W krajach rozwiniętych ok. 40% całkowitego zużycia energii pochłaniana jest przez budynki [1], z czego ponad 55% wykorzystywane jest do ogrzewania i chłodzenia pomieszczeń [2].
Obecnie większość z tej energii dostarczana jest ze źródeł nieodnawialnych, co przyczynia się do degradacji środowiska naturalnego i znacznych kosztów ogrzewania/chłodzenia. Wobec tego należy skoncentrować się na zwiększeniu dbałości o rozwój budownictwa zrównoważonego, którego celem jest ograniczenie negatywnego wpływu budynków na środowisko naturalne oraz zdrowie człowieka. Budownictwo zrównoważone ma za zadanie zapewnić jak najniższe zużycie energii podczas produkcji oraz w czasie eksploatacji i nie wpływać przy tym negatywnie na środowisko [3],[4]. Musi być energooszczędne oraz zapewnić komfort użytkowania.
W artykule skoncentrowano się na przedstawieniu sposobu oceny komfortu termicznego w budynkach poddanych analizie. Jako najważniejsze parametry charakteryzujące klimat przyjęto:
- temperaturę powietrza ta [°C],
- temperaturę promieniowania termicznego otoczenia tMR [°C],
- wilgotność powietrza H [%],
- prędkość [m/s],
- a także ciśnienie atmosferyczne pa [Pa].
W celu zbadania komfortu wykonano długoterminowe obserwacje, przeprowadzone w okresie grzewczym w dwóch różnych budynkach mieszkalnych. Eksperymenty wykonano w budynku jednorodzinnym (budynek nr 1) oraz w mieszkaniu budynku wielorodzinnego (budynek nr 2). Oba budynki zlokalizowane były w klimacie umiarkowanym przejściowym, czyli w klimacie o zmiennych stanach pogody.
Podczas pomiarów budynki były eksploatowane – użytkowane jako budynki mieszkalne.
W pracy skoncentrowano się na zbadaniu dwóch wskaźników określających komfort termiczny PMV (ang. Predicted Mean Vote - przewidywana cena średnia) oraz PPD (ang. Predicted Percentage Dissatisfied - przewidywany odsetek osób niezadowolonych). Wskaźnik PMV stosowany jest w opisie komfortu cieplnego w pomieszczeniach zamkniętych i opisuje wrażenia cieplne człowieka. Natomiast wskaźnik PPD stanowi prognozę liczby osób odczuwających brak komfortu cieplnego.
Przeczytaj też: Wartości deklarowane i obliczeniowe parametrów izolacyjnych materiałów budowlanych >>>
Ze względu na to, że komfort termiczny, obok hałasu i wystroju wnętrza, decyduje o warunkach panujących w pomieszczeniu, w pracy wykonano szczegółową analizę tego właśnie parametru.
Charakterystyka budynków poddanych analizie
Budynek nr 1 powstał w latach 50. XX w. w technologii tradycyjnej jako dwukondygnacyjny i całkowicie podpiwniczony. W 2012 r. wykonano termomodernizację.
Mury zewnętrzne wykonano z cegły pełnej gr. 38 cm. Mury zewnętrzne w poziomie kondygnacji nadziemnych ocieplono w technologii ETICS z zastosowaniem polistyrenu ekspandowanego (styropianu) FS-20 gr. 15 cm. Więźbę dachową całkowicie przebudowano podczas termomodernizacji. Dach wykonano jako drewniany stromy, wielospadowy, o konstrukcji jętkowej.
Dokumentacja projektowa przewidywała następujący układ warstw stropu nad I piętrem (od góry):
- folia zbrojona paroprzepuszczalna,
- wełna mineralna gr. 24 cm,
- folia paroprzepuszczalna,
- drewniane belki stropowe 10×24 cm,
- podsufitka drewniana gr. 1,5 cm,
- sufit podwieszany gipsowo-kartonowy na ruszcie stalowym.
Dach drewniany stromy zaprojektowano dla następującego układu warstw (od góry): dachówka, łaty 4,0×5,0 cm, kontrłaty 2,5×5,0 cm, krokwie 8×14 cm, folia dachowa zbrojona (RYS. 1–2). Budynek wyposażony był w system wentylacji grawitacyjnej.
Ze względu na to, że budynek posiada dwie kondygnacje nadziemne i jedną podziemną, w celu uproszczenia, badania wykonano dla dwóch pomieszczeń: kuchni i salonu. Pomieszczenia wybrane do analizy - kuchnia i salon - stanowiły samodzielną część użytkową, tzn. występował w ich obszarze wlot i wylot powietrza wentylacyjnego. Były szczelnie oddzielone od pozostałych pomieszczeń i stanowiły główną funkcję użytkową w budynku.
Budynek nr 2 zrealizowany został jako czterokondygnacyjny, całkowicie podpiwniczony, w technologii tradycyjnej udoskonalonej. Wybudowano go w latach 2010–2012.
Mury zewnętrzne zaprojektowano z bloków wapienno-piaskowych 6NFD W+W klasy 15 gr. 25 cm, a stropy międzykondygnacyjne - jako masywne, żelbetowe gr. 20 cm. Ocieplenie murów zewnętrznych w poziomie kondygnacji nadziemnych zaprojektowano w technologii ETICS z zastosowaniem polistyrenu ekspandowanego (styropianu) FS-20 gr. 14 cm.
Więźbę dachową zaprojektowano jako dach drewniany stromy, wielospadowy o konstrukcji jętkowej.
Dokumentacja projektowa przewidywała następujący układ warstw stropu nad III piętrem (od góry):
- folia zbrojona paroprzepuszczalna,
- wełna szklana gr. 24 cm,
- folia paroprzepuszczalna,
- strop żelbetowy gr. 18 cm,
- tynk gipsowy maszynowy gr. 1 cm.
Dach drewniany stromy zaprojektowano dla następującego układu warstw (od góry):
- blachodachówka, łaty 5,0×6,0 cm,
- kontrłaty 2,5×5,0 cm,
- krokwie 8×16 cm,
- folia dachowa zbrojona o niskiej paroprzepuszczalności (RYS. 3).
![]() |
RYS. 3. Szkic mieszkania w budynku nr 2; rys. autorów. |
Budynek wyposażony był w system wentylacji naturalnej (grawitacyjnej), który został zaprojektowany i wykonany zgodnie z obowiązującymi przepisami i normami [5], [6].
Przewody wentylacji grawitacyjnej zaprojektowano i wykonano z pustaków ceramicznych 19×19 cm o przekroju przewodu Ø15 cm, które zostały obmurowane ścianami gr. 8 cm z kształtki ściennej silikatowej klasy 7,5 na zaprawie cementowo-wapiennej.
Powyżej ostatniej kondygnacji, w części wyprowadzonej ponad połać dachową, wszystkie przewody obmurowane zostały ścianami gr. 12 cm z cegły silikatowej pełnej klasy 7,5, murowane na zaprawie cementowo-wapiennej.
DOŁĄCZ DO NEWSLETTERA – kliknij tutaj » |