Izolacje.com.pl

Sposoby uszczelnień i metody renowacji zawilgoconych ścian piwnic

Modes of insulation and methods of renovation of humid cellar walls

FOT. 13. Ściana piwnicy zabezpieczona lepikiem asfaltowym
TEKTUM.com

FOT. 13. Ściana piwnicy zabezpieczona lepikiem asfaltowym


TEKTUM.com

Izolacje przeciwwodne i przeciwwilgociowe nie są czynnikiem decydującym o jakości konstrukcji budynku i jego bezpieczeństwie, mają natomiast znaczący wpływ na jego trwałość i komfort użytkowania.

Zobacz także

Jacek Sawicki Uciążliwa pleśń na ścianie - skąd się bierze i jak ją zwalczać?

Uciążliwa pleśń na ścianie - skąd się bierze i jak ją zwalczać? Uciążliwa pleśń na ścianie - skąd się bierze i jak ją zwalczać?

Na obecność pleśni na ścianach wpływa wiele czynników, które tworzą sprzyjający klimat dla jej rozwoju. Pleśń najlepiej rozwija się w środowisku o podwyższonym zawilgoceniu i umiarkowanych temperaturach....

Na obecność pleśni na ścianach wpływa wiele czynników, które tworzą sprzyjający klimat dla jej rozwoju. Pleśń najlepiej rozwija się w środowisku o podwyższonym zawilgoceniu i umiarkowanych temperaturach. Na ścianach wewnątrz pomieszczeń są to miejsca występowania tzw. mostków termicznych, spowodowane brakiem docieplenia muru, gdzie na styku powierzchni ściany z otoczeniem występuje zjawisko skraplania się wilgoci.

TRUTEK FASTENERS POLSKA Wzmacnianie bydynków wielkopłytowych w systemie TRUTEK TCM

Wzmacnianie bydynków wielkopłytowych w systemie TRUTEK TCM Wzmacnianie bydynków wielkopłytowych w systemie TRUTEK TCM

TRUTEK FASTENERS POLSKA jest firmą specjalizującą się w produkcji najwyższej jakości systemów zamocowań przeznaczonych do budownictwa lądowego, drogowego i przemysłu. W ofercie firmy znajdują się wyroby...

TRUTEK FASTENERS POLSKA jest firmą specjalizującą się w produkcji najwyższej jakości systemów zamocowań przeznaczonych do budownictwa lądowego, drogowego i przemysłu. W ofercie firmy znajdują się wyroby tradycyjne – od wielu lat stosowane w budownictwie, a także nowatorskie, zaawansowane technologicznie rozwiązania gwarantujące najwyższy poziom bezpieczeństwa.

TRUTEK FASTENERS POLSKA Innowacyjna technologia mocowania izolacji termicznej budynku

Innowacyjna technologia mocowania izolacji termicznej budynku Innowacyjna technologia mocowania izolacji termicznej budynku

Łączniki do mocowania izolacji termicznej obiektu to bardzo ważny element zapewniający bezpieczeństwo i stabilność warstwy docieplenia.

Łączniki do mocowania izolacji termicznej obiektu to bardzo ważny element zapewniający bezpieczeństwo i stabilność warstwy docieplenia.

ABSTRAKT

Przedmiotem artykułu są sposoby izolowania ścian piwnic przed zawilgoceniem. Autorzy omawiają przyczyny i źródła zawilgocenia przegród przez wody różnego pochodzenia, poświęcając szczególną uwagę agresywności wód. Przedstawiają także metody oceny stopnia zawilgocenia murów oraz technologie osuszania i zabezpieczania części budynków, ze szczególnym uwzględnieniem osuszania podziemnej części budynków oraz systemów hydroizolacji podziemnej części budynków.

Modes of insulation and methods of renovation of humid cellar walls

The article discusses the modes of insulation of cellar walls against humidity. The authors discuss the causes and sources of humidity of divisions by water from various sources, paying particular attention to the aggressiveness of water. They also presents methods of evaluation of the level of humidification of walls and technologies used for drying and securing parts of buildings, with particular attention to the drying of the underground portion of buildings and water insulation systems of the underground portions of buildings.

Woda w budynku we wszystkich postaciach, pary, cieczy i lodu, jest największym wrogiem wielu materiałów i konstrukcji, zwłaszcza w obiektach zabytkowych.

Zawilgocenie struktury murów w obiektach budowlanych stanowi pierwsze ogniwo procesu ich niszczenia, zwłaszcza gdy woda zawiera szkodliwe lub agresywne domieszki. Wówczas mogą być uruchamiane procesy fizyczne, chemiczne lub biologiczne, często występujące we wzajemnym powiązaniu. Ponadto woda zawarta w obudowie budynku, ścianach, stropach czy dachu jest czynnikiem powodującym zwiększenie przewodności cieplnej oraz obniżenie wytrzymałości materiałów budowlanych.

Wilgoć znajdująca się w przegrodach budowlanych ma niekorzystny wpływ nie tylko na własności zastosowanych materiałów, ale również na mikroklimat pomieszczeń, co w sposób bezpośredni przekłada się na zdrowie użytkowników. Błędne wykonanie izolacji przeciwwilgociowych i/lub przeciwwodnych w obiektach istniejących powoduje powstanie wielu szkód, których usunięcie lub naprawa jest zabiegiem bardzo kosztownym. Elementem utrudniającym dobre projektowanie hydroizolacji jest praktycznie brak odpowiednich norm europejskich i wytycznych, zwłaszcza w zakresie zastosowania różnych materiałów.

Źródła zawilgacania przegród

Przyczyny i źródła zawilgacania przegród

Przyczyną zawilgocenia przegród budowlanych niejednokrotnie jest niepoprawne zaprojektowanie i wykonanie izolacji przeciwwilgociowej lub przeciwwodnej albo jej brak. Dotyczy to przede wszystkim ścian piwnic obiektów remontowanych.

W praktyce polega to na tym, że projektant błędnie rozpoznaje rzeczywisty stan izolacji istniejącej oraz/lub stan gruntu mającego kontakt ze ścianą piwnic.

Jako przykład można podać, iż znaczna część budynków wznoszonych od końca XIX w. izolowana była przy użyciu izolacji naturalnych w postaci warstwy gliny wymieszanej z iłem, tzw. tłustej gliny. Masa ta była zazwyczaj klejona do zarapowanych i jednokrotnie pomalowanych lepikiem ścian podziemnej części budynku, stanowiąc doskonałą izolację przeciwwodną i przeciwwilgociową.

Pierwszym elementem w projektowaniu hydroizolacji jest rozpoznanie źródła zawilgacania (!).

Należy wymienić kilka głównych źródeł zawilgacania obiektów [1–2]:

  • oddziaływanie wody gruntowej,
  • kapilarne podciąganie wody,
  • sorpcja wilgoci zawartej w powietrzu przez materiały porowate i higroskopijne,
  • kondensacja pary wodnej, zwłaszcza w miejscach mostków termicznych,
  • woda napływająca z zewnątrz z powierzchni terenu, woda z rynien, rur spustowych, woda z przecieków dachów, ścian, okien, nieszczelnych instalacji, a także w czasie powodzi,
  • niewłaściwe dopasowanie rodzaju izolacji przeciwwodnej lub przeciwwilgociowej do warunków gruntowych.

Źródłem zawilgocenia i niszczenia obiektów budowlanych mogą być ponadto: nieprawidłowo stosowane współczesne materiały budowlane, zmiana sposobu użytkowania obiektu, zmiana sposobu ogrzewania oraz brak wentylacji w pomieszczeniach i przegrodach budowlanych, a także zmiana poziomu wód gruntowych.

Warto przypomnieć kilka informacji o wodach gruntowych, których oddziaływanie na podziemne elementy budynku jest podstawowym źródłem zawilgoceń. Występują one w postaci [1]:

  • wody błonkowej (adsorbowane),
  • wody kapilarnej (podciągane),
  • wody gruntowej (wolne).

Wody błonkowe stanowią otoczkę poszczególnych ziaren gruntu. Nie mają one większego znaczenia w gruntach sypkich (piaski, żwiry). Wilgotność gruntu w warstwie wody błonkowej wynosi ok. 60% [1].

Wody kapilarne w wyniku działania napięcia powierzchniowego wypełniają pory między cząsteczkami gruntu. Wilgotność gruntu wynosi tam 100%.

Wysokość podciągania wody kapilarnej zależy od rodzaju gruntu. Woda gruntowa w postaci wody błonkowej i kapilarnej nie wywiera parcia hydrostatycznego na części poziemne budowli [1].

Wody gruntowe powstają z opadów atmosferycznych przenikających przez górne warstwy gruntu lub w wyniku infiltracji wody ze zbiorników wodnych. Zależnie od warunków poziom występowania wody gruntowej może ulegać znacznym wahaniom.

W zależności od układu warstw gruntu wody gruntowe można umownie podzielić na:

  • zaskórne,
  • zawieszone,
  • właściwe,
  • naporowe,
  • artezyjskie.

