Izolacje.com.pl

Zaawansowane wyszukiwanie

Analiza współczynnika przenoszenia ciepła fragmentu ściany zewnętrznej z oknem

Analysis of heat transfer coefficient for an external wall fragment with a window

Dzięki coraz lepszym technologiom projektowania, wyrobu i montażu stolarki okiennej producenci mogą proponować konsumentom okna o niestandardowych rozmiarach i kształtach o bardzo dobrych właściwościach termoizolacyjnych.
www.pixabay.com

Dzięki coraz lepszym technologiom projektowania, wyrobu i montażu stolarki okiennej producenci mogą proponować konsumentom okna o niestandardowych rozmiarach i kształtach o bardzo dobrych właściwościach termoizolacyjnych.


www.pixabay.com

Zgodnie z wciąż rosnącymi wymaganiami ochrony cieplnej budynków Warunki Techniczne, jakim powinny odpowiadać budynki i ich usytuowanie, podają, że maksymalny dopuszczany współczynnik przenikania ciepła okien w budynkach mieszkalnych na chwilę obecną (do 2021 r.) wynosi 1,1 W/(m2·K), zaś maksymalny dopuszczalny współczynnik przenikania ciepła ścian zewnętrznych w budynkach mieszkalnych - 0,23 W/(m2·K) [1]. Jednakże należy pamiętać, że te wymagania dotyczą budynków nowo wznoszonych.

Zobacz także

PU Polska – Związek Producentów Płyt Warstwowych i Izolacji Płyty warstwowe i odnawialne źródła energii jako duet energooszczędności

Płyty warstwowe i odnawialne źródła energii jako duet energooszczędności Płyty warstwowe i odnawialne źródła energii jako duet energooszczędności

Płyty warstwowe od wielu lat cieszą się niesłabnącą popularnością wśród projektantów i wykonawców skupionych wokół budownictwa przemysłowego. Coraz częściej jednak biura projektowe sięgają po ten produkt...

Płyty warstwowe od wielu lat cieszą się niesłabnącą popularnością wśród projektantów i wykonawców skupionych wokół budownictwa przemysłowego. Coraz częściej jednak biura projektowe sięgają po ten produkt w kontekście domów jedno- lub wielorodzinnych. W zestawieniu z pozyskiwaniem energii elektrycznej z odnawialnych źródeł energii (OZE) stanowią gotowy przepis na sprawnie zaizolowany termicznie budynek z osiągniętą niezależnością energetyczną.

fischer Polska sp. z o.o. Zalecenia dotyczące renowacji istniejącego systemu ETICS

Zalecenia dotyczące renowacji istniejącego systemu ETICS Zalecenia dotyczące renowacji istniejącego systemu ETICS

Przed podjęciem decyzji o wykonaniu dodatkowego docieplenia konieczna jest szczegółowa inwentaryzacja istniejącego układu/systemu ocieplenia oraz podłoża. Ocenę taką należy wykonać etapowo.

Przed podjęciem decyzji o wykonaniu dodatkowego docieplenia konieczna jest szczegółowa inwentaryzacja istniejącego układu/systemu ocieplenia oraz podłoża. Ocenę taką należy wykonać etapowo.

RAXY Sp. z o.o. Nowoczesne technologie w ciepłych i zdrowych budynkach

Nowoczesne technologie w ciepłych i zdrowych budynkach Nowoczesne technologie w ciepłych i zdrowych budynkach

Poznaj innowacyjne, specjalistyczne produkty nadające przegrodom budowlanym odpowiednią trwałość, izolacyjność cieplną i szczelność. Jakie rozwiązania pozwolą nowe oraz remontowane chronić budynki i konstrukcje?

Poznaj innowacyjne, specjalistyczne produkty nadające przegrodom budowlanym odpowiednią trwałość, izolacyjność cieplną i szczelność. Jakie rozwiązania pozwolą nowe oraz remontowane chronić budynki i konstrukcje?

Budynki, które już istnieją, charakteryzują się bardzo zróżnicowanymi właściwościami cieplnymi zarówno ścian, jak i stolarki okiennej. W takich wypadkach bardzo często podejmowanym przedsięwzięciem termomodernizacyjnym jest wymiana okien starych, nierzadko nieszczelnych i zimnych, na nowe, o bardzo dobrych parametrach cieplnych.

Przy montażu stolarki okiennej nie można zapomnieć o nowoczesnych metodach osadzania okien w ścianach osłonowych, dzięki którym następuje praktycznie całkowita eliminacja negatywnego wpływu liniowych mostków cieplnych na styku rama–ściana. Dzięki udoskonalaniu technologii projektowania, wyrobu i montażu stolarki okiennej producenci są w stanie proponować konsumentom okna o niestandardowych rozmiarach i kształtach, które nie tracą swych bardzo dobrych właściwości termoizolacyjnych.

Niezwykle często projektanci są postawieni przed problemem odpowiedniego doboru wymiarów stolarki okiennej do już istniejących ścian osłonowych o bardzo dobrych bądź wyjątkowo złych właściwościach cieplnych. W takiej sytuacji istnieje potrzeba doboru odpowiedniej strategii, której celem jest zapewnienie optymalnie wysokich właściwości cieplnych kompleksowej przegrody zewnętrznej (ściany z oknem) z doborem właściwych parametrów cieplnych i pól powierzchni poszczególnych elementów tworzących analizowaną przegrodę.

W związku z tą sytuacją celem przedstawionego badania jest analiza wpływu udziałów powierzchni elementów składowych (ściany, ramy i powierzchni szklonej) oraz parametrów fizykalnych charakteryzujących przenikanie ciepła w tych elementach (współczynników przenikania ciepła ściany, ramy i oszklenia) na współczynnik przenoszenia ciepła przez przenikanie ze strefy ogrzewanej do środowiska zewnętrznego fragmentu ściany zewnętrznej z oknem w budynku mieszkalnym, z opracowaniem deterministycznych modeli matematycznych zależności oraz określeniem wartości optymalnych badanych czynników.

Opis obiektu

Przegroda zewnętrzna każdego pomieszczenia mieszkalnego w budynkach mieszkalnych najczęściej jest fragmentem składającym się ze ściany i okna. Z uwzględnieniem nowych technologii montażu okien, dopuszczających szerokie możliwości zastosowania różnych rozwiązań ramy i różnorodnych typów oszklenia, z bardzo zróżnicowanymi cechami fizykalnymi zarówno w odniesieniu do ściany osłonowej, jak i samego okna, jako obiekt badania dla dalszej analizy przyjęto fragment ściany z trzema elementami: ścianą, ramą okienną i powierzchnią szkloną. Schematy takiego fragmentu pokazano na rys. 1.

