Izolacje.com.pl

Materiały do wykonywania hydroizolacji podziemnych części budynków i budowli

The materials used in water insulation of undergrounds sections of buildings and structures
M. Rokiel

The materials used in water insulation of undergrounds sections of buildings and structures


M. Rokiel

Aby hydroizolacja była skuteczna, powinna być właściwie dobrana, a także poprawnie zaprojektowana i wykonana.

Zobacz także

KOESTER Polska Iniekcja uszczelniająca żelem akrylowym KÖSTER Injektion Gel G4 żelbetowej płyty fundamentowej podziemnej hali pieca do wytopu szkła

Iniekcja uszczelniająca żelem akrylowym KÖSTER Injektion Gel G4 żelbetowej płyty fundamentowej podziemnej hali pieca do wytopu szkła Iniekcja uszczelniająca żelem akrylowym KÖSTER Injektion Gel G4 żelbetowej płyty fundamentowej podziemnej hali pieca do wytopu szkła

W ramach prowadzonych prac modernizacyjnych i okresowej wymiany pieca do wytopu szkła podjęto decyzję o usunięciu powstałych podczas dotychczasowej eksploatacji nieszczelności płyty fundamentowej. Płyta...

W ramach prowadzonych prac modernizacyjnych i okresowej wymiany pieca do wytopu szkła podjęto decyzję o usunięciu powstałych podczas dotychczasowej eksploatacji nieszczelności płyty fundamentowej. Płyta o wymiarach w świetle ścian 35,50x36,27 m i grubości 1,60 m wykazywała liczne i okresowo intensywne przecieki, które powodowały konieczność tymczasowego odprowadzania przenikających wód gruntowych systemem rowków powierzchniowych wyciętych w płycie do studzienek zbiorczych i odpompowywania. Powierzchnia...

Ravago Building Solutions Poland Ravatherm XPS - sprawdzone rozwiązania izolacji stykającej się z gruntem

Ravatherm XPS - sprawdzone rozwiązania izolacji stykającej się z gruntem Ravatherm XPS - sprawdzone rozwiązania izolacji stykającej się z gruntem

Kategoria izolacji termicznych stykających się z gruntem obejmuje izolację obwodową (izolacje ścian piwnic i ścian fundamentowych) oraz izolacje podłóg posadowionych na gruncie. Ten rodzaj izolacji występuje...

Kategoria izolacji termicznych stykających się z gruntem obejmuje izolację obwodową (izolacje ścian piwnic i ścian fundamentowych) oraz izolacje podłóg posadowionych na gruncie. Ten rodzaj izolacji występuje zarówno w budownictwie jedno- jak i wielorodzinnym, obiektach użyteczności publicznej, budynkach przemysłowych, halach magazynowych, chłodniach składowych.

Saint Gobain Construction Products Polska/ Weber Hydroizolacja fundamentów - jak chronić dom przed wodą?

Hydroizolacja fundamentów - jak chronić dom przed wodą? Hydroizolacja fundamentów - jak chronić dom przed wodą?

Jednym z najważniejszych, a jednocześnie najtrudniejszych zadań wśród prac budowlanych jest zabezpieczenie obiektu przed działaniem wód gruntowych. Na działanie wody szczególnie narażone są fundamenty....

Jednym z najważniejszych, a jednocześnie najtrudniejszych zadań wśród prac budowlanych jest zabezpieczenie obiektu przed działaniem wód gruntowych. Na działanie wody szczególnie narażone są fundamenty. Aby zapewnić ich skuteczną i trwałą ochronę, należy zastosować nowoczesne materiały izolacyjne, właściwie dobrać rozwiązania konstrukcyjne i zadbać o prawidłowe wykonanie.

Abstrakt

W artykule przedstawiono wymagania ogólne dotyczące hydroizolacyjnych rozwiązań technologiczno-materiałowych, rodzaje materiałów stosowanych jako powłoki wodochronne oraz zasady ich doboru do konkretnego zastosowania.

The article presents the general requirements that apply to technological and material solutions used in water insulations, the types of materials used as waterproof layers and guidelines on how to choose the right ones for a specific use.

Na wybór rozwiązania technologiczno-materiałowego hydroizolacji podziemnych części budynków i budowli mają wpływ przede wszystkim:

  • warunki gruntowo-wodne,
  • obecność agresywnych wód gruntowych,
  • rozwiązanie konstrukcyjne budynku (rodzaj fundamentu, występowanie podpiwniczenia, wysokość kondygnacji piwnicznej itp.)

Przy projektowaniu zabezpieczeń wodochronnych należy ponadto uwzględnić:

  • rodzaj i stan podłoża (równość, możliwość powstania rys, wilgotność, wysezonowanie itp.),
  • możliwości aplikacyjne w konkretnym obiekcie,
  • kompatybilność materiałów hydroizolacyjnych (możliwość wykonania szczelnych połączeń),
  • technologię uszczelnienia przejść rurowych, dylatacji itp.
  • obecność dylatacji, przejść rurowych itp. trudnych i krytycznych miejsc.

Jeśli chodzi o miejsce usytuowania, to hydroizolacje zagłębionych w gruncie elementów budynków i budowli (rys. 1–4) można ogólnie podzielić na izolacje:

  • poziome (na ławach fundamentowych, ścianach fundamentowych),
  • płyty fundamentowej,
  • pionowe ścian fundamentowych,
  • strefy cokołowej,
  • poziome podposadzkowe piwnic lub podłóg na gruncie,
  • stropów obiektów zagłębionych w gruncie, np. stropów garaży podziemnych.