Wody zaskórne

Są to wody pochodzące z opadów atmosferycznych przesączających się przez grunty przepuszczalne i zbierających się zwykle w nieckowatych zagłębieniach warstwy gruntu o mniejszej przepuszczalności, np. gliny, iłu.

Zwierciadło, na jakim utrzymuje się woda zaskórna, ulega znacznym wahaniom w zależności od intensywności opadów atmosferycznych.

W wyniku niejednakowego uwarstwienia gruntu w miejscach odległych od siebie o kilkanaście metrów wody zaskórne mogą występować na różnych poziomach. Tego rodzaju grunt budowlany powoduje poważne kłopoty w nowo wybudowanych obiektach, pociągając za sobą konieczność późniejszego wykonania dodatkowych kosztownych robót izolacyjnych [1-2].

Wody zawieszone

W odróżnieniu od wód zaskórnych wody zawieszone nie mają żadnego nieprzepuszczalnego podłoża; są one utrzymywane siłami napięcia kapilarnego w mniej przepuszczalnych warstwach gruntu. Wody zawieszone powstają wskutek opadów atmosferycznych i utrzymują się bardzo krótko, wysychając lub przesączając się powoli do bardziej przepuszczalnych pokładów gruntu [1-2].

Wody gruntowe właściwe

Powstają wskutek przenikania przez grunt wód z opadów atmosferycznych lub infiltracji wody ze zbiorników wodnych. Są to wody stale wypełniające przestrzenie cząsteczkowe w gruntach wodonośnych, takich jak piaski, żwiry, spękane skały itp., gdyż utrzymują się one na podłożu nieprzepuszczalnym. Wody gruntowe mogą być w spoczynku lub w ruchu. W pierwszym przypadku zwierciadło wody gruntowej jest poziome, w drugim zaś wskazuje spadek w kierunku ruchu. Jest to więc zwierciadło swobodne [1].

Wody naporowe

Są to wody gruntowe oddzielone od powierzchni terenu warstwą gruntu nieprzepuszczalnego. Mają one charakter wód naporowych lub wód artezyjskich [1].

Wody artezyjskie

Są odmianą wód naporowych. Powstają wtedy, gdy powierzchniowa warstwa nieprzepuszczalna jest pofałdowana. Wielkość parcia (naporu) wody może być zmienna, zależna od poziomu zwierciadła wody gruntowej [1].

W dzisiejszych czasach pod pojęciem oddziaływania wody gruntowej na element budowlany należy rozumieć nie tylko parcie hydrostatyczne czy podciąganie kapilarne. Istotnym czynnikiem tego oddziaływania jest agresywność wody i rozpuszczonych w niej substancji na wierzchnią warstwę hydroizolacji.

Agresywność wód

Agresywność wód opadowych

 Woda pochodząca z opadów atmosferycznych jest wodą miękką o dużej zdolności rozpuszczania. Ponadto w wodach tych rozpuszczone są składniki gazowe powietrza. Tak więc na terenach o powietrzu zanieczyszczonym wzrasta ilość rozpuszczonego dwutlenku węgla, dwutlenku siarki, tlenków azotu, tlenu i innych substancji, wskutek czego wody te stają się najbardziej agresywne [3].

Agresywność wód powierzchniowych

 Zależy od rodzaju gruntu, z jakim dana woda się styka, oraz od składu opadów. Objawy korozji spowodowanej wodami środowiskowymi występują najostrzej w strefie zmiennego poziomu wody [3].

Agresywność wód podziemnych

TABELA. Własności wody w zależności od pH

TABELA. Własności wody w zależności od pH

Skład chemiczny tych wód zależy od rodzaju gruntu, z którego dana woda pochodzi. Wody przypowierzchniowe na niewielkich głębokościach zawierają składniki wyługowane z gruntu wodami opadowymi. W okolicach przemysłowych ilość składników wzrasta, często występują wśród nich rozpuszczone siarczany, które czynią te wody agresywnymi [3].

Określenie kwasowości/zasadowości wody (pH)

Stężenie jonów wodorowych (pH) można określać specjalnymi przyrządami zwanymi pehametrami, które obecnie znalazły szerokie zastosowanie. Aparaty te pozwalają na wyskalowanej podziałce odczytać bezpośrednio wartość pH roztworów.

FOT. 1. pH-metr Greisinger GPH 014; fot.: Greisinger

FOT. 1. pH-metr Greisinger GPH 014; fot.: Greisinger

Znajomość stopnia agresywności wody umożliwia projektantowi dobór właściwych środków pozwalających na zabezpieczenie i uszczelnienie podziemnych części budynków i budowli zarówno nowoprojektowanych, jak i już istniejących.

Poniżej podano przykładowe oznaczenia agresywności wody:

Zapach ziemny Amoniak 0,0 mg/N
Odczyn pH 6,8 Siarczany 487,9 mg/l SO4
Twardość ogólna 65,5 st. niem. Wolny CO2 160,0 mg/l CO2
Zasadowość 23,4 m val/l Agresywny CO2 0,0 mg/l CO2
Zasad. alkal. - m val/l Sucha pozostałość 2601,4 mg/l
Żelazo ogólne - mg/Fe Wapń 338,3 mg/l Ca
Mangan - mg/l Mn Magnez 78,7 mg/l Mg
Chlorki 205,9 mg/l Cl  

Metody oceny stopnia zawilgocenia murów

Znanych jest kilka metod oceny stopnia zawilgocenia murów (RYS. 1), w tym dwie podstawowe:

  • inwazyjna,
  • bezinwazyjna.

Metoda inwazyjna (metoda suszarkowo-wagowa) uważana jest za metodę podstawową i polega na pobraniu niewielkiej próbki z badanego materiału, zważeniu jej, a następnie wysuszeniu do stałej masy w temperaturze ok. 105°C i ponownym zważeniu. Wilgotność masową wyliczamy ze wzoru:

gdzie:

mw - masa próbki zawilgoconej [g],

ms - masa próbki suchej [g].

W celu pobrania próbek z wnętrza ściany wykonuje się odwierty wiertłem koronkowym np. o średnicy 50 lub 80 mm lub zwykłym wiertłem o średnicy np. 20 mm, a następnie pobiera się próbki za pomocą przecinaka rurowego.

RYS. 1. Metody oceny stopnia zawilgocenia murów; rys.: archiwa autorów

RYS. 1. Metody oceny stopnia zawilgocenia murów; rys.: archiwa autorów

W trakcie pobierania próbek należy zwrócić szczególną uwagę, aby nie wysuszyć próbki ciepłem powstałym w trakcie wiercenia, z tego powodu najczęściej używa się wiertarek udarowych wolnoobrotowych. Pobrane próbki zamyka się w szczelnych pojemnikach i dostarcza do laboratorium lub korzysta się z przenośnych wagosuszarek.

sposoby uszczelnien zawilgoconych fot2 3

FOT. 2-3. Wagosuszarka typu MAX; fot.: Radwag

Metody bezinwazyjne polegają na bezpośrednim pomiarze stopnia zawilgocenia przy użyciu przyrządów pomiarowych.

Przy prowadzeniu pomiarów wilgotności elektronicznymi urządzeniami pomiarowymi należy pamiętać, iż mają one ograniczony zasięg na ogół nieprzekraczający kilkunastu centymetrów. Mierzoną przez takie urządzenia wilgotność murów można określić jako powierzchniową, zwłaszcza w odniesieniu do murów podziemnej części budynków o znacznej grubości (przekraczającej 30 cm).

Technologie osuszania i zabezpieczania murów podziemnej części budynków

FOT. 4-6. Przykładowe urządzenia do pomiaru wilgotności murów; fot.: PCE Instrument (4), Trotec (5), Protimeter (6)

FOT. 4-6. Przykładowe urządzenia do pomiaru wilgotności murów; fot.: PCE Instrument (4), Trotec (5), Protimeter (6)

Technologie osuszania murów podziemnej części budynku

Osuszanie obiektów lub przegród budowlanych jest zabiegiem dość skomplikowanym, kosztownym i na ogół długotrwałym. Z drugiej strony, w murach silnie zawilgoconych niebezpieczne może okazać się również gwałtowne osuszanie. Przy wysychaniu materiałów murowych następuje ich stopniowa dehydratacja, w wyniku czego powstaje zjawisko skurczu poszczególnych składników muru, co z kolei wywołuje powstawanie naprężeń skurczowych, a w rezultacie pękanie, rozwarstwienie, odpadanie i łuszczenie się tynków, polichromii itp.

W prawidłowo eksploatowanych budynkach wilgotność ścian, stropów i innych elementów konstrukcyjnych powinna mieścić się w granicach 0,5-4% (zależnie od warunków atmosferycznych). Większe zawilgocenie najczęściej jest skutkiem uszkodzeń rynien, braku izolacji blokujących migrację wilgoci z gruntu lub też awarii instalacji wodnych i kanalizacyjnych.

