popularny typ konstrukcji ścian zewnętrznych wykańczanych fasadą wentylowaną. O jakich zjawiskach fizycznych i obciążeniach mowa? W jaki sposób determinują one dobór odpowiedniej izolacji budynku?

inż. Izabela Dziedzic-Polańska Fibrobeton – kompozyt cementowy do zadań specjalnych

Fibrobeton – kompozyt cementowy do zadań specjalnych Fibrobeton – kompozyt cementowy do zadań specjalnych

Beton jest najczęściej używanym materiałem budowlanym na świecie i jest stosowany w prawie każdym typie konstrukcji. Beton jest niezbędnym materiałem budowlanym ze względu na swoją trwałość, wytrzymałość...

Beton jest najczęściej używanym materiałem budowlanym na świecie i jest stosowany w prawie każdym typie konstrukcji. Beton jest niezbędnym materiałem budowlanym ze względu na swoją trwałość, wytrzymałość i wyjątkową długowieczność. Może wytrzymać naprężenia ściskające i rozciągające oraz trudne warunki pogodowe bez uszczerbku dla stabilności architektonicznej. Wytrzymałość betonu na ściskanie w połączeniu z wytrzymałością materiału wzmacniającego na rozciąganie poprawia ogólną jego trwałość. Beton...

prof. dr hab. inż. Łukasz Drobiec Projektowanie wzmocnień konstrukcji murowych z użyciem systemu FRCM (cz. 1)

Projektowanie wzmocnień konstrukcji murowych z użyciem systemu FRCM (cz. 1) Projektowanie wzmocnień konstrukcji murowych z użyciem systemu FRCM (cz. 1)

Wzmocnienie systemem FRCM polega na utworzeniu konstrukcji zespolonej: muru lub żelbetu ze wzmocnieniem, czyli kilkumilimetrową warstwą zaprawy z dodatkowym zbrojeniem. Jako zbrojenie stosuje się siatki...

Wzmocnienie systemem FRCM polega na utworzeniu konstrukcji zespolonej: muru lub żelbetu ze wzmocnieniem, czyli kilkumilimetrową warstwą zaprawy z dodatkowym zbrojeniem. Jako zbrojenie stosuje się siatki z włókien węglowych, siatki PBO (poliparafenilen-benzobisoxazol), siatki z włóknami szklanymi, aramidowymi, bazaltowymi oraz stalowymi o wysokiej wytrzymałości (UHTSS – Ultra High Tensile Strength Steel). Zbrojenie to jest osadzane w tzw. mineralnej matrycy cementowej, w której dopuszcza się niewielką...

mgr inż. Cezariusz Magott, mgr inż. Maciej Rokiel Analiza dokumentacji technicznej prac renowacyjnych (cz.3). Przykłady realizacji

Analiza dokumentacji technicznej prac renowacyjnych (cz.3). Przykłady realizacji Analiza dokumentacji technicznej prac renowacyjnych (cz.3). Przykłady realizacji

W artykule opisano szczegóły poprawnego wykonywania iniekcji w kontekście jakości prac renowacyjnych. Kiedy należy wykonać ocenę przegrody pod kątem możliwości wykonania iniekcji?

W artykule opisano szczegóły poprawnego wykonywania iniekcji w kontekście jakości prac renowacyjnych. Kiedy należy wykonać ocenę przegrody pod kątem możliwości wykonania iniekcji?

Paweł Siemieniuk Rodzaje stropów w budynkach jednorodzinnych

Rodzaje stropów w budynkach jednorodzinnych Rodzaje stropów w budynkach jednorodzinnych

Zadaniem stropu jest przede wszystkim podział budynku na kondygnacje. Ponieważ jednak nie jest to jego jedyna funkcja, rodzaj tej poziomej przegrody musi być dobrze przemyślany, i to już na etapie projektowania...

