Izolacje.com.pl

Zaawansowane wyszukiwanie

Materiały i elementy stosowane do wykonania lekkiej obudowy

Cz. 3. Materiały okładzinowe kamienne i kamiennopochodne

FOT. 2. Okładzina ścienna z falistych płyt azbestowo-cementowych
Archiwum autora

FOT. 2. Okładzina ścienna z falistych płyt azbestowo-cementowych


Archiwum autora

Współczesne materiały elewacyjne stosowane w technologii lekkiej obudowy ściennej oraz lekkich ścian osłonowych pozwalają na tworzenie różnorodnych form architektonicznych. Związane jest to z ogromnym rynkiem materiałów budowlanych, które można zastosować na zewnętrzne elementy ścian.

Zobacz także

mgr inż. arch. Tomasz Rybarczyk Przegląd technologii stosowanych do wykonywania ścian działowych

Przegląd technologii stosowanych do wykonywania ścian działowych Przegląd technologii stosowanych do wykonywania ścian działowych

Jakie są technologie wykonywania ścian działowych i co należy wziąć pod uwagę dobierając odpowiedni system?

Jakie są technologie wykonywania ścian działowych i co należy wziąć pod uwagę dobierając odpowiedni system?

M.B. Market Ltd. Sp. z o.o. Czy piana poliuretanowa jest palna?

Czy piana poliuretanowa jest palna? Czy piana poliuretanowa jest palna?

W artykule chcielibyśmy przyjrzeć się bliżej temu aspektowi i rozwiać wszelkie wątpliwości na temat palności pian poliuretanowych.

W artykule chcielibyśmy przyjrzeć się bliżej temu aspektowi i rozwiać wszelkie wątpliwości na temat palności pian poliuretanowych.

Ultrapur Sp. z o.o. Pianka poliuretanowa a szczelność budynku

Pianka poliuretanowa a szczelność budynku Pianka poliuretanowa a szczelność budynku

Wielu inwestorów, wybierając materiał do ocieplenia domu, kieruje się głównie parametrem lambda, czyli wartością współczynnika przewodzenia ciepła. Jest on jedynym zestandaryzowanym współczynnikiem, który...

Wielu inwestorów, wybierając materiał do ocieplenia domu, kieruje się głównie parametrem lambda, czyli wartością współczynnika przewodzenia ciepła. Jest on jedynym zestandaryzowanym współczynnikiem, który określa właściwości izolacyjne materiału. Jednocześnie jest współczynnikiem wysoce niedoskonałym – określa, jak dany materiał może opierać się utracie ciepła poprzez przewodzenie.

 

Abstrakt

W artykule przedstawiono stosowane na obudowach ściennych zewnętrznych materiały kamienne i kamiennopochodne. Omówiono charakterystyczne parametry materiałów. Przedstawiono różnice występujące w sposobach montażu, wielkościach obciążenia. Przedstawiono właściwości przegród wykonanych z kamienia oraz powstających z materiału kamiennego.

Materials and components used to produce light claddings. Part 3: Stone and stone-based cladding materials

The article presents stone and stone-based materials used in external wall cladding. Characteristic parameters of these materials are discussed, with presentation of differences in installation methods and loads, as well as the properties of space dividing elements made of stone and formed of stone-based materials.

Wokół nas jest wiele obiektów zarówno przemysłowych, jak i użyteczności publicznej, w których zastosowano na zewnętrzne elementy ścienne materiały metalowe [1] w postaci blach fałdowych, kaset, kasetonów, paneli dających przegrody nieprzezierne, a także obiekty z wielką liczbą przegród szklanych pozwalających w dowolny sposób kształtować dostęp światła i energii słonecznej do pomieszczeń i poprawiających samopoczucie osób przebywających godzinami w obiektach biurowych, handlowych czy użyteczności publicznej [2].

Uzupełnieniem wymienionych materiałów osłonowych jest znaczna grupa materiałów, które dzięki właściwościom technicznym, a przede wszystkim bardzo dobrej odporności na działanie zewnętrznych warunków atmosferycznych, nadają się do wykonania zewnętrznych elementów okładzinowych.

Wśród materiałów tych można wyróżnić:

  • wszelkiego rodzaju materiały kamienne stosowane na okładziny,
  • materiały ceramiczne (w formie płaskiej i przestrzennej),
  • wyroby wykonane na bazie gipsu,
  • wszelkiego rodzaju materiały kompozytowe wykonane na bazie materiałów metalowych, cementowych, drewnianych, tworzyw sztucznych i materiałów kamiennych,
  • tworzywa sztuczne.

Tak duża liczba materiałów o różnych cechach fizycznych, estetycznych i technologicznych pozwala na kształtowanie i tworzenie przez architektów ciekawych rozwiązań wizualnych wszelkiego rodzaju obiektów budowlanych, często z możliwością łącznia ich różnych typów w jeden obiekt lub elewację.

FOT. 1. Okładzina z blachy metalowej kształtowana kopertowo; fot. archiwum autora

FOT. 1. Okładzina z blachy metalowej kształtowana kopertowo; fot. archiwum autora

Wiele z wymienionych materiałów okładzinowych może być montowanych na obiektach niezależnie od warunków atmosferycznych, przez co bardzo dobrze wpisują się one w tendencję rozciągnięcia okresu robót budowlano-montażowych na cały rok kalendarzowy.

W latach 60. i 70. ubiegłego wieku podstawowymi materiałami okładzinowymi lekkich ścian osłonowych, stosowanymi w naszym kraju, były różnorodne profilowane elementy w postaci blach stalowych lub aluminiowych (FOT. 1 i FOT. 2).

Ubogą wówczas ofertę uzupełniały bardzo odporne i łatwe w zastosowaniu i montażu płyty włókno-cementowe typu eternit, zawierające w składzie niepożądane obecnie włókna azbestowe. Płyty te produkowane były w postaci wyrobów płaskich i fałdowanych, nadających się z uwagi na swe parametry techniczne i użytkowe na elementy ścienne i dachowe [3].

Poza tym ściany wykonywane były z użyciem wyrobów drewnianych, drewnopochodnych odznaczających się małą odpornością na oddziaływania korozyjne i eksploatacyjne.

Do lekkiej obudowy zalicza się wszelkiego rodzaju dachowe i ścienne przegrody wykonywane w technologii lekkiej (RYS. 1) oraz różnego rodzaju okładziny elewacyjne stosowane do budowy ścian warstwowych, w tym ścian wentylowanych, a także do renowacji i termomodernizacji [4] starych obiektów budowlanych (RYS. 2).

RYS. 1-2. Przykłady zastosowania materiałów okładzinowych w przegrodzie budowlanej typu ściana osłonowa (1) i typu okładzina ścienna (2): 1 -okładzina wewnętrzna, 2 - ściana konstrukcyjna, 3 - konstrukcja nośna przegrody, 4 - podkonstrukcja nośna okładziny, 5 - warstwa izolacji paroszczelnej, 6 - warstwa izolacji termicznej, 7 - warstwa izolacji wiatroszczelnej, 8 - wentylowana pustka powietrzna, 9 - materiał okładziny zewnętrznej (elewacyjnej); rys. archiwum autora

RYS. 1-2. Przykłady zastosowania materiałów okładzinowych w przegrodzie budowlanej typu ściana osłonowa (1) i typu okładzina ścienna (2): 1 -okładzina wewnętrzna, 2 - ściana konstrukcyjna, 3 - konstrukcja nośna przegrody, 4 - podkonstrukcja nośna okładziny, 5 - warstwa izolacji paroszczelnej, 6 - warstwa izolacji termicznej, 7 - warstwa izolacji wiatroszczelnej, 8 - wentylowana pustka powietrzna, 9 - materiał okładziny zewnętrznej (elewacyjnej); rys. archiwum autora

Okładziny elewacyjne

Okładzina elewacyjna to zewnętrzna warstwa ściany budynku nakładana w celu jej wzmocnienia, ochrony przed zniszczeniem, zawilgoceniem lub dla ozdoby. Warstwa ta nazywana jest często z angielska rainscreen (przeciwdeszczowa). Może być metalowa, betonowa, drewniana, ceramiczna, szklana, kamienna, z tworzywa sztucznego lub kompozytu.