Skuteczne oraz trwałe usunięcie nadmiernego zawilgocenia ścian wymaga wykonania robót w sposób kompleksowy i zwykle proces ten można podzielić na następujące etapy:

  • Etap I: rozpoznanie przyczyny zawilgocenia oraz wybór metody wykonania robót naprawczych.
  • Etap II: wykonanie izolacji blokujących podciąganie wilgoci w murach.
  • Etap III: osuszanie i odgrzybianie ścian.

Taki trzyetapowy proces realizacji robót remontowych związanych z usuwaniem zawilgocenia i zagrzybienia budynków jest stosowany od ponad 20 lat.

W Polsce stosuje się kilka metod służących do osuszania zawilgoconych murów piwnicznych. Metody te schematycznie przedstawiono na RYS. 3.

RYS. 3. Stosowane metody osuszania murów – podział ogólny; rys.: archiwa autorów

RYS. 3. Stosowane metody osuszania murów – podział ogólny; rys.: archiwa autorów

Metody bezinwazyjne

Osuszanie naturalne

Przy małym zawilgoceniu dla niezbyt grubych przegród można wykorzystać suchą i ciepłą pogodę i po prostu intensywnie wietrzyć budynek. Mury grubości powyżej 40 cm wysychają parę lat.

Osuszanie gorącym powietrzem

FOT. 7-8. Nagrzewnice do osuszania ścian gorącym powietrzem; fot.: SIAL

FOT. 7-8. Nagrzewnice do osuszania ścian gorącym powietrzem; fot.: SIAL

Wykorzystuje się nagrzewnice:

  • elektryczne, gazowe, zasilane olejem opałowym,
  • przepływ powietrza: 200-900 m3/h,
  • temperatura powietrza wydmuchiwanego: 50-250°C.

Powietrze wewnątrz pomieszczenia ogrzewa się do temperatury 30-40°C.

Parę wodną w ogrzanym powietrzu usuwa się, stosując naturalne wietrzenie lub wentylatory.

Osuszanie kondensacyjne

Osuszenie powietrza wewnątrz pomieszczenia poprzez skroplenie pary wodnej.

Zasada działania: urządzenie zasysa wilgotne powietrze i kieruje je na parownik, który obniża temperaturę powietrza poniżej punktu rosy; wykroplona para wodna odprowadzana jest rurą do instalacji ściekowej. Pomieszczenie musi być izolowane i uszczelnione przed napływem powietrza zewnętrznego.

Optymalne warunki do pracy urządzenia: 20-25°C, duża wilgotność względna powietrza. Wydajność: od 10 l/dobę (urządzenia o małej mocy do 0,5 kW) do 1000 l/dobę (urządzenia o mocy kilkunastu kW).

Osuszanie absorpcyjne

Wykorzystywane jest zjawisko pochłaniania pary wodnej z powietrza przez specjalny materiał zwany sorbentem wilgoci.

FOT. 9. Elektryczne urządzenie do kondensacyjnego osuszania powietrza; fot.: Trotec FOT. 10. Urządzenie do absorpcyjnego osuszania powietrza o dużej wydajności; fot.: Trotec

Urządzenia działające na tej zasadzie wzbogacone są o nagrzew osuszonego powietrza i odprowadzenie skroplin pary wodnej ze schłodzonym powietrzem na zewnątrz. Osuszane pomieszczenie musi być izolowane i uszczelnione, aby nie dopływało powietrze z zewnątrz. Wydajność: 10-1000 l/dobę.

FOT. 11. Urządzenie do mikrofalowego osuszania murów; fot.: AGH

FOT. 11. Urządzenie do mikrofalowego osuszania murów; fot.: AGH

Osuszanie mikrofalowe

Wykorzystuje się promienniki mikrofal, najczęściej o zróżnicowanej częstotliwości.

Mikrofale wprawiają w drgania cząsteczki wody, które pod wpływem wzajemnego tarcia nagrzewają się. Dodatkowo niszczone są mikroorganizmy, np. grzyby czy owady. Moc urządzeń: od 600 W do kilku kW. Osuszenie murów o grubości dochodzącej do 2 m.

Metody inwazyjne

Metody iniekcyjne

Metody te zarówno osuszają przegrody, jak też zapobiegają ponownemu ich zawilgoceniu. Iniekcja polega na wykonaniu poziomej lub pionowej przepony izolacyjnej poprzez wywiercenie w ścianie serii otworów i wypełnienie ich materiałem hydrofobizującym bądź uszczelniającym [5].

Iniekcja grawitacyjna

Polega na grawitacyjnym wprowadzeniu środków chemicznych w otwory muru. Otwory mają średnicę około 20 mm i skierowane są pod kątem ok. 30°.

Głębokość otworów: 3/4 przekroju ściany lub 8-10 cm od powierzchni przeciwnej do nawierceń. Odstępy między otworami: 10-15 cm. Dokładne wymiary w zależności od zaleceń systemodawcy.

Jako środki iniekcyjne stosowane są: związki krzemoorganiczne, silany, mikroemulsje silikonowe. Iniekcja grawitacyjna jest nieskuteczna w przypadku murów o wysokim stopniu przesiąknięcia wilgocią (powyżej 60%).

Iniekcja niskociśnieniowa

Wprowadzanie środka iniekcyjnego wspomaga się ciśnieniem o wartości 0,3-1,5 MPa. Otwory o średnicy 15-25 mm, w odstępach co 10-30 cm, poziomo lub skośnie na dół. Stosuje się następujące środki iniekcyjne: krzemiany alkaliczne, związki krzemoorganiczne, szkło wodne sodowe lub potasowe.

Iniekcja wysokociśnieniowa

Środek iniekcyjny podawany jest pod ciśnieniem rzędu 2-3 MPa. Ogólnie przyjmuje się, że ciśnienie nie powinno być większe niż 1/3 wytrzymałości materiału na ściskanie. Znajduje zastosowanie dla murów o dużej wytrzymałości mechanicznej.

Stosowane środki iniekcyjne: szkło wodne potasowe, poliuretany i epoksydy.

Środek iniekcyjny: mieszanina cementu portlandzkiego z wodą plus aktywator krzemianowy (metakrzemian sodu i krzemian etylu).

Etapy prac:

  • nawiercenie otworów,
  • nawilżenie otworów wodą,
  • wprowadzenie grawitacyjne środka iniekcyjnego do wywierconych otworów.
FOT. 12. Iniekcja niskociśnieniowa; fot.: AGH

FOT. 12. Iniekcja niskociśnieniowa; fot.: AGH

Termoiniekcja - osuszanie plus wykonanie przepony hydrofobowej

Etapy prac:

  • nawiercenie w murze otworów na żądanym poziomie lub na określonej powierzchni,
  • osuszenie muru poprzez wprowadzenie w nawiercone otwory ogrzanego powietrza (od 2 do kilku dób) za pomocą urządzeń termowentylacyjnych,
  • hydrofobizacja muru - grawitacyjne lub ciśnieniowe wprowadzenie środka hydrofobowego w otwory pozostałe po osuszaniu.

Prędkość osuszania: dla muru z cegły pełnej do 3% wilgotności masowej na dobę.

Maksymalna grubość muru: 100 cm (dostęp jednostronny), 200 cm (dostęp dwustronny).

RYS. 4. Schemat metody termoiniekcji; rys.: archiwa autorów

RYS. 4. Schemat metody termoiniekcji; rys.: archiwa autorów

Metoda parafinowej iniekcji termohermetycznej

W metodzie iniekcji termohermetycznej łączy się obróbkę cieplną z impregnacją bez rozdzielania tych procesów. Nagrzewanie ośrodka za pośrednictwem wosku zmienia charakter odkształceń z rozszerzania (typowego dla nagrzewania promieniowego) na minimalny skurcz.

Dobrze rozgrzany iniekt jest wprowadzany przez nawiercone otwory w zawilgocony mur bez wstępnego suszenia, analogicznie jak w innych metodach iniekcyjnych.

Do iniekcji termicznej w wilgotnym murze dochodzi dzięki specjalnie zaprojektowanym urządzeniom, tzw. termopakerom, umożliwiającym hermetyzację nagrzewanej strefy. Spełniają one rolę grzałek, zasobników podawczych, dozowników oraz wentyli umożliwiających regulację ciśnienia.

RYS. 5. Termopakery niskoprądowe (projekt własny autora patentu): schemat podłączeniowy [3]; rys.: archiwa autorów

RYS. 5. Termopakery niskoprądowe (projekt własny autora patentu): schemat podłączeniowy [3]; rys.: archiwa autorów 

Wstępne nagrzewanie muru w układzie hermetycznym znacznie przyspiesza nagrzanie muru do wymaganego poziomu dzięki ograniczeniu do minimum odparowywania wilgoci zawartej w strefie wykonywanej blokady przeciwwilgociowej.

Podstawowym składnikiem termoplastycznego kompozytu wykorzystywanego do hydrofobizacji i uszczelniania struktury kapilarno-porowatej muru jest półtwarda, bezwonna parafina rafinowana, która nie rozpuszcza się w wodzie i alkoholu oraz jest odporna na działanie kwasów i alkaliów, co jest szczególnie ważną cechą w badanym obszarze aplikacji.