Ze względu na warunki gruntowo-wodne, norma DIN 18195:2000 [1] wyróżnia następujące rodzaje obciążenia wilgocią fundamentów:

  • obciążenie wilgocią zawartą w gruncie – gdy budynek posadowiony jest w niespoistym i dobrze przepuszczalnym gruncie (możliwość szybkiego wsiąkania wody opadowej w grunt poniżej poziomu posadowienia budynku i wykluczenie wystąpienia wysokiego poziomu wód gruntowych) – współczynnik wodoprzepuszczalności gruntu (współczynnik filtracji) k > 10–4 m/s (DIN 18130-1 [2]);
  • obciążenie niezalegającą wodą opadową – gdy w poziomie posadowienia i poniżej występują grunty spoiste uniemożliwiające szybkie wsiąkanie wody opadowej (k ≤ 10–4 m/s), przy czym jej nadmiar odprowadzany jest przez skutecznie działający drenaż (DIN 4095 [3]);
  • obciążenie zalegającą wodą opadową – gdy budynek posadowiony jest w gruntach o niskiej wodoprzepuszczalności (k ≤ 10–4 m/s), co skutkuje wywieraniem parcia hydrostatycznego na hydroizolację przez spiętrzającą się okresowo wodę opadową; maksymalny poziom wody gruntowej musi znajdować się do 30 cm poniżej spodu płyty (ławy) fundamentowej;
  • obciążenie wodą pod ciśnieniem – gdy poziom wód gruntowych jest wysoki (powyżej poziomu posadowienia) lub gdy na fundamenty w sposób długotrwały oddziałuje woda pod ciśnieniem.

Obciążenie wilgocią oraz niezalegającą wodą opadową wymaga zaprojektowania izolacji przeciwwilgociowej (zwanej także izolacją lekką), obciążenie zalegającą wodą opadową oraz wodą pod ciśnieniem wymaga zaprojektowania izolacji przeciwwodnej (zwanej także izolacją ciężką).

Izolacja powinna być wykonana od strony naporu wody/wilgoci (od strony zewnętrznej budynku/chronionego elementu).

Należy pamiętać, że hydroizolacji fundamentów nie wolno projektować w oderwaniu od ogólnej analizy cieplno-wilgotnościowej budynku (zwłaszcza gdy w strefie przyziemia następuje zmiana rodzaju ścian, np. z trójwarstwowych na jednowarstwową).

Przyczyną zawilgoceń w piwnicach i strefie przyziemia może być bowiem kondensacja wilgoci, zarówno powierzchniowa, jak i międzywarstwowa, a także mostki termiczne, a zapobieganie ich powstawaniu i eliminowanie tych zjawisk nie jest możliwe dzięki wykonaniu powłok wodochronnych (choć rodzaj zastosowanego materiału może mieć wpływ na powstawanie i/lub intensyfikację tych zjawisk).

Rodzaje materiałów hydroizolacyjnych

Przykładowy podział materiałów hydroizolacyjnych przedstawiono w tabeli 1.

Zasady doboru materiałów

Wybór materiału na powłoki wodochronne może nastąpić dopiero po przeanalizowaniu wymogów stawianych hydroizolacjom oraz wymaganych właściwości, składników i parametrów projektowanego systemu ochrony przed wilgocią/wodą.

Należy je zawsze rozpatrywać zarówno w odniesieniu do pojedynczego odcinka izolacji (pionowej, poziomej, cokołowej), jak i układu hydroizolacji, ponieważ np. rodzaj zastosowanego materiału do izolacji poziomej ław determinuje wybór materiału do hydroizolacji pionowej. Z tego też powodu tak istotny jest odpowiedni dobór materiałów już na etapie projektowania.

Zalecane miejsca aplikacji materiałów do izolacji przeciwwilgociowej i przeciwwodnej przedstawiono w tabelach 2 i 3.

Podłoża pod powłoki wodochronne

Podłoże, na którym stosowane są powłoki wodochronne, musi być nieodkształcalne i przenieść wszystkie oddziałujące na nie obciążenia, zwłaszcza hydrostatyczne parcie wody (podłożem pod powłoki wodochronne może być tylko odpowiednio zwymiarowane podłoże konstrukcyjne – beton/żelbet, mur).

Jego parametry wytrzymałościowe (klasę betonu, cegły/bloczka, zaprawy murarskiej i tynkarskiej) określa projektant na podstawie obliczeń oraz analizy. Kolejne wymogi, które należy przeanalizować, to przede wszystkim wysezonowane, równość, wilgotność, szorstkość, temperatura i chłonność. Dodatkowo muszą być spełnione inne specyficzne wymagania związane z właściwościami materiałów hydroizolacyjnych [4]. W żadnej sytuacji podłożem nie może być tzw. chudy beton (niezależnie od stopnia obciążenia wilgocią/wodą).

Właściwości i wymagania stawiane materiałom hydroizolacyjnym

Lepiki asfaltowe

Lepik asfaltowy stosowany na zimno jest mieszaniną asfaltów, wypełniaczy, plastyfikatorów i emulgatorów/rozpuszczalników. Lepik asfaltowy stosowany na gorąco jest mieszaniną asfaltów z dodatkiem środków uplastyczniających.

Lepiki mogą ponadto zawierać dodatki wypełniające (są to tzw. lepiki z wypełniaczami) albo dodatki uplastyczniające i zwiększające siłę klejenia (tzw. lepiki bez wypełniaczy). Lepiki asfaltowe stosowane na zimno mogą mieć konsystencję półciekłą lub gęstą.

Lepiki najczęściej stosuje się do przyklejania do podłoża papy oraz wykonywania samodzielnych izolacji przeciwwilgociowych.

Wymagania stawiane lepikom zawarte są w normach:

  • PN-B-24620:1998 [5],
  • PN-B-24625:1998 [6].