RYS. 1. Schematy badanego fragmentu ściany zewnętrznej z oknem; rys.: archiwum autorów

RYS. 1. Schematy badanego fragmentu ściany zewnętrznej z oknem; rys.: archiwum autorów

Rozmiary fragmentu przegrody zewnętrznej uwzględniają rozwiązania przestrzenne pomieszczeń mieszkalnych i przyjęte zostały następująco:
2,80×3,60 m = 10,08 m2.

W ramach tej wartości w badaniu zmieniały się różne kombinacje pól powierzchni okien, od rozmiaru 0,60×1,48 m = 0,888 m2 do 3,00×1,48 m = 4,440 m2.

Wysokość okna w analizowanym przypadku należało przyjąć jako wartość stałą, gdyż w oknach referencyjnych w budynkach mieszkalnych wynosi ona 1,48 m [2].

Powód przyjęcia wysokości okna jako parametru stałego w badaniu został wyjaśniony w dalszej części pracy.

Metoda obliczania współczynnika przenoszenia ciepła

Współczynnik przenoszenia ciepła przez przenikanie ze strefy ogrzewanej do środowiska zewnętrznego w przegrodach budowlanych jest jedną z najważniejszych wielkości przy obliczeniach zapotrzebowania ciepła na energię użytkową w budynkach ogrzewanych. Charakteryzuje on przenoszenie ciepła nie przez 1 m2 (jak współczynnik przenikania ciepła U), lecz przez pewny fragment przegrody z polem powierzchni Afr, zawierający kilka elementów składowych.

Oblicza się ten współczynnik wg wzoru [3]:

 (1)

gdzie:

btr,i - współczynnik redukcyjny obliczeniowej różnicy temperatur (przyjęto btr,i = 1);
Ai - pole powierzchni i-tej przegrody, [m2];
Ui - współczynnik przenikania ciepła i-tej przegrody, [W/(m2·K)];
li - długość liniowego mostka cieplnego, [m];
yi - liniowy współczynnik przenikania ciepła mostka liniowego, [W/(m·K)].

RYS. 2. Schemat blokowy obliczania współczynnika przenoszenia ciepła: Htr; hw - wysokość okna; Aw = A1 + A2 - powierzchnia okna; bw - szerokość okna; C - udział powierzchni szklonej do powierzchni okna, bf - szerokość elementów ramy; rys. autorów (W. Jezierski, J. Borowska)

RYS. 2. Schemat blokowy obliczania współczynnika przenoszenia ciepła: Htr; hw - wysokość okna; Aw = A1 + A2 - powierzchnia okna; bw - szerokość okna; C - udział powierzchni szklonej do powierzchni okna, bf - szerokość elementów ramy; rys. autorów (W. Jezierski, J. Borowska)

Mimo prostego wyrazu, wzór (1) jest bardzo złożoną zależnością dla przeprowadzenia analizy czynnikowej. Nawet przy trzech elementach składowych wzór ten daje aż 10 czynników do przeanalizowania. Są to

A1, A2, A3 - pola powierzchni odpowiednio oszklenia, ramy i ściany;
U1, U2, U3 - współczynniki przenikania ciepła odpowiednio oszklenia, ramy i ściany;
l1, l2 - długości liniowe mostków cieplnych odpowiednio na styku szkło–rama i styku rama–ściana;
ψ1, ψ2 - liniowe współczynniki przenikania ciepła mostka liniowego odpowiednio na styku szkło–rama i styku rama–ściana.

Każdy dodatkowy element składowy zwiększa liczbę czynników o 4 lub 6 parametrów.

Jednak najtrudniejszym zadaniem dla przeprowadzenia analizy był warunek, którym są powiązane trzy pierwsze zmienne:

(2)

Do wykonania obliczeń Htr,ie, zaplanowanych w eksperymencie obliczeniowym, autorzy stworzyli specjalny algorytm (rys. 2). Ten algorytm posłużył jako podstawa do opracowania autorskiego programu w Microsoft Excel.

Model matematyczny do określenia współczynnika przenoszenia ciepła przez przenikanie

Wstępna analiza czynników pozwoliła wykryć, że oprócz zmiennych A1, A2, A3 oraz l1 i l2, pozostałe zmienne są sterowalne, mierzalne, wzajemnie niezależne, niesprzeczne i odpowiadają podstawowym wymaganiom modelowania matematycznego [4].

Zmienne l1 i l2 są zależne od A1 i A2 oraz niejednoznaczne. W celu zapewnienia jednoznaczności l1 i l2 wysokość okna przyjęto jako wartość stałą.

Zgodnie z przyjętym celem badania, współczynnik przenoszenia ciepła Htr (funkcja celu Y) postanowiono zbadać w zależności od trzech czynników geometrycznych:

  • udziałów powierzchni szklonej (czynnik z1),
  • powierzchni ramy (czynnik z2),
  • powierzchni ściany (czynnik z3)

przy uwzględnieniu wpływu trzech czynników fizykalnych - współczynników przenikania ciepła:

  • oszklenia U1,
  • ramy U2,
  • ściany U3.

Pozostałe parametry przyjęto na stałym poziomie.

Ponieważ czynniki geometryczne z1, z2, z3 są związane warunkiem (2), to do zbadania ich wpływu zastosowano planowanie sympleksowe dla trzech zmiennych w układzie „skład–własność” zawierającego N = 7 prób (tabela 1) [5].

Planowanie sympleksowe tradycyjnie stosuje się do opracowania modeli matematycznych zależności właściwości dowolnych mieszanek od udziału składników. Dzięki wykrytemu podobieństwu formalnemu autorzy zastosowali to podejście do rozwiązania zagadnienia z fizyki budowli.

TABELA 1. Plan eksperymentu, gdzie z1, z2, z3 – czynniki geometryczne; χ1, χ2, χ3 – poziomy zmienności rozpatrywanych czynników (w liczniku – udziały; w mianowniku – powierzchnie, m2); Y1, Y2, Y3 – wyniki obliczeń współczynnika przenoszenia ciepła przez przenikanie

TABELA 1. Plan eksperymentu, gdzie z1, z2, z3 – czynniki geometryczne; χ1, χ2, χ3 – poziomy zmienności rozpatrywanych czynników (w liczniku – udziały; w mianowniku – powierzchnie, m2); Y1, Y2, Y3 – wyniki obliczeń współczynnika przenoszenia ciepła przez przenikanie

Ten plan przewiduje określony układ realizacji obliczeń przy spełnieniu warunku z1 + z2 + z3 = 1 i opracowanie modelu w postaci niepełnego wielomianu trzeciego stopnia dla trzech zmiennych:

  (3)

Wpływ niezależnych czynników fizykalnych U1, U2, U3 może być uwzględniony poprzez realizację w każdym z siedmiu punktów planu sympleksowego dla Y = f(z1, z2, z3) dodatkowo tradycyjnego planu trójczynnikowego dla Y = ƒ(U1, U2, U3).