Wykonanie blokady przeciwwilgociowej rozpoczyna się od wytrasowania i wywiercenia otworów. Następnie w murze osadza się króćce umożliwiające szczelne osadzenie termopakerów.

Do urządzeń podawczych wlewany jest roztopiony kompozyt wosków naftowych, przygotowywany w parafiniarkach lub w postaci tzw. wkładów woskowych, wytwarzanych techniką prasowania granulatu woskowego.

Uruchamiany jest system grzewczy, który utrzymuje wymaganą temperaturę impregnatu wypełniającego otwory.

Z kapilarno-porowatej struktury iniekt wypiera parę wodną, zajmując jej miejsce. Po przejściu w stan stały tworzy szczelną, nieprzepuszczalną przeponę strukturalną o dodatkowo silnych właściwościach hydrofobowych, dielektrycznych i neutralizujących rozpuszczalne sole.

Systemy hydroizolacji podziemnej części budynku

System bezspoinowych izolacji przeciwwodnych

Systemy bezspoinowych izolacji przeciwwodnych to powłoki izolacyjne układne natryskowo, pędzlem lub szpachlą w sposób niepozostawiający widocznych połączeń. Większość systemów wykonuje się jako jedno- lub dwuwarstwowe. W przypadkach określonych w projekcie technologicznym warstwy mogą być zbrojone odpowiednią tkaniną.

W zależności od użytych materiałów i technologii ich nakładania bezspoinowe izolacje przeciwwodne możemy podzielić na:

  • powłoki malarskie,
  • powłoki bitumiczne,
  • powłoki żywiczne,
  • powłoki mineralne,
  • powłoki pęczniejące,
  • elastyczne masy szpachlowe,
  • betony wodoszczelne.

Do najważniejszych zalet bezspoinowych izolacji przeciwwodnych zaliczyć można:

  • możliwość układania na wilgotnych podłożach,
  • zdolność przenoszenia rys i pęknięć (nawet do 5 mm),
  • odporność na deszcz w krótkim czasie od nałożenia,
  • eliminację podsiąkania wody dzięki pełnemu połączeniu się z podłożem (prawie nieosiągalne w przypadku stosowania pap i folii),
  • możliwość skutecznego i nieskomplikowanego łączenia izolacji detali, np. przejść rurowych, z izolacją powierzchniową,
  • brak konieczności wykonywania tynków na elementach drobnowymiarowych (cegła, pustaki itp.),
  • ciągłość powłoki, tzn. brak występowania połączeń.

Materiały i technologie

Lepiki asfaltowe

Lepiki to mieszanka asfaltów, wypełniaczy i substancji uplastyczniających. Są to gęste lub półpłynne masy nanoszone na zimno. Grubość powłoki asfaltowej wynosi ok. 1 mm. Używa się ich do wykonywania pionowych izolacji przeciwwilgociowych. Stosowane są również do sklejania papy i wypełniania nieszczelności w powłokach izolacyjnych.

Prace izolacyjne z użyciem lepików prowadzi się przy temperaturze od +5°C do +40°C.

Niektóre lepiki mają w swoim składzie włókna celulozowe lub inne. Dzięki nim powłoka izolująca jest zdecydowanie mocniejsza niż w przypadku stosowania lepików zwykłych. Takie lepiki mogą być stosowane nawet w temperaturze ujemnej.

Oprócz lepików nanoszonych na zimno istnieją lepiki, które przed nakładaniem trzeba podgrzać do odpowiedniej temperatury. Są to tak zwane lepiki nanoszone na gorąco. Jednak masy takie powoli wychodzą z użycia.

Masy asfaltowe

Stosuje się je głównie do konserwacji i napraw bitumicznych pokryć dachowych, a zwłaszcza uszkodzeń papy. Można z nich wykonywać także samodzielne bezspoinowe pokrycia bitumiczne. Zawierają rozpuszczalniki organiczne, nie powinny więc mieć styczności ze styropianem i polistyrenem ekstrudowanym.

Dwuskładnikowe masy bitumiczne

Uzyskuje się z nich grubowarstwową powłokę o dużej elastyczności. Nadają się do wykonywania izolacji przeciwwilgociowych i przeciwwodnych.

Grubość wykonywanej powłoki wynosi do 6 mm. Stosuje się je na wszystkie materiały mineralne. Polecane są do  izolacji pionowych i poziomych. Nie niszczą styropianu, mogą więc być używane do mocowania płyt styropianowych do fundamentów. Nakłada się je pacą lub poprzez natryskiwanie, zarówno na suche, jak i na wilgotne powierzchnie. Jedna warstwa takiej masy tworzy izolację przeciwwilgociową. Dwie, trzy warstwy tworzą izolację przeciwwodną.

Poszczególne warstwy mogą być zbrojone tkaniną z włókna szklanego w zależności od wytycznych zwartych w projekcie technologicznym wykonywania izolacji. W przypadku izolowania fundamentów można je zasypywać już po 24 godzinach.

Dwuskładnikowe masy bitumiczne stosuje się w temperaturze od +1°C do +35°C.

Masy asfaltowo-żywiczne

RYS. 6. Schemat ułożenia mas bitumicznych. Objaśnienia: 1 -grunt, 2 - uszczelnienie przejść, 3, 4 - uszczelnienie styków i faseta, 5 - masa bitumiczna, 6 - folia ochronno-drenażowa; rys.: Koester

RYS. 6. Schemat ułożenia mas bitumicznych. Objaśnienia: 1 -grunt, 2 - uszczelnienie przejść, 3, 4 - uszczelnienie styków i faseta, 5 - masa bitumiczna, 6 - folia ochronno-drenażowa; rys.: Koester

Są to półpłynne masy o doskonałych właściwościach klejących. Wykonuje się z nich izolacje przeciwwilgociowe, a po nałożeniu 3-4 warstw - także cięższe izolacje przeciwwodne. Całkowita grubość powłoki jako samodzielnej izolacji przeciwwodnej waha się od 1 do 10 (15) mm. Służą również do sklejania papy i konserwacji bitumicznych pokryć dachowych. Nie są polecane do wykonywania izolacji wewnątrz domu. Mają niszczące działanie na styropian i polistyren ekstrudowany. Dobrze za to wnikają w porowatą strukturę podłoża. Nanosi się je pędzlem lub szczotką dekarską. Podobnie jak masy bitumiczne, mogą być zbrojone odpowiednią tkaniną.

Masy asfaltowo-kauczukowe

Po nałożeniu tworzą elastyczną, gumowatą powłokę. Nadają się do wykonywania pionowych i poziomych izolacji przeciwwilgociowych oraz przeciwwodnych. Stosuje się je wewnątrz i na zewnątrz pomieszczeń. Niektóre zawierają, a niektóre nie zawierają rozpuszczalników organicznych (dyspersyjnych mas bitumiczno-kauczukowych). Zawsze więc trzeba to sprawdzić, gdy powłoka ma się stykać ze styropianem lub polistyrenem ekstrudowanym. Stosuje się je w temperaturze od +5°C do +30°C. Niektóre wzbogacone są włóknami zbrojącymi, dzięki którym można je nanosić na lekko wilgotne podłoża. Do niektórych dodawana jest również glina bentonitowa.

Sprzedawane są też masy asfaltowo-kauczukowe, które można nakładać przy każdej temperaturze.

Powłoki pęczniejące - bentonit

RYS. 7. Schematyczny układ warstw izolacji przeciwwodnej przy zastosowaniu płyt bentonitu. Objaśnienia: 1 - beton, 2 - włókna zapewniające przyczepność do betonu, 3  - tkanina PP, 4 - granulowany bentonit Voclay, 5 - włóknina PP, 6 - folia; rys.: CETCO

RYS. 7. Schematyczny układ warstw izolacji przeciwwodnej przy zastosowaniu płyt bentonitu. Objaśnienia: 1 - beton, 2 - włókna zapewniające przyczepność do betonu, 3  - tkanina PP, 4 - granulowany bentonit Voclay, 5 - włóknina PP, 6 - folia; rys.: CETCO

Jest to chemicznie obojętny ił wulkaniczny. Ma on pewną specyficzną właściwość: w kontakcie z wodą zwiększa swoją objętość nawet szesnastokrotnie.

Jeśli uniemożliwi mu się swobodne pęcznienie, to po nawilżeniu zamieni się w żel, który nie przepuszcza wody ani pary wodnej. Właśnie w takiej formie tworzy on znakomitą izolację przeciwwodną. Bentonit, którego pęcznienie nie zostanie ograniczone, nie uzyska takich właściwości hydroizolacyjnych.

Materiały bentonitowe wykorzystuje się najczęściej do ciężkich izolacji przeciwwodnych. Nie jest wówczas konieczne wykonywanie drenażu. Bentonit sprzedawany jest w postaci mat lub membran.

Maty powstają poprzez zespolenie trzech komponentów: warstwy granulatu bentonitowego, umieszczonego między tkaniną i włóknina polipropylenową. Zespolenie w jednorodny wyrób zapewnia proces igłowania.