Lepiki nie są odporne na działanie temp. powyżej +60°C. Temperatura mięknięcia lepików asfaltowych z wypełniaczami stosowanych na gorąco wynosi +60–80°C, a lepików bez wypełniaczy – +70–85°C. Według normy PN-B-24625:1998 [5] elastyczność lepików asfaltowych (niemodyfikowanych) oznacza się poprzez badanie giętkości przez przeginanie na walcu o średnicy 20 mm w temp. 0°C. Potwierdza ono, że tego typu lepiki są wrażliwe na niskie temperatury oraz przejścia przez temp. 0°C (kruszeją w takich warunkach), dlatego ich zastosowanie do wykonywania hydroizolacji jest ograniczone.

Materiały te wymagają nakładania min. w dwóch warstwach, a grubość powłoki przeciwwilgociowej nie może być mniejsza niż 2 mm.Podłożem pod izolację przeciwwilgociową z lepików asfaltowych może być beton, mur oraz tynk tradycyjny.

Roztwory i emulsje asfaltowe

 Ze względu na zastosowanie i właściwości rozróżnia się roztwory i emulsje do:

  • gruntowania,
  • wykonywania właściwych powłok uszczelniających.

W zależności od zastosowanych emulgatorów można wyróżnić roztwory i emulsje:

  • anionowe,
  • kationowe,
  • niejonowe.

Roztwory i emulsje służą do gruntowania podłoża (pod izolacje z innych materiałów bitumicznych) oraz do wykonywania izolacji przeciwwilgociowych.

Wymagania stawiane roztworom asfaltowym zawarte są w normach:

  • PN-B-24620:1998 [5],
  • PN-B-24622:1974 [7].

Wymagania stawiane emulsjom asfaltowym zawarte są w:

  • normach:
    – PN-B-24002:1997 [8],
    – PN-B-24003:1997 [9];
  • zaleceniach udzielania aprobat technicznych ZUAT-15/IV.02/2005 [10].

Emulsje anionowe zasadniczo stosuje się w okresie letnim. Emulsje kationowe, w porównaniu z anionowymi, cechują się szybszym wiązaniem, dlatego zaleca się je stosować przy wilgotnych podłożach oraz w okresach wiosennym i jesiennym. Emulsje niejonowe stosuje się głównie do zabezpieczeń podłoży porowatych, ich cechą jest bowiem wolne wiązanie, pozwalające na wniknięcie materiału w pory podłoża.

Ze względu na grubość warstwy roztwory i emulsje asfaltowe nie mają zdolności mostkowania rys, wymagają więc równego, stabilnego i wysezonowanego podłoża (tynk tradycyjny, beton – po ewentualnym szpachlowaniu wygładzającym). Z tego samego powodu są bardzo wrażliwe na uszkodzenia mechaniczne.

Masy asfaltowe

Ze względu na zastosowanie i właściwości rozróżnia się:

  • masy gruntujące,
  • masy do wykonywania właściwych powłok uszczelniających,
  • pasty.

W zależności od zastosowanych emulgatorów można wyróżnić masy:

  • anionowe,
  • kationowe,
  • niejonowe.

Masy asfaltowe mogą być modyfikowane polimerami, żywicami lub cyklokauczukami. Masy modyfikowane najczęściej określane są nazwą masy KMB. Mogą być jedno- lub dwuskładnikowe.

Masy asfaltowe w połączeniu z wkładkami zbrojącymi tworzą tzw. laminaty (tego określenia używa się coraz rzadziej, w odniesieniu do mas KMB nie funkcjonuje ono wcale).

Wymagania stawiane masom asfaltowym zawarte są w:

  • normach:
    – PN-B-24620:1998 [5],
    – PN-B-24006:1997 [11],
    – ewentualnie PN-B-24000:1997 [12];
  • zaleceniach udzielania aprobat technicznych:
    – ZUAT-15/IV.07/2005 [13],
    – ZUAT-15/IV.18/2005 [14].

Norma PN-B-24006:1997 [11] wymaga oznaczenia elastyczności poprzez badanie giętkości przez przeginanie na walcu o średnicy 30 mm w temp. –5°C.

W ZUAT-15/IV.07/2005 [13] określono wymagania dotyczące mas rozpuszczalnikowych stosowanych tylko jako izolacja przeciwwilgociowa, a elastyczność zdefiniowano poprzez badanie giętkości przez przeginanie na walcu o średnicy 30 mm w temp. 0°C.

W ZUAT-15/IV.18/2005 [14] określono wymagania dotyczące dwuskładnikowych mas bitumiczno-mineralnych stosowanych zarówno jako izolacja przeciwwilgociowa, jak i przeciwwodna. Różnią się one wymaganiami związanymi z wodoszczelnością: odpowiednio ≥ 0,01 MPa i ≥ 0,15 MPa.

Tradycyjne masy asfaltowe mogą być stosowane do wykonywania samodzielnych izolacji:

  • przeciwwilgociowych oraz z laminatów (wkładka zbrojąca z siatki z włókna szklanego); według normy PN-B-24006:1997 [11] są to masy klasy R;
  • przeciwwilgociowych i przeciwwodnych oraz z laminatów (wkładka zbrojąca z siatki z włókna szklanego); według normy PN­‑B­‑24006:1997 [11] są to masy klasy D;
  • przeciwwilgociowych i przeciwwodnych oraz z laminatów (wkładka zbrojąca z siatki z włókna szklanego), a także wielowarstwowych izolacji z pap; według normy PN­‑B­­‑24006:1997 [11] są to masy klasy P.

Za minimalną grubość izolacji przeciwwilgociowej należy przyjąć 3 mm, izolacji przeciwwodnej (o ile producent masy takie zastosowanie przewiduje) – 4 mm.