Po odpowiedniej obróbce wyników mielibyśmy model zależności Y od sześciu czynników, jednak postać tego modelu byłaby bardzo skomplikowana.

Dążąc do uproszczenia modelu oraz osiągnięcia celu badania, podjęto decyzję o opracowaniu modeli w postaci Yi= ƒ(z1, z2, z3) dla każdego z trzech następujących układów parametrów fizykalnych:

  • model Y1dobre okno”:
    U1= 0,70 W/(m2·K); U2= 1,10 W/(m2·K); ψ1 = ψ2= 0,08 W/(m·K)
    + dobra ściana: U3= 0,23 W/(m2·K);
  • model Y2 dobre okno:
    U1= 0,70 W/(m2·K); U2= 1,10 W/(m2·K); ψ1 = ψ2 = 0,08 W/(m·K)
    + zła ściana: U3= 0,75 W/(m2·K);
  • model Y3 złe okno:
    U1
    = 2,10 W/(m2·K); U2= 3,30 W/(m2·K); ψ1 = ψ2 = 0,29 W/(m·K)
    + dobra ściana: U3= 0,23 W/(m2·K).

Według planu (tabela 1) każdy z czynników z1, z2, z3 należy rozpatrywać na czterech poziomach:

  • 0;000;
  • 0,333;
  • 0,500;
  • 1,000.

Ten warunek nie odpowiadał przyjętemu celowi, ponieważ nie miało sensu wykonywać badania w całym zakresie zmiany udziałów wybranych czynników (od 0 do 1).

Praktyczne znaczenie miały jedynie takie zakresy zmienności czynników, które odpowiadały realnym układam fragmentu ściany z oknem.

W związku z tym w badaniu zastosowano lokalne planowanie sympleksowe w warunkach ograniczenia zakresu zmienności wszystkich czynników [6]. Procedura realizacji tego podejścia została szczegółowo opisana w innych pracach autorów [7-8].

Na podstawie wstępnej analizy wybranego fragmentu ściany został wybrany podobszar obejmujący preferowane udziały elementów składowych: powierzchni szklonej (χ1) - od 0,079 do 0,396; ramy (χ2) - od 0,009 do 0,176; ściany (χ3) - od 0,560 do 0,912.

Wartości udziałów składników określały współrzędne wierzchołków wybranego do badania podobszaru:

Wyżej wymieniony podobszar został transformowany do pełnego planu sympleksowego poprzez wprowadzenie pseudoskładników z1, z2, z3, które w każdym u-tym układzie planu są związane z czynnikami rzeczywistymi χ1, χ2, χ3 zależnością [6]:

   (4)

Poziomy zmienności czynników z1, z2, z3 oraz odpowiadające im rzeczywiste czynniki χ1, χ2, χ3 przedstawiono w tabeli 1.

Po przeprowadzeniu niezbędnych obliczeń możliwe było opracowanie modeli badanych cech w zależności od pseudoskładników (z1, z2, z3).

Chcąc otrzymać modele matematyczne z czynnikami w postaci naturalnej (x1, x2, x3), należało odkodować je przez podstawienie odpowiednich zależności.

Za pomocą wzorów, podanych w [5] opracowano zależności Yi = ƒ(z1, z2, z3):

    • dla układu „dobre okno” + „dobra ściana”:

    (5)

    • dla układu „dobre okno” + „zła ściana”:

    (6)

    • dla układu „złe okno” + „dobra ściana”:

    (7)

Po sprawdzeniu adekwatności opracowanych modeli wg [5] (procedura ta została szczegółowo opisana przez autorów w [7]) uznano ich przydatność do dalszej analizy. Jednak najpierw otrzymano formuły związku pomiędzy współrzędnymi naturalnymi χi i systemem współrzędnych zi:

   (8)

   (9)

   (10)

Analiza wyników badania

Do interpretacji wyników badania zastosowano modele (5), (6) i (7), na podstawie których opracowano wykresy w postaci izolinii badanych zależności od rozpatrywanych czynników we współrzędnych pseudoskładników z1, z2, z3 (RYS. 3, RYS. 4 i RYS. 5) dla każdego z układów fragmentu ściany.

Te modele pozwoliły powiększyć badany podobszar do pełnych trójkątów sympleksowych, znacznie ułatwiając interpretację wyników. Natomiast merytoryczną interpretację wykonano na podstawie TAB. 1 przy zastosowaniu naturalnych współrzędnych χ1, χ2, χ3.

Jak widać z RYS. 3,:

  • najwyższą wartość (6,388 W/K) współczynnika przenoszenia ciepła Y1 fragmentu dla układu dobre okno” + dobra ściana” uzyskano w wierzchołku Z2 (punkt 2) przy χ1 = 0,264; χ2 = 0,176; χ3 = 0,560 (TAB. 1),
  • natomiast najniższą (3,420 W/K) w wierzchołku Z3 (punkt 3) przy χ1 = 0,079; χ2 = 0,009; χ3 = 0,912.
RYS. 3. Zależność współczynnika przenoszenia ciepła Y1 fragmentu ściany z oknem dla układu

RYS. 3. Zależność współczynnika przenoszenia ciepła Y1 fragmentu ściany z oknem dla układu "dobre okno" [U1 = 0,70 W/(m2·K); U2 = 1,10 W/(m2·K); ψ1 = ψ2 = 0,08 W/(m·K)] + "dobra ściana" [U3 = 0,23 W/(m2·K)], od udziałów elementów składowych z1 - powierzchnia oszklenia, z2 - powierzchnia ramy, z3 - powierzchnia ściany rys. autorów (W. Jezierski, J. Borowska)

W sensie praktycznym oznacza to, że w badanym fragmencie ściany zamiana okna o powierzchni Ao3 = 1,48×0,60 = 0,887 m2 z udziałem powierzchni szklonej do powierzchni okna C = 0,90 (co odpowiada parametrom dla punktu 2) na okno o powierzchni Ao2= 1,48×2,993 = 4,43 m2 z udziałem powierzchni szklonej C = 0,60 (co odpowiada parametrom dla punktu 2) spowoduje wzrost współczynnika przenoszenia ciepła Y1 fragmentu ściany z układem „dobre okno” + „dobra ściana” o 86,8%.

Zastosowanie w tym samym fragmencie standardowego okna o powierzchni Aos = 1,48×1,23 = 1,820 m2 z udziałem powierzchni szklonej C = 0,70 i szerokości elementów ramy bf= 0,11 m daje wartość współczynnika przenoszenia ciepła fragmentu Y1= 4,189 W/K.

Z RYS. 4 wynika, że najwyższą wartość (9,320 W/K) współczynnika przenoszenia ciepła Y2 fragmentu dla układu „dobre okno” + „zła ściana” uzyskano także w wierzchołku Z2 (punkt 2) przy χ1 = 0,264; χ2 = 0,176; χ3  = 0,560 (TAB. 1), natomiast najniższą (8,200 W/K) też w wierzchołku Z3 (punkt 3) przy χ1 = 0,079; χ2 = 0,009; χ3 = 0,912. Poziom średni Y2 mocno wzrósł w porównaniu z Y1, natomiast rola okna przy „złej” ścianie jest inna.