Maty mocuje się je gwoździami do istniejącej konstrukcji bądź mocuje się je w szalunku przed wylaniem mieszanki betonowej w celu zapewnienia zespolenia się maty z uszczelnianą konstrukcją.

Membrany zbudowane są z warstwy bentonitu sodowego, która z jednej strony jest osłonięta folią separacyjną, która ulega rozpuszczeniu w kontakcie z wodą, a z drugiej zespolona z bardzo wytrzymałą membraną PP.

Membrany mają grubość ok. 2,3 mm, mocuje się je specjalnym klejem, muszą być skierowane folią rozpuszczalną do uszczelnianej konstrukcji (membrana PP na zewnątrz od strony przewidywanego oddziaływania wody gruntowej).

RYS. 8. Schemat budowy maty bentonitowej do izolacji przeciwwodnej podziemnych części budowli. Objaśnienia: 1 - folia polietylenowa HDPE, 2 - bentonit, 3 - zabezpieczająca siateczka polipropylenowa; rys.: CETCO

RYS. 8. Schemat budowy maty bentonitowej do izolacji przeciwwodnej podziemnych części budowli. Objaśnienia: 1 - folia polietylenowa HDPE, 2 - bentonit, 3 - zabezpieczająca siateczka polipropylenowa; rys.: CETCO

Bentonit sodowy jest przetworzoną skałą osadową, której głównym składnikiem jest minerał ilasty montmorylonit sodowy. Minerał ten jest pozyskiwany z miejsca naturalnego występowania, modyfikowany dla zwiększenia efektywności działania i przetwarzany do postaci różnych materiałów hydroizolacyjnych.

Wysoka pojemność wymiany kationowej tego minerału oraz sodowy charakter kompleksu sorpcyjnego decydują o jego unikatowych właściwościach fizycznych, z których najważniejsze to: wysoki stopień dyspersji (wysoko zawartość frakcji <  2 m) oraz duże wartości granicy płynności, wskaźnika plastyczności, kohezji, chłonności wody i pęcznienia, przy bardzo niskich wartościach współczynnika wodoprzepuszczalności.

Pod wpływem wody suchy bentonit przeobraża się w silnie pęczniejący żel. Pęczniejąc swobodnie, może zwiększyć objętość nawet 15-krotnie.

Dla właściwego funkcjonowania hydroizolacje bentonitowe wymagają ograniczenia swobody pęcznienia przez dociśnięcie do izolowanej powierzchni.

Wysokie ciśnienie pęcznienia bentonitu Volclay powoduje samoczynne zasklepianie się przebić izolacji, jeżeli po zainstalowaniu nastąpi z jakiegoś powodu jej uszkodzenie.

Konsekwencją silnego pęcznienia jest również zdolność do uszczelniania nieznacznych zarysowań izolowanej konstrukcji betonowej, spowodowanych np. osiadaniem podłoża, ruchami sejsmicznymi czy skurczem betonu.

Izolacja kurtynowa

Izolacja kurtynowa - najczęściej projektowana, jako wtórna iniekcyjna izolacja przeciwwodna zarówno pionowa, jak i pozioma, którą można wykonać bez odkopywania całości obiektu. Stosuje się ją na ogół w budynkach istniejących, gdzie na skutek nieszczelności izolacji pierwotnej, wystąpiły znaczące przecieki wodne spowodowane oddziaływaniem wód gruntowych. Materiały iniekcyjne stosowane do takiej iniekcji nie mogą oddziaływać z otaczającym gruntem i wodą gruntową.

Może być stosowana lokalnie w części gdzie występują przecieki, lub dla całości części podziemnej budynku. Rozplanowanie otworów powinno być poprzedzone dokładną analizą stanu technicznego ścian podziemnych i podłogi na gruncie lub posadzki w piwnicy.

Iniekcja może być jedno lub wielostopniowa w zależności od warunków gruntowo-wodnych i stanu technicznego przegrody. Najczęściej stosowane iniekty to hydrożele, bentonity lub poliuretany na bazie żywic.

Literatura

  1. H. Stankiewicz, "Zabezpieczenie budowli przed wilgocią, wodą gruntową i korozją", Arkady, Warszawa 1984.2. M. Rokiel, "Hydroizolacje w budownictwie. Poradnik. Wybrane zagadnienia w praktyce", wyd.
  2. Dom Wydawniczy MEDIUM, Warszawa 2009.
  3. Z. Pieniążek, "Osuszanie ścian murowych", XIV Ogólnopolska Konferencja Warsztaty Pracy Projektanta konstrukcji, PZiTB, Bielsko Biała 1999.
  4. PN-80/B-01800:1980, "Antykorozyjne zabezpieczenia w budownictwie - Konstrukcje betonowe i żelbetowe - Klasyfikacja i określenie środowisk".
  5. K. Tauszyński, "Budownictwo ogólne", Warszawa 1975.
  6. P. Dusza, "Osuszanie budynków metodą mikrofalową", praca dyplomowa, niepublikowane, Gliwice 2000.
  7. Prace własne autorów, wykonywane jako opinie i ekspertyzy techniczne.
  8. B. Francke, "Warunki techniczne wykonania i odbioru robót budowlanych", część C zeszyt 5 "Izolacje przeciwwilgociowe i wodochronne części podziemnych budynków", Warszawa 2016.
  9. R. Wójcik, "Uciec przed wilgocią. Metoda parafinowej iniekcji termohermetycznej", "Inżynier Budownictwa" 3/2009

Chcesz być na bieżąco? Zapisz się do naszego newslettera!

Komentarze

  • Klemens Klemens, 27.03.2020r., 00:45:50 Kapilarne podciąganie wody jest bardzo niebezpieczne dla murów, zawilgoceń długo nie widać a jak już to zazwyczaj bardzo ciężko się ich pozbyć
  • z-krakowa z-krakowa, 29.11.2020r., 13:05:15 o wszystkim trzeba myśleć z wyprzedzeniem... po fakcie usuwanie wilgoci z budynków to niemały problem

Powiązane

dr inż. Marcin Górski, dr inż. Bernard Kotala, mgr inż. Rafał Białozor Rodzaje i właściwości zbrojeń niemetalicznych

Rodzaje i właściwości zbrojeń niemetalicznych Rodzaje i właściwości zbrojeń niemetalicznych

Kompozyty włókniste, również w Polsce nazywane z angielskiego FRP (Fibre Reinforced Polymers), śmiało wkroczyły w świat konstrukcji budowlanych na początku lat 90. ubiegłego wieku, głównie w krajach Europy...

Kompozyty włókniste, również w Polsce nazywane z angielskiego FRP (Fibre Reinforced Polymers), śmiało wkroczyły w świat konstrukcji budowlanych na początku lat 90. ubiegłego wieku, głównie w krajach Europy Zachodniej, a także w Japonii, Stanach Zjednoczonych i Kanadzie. Pojawiły się niemal równocześnie dwie grupy produktów – materiały do wzmocnień konstrukcji oraz pręty do zbrojenia betonu.

Monika Hyjek Pożar ściany z barierami ogniowymi

Pożar ściany z barierami ogniowymi Pożar ściany z barierami ogniowymi

Od lat 80. XX wieku ilość materiałów ociepleniowych na ścianach zewnętrznych budynku stale rośnie. Grubość izolacji w jednej z popularniejszych w Europie metod ocieplania (ETICS) przez ten okres zwiększyła...

Od lat 80. XX wieku ilość materiałów ociepleniowych na ścianach zewnętrznych budynku stale rośnie. Grubość izolacji w jednej z popularniejszych w Europie metod ocieplania (ETICS) przez ten okres zwiększyła się 3–4-krotnie. W przypadku stosowania palnych izolacji cieplnych jest to równoznaczne ze wzrostem zagrożenia pożarowego.

mgr inż. Bartłomiej Monczyński Tynki stosowane na zawilgoconych przegrodach – tynki regulujące zawilgocenie

Tynki stosowane na zawilgoconych przegrodach – tynki regulujące zawilgocenie Tynki stosowane na zawilgoconych przegrodach – tynki regulujące zawilgocenie

Jednym z ostatnich, ale zazwyczaj nieodzownym elementem prac renowacyjnych w uszkodzonych przez wilgoć i sole obiektach budowlanych jest wykonanie nowych tynków wewnętrznych i/lub zewnętrznych.

Jednym z ostatnich, ale zazwyczaj nieodzownym elementem prac renowacyjnych w uszkodzonych przez wilgoć i sole obiektach budowlanych jest wykonanie nowych tynków wewnętrznych i/lub zewnętrznych.

Röben Polska Sp. z o.o. i Wspólnicy Sp. K. Ekoceramika na dachy i elewacje

Ekoceramika na dachy i elewacje Ekoceramika na dachy i elewacje

Wyjątkowo trwała, a na dodatek bezpieczna dla środowiska i naszego zdrowia. Znamy ją od tysięcy lat, należy do najbardziej ekologicznych materiałów budowlanych – po prostu ceramika!

Wyjątkowo trwała, a na dodatek bezpieczna dla środowiska i naszego zdrowia. Znamy ją od tysięcy lat, należy do najbardziej ekologicznych materiałów budowlanych – po prostu ceramika!