Materiały stosowane na okładziny elewacyjne wytwarzane są w różnych kształtach, kolorach, wymiarach i z różnych materiałów w celu wykonywania z nich zewnętrznej warstwy elewacyjnej na ścianie budynku wykonanego z betonu, cegły lub innych materiałów masywnych.

Z uwagi na pozostawianą pustkę powietrzną między materiałem okładzinowym a konstrukcją ściany, tego typu rozwiązanie często nazywane jest elewacją wentylowaną, fasadą zimną lub ścianą osłonową nieizolowaną.

Zgodnie z normą PN-EN 13119:2009-11 [5] ściana osłonowa nieizolowana to rodzaj ściany osłonowej, w której część zewnętrzna osłania powietrzną przestrzeń wentylowaną, a izolacja termiczna oraz uszczelnienie są montowane na przegrodzie wewnętrznej.

Okładziny elewacyjne są elementami najbardziej wystawionymi na działanie czynników środowiskowych typu temperatura, woda czy wilgotność powietrza. Dlatego przy projektowaniu tej warstwy ściennej należy szczególną uwagą poświęcić takim aspektom, jak wpływ temperatury powietrza zewnętrznego i energii cieplnej słońca nagrzewającej okładzinę i elementy ją podtrzymujące.

W lecie temperatura powietrza osiąga wartości 34-40°C [6]. Okładziny ścienne, zwłaszcza te wykonane w ciemnych kolorach, znajdujące się w pełnym słońcu, mogą zostać ogrzane w tym czasie do temp. 70-80°C.

W naszych warunkach klimatycznych nie należy zapominać również o temperaturach okresu zimowego, które mogą spadać do –32°C [6].

Każdy materiał okładzinowy i podkonstrukcji nośnej ma własne wartości współczynnika rozszerzalności termicznej, które trzeba uwzględnić przy określaniu gabarytów elementów okładzinowych, szerokości szczelin między elementami, rozmieszczenia stałych i przesuwnych punktów mocujących podkonstrukcji i samej okładziny.

Również wpływ zmian spowodowanych wilgocią na materiały ceramiczne oraz niektóre kompozytowe musi być brany pod uwagę.

Powierzchniowe elementy okładzin zewnętrznych przejmują oddziaływania prędkości wiatru jako pierwsze, należy więc to uwzględnić przy doborze elementów okładzinowych, przy określaniu warunków ich podparcia i mocowania do podkonstrukcji. Trzeba zwrócić uwagę na niejednorodny rozkład wartości obciążenia wiatrem na powierzchni elewacji z uwagi na warunki przepływu mas powietrza, szczególnie w strefach narożnych [7].

Na warunki obciążenia wiatrem wpływ ma również usytuowanie obiektu względem sąsiedniej zabudowy.

Każdy materiał okładzinowy charakteryzuje się innymi parametrami wytrzymałościowymi i sztywnościowymi, które muszą być również brane pod uwagę. Warunki połączenia okładziny z podkonstrukcją muszą uwzględniać podatność i okładziny, i podkonstrukcji.

Oprócz tego połączenie okładziny z podkonstrukcją oraz sam ruszt muszą być w stanie zrekompensować wszelkie ruchy samego obiektu spowodowane przemieszczeniami jego konstrukcji, np. na skutek jego osiadania, obciążenia użytkowego oraz spowodowane drganiami.

Elementy składowe fasady zimnej (elewacji wentylowanej) to:

  • zewnętrzna obudowa (w postaci płyt cementowych, kamiennych, ceramicznych, drewnianych, drewnopochodnych, tworzyw sztucznych, metali, laminatów, kompozytów) mocowana do rusztu nośnego pod okładzinę,
  • ruszt nośny (wykonany najczęściej z metalu lub drewna) przymocowany punktowo do ścian zewnętrznych budynku lub konstrukcji szkieletowej ściany osłonowej,
  • elementy mocujące okładzinę zewnętrzną do rusztu oraz ruszt do ściany konstrukcyjnej,
  • różne materiały izolacyjne: paro- i wiatroizolacje oraz izolacje termiczne (np. wełna mineralna, wełna mineralna powlekana welonem szklanym, wełna hydrofobizowana, folia paroprzepuszczalna, wiatroizolacja).

Między warstwami izolacyjnymi a elementami okładzinowymi pozostawiona jest warstwa powietrza. Konstrukcja elewacji wentylowanej powinna zgodnie z europejskimi wymaganiami ETAG 034 [8], [9] spełniać następujące wymagania:

  • odległość między elementami obudowy i warstwą izolacyjną lub podłożem (przestrzeń wentylowana) powinna wynosić co najmniej 20 mm. Przestrzeń ta może być zmniejszona miejscowo o 5-10 mm;
  • powierzchnia przekroju szczeliny wentylacyjnej w dolnej części budynku oraz przy krawędzi dachu powinna wynosić nie mniej niż 50 cm2 na metr bieżący długości.

Elewacje wentylowane należy projektować i wykonywać zgodnie z Warunkami Technicznymi wykonania i odbioru elewacji wentylowanych [7], wydanymi przez ITB w Warszawie. Do obrotu i stosowania w budownictwie [10] należy stosować systemy elewacyjne posiadające aktualną Europejską Ocenę Techniczną lub Aprobatę Techniczną.

Naturalne materiały kamienne

Materiały z kamienia naturalnego od dawna wykorzystywane były jako podstawowy materiał budowlany. Materiał ten był stosowany na elementy konstrukcyjne i elementy dekoracyjne - szczególnie elewacyjne w reprezentacyjnych obiektach użyteczności publicznej.

Obecnie z uwagi na warunki ekonomiczne, tempo realizacji, a w szczególności koszt samego materiału, kamień naturalny wykorzystywany jest w postaci cienkich płyt służących do okładania elewacji obiektów budowlanych.

Kamienne okładziny mogą być układane na elewacjach z zastosowaniem różnego rodzaju zaprawy, lecz z uwagi na warunki wilgotnościowe przegród zewnętrznych (szczególnie z uwagi na duży opór dyfuzyjny materiałów kamiennych) mogą prowadzić do wykraplania się pary wodnej wewnątrz przegród ściennych. Wiele obiektów z tak wykonaną okładziną elewacyjną boryka się z problemami estetycznymi czy użytkowymi [11].