Tradycyjne masy asfaltowe stosuje się coraz rzadziej – zostały wyparte przez masy KMB.

Podłożem pod izolację z mas asfaltowych może być tynk tradycyjny (tylko dla izolacji przeciwwilgociowej) oraz beton/żelbet, mur, a także mineralne szlamy uszczelniające (jeśli masa asfaltowa nie zawiera rozpuszczalników).

Polimerowo-bitumiczne, grubowarstwowe masy uszczelniające (masy KMB)

Są to materiały nowej generacji, o niemal natychmiastowej odporności na deszcz (po 1–2 godz. od nałożenia), pozwalające na szybkie zasypanie wykopów fundamentowych (1–2 dni po nałożeniu), elastyczne także w temperaturach ujemnych.

Mogą wykazywać odporność na agresywne wody gruntowe klasyfikowane jako XA3 według normy PN-EN 206-1:2003 [15] oraz jako silnie agresywne według normy DIN 4030 [16].

Wymagania stawiane masom KMB zawarte są w normie PN-EN 15814:2011 [17]. Wymagania te bazują bezpośrednio na wymaganiach normy DIN 18195:2000 [1] oraz wytycznych „Richtlinie für die Planung und Ausführung von Abdichtung mit kunststoffmodifizierten Bitumendickbeschichtungen (KMB) – erdberührte Bauteile” z 2001 r. [18] oraz 2010 r. [19] (tabela 4).

Jeżeli konkretna masa KMB pod względem składu odpowiada definicjom przyjętym w ZUAT-15/IV.18/2005 [14], stawiane jej wymagania można przyjmować na podstawie tego dokumentu.

Z punktu widzenia jakości materiału i skuteczności wykonywanych prac masy KMB powinny spełniać wymagania podane w tabeli 4. Materiałów klasyfikowanych według normy PN-EN 15814:2011 [17] jako CB0 oraz C0 w zasadzie nie powinno się stosować. Masy KMB klasyfikowane jako C1 mogą być wykorzystywane do wykonywania izolacji przeciwwilgociowej.

Do oceny jakości materiału bardzo istotne są dwa parametry

Pierwszy to tzw. zawartość części stałych, mówiąca o tym, o ile zmniejszy się grubość powłoki po wyschnięciu (zawartość części stałych wynosząca 90% oznacza, że po wyschnięciu grubość hydroizolacji będzie wynosić 90% grubości nałożonej świeżej masy).

Drugim istotnym parametrem jest odporność masy na obciążenia (tzw. obciążalność mechaniczna, w normie PN-EN 15814: 2011 [17] nazwana wytrzymałością na ściskanie). Jest ona określana zmniejszeniem grubości warstwy hydroizolacji przy obciążeniu mechanicznym. W odniesieniu do izolacji przeciwwodnej przy obciążeniu mechanicznym 0,3 MN/m² zmniejszenie grubości powłoki hydroizolacyjnej nie może być większe niż 50%. Oznacza to, że nie każdy materiał może być zastosowany do izolacji poziomych, decyzja musi być podjęta indywidualnie, po analizie obciążeń i parametrów związanej masy.

Według wytycznych „Richtlinie für die Planung und Ausführung von Abdichtung mit kunststoffmodifizierten Bitumendickbeschichtungen (KMB) – erdberührte Bauteile” [19] grubość i układ warstw zależy od rodzaju hydroizolacji. Powłoka przeciwwilgociowa (po wyschnięciu) musi mieć grubość 3 mm, przeciwwodna – 4 mm.

Podłożem pod izolację z mas KMB może być tynk tradycyjny (tylko dla izolacji przeciwwilgociowej) oraz beton/żelbet, mur oraz mineralne szlamy uszczelniające (jeśli masa asfaltowa nie zawiera rozpuszczalników).

Szlamy uszczelniające

W skład polimerowo-cementowych szlamów uszczelniających wchodzi cement, selekcjonowane kruszywo mineralne o uziarnieniu dobranym według specjalnie opracowanej krzywej przesiewu, włókna i specyficzne dodatki (specjalnie modyfikowane żywice, związki hydrofobowe itp.).

Mogą zawierać również płynne polimery (materiały dwuskładnikowe) lub żywice redyspergowalne (materiały jednoskładnikowe), co zapewnia znaczną elastyczność zaprawy po związaniu.

Związane zaprawy są odporne na czynniki atmosferyczne, takie jak cykle zamarzania i odmarzania, szkodliwy wpływ soli zawartych w wodzie, zachowują elastyczność w bardzo niskich temperaturach i są odporne na dyfuzję dwutlenku węgla. Doskonale nadają się do powierzchniowej izolacji i zabezpieczania przed wilgocią i wodą powierzchni narażonych na duże obciążenia i odkształcenia, a dzięki zwiększonej elastyczności potrafią mostkować rysy nawet do szerokości 1 mm.

Z tego względu oraz z uwagi na dużą odporność na uszkodzenia i dużą wytrzymałość na ściskanie elastyczne szlamy uszczelniające chętnie stosuje do uszczelnień stref cokołowych oraz do izolacji na ławach. Tolerują mokre podłoże, dlatego chętnie są stosowane jako tzw. wstępne uszczelnienie podłoża (zwłaszcza sztywne szlamy szybkowiążące o czasie wiązania i twardnienia wynoszącym kilka minut).

Wykazują szczelność na parcie słupa wody sięgające 50–70 m. Ich wadą jest konieczność nakładania przynajmniej w 2 warstwach i sprawdzania grubości każdej nakładanej warstwy. Są odporne na negatywne parcie wody. Dzięki dostępności systemowych materiałów uzupełniających (taśm, kształtek, manszet) uszczelnianie dylatacji i przejść rurowych jest łatwe i skuteczne.