Zadaniem stropu jest przede wszystkim podział budynku na kondygnacje. Ponieważ jednak nie jest to jego jedyna funkcja, rodzaj tej poziomej przegrody musi być dobrze przemyślany, i to już na etapie projektowania domu. Taka decyzja jest praktycznie nieodwracalna, gdyż po wybudowaniu domu trudno ją zmienić.

Wybrane dla Ciebie

Wełna skalna jako materiał termoizolacyjny »

Wełna skalna jako materiał termoizolacyjny » Wełna skalna jako materiał termoizolacyjny »

Systemowa termomodernizacja to ciepło i estetyka »

Systemowa termomodernizacja to ciepło i estetyka » Systemowa termomodernizacja to ciepło i estetyka »

Płyty XPS – następca styropianu »

Płyty XPS – następca styropianu » Płyty XPS – następca styropianu »

Dach biosolarny - co to jest? »

Dach biosolarny - co to jest? » Dach biosolarny - co to jest? »

Zobacz, które płyty termoizolacyjne skutecznie ochronią dom przed zimnem »

Zobacz, które płyty termoizolacyjne skutecznie ochronią dom przed zimnem » Zobacz, które płyty termoizolacyjne skutecznie ochronią dom przed zimnem »

Budowanie szkieletowe czy modułowe? »

Budowanie szkieletowe czy modułowe? » Budowanie szkieletowe czy modułowe? »

Termomodernizacja z poszanowaniem wartości zabytków »

Termomodernizacja z poszanowaniem wartości zabytków » Termomodernizacja z poszanowaniem wartości zabytków »

Przekonaj się, jak inni izolują pianką poliuretanową »

Przekonaj się, jak inni izolują pianką poliuretanową » Przekonaj się, jak inni izolują pianką poliuretanową »

Papa dachowa, która oczyszcza powietrze »

Papa dachowa, która oczyszcza powietrze » Papa dachowa, która oczyszcza powietrze »

Podpowiadamy, jak wybrać system ociepleń

Podpowiadamy, jak wybrać system ociepleń Podpowiadamy, jak wybrać system ociepleń

Podpowiadamy, jak skutecznie przeprowadzić renowacje piwnicy »

Podpowiadamy, jak skutecznie przeprowadzić renowacje piwnicy » Podpowiadamy, jak skutecznie przeprowadzić renowacje piwnicy »

300% rozciągliwości membrany - TAK! »

300% rozciągliwości membrany - TAK! » 300% rozciągliwości membrany - TAK! »

Copyright © 2004-2019 Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Spółka komandytowa, nr KRS: 0000537655. Wszelkie prawa, w tym Autora, Wydawcy i Producenta bazy danych zastrzeżone. Jakiekolwiek dalsze rozpowszechnianie artykułów zabronione. Korzystanie z serwisu i zamieszczonych w nim utworów i danych wyłącznie na zasadach określonych w Zasadach korzystania z serwisu.
Portal Budowlany - Izolacje.com.pl

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim urządzeniu końcowym. W każdym momencie możesz dokonać zmiany ustawień przeglądarki dotyczących cookies. Nim Państwo zaczną korzystać z naszego serwisu prosimy o zapoznanie się z naszą polityką prywatności oraz Informacją o Cookies. Więcej szczegółów w naszej Polityce Prywatności oraz Informacji o Cookies. Administratorem Państwa danych osobowych jest Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Sp.K., nr KRS: 0000537655, z siedzibą w 04-112 Warszawa, ul. Karczewska 18, tel. +48 22 810-21-24, właściciel strony www.izolacje.com.pl. Twoje Dane Osobowe będą chronione zgodnie z wytycznymi polityki prywatności www.izolacje.com.pl oraz zgodnie z Rozporządzeniem Parlamentu Europejskiego i Rady (UE) 2016/679 z dnia 27 kwietnia 2016r i z Ustawą o ochronie danych osobowych Dz.U. 2018 poz. 1000 z dnia 10 maja 2018r.