RYS. 3-4. Sposób mocowania okładzin kamiennych: poziomy (3), pionowy (4): 1- kotwa stabilizująca, 2 - kotwa nośna, 3 - obszar obciążenia przypadający na kotwę; rys. archiwum autora

RYS. 3-4. Sposób mocowania okładzin kamiennych: poziomy (3), pionowy (4): 1- kotwa stabilizująca, 2 - kotwa nośna, 3 - obszar obciążenia przypadający na kotwę; rys. archiwum autora

Współcześnie znane są również rozwiązania umożliwiające montaż cienkich okładzin kamiennych o masie do 40 kg/m2 metodą klejenia bezpośrednio do warstw izolacyjnych, takich jak styropian EPS 80 lub 100 czy nawet wełna mineralna [12].

W przypadku okładzin kamiennych w przegrodach zewnętrznych wentylowanych stosowane są dwa systemy montażu płyt na elewacji.

Pierwszy stosowany jest od bardzo dawna i polega na montażu płyt na indywidualnych kotwach montowanych do części nośnej ściany, w którym to wyróżnia się kotwy nośne i stabilizujące (RYS. 3-4 i RYS. 5).

RYS. 5. Przykład kotwy osadzanej w murze; rys. Halfen

RYS. 5. Przykład kotwy osadzanej w murze; rys. Halfen

RYS. 6. Przykład kotwy dyblowej; rys. Halfen

RYS. 6. Przykład kotwy dyblowej; rys. Halfen

Połączenie okładziny z kotwą wykonane jest na grubości materiału kamiennego w postaci okrągłego metalowego trzpienia, cała kotwa osadzana jest zaś w uprzednio nawierconych otworach. Kotwy mogą być umieszczane w szczelinie pionowej lub poziomej, zależnie od przyjętego sposobu montażu elementów okładzinowych.

Ten typ montażu wymaga grubszych płyt okładzinowych (3-4 cm) oraz bardzo licznych przebić przez warstwę izolacyjną, przez co tworzą się liczne mostki termiczne i nieciągłości izolacji.

Kotwy w tradycyjnym podejściu osadzane są w otworach o głębokości 8-12 cm, wykonanych w murze, które następnie wypełnia się zaprawą cementową szybkowiążącą. Kotwy muszą być każdorazowo wykonane ze stali nierdzewnych.

W nowszych rozwiązaniach stosowane są łączniki dyblowe do ścian (RYS. 6).

Systemy zawieszania okładzin kamiennych oparte na rusztach nośnych pozwalają na zastosowanie cieńszych płyt kamiennych dwu-, a nawet jednocentymetrowych, co znacznie zmniejsza ciężar warstwy okładzinowej oraz znacznie ogranicza liczbę przebić wykonywanych przez warstwę izolacji termicznej ściany. Wymaga to jednak stosowania odpowiednich rusztów i połączeń dyblowych między płytą kamienną a stosowanym wieszakiem mocującym płytę kamienną (FOT. 3).

W przypadku zastosowania widocznych systemów mocowania, okładzina kamienna może być zmniejszona nawet do ok. 1 cm (FOT. 4).

FOT. 3. Przykład mocowania grubej okładziny kamiennej na dodatkowym ruszcie; fot. Halfen

FOT. 3. Przykład mocowania grubej okładziny kamiennej na dodatkowym ruszcie; fot. Halfen

FOT. 4. Mocowanie cienkich okładzin na widoczne klipsy wykonane na ruszcie metalowym; fot. Vespol

FOT. 4. Mocowanie cienkich okładzin na widoczne klipsy wykonane na ruszcie metalowym; fot. Vespol

Płyty kamienne

Płyty kamienne niezależnie od sposobu montażu powinny być montowane z niewypełnionymi fugami o szer. 6-8 mm (50 cm2/m2 okładziny). Ma to zapewnić możliwość wentylacji ściany oraz umożliwić swobodę odkształceń termicznych kamienia, swobodę drgań spowodowanych ruchem samochodowym, ruchy i odkształcenia płyt pod wpływem oddziaływania wiatru, wyrównanie ciśnienia przed i za płytą w warunkach silnego wiatru oraz ukryć grubość zastosowanych kotew.

W naszych warunkach klimatycznych najczęściej okładziny elewacji zewnętrznej wykonuje się z takich kamieni naturalnych, jak granit, piaskowiec, trawertyn. Kamień naturalny jest materiałem ciężkim i wymaga odpowiednio dużej nośności kotew oraz rusztów (TABELA 1).

Z uwagi na naturalny charakter materiałów należy każdorazowo zweryfikować warunki nośności na zginanie i wytrzymałość na ściskanie poszczególnych rodzajów kamienia pochodzących z różnych złóż (TABELA 2). Wpływać to będzie istotnie na warunki mocowania tego materiału w różnych miejscach eksploatacji elementu okładzinowego na elewacji budynku.

TABELA 1. Ciężar materiałów kamiennych według norm projektowania budowlanego

TABELA 1. Ciężar materiałów kamiennych według norm projektowania budowlanego

TABELA 2. Przykładowe zestawienie cech fizycznych i wytrzymałościowych materiałów kamiennych [15]

TABELA 2. Przykładowe zestawienie cech fizycznych i wytrzymałościowych materiałów kamiennych [15]

Wypełnienie fug między płytami kamiennymi materiałem trwale plastycznym dopuszczone jest jedynie w strefach ogólnodostępnych ciągów komunikacyjnych w celu ograniczenia możliwości wypełnienia ich różnego rodzaju śmieciami. Wypełnienie fug musi być zrekompensowane przez zastosowanie większych szczelin u podstawy elewacji.

W przypadku materiałów naturalnych mamy do dyspozycji różne formy wykończenia ich powierzchni: piłowana, szlifowana, polerowana, promieniowana czy piaskowana, łupana, groszkowana.

W przypadku okładzin o powierzchni chropowatej należy dodatkowo rozważyć wykonanie powłok impregnujących oraz antygrafitti, które należy odnawiać w określonym przez producenta interwale czasowym.

Elewacje wykonane z naturalnej okładziny kamiennej charakteryzują się odpornością na ogień. Nośność i stateczność okładziny uzależnione są od warunków nośności stalowych kotew utrzymujących elementy kamienne.

Materiały kamienne przetworzone

Nowoczesne materiały okładzinowe, produkowane z odnawialnego surowca naturalnego, jakim jest bazalt, łączą zalety skały wulkanicznej (w zakresie trwałości) oraz drewna (w zakresie łatwości obróbki i kształtowania na placu budowy). Z bloku skalnego o objętości 1 m3 można wyprodukować ponad 400 m2 takich płyt. Powstają one w procesie sprasowania płyty wełny skalnej (mineralnej) z termoutwardzalnym lepiszczem syntetycznym.

Powierzchnie płyty w zależności od oczekiwań inwestora i potrzeb architektonicznych można wykonać w różnych fasonach i deseniach. Są odporne na zmiany wilgotności i temperatury.

Cechą charakterystyczną tych wyrobów pochodzenia naturalnego jest zdecydowanie mniejsza gęstość objętościowa w porównaniu z materiałem kamiennym. Na rynku dostępne są m.in. wyroby do następujących zastosowań:

  • wyrób standardowy przeznaczony na fasady wentylowane i ­rozwiązania detali w obrębie dachu dla budownictwa powszechnego,
  • wyrób stosowany w przypadku wymaganej większej wytrzymałości mechanicznej płyt, przez co odpowiedni do instalacji np. na strefie przyziemia, w obrębie publicznych ciągów komunikacyjnych, zwiększonego obciążenia,
  • płyty stosowane na fasady, w których wymagane są podwyższone wymagania w zakresie bezpieczeństwa pożarowego.