Nicola Hariasz Ściany podwyższające komfort akustyczny w pomieszczeniu

Ściany podwyższające komfort akustyczny w pomieszczeniu Ściany podwyższające komfort akustyczny w pomieszczeniu

Hałas jest powszechnym problemem obniżającym komfort życia nie tylko w domu, ale także w pracy. O tym, czy może być niebezpieczny, decyduje nie tylko jego natężenie, ale również czas jego trwania. Szkodliwe...

Hałas jest powszechnym problemem obniżającym komfort życia nie tylko w domu, ale także w pracy. O tym, czy może być niebezpieczny, decyduje nie tylko jego natężenie, ale również czas jego trwania. Szkodliwe dla zdrowia mogą być nawet gwar i szum towarzyszące nam na co dzień w biurze czy w centrum handlowym.

dr inż. Paweł Krause, dr inż. Rosita Norvaišienė Rozkład temperatury systemu ETICS z zastosowaniem styropianu i wełny – badania laboratoryjne

Rozkład temperatury systemu ETICS z zastosowaniem styropianu i wełny – badania laboratoryjne Rozkład temperatury systemu ETICS z zastosowaniem styropianu i wełny – badania laboratoryjne

Ochrona cieplna ścian zewnętrznych jest nie tylko jednym z podstawowych zagadnień związanych z oszczędnością energii, ale wiąże się również z komfortem użytkowania pomieszczeń przeznaczonych na pobyt ludzi....

Ochrona cieplna ścian zewnętrznych jest nie tylko jednym z podstawowych zagadnień związanych z oszczędnością energii, ale wiąże się również z komfortem użytkowania pomieszczeń przeznaczonych na pobyt ludzi. Zapewnienie odpowiedniego komfortu cieplnego pomieszczeń, nieposiadających w większości przypadków instalacji chłodzenia, dotyczy całego roku, a nie tylko okresu ogrzewczego.

mgr Kamil Kiejna Bezpieczeństwo pożarowe w aspekcie stosowania tzw. barier ogniowych w ociepleniach ze styropianu – artykuł polemiczny

Bezpieczeństwo pożarowe w aspekcie stosowania tzw. barier ogniowych w ociepleniach ze styropianu – artykuł polemiczny Bezpieczeństwo pożarowe w aspekcie stosowania tzw. barier ogniowych w ociepleniach ze styropianu – artykuł polemiczny

Niniejszy artykuł jest polemiką do tekstu M. Hyjek „Pożar ściany z barierami ogniowymi”, opublikowanego w styczniowym numerze „IZOLACJI” (nr 1/2021), który w ocenie Polskiego Stowarzyszenia Producentów...

Niniejszy artykuł jest polemiką do tekstu M. Hyjek „Pożar ściany z barierami ogniowymi”, opublikowanego w styczniowym numerze „IZOLACJI” (nr 1/2021), który w ocenie Polskiego Stowarzyszenia Producentów Styropianu, wskutek tendencyjnego i wybiórczego przedstawienia wyników badań przeprowadzonych przez Łukasiewicz – Instytut Ceramiki i Materiałów Budowlanych (ICiMB), może wprowadzać w błąd co do rzeczywistego poziomu bezpieczeństwa pożarowego systemów ETICS z płytami styropianowymi oraz rzekomych korzyści...

dr inż. Marcin Górski, dr inż. Bernard Kotala, mgr inż. Rafał Białozor Zbrojenia niemetaliczne – zbrojenia tekstylne i pręty kompozytowe

Zbrojenia niemetaliczne – zbrojenia tekstylne i pręty kompozytowe Zbrojenia niemetaliczne – zbrojenia tekstylne i pręty kompozytowe

Zbrojenie niemetaliczne jest odporne na korozję, nie ulega degradacji pod wpływem czynników atmosferycznych. Wykazuje także odporność na chlorki, kwasy, agresję chemiczną środowiska.

Zbrojenie niemetaliczne jest odporne na korozję, nie ulega degradacji pod wpływem czynników atmosferycznych. Wykazuje także odporność na chlorki, kwasy, agresję chemiczną środowiska.

mgr inż. Bartłomiej Monczyński Redukcja zasolenia przegród budowlanych za pomocą kompresów

Redukcja zasolenia przegród budowlanych za pomocą kompresów Redukcja zasolenia przegród budowlanych za pomocą kompresów

Jednym z najbardziej niekorzystnych zjawisk związanych z obecnością soli i wilgoci w układzie porów materiałów budowlanych jest krystalizacja soli [1–2] (FOT. 1).

Jednym z najbardziej niekorzystnych zjawisk związanych z obecnością soli i wilgoci w układzie porów materiałów budowlanych jest krystalizacja soli [1–2] (FOT. 1).

dr inż. Krzysztof Pawłowski, prof. uczelni Termomodernizacja budynków – ocieplenie i docieplenie elementów obudowy budynków

Termomodernizacja budynków – ocieplenie i docieplenie elementów obudowy budynków Termomodernizacja budynków – ocieplenie i docieplenie elementów obudowy budynków

Termomodernizacja dotyczy dostosowania budynku do nowych wymagań ochrony cieplnej i oszczędności energii. Ponadto stanowi zbiór zabiegów mających na celu wyeliminowanie lub znaczne ograniczenie strat ciepła...

Termomodernizacja dotyczy dostosowania budynku do nowych wymagań ochrony cieplnej i oszczędności energii. Ponadto stanowi zbiór zabiegów mających na celu wyeliminowanie lub znaczne ograniczenie strat ciepła w istniejącym budynku. Jest jednym z elementów modernizacji budynku, który przynosi korzyści finansowe i pokrycie kosztów innych działań.

dr inż. Artur Miszczuk Ocieplenie podłóg na gruncie i stropów nad nieogrzewanymi piwnicami

Ocieplenie podłóg na gruncie i stropów nad nieogrzewanymi piwnicami Ocieplenie podłóg na gruncie i stropów nad nieogrzewanymi piwnicami

Od 1 stycznia 2021 r. obowiązują zaostrzone Warunki Techniczne (WT 2021) dla nowo budowanych obiektów, a także budynków zaprojektowanych według wcześniej obowiązującego standardu WT 2017 – zgodnie z wymaganiami...

Od 1 stycznia 2021 r. obowiązują zaostrzone Warunki Techniczne (WT 2021) dla nowo budowanych obiektów, a także budynków zaprojektowanych według wcześniej obowiązującego standardu WT 2017 – zgodnie z wymaganiami proekologicznej polityki UE. Graniczne wartości współczynnika przenikania ciepła dla podłóg na gruncie i stropów nad pomieszczeniami nieogrzewanymi nie zostały jednak (w WT 2021) zmienione.

dr inż. arch. Karolina Kurtz-Orecka Ściany zewnętrzne według zaostrzonych wymagań izolacyjności termicznej

Ściany zewnętrzne według zaostrzonych wymagań izolacyjności termicznej Ściany zewnętrzne według zaostrzonych wymagań izolacyjności termicznej

Początek roku 2021 w branży budowlanej przyniósł kolejne zaostrzenie przepisów techniczno-budowlanych, ostatnie z planowanych, które wynikało z implementacji zapisów dyrektywy unijnej w sprawie charakterystyki...

Początek roku 2021 w branży budowlanej przyniósł kolejne zaostrzenie przepisów techniczno-budowlanych, ostatnie z planowanych, które wynikało z implementacji zapisów dyrektywy unijnej w sprawie charakterystyki energetycznej budynków [1, 2], potocznie zwanej dyrektywą EPBD.

dr inż. Adam Ujma Ściany zewnętrzne z elewacjami wentylowanymi i ich izolacyjność cieplna

Ściany zewnętrzne z elewacjami wentylowanymi i ich izolacyjność cieplna Ściany zewnętrzne z elewacjami wentylowanymi i ich izolacyjność cieplna

Ściany zewnętrzne z elewacjami wykonanymi w formie konstrukcji z warstwami wentylowanymi coraz częściej znajdują zastosowanie w nowych budynków, ale również z powodzeniem mogą być wykorzystane przy modernizacji...

Ściany zewnętrzne z elewacjami wykonanymi w formie konstrukcji z warstwami wentylowanymi coraz częściej znajdują zastosowanie w nowych budynków, ale również z powodzeniem mogą być wykorzystane przy modernizacji istniejących obiektów. Dają one szerokie możliwości dowolnego kształtowania materiałowego elewacji, z wykorzystaniem elementów metalowych, z tworzywa sztucznego, szkła, kamienia naturalnego, drewna i innych. Pewną niedogodnością tego rozwiązania jest konieczność uwzględnienia w obliczeniach...

mgr inż. arch. Tomasz Rybarczyk Ściany jednowarstwowe według WT 2021

Ściany jednowarstwowe według WT 2021 Ściany jednowarstwowe według WT 2021

Elementom zewnętrznym budynków, a więc również ścianom, stawiane są coraz wyższe wymagania, m.in. pod względem izolacyjności cieplnej. Zmiany obowiązujące od 1 stycznia 2021 roku dotyczą wymagań w zakresie...