Wymagania dotyczące sztywnych szlamów uszczelniających zawarte są w ZUAT-15/IV.13/2002 [20].

Zgodnie z wymogami wytycznych „Richtlinie für die Planung und Ausführung von Abdichtungen von Bauteilen mit mineralischen Dichtungsschlämmen” [21] grubość powłoki ze szlamu elastycznego zależy od rodzaju hydroizolacji. Powłoka przeciwwilgociowa (po wyschnięciu) musi mieć grubość 2 mm, przeciwwodna – 2,5 mm. W odniesieniu do izolacji wykonywanej na poziomych lub skośnych podłożach betonowych wytyczne te wymagają wykonania powłoki grubości przynajmniej 2,5 mm, niezależnie od stopnia obciążenia wilgocią/wodą.

Za minimalną grubość izolacji przeciwwilgociowej ze szlamów sztywnych należy przyjąć 2 mm, izolacji przeciwwodnej – 3 mm [22].Podłożem pod izolację ze szlamów uszczelniających może być tynk tradycyjny (tylko dla izolacji przeciwwilgociowej), beton/żelbet i mur.

Krystaliczne zaprawy uszczelniające

Są to materiały do uszczelniania betonu w strukturze. Nie są one powłoką uszczelniającą. Są to chemicznie aktywne zaprawy, których rezultatem działania jest wytworzenie w kapilarach i porach nierozpuszczalnych struktur krystalicznych.

Powstają one na skutek obecności wilgoci i niezhydratyzowanych składników zaczynu cementowego (wolnych jonów wapnia). Wielkość tworzących się kryształów (3–4 mm) pozwala im wnikać w kapilary i pory podłoża (betonu) i w ten sposób uszczelniać je przed wnikaniem wody (pojedyncze kryształy są mniejsze od rozmiarów cząsteczki wody), natomiast ich igiełkowaty kształt powoduje, że tworzą one matrycę pozwalającą na dyfuzję pary wodnej. Krystaliczne zaprawy uszczelniające mogą też nadawać chemoodporność zabezpieczanej powierzchni betonu (pH o wartości 3–11).

Wymagania stawiane krystalicznym zaprawom uszczelniającym zawarte są w ZUAT-15/VI.21/2005 [23].

Podłoże zabezpieczone hydroizolacją z krystalicznych zapraw uszczelniających jest suche – nie ma ono kontaktu z wilgocią ani wodą. Beton zabezpieczony krystaliczną zaprawą uszczelniającą jest natomiast narażony na bezpośredni kontakt z wodą, jednak wówczas zaczyna się zachowywać jak tzw. beton wodonieprzepuszczalny.

Oznacza to, że woda jest w stanie wniknąć w niego na pewną głębokość, nie jest natomiast w stanie przedostać się przez niego, o ile nie ma w nim rys czy pęknięć.

Podczas stosowania krystalicznych zapraw uszczelniających należy zatem stosować się do wszelkich wymogów, które muszą być spełnione przy projektowaniu i wykonywaniu konstrukcji z betonów wodonieprzepuszczalnych. Krystaliczne zaprawy uszczelniające są aktywne wyłącznie podczas oddziaływania wilgoci/wody, dlatego mogą być stosowane w miejscach nienarażonych na wyschnięcie. Uaktywniają się po przynajmniej kilku dniach stałego oddziaływania wilgoci. Przy prawidłowej aplikacji i pielęgnacji struktury krystaliczne wykształcają się w ciągu 20–25 dni. Zaprawy te są w stanie uszczelnić rysy o szerokości nieprzekraczającej 0,3–0,4 mm, jednak czas zamykania rysy przez tworzące się kryształy wynosi 1–2 mies.

Zużycie materiału oraz grubość warstwy muszą odpowiadać wymaganiom producenta oraz obciążeniu wilgocią/wodą. Zazwyczaj zużycie wynosi od 0,8–1 kg/m² przy obciążeniu wilgocią oraz od 1,5 kg/m² przy obciążeniu wodą pod ciśnieniem.

Rolowe materiały bitumiczne

Elastyczne wyroby asfaltowe na osnowie (papy, membrany samoprzylepne) powinny spełniać wymagania norm:

  • PN-EN 13969:2006 [24]
  • lub PN-EN 14967:2007 [25].

Norma PN-EN 13969:2006 [24] dotyczy wyrobów do wykonywania izolacji przeciwwilgociowej i przeciwwodnej, norma PN-EN 14967:2007 [25] jedynie wyrobów do izolacji przeciwwilgociowej.

Rozróżnia się papy asfaltowe oraz papy asfaltowe modyfikowane. Te ostatnie występują najczęściej jako papy termozgrzewalne oraz membrany samoprzylepne.

Papy mogą być mocowane (klejone) do podłoża za pomocą masy asfaltowej lub lepiku – zazwyczaj papy niemodyfikowane, zgrzewane do podłoża (termozgrzewalne) lub mocowane przez przyklejenie (membrany samoprzylepne).

Ze względu na osnowę papy asfaltowe można podzielić na papy [26]:

  • na osnowie z tkanin technicznych,
  • na welonie z włókien szklanych lub tworzyw sztucznych,
  • na włókninie przeszywanej,
  • na taśmie aluminiowej (stosowane są w zasadzie jako paroizolacja),
  • z wkładką miedzianą (stosowane najczęściej w dachach zielonych, jako warstwa odpychająca korzenie).

Papa na osnowie tekturowej nie jest materiałem hydroizolacyjnym i nie może być stosowana jako powłoka wodochronna (niezależnie od obciążenia wilgocią/wodą i sposobu mocowania).