Materiał charakteryzuje się niewielkim ciężarem własnym oraz możliwością wytwarzania dużych rozmiarów płyty. Wykazuje stabilność wymiarową zarówno pod względem temperaturowym, jak i reakcji na zmiany wilgotności względnej powietrza.

Lekkie płyty elewacyjne mogą być mocowane do indywidualnych i systemowych rusztów nośnych, które wielokrotnie mniej przebijają powłoki izolacyjne i tworzą mniej mostków termicznych. Płyty te mogą być mocowane do rusztów:

  • drewnianych - wymagane jest drewno w klasie C18, C24, zgodnie z normą PN-EN 338:2016-06 [16].
    W przypadku mocowania mechanicznego listwy powinny mieć grubość co najmniej 28 mm, a szerokość odpowiednio - min. 70 mm w miejscu spoin i co najmniej 45 mm w miejscu podpór pośrednich.
    Na łączniki powinno stosować się wówczas gwoździe pierścieniowe lub wkręty wykonane ze stali odpornej na korozję - 1.4401 zgodnie z normą PN-EN 10088-1:2014-12 [17] (AISI 316).
    Przy stosowaniu tego typu rusztów należy zwrócić uwagę na konieczność instalacji izolacji na styku płyt okładzinowych z rusztem nośnym w postaci uszczelki piankowej z EPDM;
  • aluminiowych - dla podkonstrukcji aluminiowych powinny być stosowane kształtowniki wytłaczane ze stopu AW-6060 w stanie T6 lub T66 zgodnie z EN 755-2:2016-05 [18].
    Minimalna grubość aluminiowego profilu montażowego powinna wynosić 1,5 mm.
    Na łączniki należy stosować nity ślepe z łbami płaskimi wykonanymi z aluminium i gwoździem ze stali nierdzewnej;
  • stalowych - dla podkonstrukcji stalowych wykonanych ze stalowych profili zimnogiętych powinny być spełnione następujące warunki montażowe:
    - grubości min. 1 mm i zastosowanie stali S320GD+Z według normy PN-EN 10346:2015-09 [19].
    Dla stali gorącowalcowanych gatunku S235JR zgodnie z wymaganiami normy PN-EN 10025-2:2007 [20] minimalna grubość profilu powinna wynosi min. 1,5 mm, a profile powinny być zabezpieczone antykorozyjną powłoką cynkową lub cynkowo-aluminiową dobraną stosowanie do warunków pracy obiektu zgodnie z normą PN-EN ISO 12944-2:2001 [21], z możliwością wykonania zabezpieczenia zanurzeniowego zgodnie z normą PN-EN ISO 1461:2011 [22].
    Na łączniki należy wówczas stosować nity ślepe z łbami płaskimi wykonane ze stali odpornej na korozję zgodnie z normą PN-EN 10088-1:2014-12 [17] (AISI 304Cu, 321).

Mogą być również stosowane rozwiązania niewidocznego mocowania - np. przez zastosowanie techniki klejenia liniowego stosowanego do mocowania na rusztach drewnianych i aluminiowych.

Wymagania odnośnie rusztów nośnych pod okładziny z paneli z wełny mineralnej są identyczne jak dla innych materiałów kompozytowych, laminatów stosowanych w okładzinach elewacyjnych.

Płyty muszą być mocowane do konstrukcji nośnej stosownie do warunków obciążenia wiatrowego i ciężaru płyty oraz warunków znacznej rozszerzalności termicznej materiałów konstrukcyjnych rusztu nośnego i płyty elewacyjnej.

Przy projektowaniu rozkładu punktów mocowania należy odpowiednio ustalić usytuowanie punktów stałych, ślizgowych i ruchomych mocujących płytę do rusztu nośnego, aby zapewniona była swoboda przemieszczeń spowodowanych odkształceniami termicznymi materiałów i wynikającymi z ich odkształceń pod wpływem działających obciążeń. Układ tych punktów mocowania musi być skorelowany ze sposobem łączenia elementów liniowych rusztu nośnego z konsolami nośnymi mocowanymi na murze obiektu.

Poszczególne elementy liniowe rusztu nośnego, na których występuje styk płyt okładzinowych oraz podparcie pośrednie płyty, należy mocować tylko do jednej konsoli w sposób stały, a do pozostałych w sposób umożliwiający wymagany przesuw. Na FOT. 5-6 przedstawiono przykład elewacji z okładziną montowaną na nity do podkonstrukcji aluminiowej.

FOT. 5-6. Przykład elewacji z okładziną montowaną na nity do podkonstrukcji aluminiowej; fot. archiwum autora

FOT. 5-6. Przykład elewacji z okładziną montowaną na nity do podkonstrukcji aluminiowej; fot. archiwum autora

Podsumowanie

Elewacje obiektów budowlanych wykonane z kamienia były i będą jeszcze długo stosowane przez architektów. Materiał, choć znany od dawna, wpisuje się dobrze w najnowsze technologie tworzenia warstwowych przegród ściennych z wentylowaną pustką powietrzną. Jego ograniczeniem jest znaczny koszt oraz ciężar takiej elewacji.

Nowym materiałem wytwarzanym z naturalnego kamienia bazaltowego staje się w ostatnich latach płyta ze znanej i powszechnie wykorzystywanej w budownictwie wełny skalnej. Przez zmianę stanu materiału, począwszy od kamienia przez włókno kamienne, a następnie jego odpowiednie sprasowanie, otrzymuje się całkowicie nowy i wydajny materiał pochodzenia naturalnego.

Właściwości nowego materiału pozwalają stosować go w wielu współczesnych obiektach, daje on przy tym większą efektywność prac montażowych i praktycznie nieograniczoną kolorystykę, ma też niewielki ciężar jednostkowy.

Z uwagi na wymagania montażowe oraz często skomplikowanie geometryczne kształty elewacji należy dla lekkiej obudowy ściennej oprócz projektów architektonicznych przedstawiających np. usytuowania kolorystyczne elementów okładzinowych opracowywać projekty konstrukcyjne wykonawcze i warsztatowe, uwzględniające wymagania dotyczące obciążeń wynikających z oddziaływania środowiska oraz warunki użytkowe samego materiału.