Wahania pól powierzchni oszklenia i ramy dają znacznie słabsze efekty w podwyższeniu Y2. Tak przy zamianie w badanym fragmencie ściany okna o powierzchni Ao3= 1,48×0,60 = 0,887 m2 z udziałem powierzchni szklonej do powierzchni okna C = 0,90 (co odpowiada parametrom dla punktu 3) na okno o powierzchni Ao2= 1,48×2,993 = 4,43 m2 z udziałem powierzchni szklonej C = 0,60 (co odpowiada parametrom dla punktu 2) wzrost współczynnika przenoszenia ciepła Y2 fragmentu ściany z układem „dobre okno” + „zła ściana” wynosi tylko 13,7%.

RYS. 4. Zależność współczynnika przenoszenia ciepła Y2 fragmentu ściany z oknem dla układu „dobre okno” [U1 = 0,70 W/(m2· K); U2= 1,10 W/(m2 · K); ψ1 = ψ2 = 0,08 W/(m · K)] + „zła ściana”[U3 = 0,75 W/(m2 · K)], od udziałów elementów składowych; rys.: archiwum autorów (W. Jezierski, J. Borowska)

RYS. 4. Zależność współczynnika przenoszenia ciepła Y2 fragmentu ściany z oknem dla układu „dobre okno” [U1 = 0,70 W/(m2· K); U2= 1,10 W/(m2 · K); ψ1 = ψ2 = 0,08 W/(m · K)] + „zła ściana” [U3 = 0,75 W/(m2 · K)], od udziałów elementów składowych; rys.: archiwum autorów (W. Jezierski, J. Borowska)

Zastosowanie w tym samym fragmencie standardowego okna dobrej jakości o powierzchni Ao1= 1,48×1,23 = 1,820 m2 z udziałem powierzchni szklonej C = 0,70 i szerokości elementów ramy bf= 0,11 m dało wartość współczynnika przenoszenia ciepła fragmentu Y2= 8,484 W/K.

Porównując tę wartości z wartością Y1, także uzyskaną przy zastosowaniu okna standardowego, można stwierdzić, że zła jakość ściany spowodowała wzrost współczynnika przenoszenia ciepła z 4,189 do 8,484 W/K, tj. o 102,5%.

Najwyższą wartość (17,364 W/K) współczynnika przenoszenia ciepła Y3 fragmentu dla układu "złe okno" + "dobra ściana" uzyskano także w wierzchołku z2 (punkt 2) (rys. 5) przy x1 = 0,264; x2 = 0,176; x3 = 0,560 (tabela 1), natomiast najniższą (6,435 W/K) w tym samym wierzchołku Z3 (punkt 3) przy x1 = 0,079; x2 = 0,009; x3 = 0,912.

Rola okna przy jego "złej" jakości jest bardzo istotna. To wyraźnie widać przy ocenie wpływu pól powierzchni oszklenia i ramy na podwyższenie Y3. Tak przy zamianie w badanym fragmencie ściany okna o powierzchni Ao3 = 1,48×0,60 = 0,887 m2 z udziałem powierzchni szklonej do powierzchni okna C = 0,90 (co odpowiada parametrom dla punktu 3) na okno o powierzchni Ao2 = 1,48×2,993 = 4,43 m2 z udziałem powierzchni szklonej C = 0,60 (co odpowiada parametrom dla punktu 2) wzrost współczynnika przenoszenia ciepła Y3 fragmentu ściany z układem "złe okno" + "dobra ściana" wynosi aż 169,8%.

Zastosowanie w tym samym fragmencie standardowego okna złej jakości o powierzchni Ao1 = 1,48×1,23 = 1,820 m2 z udziałem powierzchni szklonej C = 0,70 i szerokości elementów ramy bf = 0,11 m daje wartość współczynnika przenoszenia ciepła Y1 = 9,264 W/K. Porównując tę wartość z wartością Y1, uzyskaną przy zastosowaniu okna standardowego wysokiej jakości, można stwierdzić, że zła jakość okna spowodowała wzrost współczynnika przenoszenia ciepła fragmentu z 4,189 do 9,264 W/K, tj. o 121,2%.

RYS. 5. Zależność współczynnika przenoszenia ciepła Y3 fragmentu ściany z oknem dla układu „złe okno” [U1 = 2,10 W/(m2 · K); U2 = 3,30 W/(m2 · K); ψ1 = ψ2 = 0,29 W/(m · K)] + „dobra ściana” [U3 = 0,23 W/(m2 · K)], od udziałów elementów składowych; rys.: archiwum autorów (W. Jezierski, J. Borowska)

RYS. 5. Zależność współczynnika przenoszenia ciepła Y3 fragmentu ściany z oknem dla układu „złe okno” [U1 = 2,10 W/(m2 · K); U2 = 3,30 W/(m2 · K); ψ1 = ψ2 = 0,29 W/(m · K)] + „dobra ściana” [U3 = 0,23 W/(m2 · K)], od udziałów elementów składowych; rys.: archiwum autorów (W. Jezierski, J. Borowska)

Wnioski

Za pomocą opracowanych modeli matematycznych oszacowano efekty wpływu udziałów pól powierzchni oszklenia, ramy i ściany oraz ich parametrów cieplnych na współczynnik przenoszenia ciepła fragmentu ściany z oknem w budynku mieszkalnym.

W przyjętym zakresie zmienności wahania pól powierzchni oszklenia i ramy mogą spowodować wzrost współczynnika przenoszenia ciepła fragmentu ściany z oknem o 86,8%.

W wypadku ściany niespełniającej obecnych wymagań ochrony cieplnej efekt wpływu wahań pól powierzchni oszklenia i ramy słabnie do kilkunastu procent. Główna rola w prawie dwukrotnym podwyższeniu współczynnika przenoszenia ciepła fragmentu należy do ściany.

Najgorszym rozwiązaniem fragmentu przegrody zewnętrznej okazał się wariant z wykorzystaniem okien o niskiej termoizolacji. Wzrost wpływu wahań pól powierzchni oszklenia i ramy na współczynnik przenoszenia ciepła osiąga wtedy 169,8%. Potwierdza to celowość wymiany okien w pierwszej kolejności przy częściowej termomodernizacji budynków.