Elementom zewnętrznym budynków, a więc również ścianom, stawiane są coraz wyższe wymagania, m.in. pod względem izolacyjności cieplnej. Zmiany obowiązujące od 1 stycznia 2021 roku dotyczą wymagań w zakresie izolacyjności cieplnej, a wynikające z rozporządzenia w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie powodują, że odtąd trzeba budować budynki ze ścianami o wyższej termoizolacyjności niż budowano dotychczas.

dr inż. Bożena Orlik-Kożdoń, dr inż. Tomasz Steidl Docieplanie budynków od wewnątrz – wymagania prawne i zalecenia do projektowania

Docieplanie budynków od wewnątrz – wymagania prawne i zalecenia do projektowania Docieplanie budynków od wewnątrz – wymagania prawne i zalecenia do projektowania

Obowiązujące w Polsce wymagania prawne związane z docieplaniem budynków od wewnątrz obejmują zarówno przepisy podstawowe zdefiniowane w dokumentach unijnych, jak i wymagania szczegółowe, zawarte w dokumentach...

Obowiązujące w Polsce wymagania prawne związane z docieplaniem budynków od wewnątrz obejmują zarówno przepisy podstawowe zdefiniowane w dokumentach unijnych, jak i wymagania szczegółowe, zawarte w dokumentach krajowych. A ich realizację umożliwiają dostępne na rynku rozwiązania technologiczno-materiałowe.

Festool Polska Sp. z o. o. Pilarka do materiałów izolacyjnych

Pilarka do materiałów izolacyjnych Pilarka do materiałów izolacyjnych

Czy pilarka może być precyzyjna, szybka, lekka i jednocześnie wielozadaniowa? Właśnie takie cechy posiada pilarka do materiałów izolacyjnych ISC 240.

Czy pilarka może być precyzyjna, szybka, lekka i jednocześnie wielozadaniowa? Właśnie takie cechy posiada pilarka do materiałów izolacyjnych ISC 240.

dr inż. Szymon Świerczyna Wprowadzenie do projektowania lekkich kratownic stalowych z kształtowników giętych

Wprowadzenie do projektowania lekkich kratownic stalowych z kształtowników giętych Wprowadzenie do projektowania lekkich kratownic stalowych z kształtowników giętych

W nowoczesnym budownictwie stalowym poszukuje się rozwiązań pozwalających na projektowanie konstrukcji lekkich, łatwych w wytwarzaniu, transporcie i montażu. Kryteria te mogą spełniać lekkie konstrukcje...

W nowoczesnym budownictwie stalowym poszukuje się rozwiązań pozwalających na projektowanie konstrukcji lekkich, łatwych w wytwarzaniu, transporcie i montażu. Kryteria te mogą spełniać lekkie konstrukcje stalowe z kształtowników giętych. Ich korzystne parametry geometryczne sprawiają, że mogą być interesującą alternatywą dla znacznie cięższych kształtowników walcowanych na gorąco [1].

dr inż. Andrzej Konarzewski Kompleksowe określanie trwałości eksploatacyjnej płyt warstwowych

Kompleksowe określanie trwałości eksploatacyjnej płyt warstwowych Kompleksowe określanie trwałości eksploatacyjnej płyt warstwowych

Testami wykorzystywanymi do kompleksowego badania trwałości płyt warstwowych w obustronnej okładzinie stalowej z rdzeniem izolacyjnym ze sztywnej pianki poliuretanowej PUR/PIR, tzw. paneli, może być test...

Testami wykorzystywanymi do kompleksowego badania trwałości płyt warstwowych w obustronnej okładzinie stalowej z rdzeniem izolacyjnym ze sztywnej pianki poliuretanowej PUR/PIR, tzw. paneli, może być test DUR 2 oraz test autoklawu.

dr inż. Krzysztof Pawłowski, prof. uczelni Systemy ociepleń ścian zewnętrznych w świetle wymagań obowiązujących od 1 stycznia 2021 r.

Systemy ociepleń ścian zewnętrznych w świetle wymagań obowiązujących od 1 stycznia 2021 r. Systemy ociepleń ścian zewnętrznych w świetle wymagań obowiązujących od 1 stycznia 2021 r.

Termomodernizacja istniejących budynków dotyczy ich dostosowania do nowych wymagań (obowiązujących od 1 stycznia 2021 r.) w zakresie oszczędności energii i ochrony cieplno-wilgotnościowej. Ponadto stanowi...

Termomodernizacja istniejących budynków dotyczy ich dostosowania do nowych wymagań (obowiązujących od 1 stycznia 2021 r.) w zakresie oszczędności energii i ochrony cieplno-wilgotnościowej. Ponadto stanowi zbiór zabiegów mających na celu wyeliminowanie lub znaczne ograniczenie strat ciepła w istniejącym budynku. Jest jednym z elementów modernizacji budynku, który przynosi korzyści finansowe na pokrycie kosztów innych działań.

mgr inż. Waldemar Bogusz Wtórne ocieplenia budynków z wielkiej płyty – wymagania i zagrożenia

Wtórne ocieplenia budynków z wielkiej płyty – wymagania i zagrożenia Wtórne ocieplenia budynków z wielkiej płyty – wymagania i zagrożenia

Zgodnie z prawem budowlanym [1] docieplenie bloku z płyt prefabrykowanych wysokości do 25 m można zrealizować bez projektu budowlanego, stosując uproszczoną procedurę zgłoszenia bez uzyskiwania pozwolenia...

Zgodnie z prawem budowlanym [1] docieplenie bloku z płyt prefabrykowanych wysokości do 25 m można zrealizować bez projektu budowlanego, stosując uproszczoną procedurę zgłoszenia bez uzyskiwania pozwolenia na budowę. Takich robót dla budynków wysokości do 12 m nawet nie potrzeba zgłaszać.

Recticel Insulation Płyty termoizolacyjne EUROTHANE G – efektywne docieplenie budynku od wewnątrz

Płyty termoizolacyjne EUROTHANE G – efektywne docieplenie budynku od wewnątrz Płyty termoizolacyjne EUROTHANE G – efektywne docieplenie budynku od wewnątrz

Termomodernizacja jest jednym z podstawowych zadań podejmowanych w ramach modernizacji budynków. W odniesieniu do ścian docieplenie wykonuje się od zewnątrz, zgodnie z podstawowymi zasadami fizyki budowli....

Termomodernizacja jest jednym z podstawowych zadań podejmowanych w ramach modernizacji budynków. W odniesieniu do ścian docieplenie wykonuje się od zewnątrz, zgodnie z podstawowymi zasadami fizyki budowli. Czasami jednak nie ma możliwości wykonania docieplenia na fasadach, np. na budynkach zabytkowych, obiektach z utrudnionym dostępem do elewacji czy na budynkach usytuowanych w granicy. W wielu takich przypadkach jest jednak możliwe wykonanie docieplenia ścian od wewnątrz.

Jarosław Guzal Kingspan na rynku nowoczesnych fasad

Kingspan na rynku nowoczesnych fasad Kingspan na rynku nowoczesnych fasad

Michał Pieczyski, Dyrektor Zarządzający Kingspan Fasady, o kierunku rozwoju rozwiązań fasadowych oraz specyfice rynku fasadowego w Polsce.

Michał Pieczyski, Dyrektor Zarządzający Kingspan Fasady, o kierunku rozwoju rozwiązań fasadowych oraz specyfice rynku fasadowego w Polsce.

Józef Macech Ściany wewnętrzne w budownictwie mieszkaniowym – rodzaje i wymagania na podstawie rozwiązań z wykorzystaniem elementów murowych

Ściany wewnętrzne w budownictwie mieszkaniowym – rodzaje i wymagania na podstawie rozwiązań z wykorzystaniem elementów murowych Ściany wewnętrzne w budownictwie mieszkaniowym – rodzaje i wymagania na podstawie rozwiązań z wykorzystaniem elementów murowych

Ściany wewnętrzne są przegrodami, których podstawowym zadaniem jest podział przestrzeni wewnątrz budynku.

Ściany wewnętrzne są przegrodami, których podstawowym zadaniem jest podział przestrzeni wewnątrz budynku.

mgr inż. arch. Tomasz Rybarczyk Zaprawy murarskie – rodzaje, porównanie, zastosowanie

Zaprawy murarskie – rodzaje, porównanie, zastosowanie Zaprawy murarskie – rodzaje, porównanie, zastosowanie

Przed rozpoczęciem robót murarskich nie tylko należy skompletować materiały murowe, ale również dobrać do nich odpowiednią zaprawę murarską i inne akcesoria, które będą potrzebne w trakcie murowania ścian.

Przed rozpoczęciem robót murarskich nie tylko należy skompletować materiały murowe, ale również dobrać do nich odpowiednią zaprawę murarską i inne akcesoria, które będą potrzebne w trakcie murowania ścian.

Najnowsze produkty i technologie

Fabryka Styropianu ARBET Wielka płyta – czy ocieplanie jej to ważne zagadnienie?