Literatura

  1. D. Kowalski, "Materiały i elementy stosowne do wykonanie lekkiej obudowy. Cz. 1. Materiały metalowe", "IZOLACJE", nr 9/2016, s. 61-68.
  2. D. Kowalski, "Materiały i elementy stosowne do wykonanie lekkiej obudowy. Cz. 2. Materiały ze szkła budowlanego", "IZOLACJE", nr 11/12, s. 92-101.
  3. E. Urbańska-Galewska, D. Kowalski, "Systemy i rozwiązania elementów lekkiej obudowy”, [w:] WPPK 2016: Naprawy i wzmocnienia konstrukcji budowlanych - Konstrukcje metalowe, posadzki przemysłowe, lekka obudowa, rusztowania, Katowice–Szczyrk 2016, s. 213-306.
  4. E. Urbańska-Galewska, D. Kowalski, "Nadbudowy i renowacje elewacji z wykorzystaniem materiałów i elementów lekkiej obudowy", "IZOLACJE", nr 7/2016 s. 50-55.
  5. PN-EN 13119:2009-11, "Ściany osłonowe. Terminologia".
  6. PN-EN 1991-1-5:2005, "Eurokod 1: Oddziaływania na konstrukcje. Część 1-5: Oddziaływania ogólne. Oddziaływania termiczne".
  7. PN-EN 1991-1-4:2008 "Eurokod 1: Oddziaływania na konstrukcje. Część 1-4: Oddziaływania ogólne. Oddziaływania wiatru".
  8. ETAG 034, "Zestawy do wykonywania okładzin ścian zewnętrznych Część 1: Zestawy okładzin wentylowanych wraz z elementami mocującymi"
  9. ETAG 034, "Zestawy do wykonywania okładzin ścian zewnętrznych Część 2: Zestawy zawierające elementy okładzinowe, elementy mocujące, podkonstrukcję oraz wyroby izolacyjne".
  10. E. Urbańska-Galewska, D. Kowalski, "Dokumentacja projektowa konstrukcji stalowych w budowlanych przedsięwzięciach inwestycyjnych", PWN, Warszawa 2015.
  11. P. Mika, "Podstawowe błędy projektowe oraz wykonawcze kamiennych okładzin elewacyjnych", "Czas. Tech. Archit.", nr 18/2010, s. 329-337.
  12. A. Byrdy, "Okładziny kamienne ścian klejone bezpośrednio do warstwy izolacji termicznej", "IZOLACJE", nr/2010, s. 40-42.
  13. PN-B-02001:1982, "Obciążenia budowli. Obciążenia stałe".
  14. PN-EN 1991-1-1:2004, "Eurokod 1: Oddziaływania na konstrukcje. Część 1-1: Oddziaływania ogólne. Ciężar objętościowy, ciężar własny, obciążenia użytkowe w budynkach".
  15. Strona internetowa: www.swiat-kamienia.pl.
  16. PN-EN 338:2016-06, "Drewno konstrukcyjne. Klasy wytrzymałości".
  17. PN-EN 10088-1:2014-12, "Stale odporne na korozję. Część 1: Wykaz stali odpornych na korozję".
  18. PN-EN 755-2:2016-05, "Aluminium i stopy aluminium. Pręty, rury i kształtowniki wyciskane. Część 2: Własności mechaniczne".
  19. PN-EN 10346:2015-09, "Wyroby płaskie stalowe powlekane ogniowo w sposób ciągły do obróbki plastycznej na zimno. Warunki techniczne dostawy"
  20. PN-EN 10025-2:2007, "Wyroby walcowane na gorąco ze stali konstrukcyjnych. Część 2: Warunki techniczne dostawy stali konstrukcyjnych niestopowych".
  21. PN-EN ISO 12944-2:2001, "Farby i lakiery. Ochrona przed korozją konstrukcji stalowych za pomocą ochronnych systemów malarskich. Część 2: Klasyfikacja środowisk".
  22. PN-EN ISO 1461:2011, "Powłoki cynkowe nanoszone na wyroby stalowe i żeliwne metodą zanurzeniową. Wymagania i metody badań".
  23. PN-EN 13501-1+A1:2010, "Klasyfikacja ogniowa wyrobów budowlanych i elementów budynków. Część 1: Klasyfikacja na podstawie wyników badań reakcji na ogień".

Chcesz być na bieżąco? Zapisz się do naszego newslettera!

Galeria zdjęć

Tytuł
przejdź do galerii

Komentarze

Powiązane

dr inż. Krzysztof Pawłowski prof. PBŚ Całkowite przenikanie ciepła przez elementy obudowy budynku (cz. 7)

Całkowite przenikanie ciepła przez elementy obudowy budynku (cz. 7) Całkowite przenikanie ciepła przez elementy obudowy budynku (cz. 7)

W celu ustalenia bilansu energetycznego budynku niezbędna jest znajomość określania współczynnika strat ciepła przez przenikanie przez elementy obudowy budynku z uwzględnieniem przepływu ciepła w polu...

W celu ustalenia bilansu energetycznego budynku niezbędna jest znajomość określania współczynnika strat ciepła przez przenikanie przez elementy obudowy budynku z uwzględnieniem przepływu ciepła w polu jednowymiarowym (1D), dwuwymiarowym (2D) oraz trójwymiarowym (3D).

Redakcja miesięcznika IZOLACJE Fasady wentylowane w budynkach wysokich i wysokościowych

Fasady wentylowane w budynkach wysokich i wysokościowych Fasady wentylowane w budynkach wysokich i wysokościowych

Projektowanie obiektów wielopiętrowych wiąże się z większymi wyzwaniami w zakresie ochrony przed ogniem, wiatrem oraz stratami cieplnymi – szczególnie, jeśli pod uwagę weźmiemy popularny typ konstrukcji...

Projektowanie obiektów wielopiętrowych wiąże się z większymi wyzwaniami w zakresie ochrony przed ogniem, wiatrem oraz stratami cieplnymi – szczególnie, jeśli pod uwagę weźmiemy popularny typ konstrukcji ścian zewnętrznych wykańczanych fasadą wentylowaną. O jakich zjawiskach fizycznych i obciążeniach mowa? W jaki sposób determinują one dobór odpowiedniej izolacji budynku?

inż. Izabela Dziedzic-Polańska Fibrobeton – kompozyt cementowy do zadań specjalnych

Fibrobeton – kompozyt cementowy do zadań specjalnych Fibrobeton – kompozyt cementowy do zadań specjalnych

Beton jest najczęściej używanym materiałem budowlanym na świecie i jest stosowany w prawie każdym typie konstrukcji. Beton jest niezbędnym materiałem budowlanym ze względu na swoją trwałość, wytrzymałość...

Beton jest najczęściej używanym materiałem budowlanym na świecie i jest stosowany w prawie każdym typie konstrukcji. Beton jest niezbędnym materiałem budowlanym ze względu na swoją trwałość, wytrzymałość i wyjątkową długowieczność. Może wytrzymać naprężenia ściskające i rozciągające oraz trudne warunki pogodowe bez uszczerbku dla stabilności architektonicznej. Wytrzymałość betonu na ściskanie w połączeniu z wytrzymałością materiału wzmacniającego na rozciąganie poprawia ogólną jego trwałość. Beton...

prof. dr hab. inż. Łukasz Drobiec Projektowanie wzmocnień konstrukcji murowych z użyciem systemu FRCM (cz. 1)

Projektowanie wzmocnień konstrukcji murowych z użyciem systemu FRCM (cz. 1) Projektowanie wzmocnień konstrukcji murowych z użyciem systemu FRCM (cz. 1)

Wzmocnienie systemem FRCM polega na utworzeniu konstrukcji zespolonej: muru lub żelbetu ze wzmocnieniem, czyli kilkumilimetrową warstwą zaprawy z dodatkowym zbrojeniem. Jako zbrojenie stosuje się siatki...

Wzmocnienie systemem FRCM polega na utworzeniu konstrukcji zespolonej: muru lub żelbetu ze wzmocnieniem, czyli kilkumilimetrową warstwą zaprawy z dodatkowym zbrojeniem. Jako zbrojenie stosuje się siatki z włókien węglowych, siatki PBO (poliparafenilen-benzobisoxazol), siatki z włóknami szklanymi, aramidowymi, bazaltowymi oraz stalowymi o wysokiej wytrzymałości (UHTSS – Ultra High Tensile Strength Steel). Zbrojenie to jest osadzane w tzw. mineralnej matrycy cementowej, w której dopuszcza się niewielką...

mgr inż. Cezariusz Magott, mgr inż. Maciej Rokiel Analiza dokumentacji technicznej prac renowacyjnych (cz.3). Przykłady realizacji

Analiza dokumentacji technicznej prac renowacyjnych (cz.3). Przykłady realizacji Analiza dokumentacji technicznej prac renowacyjnych (cz.3). Przykłady realizacji

W artykule opisano szczegóły poprawnego wykonywania iniekcji w kontekście jakości prac renowacyjnych. Kiedy należy wykonać ocenę przegrody pod kątem możliwości wykonania iniekcji?