Literatura

  1. Rozporządzenie Ministra Infrastruktury w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie, z dnia 17 lipca 2015 r.
  2. PN-EN 14351-1+A2:2016-10, „Okna i drzwi – Część 1: Okna i drzwi zewnętrzne bez właściwości dotyczących odporności ogniowej i/lub dymoszczelności”.
  3. Rozporządzenie Ministra Infrastruktury i Rozwoju z dnia 27 lutego 2015 r. w sprawie metodologii wyznaczania charakterystyki energetycznej budynku lub części budynku oraz świadectw charakterystyki energetycznej.
  4. J. Gutenbaum, „Modelowanie matematyczne systemów”. Wyd. EXIT, Warszawa 2003.
  5. V.Z. Brodskiy, L.I. Brodskiy, T.I. Golikova i in., „Tablicy planov eksperimenta dla faktornyh i polinomial’nyh modelej”, Metalurgiâ, Moskva 1982.
  6. I.G. Zedginidze, „Matematiczeskoje planirovanie eksperymenta dla issledovaniâ i optimizacii svoistv smesej”, Mecniereba, Tbilisi 1986.
  7. 7. W. Jezierski, J. Borowska, „Model matematyczny współczynnika przenikania ciepła ściany osłonowej z oknem z uwzględnieniem powierzchni elementów składowych”, „Izolacje” 1/2018, s. 50–54.

Chcesz być na bieżąco? Zapisz się do naszego newslettera!

Galeria zdjęć

Tytuł
przejdź do galerii

Komentarze

Powiązane

dr inż. Andrzej Konarzewski Panele architektoniczne do budownictwa komercyjnego

Panele architektoniczne do budownictwa komercyjnego Panele architektoniczne do budownictwa komercyjnego

W Europie do opisywania konstrukcji ścian osłonowych z płyt warstwowych w obustronnej okładzinie stalowej z rdzeniem izolacyjnym można wykorzystywać zapisy podane w normie PN-EN 13830.

W Europie do opisywania konstrukcji ścian osłonowych z płyt warstwowych w obustronnej okładzinie stalowej z rdzeniem izolacyjnym można wykorzystywać zapisy podane w normie PN-EN 13830.

mgr inż. Julia Blazy, prof. dr hab. inż. Łukasz Drobiec, dr hab. inż. arch. Rafał Blazy prof. PK Zastosowanie fibrobetonu z włóknami polipropylenowymi w przestrzeniach publicznych

Zastosowanie fibrobetonu z włóknami polipropylenowymi w przestrzeniach publicznych Zastosowanie fibrobetonu z włóknami polipropylenowymi w przestrzeniach publicznych

Beton to materiał o dużej wytrzymałości na ściskanie, ale około dziesięciokrotnie mniejszej wytrzymałości na rozciąganie. Ponadto charakteryzuje się kruchym pękaniem i nie pozwala na przenoszenie naprężeń...

Beton to materiał o dużej wytrzymałości na ściskanie, ale około dziesięciokrotnie mniejszej wytrzymałości na rozciąganie. Ponadto charakteryzuje się kruchym pękaniem i nie pozwala na przenoszenie naprężeń po zarysowaniu.

Redakcja miesięcznika IZOLACJE Tynki gipsowe w pomieszczeniach mokrych i łazienkach

Tynki gipsowe w pomieszczeniach mokrych i łazienkach Tynki gipsowe w pomieszczeniach mokrych i łazienkach

Dobór tynku wewnętrznego do pomieszczeń mokrych lub narażonych na wilgoć nie jest prosty. Takie pomieszczenia mają specjalne wymagania, a rodzaj pokrycia ścian wewnętrznych powinien uwzględniać trudne...

Dobór tynku wewnętrznego do pomieszczeń mokrych lub narażonych na wilgoć nie jest prosty. Takie pomieszczenia mają specjalne wymagania, a rodzaj pokrycia ścian wewnętrznych powinien uwzględniać trudne warunki panujące wewnątrz kuchni czy łazienki. Na szczęście technologia wychodzi inwestorom naprzeciw i efektywne położenie tynku gipsowego w mokrych i wilgotnych pomieszczeniach jest możliwe.

mgr inż. Maciej Rokiel System ETICS – skutki braku analizy dokumentacji projektowej (cz. 4)

System ETICS – skutki braku analizy dokumentacji projektowej (cz. 4) System ETICS – skutki braku analizy dokumentacji projektowej (cz. 4)

Artykuł jest kontynuacją publikacji zamieszczonych kolejno w numerach 3/2022, 4/2022 i 6/2022 miesięcznika IZOLACJE. W tej części skupimy się na tym, jak skutki braku analizy czy wręcz nieprzeczytania...

Artykuł jest kontynuacją publikacji zamieszczonych kolejno w numerach 3/2022, 4/2022 i 6/2022 miesięcznika IZOLACJE. W tej części skupimy się na tym, jak skutki braku analizy czy wręcz nieprzeczytania dokumentacji projektowej mogą wpłynąć na uszkodzenia systemu. Przez „przeczytanie” należy tu także rozumieć zapoznanie się z tekstem kart technicznych stosowanych materiałów.

dr inż. Pavel Zemene, przewodniczący Stowarzyszenia EPS w Republice Czeskiej Bezpieczeństwo pożarowe złożonych systemów izolacji cieplnej ETICS

Bezpieczeństwo pożarowe złożonych systemów izolacji cieplnej ETICS Bezpieczeństwo pożarowe złożonych systemów izolacji cieplnej ETICS

Do bezpieczeństwa pożarowego w budynkach przywiązuje się niezmiernie dużą wagę. Zagadnienie to jest ważne nie tylko ze względu na bezpieczeństwo użytkowników budynku, ale także ze względu na bezpieczną...

Do bezpieczeństwa pożarowego w budynkach przywiązuje się niezmiernie dużą wagę. Zagadnienie to jest ważne nie tylko ze względu na bezpieczeństwo użytkowników budynku, ale także ze względu na bezpieczną eksploatację budynków i ochronę mienia. W praktyce materiały i konstrukcje budowlane muszą spełniać szereg wymagań, związanych między innymi z podstawowymi wymaganiami dotyczącymi stabilności konstrukcji i jej trwałości, izolacyjności termicznej i akustycznej, a także higieny i zdrowia, czy wpływu...

mgr inż. Maciej Rokiel Jak układać płytki wielkoformatowe?

Jak układać płytki wielkoformatowe? Jak układać płytki wielkoformatowe?

Wraz ze wzrostem wielkości płytek (długości ich krawędzi) wzrastają wymogi dotyczące jakości materiałów, precyzji przygotowania podłoża oraz reżimu technologicznego wykonawstwa.

Wraz ze wzrostem wielkości płytek (długości ich krawędzi) wzrastają wymogi dotyczące jakości materiałów, precyzji przygotowania podłoża oraz reżimu technologicznego wykonawstwa.

dr inż. Krzysztof Pawłowski prof. PBŚ Właściwości cieplno-wilgotnościowe materiałów budowlanych (cz. 2)

Właściwości cieplno-wilgotnościowe materiałów budowlanych (cz. 2) Właściwości cieplno-wilgotnościowe materiałów budowlanych (cz. 2)

Proces wymiany ciepła przez przegrody budowlane jest nieustalony w czasie, co wynika ze zmienności warunków klimatycznych na zewnątrz budynku oraz m.in. nierównomierności pracy urządzeń grzewczych. Opis...