Papy termozgrzewalne produkowane są zazwyczaj na osnowie z włókna szklanego lub poli­estrowej. Masa asfaltowa, którą powleczona jest osnowa, najczęściej modyfikowana jest elastomerem SBS lub plastomerem APP. Elastomer SBS nadaje papie stabilność formy, dobrą przyczepność do podłoża oraz znaczną elastyczność nawet w niskich temp. (do –40°C).

Papy tego typu można łączyć z innymi rodzajami pap. Plastomer APP (ataktyczne polipropyleny) z dodatkiem nasyconych elastomerów poliolefinowych, oprócz stabilnej formy i dobrej przyczepności, zapewnia odporność na działanie kwasów i soli nieorganicznych, ozonu oraz wysokiej temp. (do +150°C). Papa natomiast staje się dość sztywna w ujemnych temp. (–10°C).

Osnową dla membran samoprzylepnych najczęściej jest włóknina poliestrowa, welon szklany, welon szklany + siatka, tkanina szklana oraz osnowa mieszana [23].

Zalety pap termozgrzewalnych i membran samoprzylepnych to łatwość uzyskania żądanej grubości nakładanej warstwy i możliwość niemal natychmiastowego zasypania wykopu. Wadą są problemy techniczne przy uszczelnianiu dylatacji i przejść rurowych (konieczność docinania kształtek), dlatego chętnie stosuje się je do uszczelniania płaskich, równych powierzchni (niedopuszczalne są ostre krawędzie i wystające wtrącenia, a także ubytki w podłożu – powoduje to w niektórych sytuacjach konieczność stosowania warstw wyrównawczych). Newralgiczne mogą być także miejsca łączenia poszczególnych pasów.

Według normy DIN 18195:2000 [1] w odniesieniu do izolacji przeciwwilgociowej wymagane jest wykonanie min. jednej warstwy powłoki wodochronnej z papy termozgrzewalnej, membrany samoprzylepnej lub papy klejonej masą asfaltową do podłoża.

Dla izolacji przeciwwodnej według normy DIN 18195:2000 [1] wymagane jest:

  • wykonanie min. trójwarstwowej powłoki wodochronnej z papy klejonej do podłoża (ostatnia warstwa papy musi zostać pokryta masą asfaltową), przy zagłębieniu powyżej 4 m (do 9 m) wymagane jest wykonanie czterowarstwowej powłoki. Przy izolacji z pap klejonych do podłoża wymaga się wykonania ścianki (warstwy) dociskowej;
  • wykonanie min. dwuwarstwowej powłoki wodochronnej z papy termozgrzewalnej na osnowie z siatki lub poliestru. Przy zagłębieniu powyżej 4 m (do 9 m) wymagane jest wykonanie trójwarstwowej powłoki lub zastosowanie jako ostatnią warstwę (od strony naporu wody) papy z wkładką miedzianą (papa na osnowie z siatki lub poliestru + papa z wkładką miedzianą);
  • przy zagłębieniu powyżej 9 m wymaga się stosowania dwóch warstw papy termozgrzewalnej na osnowie z siatki lub poliestru oraz jednej warstwy papy z wkładką miedzianą.

Podłożem pod izolację z tych materiałów może być tynk tradycyjny (tylko dla izolacji przeciwwilgociowej) oraz beton/żelbet i mur. W wypadku izolacji przeciwwodnych stosowanie warstw wyrównujących należy ograniczyć do minimum.

Rolowe materiały z tworzyw sztucznych

Elastyczne wyroby wodochronne z tworzyw sztucznych lub kauczuku (folie, membrany) powinny spełniać wymagania norm:

  • PN-EN 13967:2006 [27]
  • lub PN-EN 14909:2007 [28].

Materiały zgodne z normą PN-EN 13967:2006 [27] klasyfikowane jako typ A przeznaczone są do wykonywania izolacji przeciwwilgociowej, klasyfikowane jako typ T – do izolacji przeciwwodnej. Jako typ V klasyfikowane są materiały do wykonywania izolacji przeciwwilgociowej – wyrób wentylacyjny lub drenażowy.

Materiały zgodne z normą PN-EN 14909:2007 [28] przeznaczone są do wykonywania izolacji przeciwwilgociowej.

Na rynku dostępne są folie z polichlorku winylu (PVC), elastomerów poliolefinowych (FPO), polipropylenu (PP), polietylenu (PE), a także na bazie kauczuku (EPDM).

Można stosować jedynie takie folie, których łączenie możliwe jest za pomocą kleju systemowego, przez wulkanizowanie lub zgrzewanie. Niedopuszczalne jest użycie folii, które można łączyć tylko przez ułożenie na zakład, ani folii (membran) kubełkowych (niezależnie od sposobu mocowania i łączenia).

Izolacje z rolowych materiałów z tworzyw sztucznych i kauczuku mogą być układane luźno na podłożu lub klejone do podłoża klejami systemowymi.Według normy DIN 18195:2000 [1] do izolacji przeciwwilgociowych mogą być stosowane folie grubości nie mniejszej niż 1,2 mm. Grubość ta może zostać zmniejszona do 0,8 mm, gdy stosuje się folię samoprzylepną.

Według normy DIN 18195:2000 [1] do izolacji przeciwwodnych mogą być wykorzystywane folie z:

  • PVC-P grubości min. 2 mm, jeżeli uszczelnienie jest wykonywane przez luźne ułożenie materiału; w takiej sytuacji zagłębienie obiektu jest ograniczone do 4 m;
  • PIB (poliizobutylu), PVC-P (z miękkiego polichlorku winylu zbrojonego wkładką z włókniny szklanej) oraz EVA (kopolimeru etylenu z octanem winylu) grubości min. 1,5 mm, jeżeli powłoka wodochronna jest klejona do podłoża, a zagłębienie obiektu nie większe niż 4 m. Przy większym zagłębieniu wymagana jest folia grubości min. 2 mm;
  • ECB (etylenu, kopolimeru i specjalnego asfaltu) i EPDM grubości min. 2 mm, jeżeli powłoka wodochronna jest klejona do podłoża, a zagłębienie obiektu nie większe niż 4 m. Przy większym zagłębieniu wymagana jest folia gr. min. 2,5 mm.