W artykule opisano szczegóły poprawnego wykonywania iniekcji w kontekście jakości prac renowacyjnych. Kiedy należy wykonać ocenę przegrody pod kątem możliwości wykonania iniekcji?

Paweł Siemieniuk Rodzaje stropów w budynkach jednorodzinnych

Rodzaje stropów w budynkach jednorodzinnych Rodzaje stropów w budynkach jednorodzinnych

Zadaniem stropu jest przede wszystkim podział budynku na kondygnacje. Ponieważ jednak nie jest to jego jedyna funkcja, rodzaj tej poziomej przegrody musi być dobrze przemyślany, i to już na etapie projektowania...

Zadaniem stropu jest przede wszystkim podział budynku na kondygnacje. Ponieważ jednak nie jest to jego jedyna funkcja, rodzaj tej poziomej przegrody musi być dobrze przemyślany, i to już na etapie projektowania domu. Taka decyzja jest praktycznie nieodwracalna, gdyż po wybudowaniu domu trudno ją zmienić.

inż. Izabela Dziedzic-Polańska Ekologiczne i ekonomiczne ujęcie termomodernizacji budynków mieszkalnych

Ekologiczne i ekonomiczne ujęcie termomodernizacji budynków mieszkalnych Ekologiczne i ekonomiczne ujęcie termomodernizacji budynków mieszkalnych

Termomodernizacja budynku jest ważna ze względu na jej korzyści dla środowiska i ekonomii. Właściwie wykonana termomodernizacja może znacznie zmniejszyć zapotrzebowanie budynku na energię i zmniejszyć...

Termomodernizacja budynku jest ważna ze względu na jej korzyści dla środowiska i ekonomii. Właściwie wykonana termomodernizacja może znacznie zmniejszyć zapotrzebowanie budynku na energię i zmniejszyć emisję gazów cieplarnianych związanych z ogrzewaniem i chłodzeniem. Ponadto, zmniejszenie kosztów ogrzewania i chłodzenia może przyczynić się do zmniejszenia kosztów eksploatacyjnych budynku, co może przełożyć się na zwiększenie jego wartości.

prof. dr hab. inż. Łukasz Drobiec Projektowanie wzmocnień konstrukcji murowych z wykorzystaniem systemu FRCM (cz. 2)

Projektowanie wzmocnień konstrukcji murowych z wykorzystaniem systemu FRCM (cz. 2) Projektowanie wzmocnień konstrukcji murowych z wykorzystaniem systemu FRCM (cz. 2)

Artykuł jest kontynuacją tekstu opublikowanego w numerze 2/2023 miesięcznika IZOLACJE.

Artykuł jest kontynuacją tekstu opublikowanego w numerze 2/2023 miesięcznika IZOLACJE.

dr inż. Gerard Brzózka Propozycja modyfikacji projektowania rezonansowych układów pochłaniających

Propozycja modyfikacji projektowania rezonansowych układów pochłaniających Propozycja modyfikacji projektowania rezonansowych układów pochłaniających

Podstawy do projektowania rezonansowych układów pochłaniających zostały zaproponowane w odniesieniu do rezonatorów komorowych perforowanych i szczelinowych przez Smithsa i Kostena już w 1951 r. [1]. Jej...

Podstawy do projektowania rezonansowych układów pochłaniających zostały zaproponowane w odniesieniu do rezonatorów komorowych perforowanych i szczelinowych przez Smithsa i Kostena już w 1951 r. [1]. Jej szeroką interpretację w polskiej literaturze przedstawili profesorowie Sadowski i Żyszkowski [2, 3]. Pewną uciążliwość tej propozycji stanowiła konieczność korzystania z nomogramów, co determinuje stosunkowo małą dokładność.

Adrian Hołub Uszkodzenia stropów – monitoring przemieszczeń, ugięć i spękań

Uszkodzenia stropów – monitoring przemieszczeń, ugięć i spękań Uszkodzenia stropów – monitoring przemieszczeń, ugięć i spękań

Corocznie słyszymy o katastrofach budowlanych związanych z zawaleniem stropów w budynkach o różnej funkcjonalności. Przed wystąpieniem o roszczenia do wykonawcy w odniesieniu do uszkodzeń stropu niezbędne...

Corocznie słyszymy o katastrofach budowlanych związanych z zawaleniem stropów w budynkach o różnej funkcjonalności. Przed wystąpieniem o roszczenia do wykonawcy w odniesieniu do uszkodzeń stropu niezbędne jest określenie, co było przyczyną destrukcji. Często jest to nie jeden, a zespół czynników nakładających się na siebie. Ważne jest zbadanie, czy błędy powstały na etapie projektowania, wykonawstwa czy nieprawidłowego użytkowania.

mgr inż. Cezariusz Magott, mgr inż. Maciej Rokiel Analiza dokumentacji technicznej prac renowacyjnych (cz. 4). Uszczelnienia typu wannowego

Analiza dokumentacji technicznej prac renowacyjnych (cz. 4). Uszczelnienia typu wannowego Analiza dokumentacji technicznej prac renowacyjnych (cz. 4). Uszczelnienia typu wannowego

W przypadku izolacji typu wannowego trzeba zwrócić szczególną uwagę na stan przegród. Chodzi o stan powierzchni oraz wilgotność. Jeżeli do budowy ścian fundamentowych piwnic nie zastosowano materiałów...

W przypadku izolacji typu wannowego trzeba zwrócić szczególną uwagę na stan przegród. Chodzi o stan powierzchni oraz wilgotność. Jeżeli do budowy ścian fundamentowych piwnic nie zastosowano materiałów całkowicie nieodpornych na wilgoć (np. beton komórkowy), to nie powinno być problemów związanych z bezpieczeństwem budynku, chociaż rozwiązanie z zewnętrzną powłoką uszczelniającą jest o wiele bardziej korzystne.

Farby KABE Nowoczesne systemy ociepleń KABE THERM z tynkami natryskowymi AKORD

Nowoczesne systemy ociepleń KABE THERM z tynkami natryskowymi AKORD Nowoczesne systemy ociepleń KABE THERM  z tynkami natryskowymi AKORD

Bogata oferta systemów ociepleń KABE THERM zawiera kompletny zestaw systemów ociepleń z tynkami do natryskowego (mechanicznego) wykonywania ochronno-dekoracyjnych, cienkowarstwowych wypraw tynkarskich....

Bogata oferta systemów ociepleń KABE THERM zawiera kompletny zestaw systemów ociepleń z tynkami do natryskowego (mechanicznego) wykonywania ochronno-dekoracyjnych, cienkowarstwowych wypraw tynkarskich. Natryskowe tynki cienkowarstwowe AKORD firmy Farby KABE, w stosunku do tynków wykonywanych ręcznie, wyróżniają się łatwą aplikacją, wysoką wydajnością, a przede wszystkim wyjątkowo równomierną i wyraźną fakturą.

dr hab. Inż. Zbigniew Suchorab, Krzysztof Tabiś, mgr inż. Tomasz Rogala, dr hab. Zenon Szczepaniak, dr hab. Waldemar Susek, mgr inż. Magdalena Paśnikowska-Łukaszuk Bezinwazyjne pomiary wilgotności materiałów budowlanych za pomocą technik reflektometrycznej i mikrofalowej

Bezinwazyjne pomiary wilgotności materiałów budowlanych za pomocą technik reflektometrycznej i mikrofalowej Bezinwazyjne pomiary wilgotności materiałów budowlanych za pomocą technik reflektometrycznej i mikrofalowej

Badania zawilgocenia murów stanowią ważny element oceny stanu technicznego obiektów budowlanych. W wyniku nadmiernego zawilgocenia następuje destrukcja murów, ale również tworzą się niekorzystne warunki...