Proces wymiany ciepła przez przegrody budowlane jest nieustalony w czasie, co wynika ze zmienności warunków klimatycznych na zewnątrz budynku oraz m.in. nierównomierności pracy urządzeń grzewczych. Opis matematyczny tego procesu jest bardzo złożony, dlatego w większości rozwiązań inżynierskich stosuje się uproszczony model ustalonego przepływu ciepła.

mgr inż. Jarosław Stankiewicz Zastosowanie kruszyw lekkich w warstwach izolacyjnych

Zastosowanie kruszyw lekkich w warstwach izolacyjnych Zastosowanie kruszyw lekkich w warstwach izolacyjnych

Kruszywa lekkie są materiałem znanym od starożytności. Aktualnie wyrób ten ma liczną grupę odbiorców nie tylko we współczesnym budownictwie, ale i w innych dziedzinach gospodarki. Spowodowane to jest licznymi...

Kruszywa lekkie są materiałem znanym od starożytności. Aktualnie wyrób ten ma liczną grupę odbiorców nie tylko we współczesnym budownictwie, ale i w innych dziedzinach gospodarki. Spowodowane to jest licznymi zaletami tego wyrobu, takimi jak wysoka izolacyjność cieplna, niska gęstość, niepalność i wysoka mrozoodporność, co pozwala stosować go zarówno w budownictwie, ogrodnictwie, jak i innych branżach.

dr inż. Andrzej Konarzewski, mgr Marek Skowron, mgr inż. Mateusz Skowron Przegląd metod recyklingu i utylizacji odpadowej pianki poliuretanowo‑poliizocyjanurowej powstającej przy produkcji wyrobów budowlanych

Przegląd metod recyklingu i utylizacji odpadowej pianki poliuretanowo‑poliizocyjanurowej powstającej przy produkcji wyrobów budowlanych Przegląd metod recyklingu i utylizacji odpadowej pianki poliuretanowo‑poliizocyjanurowej powstającej przy produkcji wyrobów budowlanych

W trakcie szerokiej i różnorodnej produkcji wyrobów budowlanych ze sztywnej pianki poliuretanowo/poliizocyjanurowej powstaje stosunkowo duża ilość odpadów, które muszą zostać usunięte. Jak przeprowadzić...

W trakcie szerokiej i różnorodnej produkcji wyrobów budowlanych ze sztywnej pianki poliuretanowo/poliizocyjanurowej powstaje stosunkowo duża ilość odpadów, które muszą zostać usunięte. Jak przeprowadzić recykling odpadów z pianki?

Joanna Szot Rodzaje stropów w domach jednorodzinnych

Rodzaje stropów w domach jednorodzinnych Rodzaje stropów w domach jednorodzinnych

Strop dzieli budynek na kondygnacje. Jednak to nie jedyne jego zadanie. Ponadto ten poziomy element konstrukcyjny usztywnia konstrukcję domu i przenosi obciążenia. Musi także stanowić barierę dla dźwięków...

Strop dzieli budynek na kondygnacje. Jednak to nie jedyne jego zadanie. Ponadto ten poziomy element konstrukcyjny usztywnia konstrukcję domu i przenosi obciążenia. Musi także stanowić barierę dla dźwięków i ciepła.

P.P.H.U. EURO-MIX sp. z o.o. EURO-MIX – zaprawy klejące w systemach ociepleń

EURO-MIX – zaprawy klejące w systemach ociepleń EURO-MIX – zaprawy klejące w systemach ociepleń

EURO-MIX to producent chemii budowlanej. W asortymencie firmy znajduje się obecnie ponad 30 produktów, m.in. kleje, tynki, zaprawy, szpachlówki, gładzie, system ocieplania ścian na wełnie i na styropianie....

EURO-MIX to producent chemii budowlanej. W asortymencie firmy znajduje się obecnie ponad 30 produktów, m.in. kleje, tynki, zaprawy, szpachlówki, gładzie, system ocieplania ścian na wełnie i na styropianie. Zaprawy klejące EURO-MIX przeznaczone są do przyklejania wełny lub styropianu do podłoża z cegieł ceramicznych, betonu, tynków cementowych i cementowo­-wapiennych, gładzi cementowej, styropianu i wełny mineralnej w temperaturze od 5 do 25°C.

dr inż. Krzysztof Pawłowski prof. PBŚ Układy materiałowe wybranych przegród zewnętrznych w aspekcie wymagań cieplnych (cz. 3)

Układy materiałowe wybranych przegród zewnętrznych w aspekcie wymagań cieplnych (cz. 3) Układy materiałowe wybranych przegród zewnętrznych w aspekcie wymagań cieplnych (cz. 3)

Rozporządzenie w sprawie warunków technicznych [1] wprowadziło od 31 grudnia 2020 r. nowe wymagania dotyczące izolacyjności cieplnej poprzez zaostrzenie wymagań w zakresie wartości granicznych współczynnika...

Rozporządzenie w sprawie warunków technicznych [1] wprowadziło od 31 grudnia 2020 r. nowe wymagania dotyczące izolacyjności cieplnej poprzez zaostrzenie wymagań w zakresie wartości granicznych współczynnika przenikania ciepła Uc(max) [W/(m2·K)] dla przegród zewnętrznych oraz wartości granicznych wskaźnika zapotrzebowania na energię pierwotną EP [kWh/(m2·rok)] dla całego budynku. Jednak w rozporządzeniu nie sformułowano wymagań w zakresie ograniczenia strat ciepła przez złącza przegród zewnętrznych...

mgr inż. arch. Tomasz Rybarczyk Zastosowanie keramzytu w remontowanych stropach i podłogach na gruncie

Zastosowanie keramzytu w remontowanych stropach i podłogach na gruncie Zastosowanie keramzytu w remontowanych stropach i podłogach na gruncie

Są sytuacje i miejsca w budynku, w których nie da się zastosować termoizolacji w postaci wełny mineralnej lub styropianu. Wówczas w rozwiązaniach występują inne, alternatywne materiały, które nadają się...

Są sytuacje i miejsca w budynku, w których nie da się zastosować termoizolacji w postaci wełny mineralnej lub styropianu. Wówczas w rozwiązaniach występują inne, alternatywne materiały, które nadają się również do standardowych rozwiązań. Najczęściej ma to miejsce właśnie w przypadkach, w których zastosowanie styropianu i wełny się nie sprawdzi. Takim materiałem, który może w pewnych miejscach zastąpić wiodące materiały termoizolacyjne, jest keramzyt. Ten materiał ma wiele właściwości, które powodują,...