Wielka płyta – czy ocieplanie jej to ważne zagadnienie? Wielka płyta – czy ocieplanie jej to ważne zagadnienie?

Domy z wielkiej płyty wyróżniają się w krajobrazie Polski. Najczęściej budowano z nich wieżowce, mające około 10 pięter. Przez wiele lat w kontekście ich użytkowania mówiono o aspekcie estetycznym. Dziś...

Domy z wielkiej płyty wyróżniają się w krajobrazie Polski. Najczęściej budowano z nich wieżowce, mające około 10 pięter. Przez wiele lat w kontekście ich użytkowania mówiono o aspekcie estetycznym. Dziś jednak porusza się ważne kwestie dotyczące kwestii użytkowych, w tym – ich odpowiedniej izolacji.

KOESTER Polska Sp. z o.o. Köster – Specjaliści od hydroizolacji

Köster – Specjaliści od hydroizolacji Köster – Specjaliści od hydroizolacji

KÖSTER BAUCHEMIE AG specjalizuje się w produkcji i dystrybucji materiałów do hydroizolacji i ochrony budowli oraz systemów uszczelnień, a ich produkty chronią budowle na całym świecie. Zarówno podczas...

KÖSTER BAUCHEMIE AG specjalizuje się w produkcji i dystrybucji materiałów do hydroizolacji i ochrony budowli oraz systemów uszczelnień, a ich produkty chronią budowle na całym świecie. Zarówno podczas renowacji budynków historycznych, jak i w trakcie budowy nowych obiektów – proponuje skuteczne rozwiązanie każdego problemu związanego ze szkodliwym oddziaływaniem wody i wilgoci.

TRUTEK FASTENERS POLSKA Wzmacnianie bydynków wielkopłytowych w systemie TRUTEK TCM

Wzmacnianie bydynków wielkopłytowych w systemie TRUTEK TCM Wzmacnianie bydynków wielkopłytowych w systemie TRUTEK TCM

TRUTEK FASTENERS POLSKA jest firmą specjalizującą się w produkcji najwyższej jakości systemów zamocowań przeznaczonych do budownictwa lądowego, drogowego i przemysłu. W ofercie firmy znajdują się wyroby...

TRUTEK FASTENERS POLSKA jest firmą specjalizującą się w produkcji najwyższej jakości systemów zamocowań przeznaczonych do budownictwa lądowego, drogowego i przemysłu. W ofercie firmy znajdują się wyroby tradycyjne – od wielu lat stosowane w budownictwie, a także nowatorskie, zaawansowane technologicznie rozwiązania gwarantujące najwyższy poziom bezpieczeństwa.

TRUTEK FASTENERS POLSKA Innowacyjna technologia mocowania izolacji termicznej budynku

Innowacyjna technologia mocowania izolacji termicznej budynku Innowacyjna technologia mocowania izolacji termicznej budynku

Łączniki do mocowania izolacji termicznej obiektu to bardzo ważny element zapewniający bezpieczeństwo i stabilność warstwy docieplenia.

Łączniki do mocowania izolacji termicznej obiektu to bardzo ważny element zapewniający bezpieczeństwo i stabilność warstwy docieplenia.

GERARD AHI Roofing Kft. Oddział w Polsce Sp. z o.o. | RTG Roof Tile Group Dach marzeń: stylowy, nowoczesny i wyjątkowo odporny

Dach marzeń: stylowy, nowoczesny i wyjątkowo odporny Dach marzeń: stylowy, nowoczesny i wyjątkowo odporny

Czy chciałbyś mieć elegancki, nowoczesny dach, o niepowtarzalnym antracytowym kolorze, który zapewni Twojemu domowi najlepszą ochronę?

Czy chciałbyś mieć elegancki, nowoczesny dach, o niepowtarzalnym antracytowym kolorze, który zapewni Twojemu domowi najlepszą ochronę?

Tremco CPG Poland Sp. z o.o. Flowcrete – bezspoinowe posadzki żywiczne w przemyśle

Flowcrete – bezspoinowe posadzki żywiczne w przemyśle Flowcrete  – bezspoinowe posadzki żywiczne w przemyśle

Bezspoinowe posadzki żywiczne są często nazywane posadzkami przemysłowymi. Ze względu na ich właściwości, m.in. trwałość, wytrzymałość mechaniczną, w tym odporność na ścieranie, szczelność i nienasiąkliwość...

Bezspoinowe posadzki żywiczne są często nazywane posadzkami przemysłowymi. Ze względu na ich właściwości, m.in. trwałość, wytrzymałość mechaniczną, w tym odporność na ścieranie, szczelność i nienasiąkliwość oraz łatwość utrzymania w czystości, rozwiązania posadzkowe na bazie żywic syntetycznych są powszechnie stosowane w zakładach produkcyjnych z różnych branż.

Blachy Pruszyński, mgr inż. Piotr Olgierd Korycki Zagadnienia akustyki w obiektach przemysłowych z lekką obudową

Zagadnienia akustyki w obiektach przemysłowych z lekką obudową Zagadnienia akustyki w obiektach przemysłowych z lekką obudową

Obecnie trudno sobie wyobrazić budownictwo, a zwłaszcza halowe, użyteczności publicznej, przemysłowe i specjalne bez obudowy, jaką stanowią ściany osłonowe czy przekrycia dachowe. Wykonuje się je z lekkiej...

Obecnie trudno sobie wyobrazić budownictwo, a zwłaszcza halowe, użyteczności publicznej, przemysłowe i specjalne bez obudowy, jaką stanowią ściany osłonowe czy przekrycia dachowe. Wykonuje się je z lekkiej obudowy, takiej jak: płyty warstwowe, systemy oparte na bazie kaset stalowych wzdłużnych, warstwowe przekrycia dachowe z elementem nośnym w postaci blach trapezowych. Wymienione rozwiązania mają szereg zalet, m.in. małą masę jednostkową, możliwość montażu niezależnie od warunków atmosferycznych,...

MIWO – Stowarzyszenie Producentów Wełny Mineralnej: Szklanej i Skalnej Warunki Techniczne wymagają głębokich zmian

Warunki Techniczne wymagają głębokich zmian Warunki Techniczne wymagają głębokich zmian

Przepisy rozporządzenia Ministra Infrastruktury z dnia 12 kwietnia 2002 r. w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie (z późniejszymi zmianami) – zwanego Warunkami...

Przepisy rozporządzenia Ministra Infrastruktury z dnia 12 kwietnia 2002 r. w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie (z późniejszymi zmianami) – zwanego Warunkami Technicznymi lub w skrócie WT – stosuje się przy projektowaniu, budowie i przebudowie oraz zmianie sposobu użytkowania wszystkich rodzajów budynków oraz budowli nadziemnych i podziemnych, spełniających funkcje użytkowe budynków. Ten akt prawny jest aktem wykonawczym do Ustawy Prawo budowlane i określa...

Seban Nowoczesne membrany hydroizolacyjne – rozwiązania na dachy płaskie i zielone

Nowoczesne membrany hydroizolacyjne – rozwiązania na dachy płaskie i zielone Nowoczesne membrany hydroizolacyjne – rozwiązania na dachy płaskie i zielone

Współczesne budownictwo kładzie coraz większy nacisk na energooszczędność i poprawę efektywności energetycznej obiektów. Aby zmniejszyć zapotrzebowanie budynków na energię, projektanci, architekci i inwestorzy...

Współczesne budownictwo kładzie coraz większy nacisk na energooszczędność i poprawę efektywności energetycznej obiektów. Aby zmniejszyć zapotrzebowanie budynków na energię, projektanci, architekci i inwestorzy chętniej stosują technologie korzystające z energii odnawialnej.

Copyright © 2004-2019 Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Spółka komandytowa, nr KRS: 0000537655. Wszelkie prawa, w tym Autora, Wydawcy i Producenta bazy danych zastrzeżone. Jakiekolwiek dalsze rozpowszechnianie artykułów zabronione. Korzystanie z serwisu i zamieszczonych w nim utworów i danych wyłącznie na zasadach określonych w Zasadach korzystania z serwisu.
Portal Budowlany - Izolacje.com.pl

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim urządzeniu końcowym. W każdym momencie możesz dokonać zmiany ustawień przeglądarki dotyczących cookies. Nim Państwo zaczną korzystać z naszego serwisu prosimy o zapoznanie się z naszą polityką prywatności oraz Informacją o Cookies. Więcej szczegółów w naszej Polityce Prywatności oraz Informacji o Cookies. Administratorem Państwa danych osobowych jest Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Sp.K., nr KRS: 0000537655, z siedzibą w 04-112 Warszawa, ul. Karczewska 18, tel. +48 22 810-21-24, właściciel strony www.izolacje.com.pl. Twoje Dane Osobowe będą chronione zgodnie z wytycznymi polityki prywatności www.izolacje.com.pl oraz zgodnie z Rozporządzeniem Parlamentu Europejskiego i Rady (UE) 2016/679 z dnia 27 kwietnia 2016r i z Ustawą o ochronie danych osobowych Dz.U. 2018 poz. 1000 z dnia 10 maja 2018r.