Badania zawilgocenia murów stanowią ważny element oceny stanu technicznego obiektów budowlanych. W wyniku nadmiernego zawilgocenia następuje destrukcja murów, ale również tworzą się niekorzystne warunki dla zdrowia użytkowników obiektu. W celu powstrzymania procesu destrukcji konieczne jest wykonanie izolacji wtórnych, a do prawidłowego ich wykonania niezbędna jest znajomość stopnia zawilgocenia murów, a także rozkładu wilgotności na grubości i wysokości ścian.

dr inż. Szymon Swierczyna Badanie nośności i sztywności ścinanych połączeń na wkręty samowiercące

Badanie nośności i sztywności ścinanych połączeń na wkręty samowiercące Badanie nośności i sztywności ścinanych połączeń na wkręty samowiercące

Wkręty samowiercące stosuje się w konstrukcjach stalowych m.in. do zakładkowego łączenia prętów kratownic z kształtowników giętych. W tym przypadku łączniki są obciążone siłą poprzeczną i podczas projektowania...

Wkręty samowiercące stosuje się w konstrukcjach stalowych m.in. do zakładkowego łączenia prętów kratownic z kształtowników giętych. W tym przypadku łączniki są obciążone siłą poprzeczną i podczas projektowania należy zweryfikować ich nośność na docisk oraz na ścinanie, a także uwzględnić wpływ sztywności połączeń na stan deformacji konstrukcji.

mgr inż. Monika Hyjek Dobór prawidłowych rozwiązań ścian zewnętrznych na granicy stref pożarowych

Dobór prawidłowych rozwiązań ścian zewnętrznych na granicy stref pożarowych Dobór prawidłowych rozwiązań ścian zewnętrznych na granicy stref pożarowych

Przy projektowaniu ścian zewnętrznych należy wziąć pod uwagę wiele aspektów: wymagania techniczne, obowiązujące przepisy oraz wymogi narzucone przez ubezpieczyciela czy inwestora. Należy uwzględnić właściwości...

Przy projektowaniu ścian zewnętrznych należy wziąć pod uwagę wiele aspektów: wymagania techniczne, obowiązujące przepisy oraz wymogi narzucone przez ubezpieczyciela czy inwestora. Należy uwzględnić właściwości wytrzymałościowe, a jednocześnie cieplne, akustyczne i ogniowe.

mgr inż. Klaudiusz Borkowicz, mgr inż. Szymon Kasprzyk Ocena stopnia rozprzestrzeniania ognia przez ściany zewnętrzne w Polsce oraz w Wielkiej Brytanii

Ocena stopnia rozprzestrzeniania ognia przez ściany zewnętrzne w Polsce oraz w Wielkiej Brytanii Ocena stopnia rozprzestrzeniania ognia przez ściany zewnętrzne w Polsce oraz w Wielkiej Brytanii

W ostatniej dekadzie coraz większą uwagę zwraca się na bezpieczeństwo pożarowe budynków. Przyczyniło się do tego m.in. kilka incydentów związanych z pożarami, gdzie przez użycie nieodpowiednich materiałów...

W ostatniej dekadzie coraz większą uwagę zwraca się na bezpieczeństwo pożarowe budynków. Przyczyniło się do tego m.in. kilka incydentów związanych z pożarami, gdzie przez użycie nieodpowiednich materiałów budowlanych pożar rozwijał się w wysokim tempie, zagrażając życiu i zdrowiu wielu ludzi.

dr inż. Krzysztof Pawłowski prof. PBŚ Charakterystyka energetyczna budynku (cz. 8)

Charakterystyka energetyczna budynku (cz. 8) Charakterystyka energetyczna budynku (cz. 8)

Opracowanie świadectwa charakterystyki energetycznej budynku lub części budynku wymaga znajomości wielu zagadnień, m.in. lokalizacji budynku, parametrów geometrycznych budynku, parametrów cieplnych elementów...

Opracowanie świadectwa charakterystyki energetycznej budynku lub części budynku wymaga znajomości wielu zagadnień, m.in. lokalizacji budynku, parametrów geometrycznych budynku, parametrów cieplnych elementów obudowy budynku (przegrody zewnętrzne i złącza budowlane), danych technicznych instalacji c.o., c.w.u., systemu wentylacji i innych systemów technicznych.

mgr inż. Cezariusz Magott, mgr inż. Maciej Rokiel Analiza dokumentacji technicznej prac renowacyjnych (cz. 5)

Analiza dokumentacji technicznej prac renowacyjnych (cz. 5) Analiza dokumentacji technicznej prac renowacyjnych (cz. 5)

Do prac renowacyjnych zalicza się także tzw. środki flankujące. Będą to przede wszystkim różnego rodzaju tynki specjalistyczne i wymalowania (farby), a także tynki tradycyjne. Błędem jest traktowanie tynku...

Do prac renowacyjnych zalicza się także tzw. środki flankujące. Będą to przede wszystkim różnego rodzaju tynki specjalistyczne i wymalowania (farby), a także tynki tradycyjne. Błędem jest traktowanie tynku (jak również farby) jako osobnego elementu, w oderwaniu od konstrukcji ściany oraz rodzaju i właściwości podłoża.

Filip Ryczywolski Pomiar pionowości budynków i budowli

Pomiar pionowości budynków i budowli Pomiar pionowości budynków i budowli

Odchylenia, przemieszczenia, skręcenia i odkształcenia to niestety codzienny widok na wielu inwestycjach – również tych nowych. Poza kontrolą ścian czy szachtów w budynkach, badania pionowości dotyczą...

Odchylenia, przemieszczenia, skręcenia i odkształcenia to niestety codzienny widok na wielu inwestycjach – również tych nowych. Poza kontrolą ścian czy szachtów w budynkach, badania pionowości dotyczą też słupów, kominów, masztów widokowych, latarni morskich oraz różnego rodzaju mostów, wiaduktów, masztów stalowych: radiowych, telewizyjnych, sieci komórkowych czy oświetleniowych. Ogólnie rzecz ujmując, pomiary pionowości stosuje się do obiektów wysmukłych, czyli takich, których wysokość przewyższa...

PPHU POLSTYR Zbigniew Święszek Jak wybrać system ociepleń?

Jak wybrać system ociepleń? Jak wybrać system ociepleń?

Prawidłowo zaprojektowane i wykonane ocieplenie przegród w budynku pozwala zmniejszyć zużycie energii, a co za tym idzie obniżyć koszty eksploatacji i domowe rachunki.

Prawidłowo zaprojektowane i wykonane ocieplenie przegród w budynku pozwala zmniejszyć zużycie energii, a co za tym idzie obniżyć koszty eksploatacji i domowe rachunki.