Sebastian Malinowski Kleje żelowe do płytek – właściwości i zastosowanie

Kleje żelowe do płytek – właściwości i zastosowanie Kleje żelowe do płytek – właściwości i zastosowanie

Kleje żelowe do płytek cieszą się coraz większą popularnością. Produkty te mają świetne parametry techniczne, umożliwiają szybki montaż wszelkiego rodzaju okładzin ceramicznych na powierzchni podłóg oraz...

Kleje żelowe do płytek cieszą się coraz większą popularnością. Produkty te mają świetne parametry techniczne, umożliwiają szybki montaż wszelkiego rodzaju okładzin ceramicznych na powierzchni podłóg oraz ścian.

dr inż. Krzysztof Pawłowski prof. PBŚ Projektowanie cieplne przegród stykających się z gruntem

Projektowanie cieplne przegród stykających się z gruntem Projektowanie cieplne przegród stykających się z gruntem

Dla przegród stykających się z gruntem straty ciepła przez przenikanie należą do trudniejszych w obliczeniu. Strumienie cieplne wypływające z ogrzewanego wnętrza mają swój udział w kształtowaniu rozkładu...

Dla przegród stykających się z gruntem straty ciepła przez przenikanie należą do trudniejszych w obliczeniu. Strumienie cieplne wypływające z ogrzewanego wnętrza mają swój udział w kształtowaniu rozkładu temperatur w gruncie pod budynkiem i jego otoczeniu.

Jacek Sawicki, konsultacja dr inż. Szczepan Marczyński – Clematis Źródło Dobrych Pnączy, prof. Jacek Borowski Roślinne izolacje elewacji

Roślinne izolacje elewacji Roślinne izolacje elewacji

Naturalna zieleń na elewacjach obecna jest od dawna. W formie pnączy pokrywa fasady wielu średniowiecznych budowli, wspina się po murach secesyjnych kamienic, nierzadko zdobi frontony XX-wiecznych budynków...

Naturalna zieleń na elewacjach obecna jest od dawna. W formie pnączy pokrywa fasady wielu średniowiecznych budowli, wspina się po murach secesyjnych kamienic, nierzadko zdobi frontony XX-wiecznych budynków jednorodzinnych czy współczesnych, nowoczesnych obiektów budowlanych, jej istnienie wnosi wyjątkowe zalety estetyczne i użytkowe.

mgr inż. Wojciech Rogala Projektowanie i wznoszenie ścian akustycznych w budownictwie wielorodzinnym na przykładzie przegród z wyrobów silikatowych

Projektowanie i wznoszenie ścian akustycznych w budownictwie wielorodzinnym na przykładzie przegród z wyrobów silikatowych Projektowanie i wznoszenie ścian akustycznych w budownictwie wielorodzinnym na przykładzie przegród z wyrobów silikatowych

Ściany z elementów silikatowych w ciągu ostatnich 20 lat znacznie zyskały na popularności [1]. Stanowią obecnie większość przegród akustycznych w budynkach wielorodzinnych, gdzie z uwagi na wiele źródeł...

Ściany z elementów silikatowych w ciągu ostatnich 20 lat znacznie zyskały na popularności [1]. Stanowią obecnie większość przegród akustycznych w budynkach wielorodzinnych, gdzie z uwagi na wiele źródeł hałasu izolacyjność akustyczna stanowi jeden z głównych czynników wpływających na komfort.

LERG SA Poliole poliestrowe Rigidol®

Poliole poliestrowe Rigidol® Poliole poliestrowe Rigidol®

Od lat obserwujemy dynamicznie rozwijający się trend eko, który stopniowo z mody konsumenckiej zaczął wsiąkać w coraz głębsze dziedziny życia społecznego, by w końcu dotrzeć do korzeni funkcjonowania wielu...

Od lat obserwujemy dynamicznie rozwijający się trend eko, który stopniowo z mody konsumenckiej zaczął wsiąkać w coraz głębsze dziedziny życia społecznego, by w końcu dotrzeć do korzeni funkcjonowania wielu biznesów. Obecnie marki, które chcą odnieść sukces, powinny oferować swoim odbiorcom zdecydowanie więcej niż tylko produkt czy usługę wysokiej jakości.

mgr inż. arch. Tomasz Rybarczyk Prefabrykacja w budownictwie

Prefabrykacja w budownictwie Prefabrykacja w budownictwie

Prefabrykacja w projektowaniu i realizacji budynków jest bardzo nośnym tematem, co przekłada się na duże zainteresowanie wśród projektantów i inwestorów tą tematyką. Obecnie wzrasta realizacja budynków...

Prefabrykacja w projektowaniu i realizacji budynków jest bardzo nośnym tematem, co przekłada się na duże zainteresowanie wśród projektantów i inwestorów tą tematyką. Obecnie wzrasta realizacja budynków z prefabrykatów. Można wśród nich wyróżnić realizacje realizowane przy zastosowaniu elementów prefabrykowanych stosowanych od lat oraz takich, które zostały wyprodukowane na specjalne zamówienie do zrealizowania jednego obiektu.

dr inż. Gerard Brzózka Płyty warstwowe o wysokich wskaźnikach izolacyjności akustycznej – studium przypadku

Płyty warstwowe o wysokich wskaźnikach izolacyjności akustycznej – studium przypadku Płyty warstwowe o wysokich wskaźnikach izolacyjności akustycznej – studium przypadku

Płyty warstwowe zastosowane jako przegrody akustyczne stanowią rozwiązanie charakteryzujące się dobrymi własnościami izolacyjnymi głównie w paśmie średnich, jak również wysokich częstotliwości, przy obciążeniu...

Płyty warstwowe zastosowane jako przegrody akustyczne stanowią rozwiązanie charakteryzujące się dobrymi własnościami izolacyjnymi głównie w paśmie średnich, jak również wysokich częstotliwości, przy obciążeniu niewielką masą powierzchniową. W wielu zastosowaniach wyparły typowe rozwiązania przegród masowych (np. z ceramiki, elementów wapienno­ piaskowych, betonu, żelbetu czy gipsu), które cechują się kilkukrotnie wyższymi masami powierzchniowymi.

dr hab. inż. Tomasz Tański, Roman Węglarz Prawidłowy dobór stalowych elementów konstrukcyjnych i materiałów lekkiej obudowy w środowiskach korozyjnych według wytycznych DAFA

Prawidłowy dobór stalowych elementów konstrukcyjnych i materiałów lekkiej obudowy w środowiskach korozyjnych według wytycznych DAFA Prawidłowy dobór stalowych elementów konstrukcyjnych i materiałów lekkiej obudowy w środowiskach korozyjnych według wytycznych DAFA

W świetle zawiłości norm, wymogów projektowych oraz tych istotnych z punktu widzenia inwestora okazuje się, że problem doboru właściwego materiału staje się bardzo złożony. Materiały odpowiadające zarówno...