Folie mogą być stosowane do wykonywania zarówno izolacji przeciwwilgociowych, jak i przeciwwodnych (poza strefą cokołową), jednak tego typu materiały stwarzają bardzo duże problemy techniczne i wymagają zachowania wyjątkowo wysokiego reżimu technologicznego. Problemy pojawiają się także przy uszczelnianiu dylatacji i przejść rurowych.

Bardzo trudne (jeżeli nie niemożliwe) jest także łączenie folii z innymi rodzajami materiałów wodochronnych. Z tych powodów nie zaleca się stosowania folii do hydroizolacji podziemnych części budynków i budowli. Jedyną zaletą folii jest możliwość wykonania izolacji z ich użyciem na podłożach słabych lub zanieczyszczonych (o ile zanieczyszczenia nie wpływają negatywnie na materiał izolacyjny).

Maty/membrany bentonitowe

Bentonit cechuje się zdolnością do chłonięcia wody i pęcznienia pod jej wpływem. Może zwiększać swoją objętość nawet kilkunastokrotnie (12–15 razy). Przy odpowiednim obciążeniu (ograniczającym zdolność pęcznienia) radykalnie zmniejsza się przepuszczalność wody.

Proces ten jest odwracalny – w przypadku czasowego braku obciążenia wilgocią bentonit nie wysycha całkowicie, a ponowne pojawienie się wilgoci/wody aktywuje bentonit. Izolacja z bentonitu ma zdolność do samoregeneracji – miejscowe niewielkie uszkodzenia mechaniczne (2–3 mm) zasklepiają się na skutek pęcznienia materiału.

Podstawą systemu izolacji bentonitowych są specjalne membrany lub maty. Mogą one być układane na podłożu lub klejone do podłoża oraz mocowane mechanicznie za pomocą specjalnych kołków lub gwoździ. Uszkodzenia punktowe, na skutek samoregenurących się właściwości bentonitu, zamykają się na skutek pęcznienia, jednak w przypadku mocowania mechanicznego należy rozważyć (zawsze w odniesieniu do konkretnego obiektu), potrzebę późniejszego uszczelnienia każdego miejsca mocowania szpachlą bentonitową.

Wymagania stawiane materiałom bentonitowym zawarte są w normie PN-EN 13491:2006/A1:2007 [29].

Ze względu na właściwości materiału membrany/maty bentonitowe powinny być dociśnięte do podłoża, dlatego izolacja pozioma może być stosowana pod płytą żelbetową grubości min. 15 cm (dopuszcza się stosowanie mat przy cieńszej płycie dennej – min. 10 cm – o ile zezwala na to producent systemu), a w przypadku izolacji pionowych należy zapewnić równoważny docisk do podłoża np. odpowiednią warstwą zagęszczonego gruntu. Zaleca się stosowanie membran/mat o minimalnej zawartości bentonitu rzędu 3–4 kg/m².

Niedopuszczalne jest stosowanie materiałów bentonitowych powyżej poziomu gruntu oraz bez odpowiedniej warstwy dociskowej.

Podsumowanie

Normy z serii PN-EN w zdecydowanej większości definiują wymagania dotyczące konkretnych materiałów w odniesieniu do dwóch wartości:

  • granicznej, oznaczanej symbolem MLV – jest to ustalana przez producenta konkretna, graniczna (minimalna lub maksymalna) wartość (wynik konkretnego badania, wartość konkretnego parametru), która musi być osiągnięta w badaniach;
  • deklarowanej, oznaczanej symbolem MDV – jest to deklarowana przez producenta konkretna wartość (wynik konkretnego badania, wartość konkretnego parametru), podawana z założoną tolerancją.

W normach nie ma jednak informacji, jakimi parametrami musi się charakteryzować konkretny materiał, aby mógł w danych warunkach brzegowych (przy konkretnym obciążeniu wilgocią/wodą, przy konkretnym zastosowaniu itp.) pełnić swoją funkcję. Oznacza to, że deklaracja zgodności z normą stanowi jedynie formalny dokument, potwierdzający, że materiał może być wprowadzony na rynek zgodnie z prawem.

Innym, zdecydowanie ważniejszym zagadnieniem jest określenie właściwości wyrobu lub mini­malnych wymagań, jakie musi on spełnić, aby mógł pełnić zamierzoną funkcję. Są to dwie zupełnie różne kwestie – deklaracja zgodności z normą i faktyczne właściwości wyrobu decydujące o jego przydatności w danym zastosowaniu – a z punktu widzenia skuteczności wykonanych prac spełnienie wymagań normowych może nie mieć żadnego znaczenia.

W związku z tym decyzję o wyborze rozwiązania technologiczno­‑materiałowego izolacji fundamentów i przyziemia można podjąć dopiero po przeanalizowaniu warunków gruntowo-wodnych wraz z oceną ukształtowania terenu oraz analizą rozwiązania konstrukcyjnego podziemnej części budynku.

Posiadanie przez dany wyrób formalnego dopuszczenia do stosowania w budownictwie (np. deklaracji zgodności z normą lub aprobatą) nie oznacza, że dany materiał nadaje się do zastosowania w konkretnej sytuacji. Należy przeanalizować parametry konkretnego wyrobu i ocenić, czy jest on w stanie przenieść oddziałujące na niego obciążenia (chociażby ze względu na obecność agresywnych wód gruntowych, obciążenia mechaniczne, odporność na uszkodzenia itp.).