Krzysztof Kros Zakrętarki akumulatorowe

Zakrętarki akumulatorowe Zakrętarki akumulatorowe

Wkrętarki akumulatorowe czy wiertarko-wkrętarki od dawna są powszechnie znane i użytkowane zarówno przez amatorów, jak i profesjonalistów. Zakrętarki natomiast są mniej znanym i popularnym typem narzędzia...

Wkrętarki akumulatorowe czy wiertarko-wkrętarki od dawna są powszechnie znane i użytkowane zarówno przez amatorów, jak i profesjonalistów. Zakrętarki natomiast są mniej znanym i popularnym typem narzędzia akumulatorowego, spokrewnionego z wkrętarką czy wiertarką. Jednak w ostatnim czasie zyskują coraz większą popularność, między innymi dzięki łączonym ofertom producentów – zestawy wkrętarka i zakrętarka. Czym zatem jest zakrętarka i do czego służy?

mgr inż. Wojciech Rogala, mgr inż. Marcin Mateja Wymagania dla zapraw murarskich cienkowarstwowych stosowanych do murowania z elementów silikatowych

Wymagania dla zapraw murarskich cienkowarstwowych stosowanych do murowania z elementów silikatowych Wymagania dla zapraw murarskich cienkowarstwowych stosowanych do murowania z elementów silikatowych

Wielu uczestników procesu budowlanego utożsamia parametry muru jedynie z użytymi bloczkami. Tymczasem zgodnie z definicją z PN-EN 1996-1-1 [1] mur to materiał konstrukcyjny utworzony z elementów murowych...

Wielu uczestników procesu budowlanego utożsamia parametry muru jedynie z użytymi bloczkami. Tymczasem zgodnie z definicją z PN-EN 1996-1-1 [1] mur to materiał konstrukcyjny utworzony z elementów murowych ułożonych w określony sposób i trwale połączonych ze sobą zaprawą murarską. Zaprawa stanowi nieodłączny element konstrukcji, a jej parametry wpływają nie tylko na sam proces murowania, ale także na trwałość i parametry konstrukcji.

inż. Joanna Nowaczyk Energooszczędne i pasywne rozwiązania w budownictwie z wykorzystaniem silikatów

Energooszczędne i pasywne rozwiązania w budownictwie z wykorzystaniem silikatów Energooszczędne i pasywne rozwiązania w budownictwie z wykorzystaniem silikatów

Zgodnie z szacunkami Komisji Europejskiej sektor budowlany odpowiada za 40% zużycia energii oraz ok. 36% emisji gazów cieplarnianych w Europie. To bardzo wysokie wartości, ich ograniczenie wiąże się z...

Zgodnie z szacunkami Komisji Europejskiej sektor budowlany odpowiada za 40% zużycia energii oraz ok. 36% emisji gazów cieplarnianych w Europie. To bardzo wysokie wartości, ich ograniczenie wiąże się z głębokimi zmianami, modernizacjami, a także często z zupełną zmianą obecnie stosowanych rozwiązań. Jeśli dodamy do tego wszystkiego czynnik kosztowy związany z adaptacjami, powstaje gotowy przepis na pojawienie się skrajnych ocen wdrażanych planów czy też zobowiązań państw członkowskich. Jednakże ścieżka...

prof. dr hab. inż. Łukasz Drobiec, mgr inż. Jan Biernacki Wzmacnianie konstrukcji murowanych przy pomocy siatek kompozytowych PBO

Wzmacnianie konstrukcji murowanych przy pomocy siatek kompozytowych PBO Wzmacnianie konstrukcji murowanych przy pomocy siatek kompozytowych PBO

Wzmacnianie konstrukcji zabytkowych stanowi istotną gałąź budownictwa, która powstała w odpowiedzi na potrzebę ochrony i zachowania historycznych budowli. Historia wzmacniania konstrukcji zabytkowych sięga...

Wzmacnianie konstrukcji zabytkowych stanowi istotną gałąź budownictwa, która powstała w odpowiedzi na potrzebę ochrony i zachowania historycznych budowli. Historia wzmacniania konstrukcji zabytkowych sięga daleko wstecz i przeplata się z rozwojem technologii i inżynierii.

Wybrane dla Ciebie

Pokrycia ceramiczne na każdy dach »

Pokrycia ceramiczne na każdy dach » Pokrycia ceramiczne na każdy dach »

łatwa hydroizolacja skomplikowanych powierzchni dacowych »

łatwa hydroizolacja skomplikowanych powierzchni dacowych » łatwa hydroizolacja skomplikowanych powierzchni dacowych »

Styropian na wiele sposobów »

Styropian na wiele sposobów » Styropian na wiele sposobów »

Wełna kamienna – izolacja bezpieczna od ognia »

Wełna kamienna – izolacja bezpieczna od ognia » Wełna kamienna – izolacja bezpieczna od ognia »

Profile do montażu metodą „lekką-mokrą »

Profile do montażu metodą „lekką-mokrą » Profile do montażu metodą „lekką-mokrą »

Zatrzymaj cenne ciepło wewnątrz »

Zatrzymaj cenne ciepło wewnątrz » Zatrzymaj cenne ciepło wewnątrz »

Panele grzewcze do ścian i sufitów »

Panele grzewcze do ścian i sufitów » Panele grzewcze do ścian i sufitów »

Skuteczna walka z wilgocią w ścianach »

Skuteczna walka z wilgocią w ścianach » Skuteczna walka z wilgocią w ścianach »

Systemowe docieplanie fasad »

Systemowe docieplanie fasad » Systemowe docieplanie fasad »

Oszczędzanie przez ocieplanie »

Oszczędzanie przez ocieplanie » Oszczędzanie przez ocieplanie »

Uszczelnianie fundamentów »

Uszczelnianie fundamentów » Uszczelnianie fundamentów »

Prawidłowe wykonanie elewacji w systemie ETICS to jakość, żywotność i estetyka »

Prawidłowe wykonanie elewacji w systemie ETICS to jakość, żywotność i estetyka » Prawidłowe wykonanie elewacji w systemie ETICS to jakość, żywotność i estetyka »

Copyright © 2004-2019 Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Spółka komandytowa, nr KRS: 0000537655. Wszelkie prawa, w tym Autora, Wydawcy i Producenta bazy danych zastrzeżone. Jakiekolwiek dalsze rozpowszechnianie artykułów zabronione. Korzystanie z serwisu i zamieszczonych w nim utworów i danych wyłącznie na zasadach określonych w Zasadach korzystania z serwisu.
Portal Budowlany - Izolacje.com.pl

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim urządzeniu końcowym. W każdym momencie możesz dokonać zmiany ustawień przeglądarki dotyczących cookies. Nim Państwo zaczną korzystać z naszego serwisu prosimy o zapoznanie się z naszą polityką prywatności oraz Informacją o Cookies. Więcej szczegółów w naszej Polityce Prywatności oraz Informacji o Cookies. Administratorem Państwa danych osobowych jest Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Sp.K., nr KRS: 0000537655, z siedzibą w 04-112 Warszawa, ul. Karczewska 18, tel. +48 22 810-21-24, właściciel strony www.izolacje.com.pl. Twoje Dane Osobowe będą chronione zgodnie z wytycznymi polityki prywatności www.izolacje.com.pl oraz zgodnie z Rozporządzeniem Parlamentu Europejskiego i Rady (UE) 2016/679 z dnia 27 kwietnia 2016r i z Ustawą o ochronie danych osobowych Dz.U. 2018 poz. 1000 z dnia 10 maja 2018r.