W świetle zawiłości norm, wymogów projektowych oraz tych istotnych z punktu widzenia inwestora okazuje się, że problem doboru właściwego materiału staje się bardzo złożony. Materiały odpowiadające zarówno za estetykę, jak i przeznaczenie obiektu, m.in. w budownictwie przemysłowym, muszą sprostać wielu wymogom technicznym oraz wizualnym.

dr inż. Jarosław Mucha Współczesne metody inwentaryzacji i badań nieniszczących konstrukcji obiektów i budynków

Współczesne metody inwentaryzacji i badań nieniszczących konstrukcji obiektów i budynków Współczesne metody inwentaryzacji i badań nieniszczących konstrukcji obiektów i budynków

Projektowanie jest początkowym etapem realizacji wszystkich inwestycji budowlanych, mającym decydujący wpływ na kształt, funkcjonalność obiektu, optymalność rozwiązań technicznych, koszty realizacji, niezawodność...

Projektowanie jest początkowym etapem realizacji wszystkich inwestycji budowlanych, mającym decydujący wpływ na kształt, funkcjonalność obiektu, optymalność rozwiązań technicznych, koszty realizacji, niezawodność i trwałość w zakładanym okresie użytkowania. Często realizacja projektowanych inwestycji wykonywana jest w połączeniu z wykorzystaniem obiektów istniejących, które są w złym stanie technicznym, czy też nie posiadają aktualnej dokumentacji technicznej. Prawidłowe, skuteczne i optymalne projektowanie...

mgr inż. Cezariusz Magott, mgr inż. Maciej Rokiel Dokumentacja techniczna prac renowacyjnych – podstawowe zasady (cz. 1)

Dokumentacja techniczna prac renowacyjnych – podstawowe zasady (cz. 1) Dokumentacja techniczna prac renowacyjnych – podstawowe zasady (cz. 1)

Kontynuując zagadnienia związane z analizą dokumentacji technicznej skupiamy się tym razem na omówieniu dokumentacji robót renowacyjnych.

Kontynuując zagadnienia związane z analizą dokumentacji technicznej skupiamy się tym razem na omówieniu dokumentacji robót renowacyjnych.

dr inż. Bartłomiej Monczyński Trudności i ograniczenia związane z wykonywaniem wtórnej hydroizolacji poziomej metodą iniekcji

Trudności i ograniczenia związane z wykonywaniem wtórnej hydroizolacji poziomej metodą iniekcji Trudności i ograniczenia związane z wykonywaniem wtórnej hydroizolacji poziomej metodą iniekcji

Wykonywanie wtórnych hydroizolacji przeciw wilgoci kapilarnej metodą iniekcji można porównać do ocieplania budynku. Obie technologie nie są szczególnie trudne, dopóki mamy do czynienia z pojedynczą przegrodą.

Wykonywanie wtórnych hydroizolacji przeciw wilgoci kapilarnej metodą iniekcji można porównać do ocieplania budynku. Obie technologie nie są szczególnie trudne, dopóki mamy do czynienia z pojedynczą przegrodą.

Wybrane dla Ciebie

Odkryj trendy projektowania elewacji »

Odkryj trendy projektowania elewacji » Odkryj trendy projektowania elewacji »

Jak estetycznie wykończyć ściany - wewnątrz i na zewnątrz? »

Jak estetycznie wykończyć ściany - wewnątrz i na zewnątrz? » Jak estetycznie wykończyć ściany - wewnątrz i na zewnątrz? »

Przeciekający dach? Jak temu zapobiec »

Przeciekający dach? Jak temu zapobiec » Przeciekający dach? Jak temu zapobiec »

Dach biosolarny - co to jest? »

Dach biosolarny - co to jest? » Dach biosolarny - co to jest? »

Zobacz, które płyty termoizolacyjne skutecznie ochronią dom przed zimnem »

Zobacz, które płyty termoizolacyjne skutecznie ochronią dom przed zimnem » Zobacz, które płyty termoizolacyjne skutecznie ochronią dom przed zimnem »

Polecane produkty z branży budowlanej - Chemia budowlana »

Polecane produkty z branży budowlanej - Chemia budowlana » Polecane produkty z branży budowlanej - Chemia budowlana »

Wszystko, co powinieneś wiedzieć o izolacjach natryskowych »

Wszystko, co powinieneś wiedzieć o izolacjach natryskowych » Wszystko, co powinieneś wiedzieć o izolacjach natryskowych »

Przekonaj się, jak inni izolują pianką poliuretanową »

Przekonaj się, jak inni izolują pianką poliuretanową » Przekonaj się, jak inni izolują pianką poliuretanową »

Na czym polega fenomen technologii białej wanny »

Na czym polega fenomen technologii białej wanny » Na czym polega fenomen technologii białej wanny »

Podpowiadamy, jak wybrać system ociepleń

Podpowiadamy, jak wybrać system ociepleń Podpowiadamy, jak wybrać system ociepleń

Podpowiadamy, jak skutecznie przeprowadzić renowacje piwnicy »

Podpowiadamy, jak skutecznie przeprowadzić renowacje piwnicy » Podpowiadamy, jak skutecznie przeprowadzić renowacje piwnicy »

300% rozciągliwości membrany - TAK! »

300% rozciągliwości membrany - TAK! » 300% rozciągliwości membrany - TAK! »

Copyright © 2004-2019 Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Spółka komandytowa, nr KRS: 0000537655. Wszelkie prawa, w tym Autora, Wydawcy i Producenta bazy danych zastrzeżone. Jakiekolwiek dalsze rozpowszechnianie artykułów zabronione. Korzystanie z serwisu i zamieszczonych w nim utworów i danych wyłącznie na zasadach określonych w Zasadach korzystania z serwisu.
Portal Budowlany - Izolacje.com.pl

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim urządzeniu końcowym. W każdym momencie możesz dokonać zmiany ustawień przeglądarki dotyczących cookies. Nim Państwo zaczną korzystać z naszego serwisu prosimy o zapoznanie się z naszą polityką prywatności oraz Informacją o Cookies. Więcej szczegółów w naszej Polityce Prywatności oraz Informacji o Cookies. Administratorem Państwa danych osobowych jest Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Sp.K., nr KRS: 0000537655, z siedzibą w 04-112 Warszawa, ul. Karczewska 18, tel. +48 22 810-21-24, właściciel strony www.izolacje.com.pl. Twoje Dane Osobowe będą chronione zgodnie z wytycznymi polityki prywatności www.izolacje.com.pl oraz zgodnie z Rozporządzeniem Parlamentu Europejskiego i Rady (UE) 2016/679 z dnia 27 kwietnia 2016r i z Ustawą o ochronie danych osobowych Dz.U. 2018 poz. 1000 z dnia 10 maja 2018r.