Zastosowane materiały wodochronne muszą umożliwić wykonanie izolacji w postaci szczelnej wanny całkowicie oddzielającej budynek od wilgoci/wody znajdującej się w gruncie, dlatego niedopuszczalne jest użycie do wykonania hydroizolacji przypadkowych materiałów – muszą one być ze sobą kompatybilne oraz pozwalać na wykonanie uszczelnień przejść rurowych i dylatacji (jeżeli występują). Brak technologii systemowego uszczelnienia dylatacji, przejść rurowych itp. trudnych i krytycznych miejsc dyskwalifikuje dany materiał do stosowania jako powłokę wodochronną.

Literatura

  1. DIN 18195:2000-08, „Bauwerksabdichtung”.
  2. DIN 18130-1:1998-0,5, „Baugrund. Untersuchung von Bodenproben. Bestimmung des Wasserdurchlässigkeitsbeiwerts. Teil 1: Laborversuche”.
  3. DIN 4095:1990-06, „Baugrund. Dränung zum Schutz baulicher Anlagen. Planung, Bemessung und Ausführung”.
  4. M. Rokiel, „Hydroizolacje podziemnych części budynków i budowli. Projektowanie i warunki techniczne wykonania i odbioru robót”, Dom Wydawniczy MEDIUM, Warszawa 2012.
  5. PN-B-24620:1998, PN-B-24620:1998/Az1:2004, „Lepiki, masy i roztwory asfaltowe stosowane na zimno”.
  6. PN-B-24625:1998, „Lepik asfaltowy i asfaltowo-polimerowy z wypełniaczami stosowane na gorąco”.
  7. PN-B-24622:1974, „Roztwór asfaltowy do gruntowania”.
  8. PN-B-24002:1997, „Asfaltowa emulsja anionowa”.
  9. PN-B-24003:1997, „Asfaltowa emulsja kationowa”.
  10. ZUAT-15/IV.02/2005, „Wyroby bitumiczne. Emulsje asfaltowe i asfaltowe modyfikowane”, ITB, Warszawa 2005.
  11. PN-B-24006:1997, „Masa asfaltowo-kauczukowa”.
  12. PN-B-24000:1997, „Dyspersyjna masa asfaltowo-kauczukowa”.
  13. ZUAT-15/IV.07/2005, „Wyroby bitumiczne rozpuszczalnikowe. Masy asfaltowe i asfaltowe modyfikowane”, ITB, Warszawa 2005.
  14. ZUAT-15/IV.18/2005, „Wyroby bitumiczno-mineralne przeznaczone do wykonywania powłok hydroizolacyjnych”, ITB, Warszawa 2005.
  15. PN-EN 206-1:2003, PN-EN 206-1:2003/A1:2005, PN-EN 206-1:2003/A2:2006, „Beton. Część 1: Wymagania, właściwości, produkcja i zgodność”.
  16. DIN 4030-1:2008-06, DIN 4030-1/A1:2011-08, „Beurteilung betonargreifender Wässer, Böden und Gase. Grundlagen und Grenzwerte”.
  17. PN-EN 15814:2011 (oryg.), „Grubowarstwowe powłoki asfaltowe modyfikowane polimerami do izolacji wodochronnej. Definicje i wymagania”.
  18. „Richtlinie für die Planung und Ausführung von Abdichtung von Bauteilen mit kunststoffmodifizierten Bitumendickbeschichtungen (KMB) – erdberührte Bauteile”, Deutsche Bauchemie e.V., Frankfurt 2001.
  19. „Richtlinie für die Planung und Ausführung von Abdichtung mit kunststoffmodifizierten Bitumendickbeschichtungen (KMB) – erdberührte Bauteile”, Deutsche Bauchemie e.V., Frankfurt 2010.
  20. ZUAT-15/IV.13/2002, „Wyroby zawierające cement przeznaczone do wykonywania powłok hydroizolacyjnych”, ITB, Warszawa 2002.
  21. „Richtlinie für die Planung und Ausführung von Abdichtung erdberührter Bauteile mit flexiblen Dichtungsschlämmen”, Deutsche Bauchemie e.V., Frankfurt 2006.
  22. „Richtlinie für die Planung und Ausführung von Abdichtungen von Bauteilen mit mineralischen Dichtungsschlämmen”, Deutsche Bauchemie e.V., Frankfurt 2002.
  23. ZUAT-15/VI.21/2005, „Wyroby do uszczelniania betonów i zapraw cementowych krystalizacją wgłębną”, ITB, Warszawa 2005.
  24. PN-EN 13969:2006, PN-EN 13969:2006/A1:2007, „Elastyczne wyroby wodochronne. Wyroby asfaltowe do izolacji przeciwwilgociowej łącznie z wyrobami asfaltowymi do izolacji przeciwwodnej części podziemnych. Definicje i właściwości”.
  25. PN-EN 14967:2007, „Elastyczne wyroby wodochronne. Wyroby asfaltowe do poziomej izolacji przeciwwilgociowej. Definicje i właściwości”.
  26. „Ochrona budynków przed korozją biologiczną”, pod red. J. Ważnego, J. Karysia, Arkady, Warszawa 2001.
  27. PN-EN 13967:2006, PN-EN 13967:2006/A1:2007, „Elastyczne wyroby wodochronne. Wyroby z tworzyw sztucznych i kauczuku do izolacji przeciwwilgociowej łącznie z wyrobami z tworzyw sztucznych i kauczuku do izolacji przeciwwodnej części podziemnych. Definicje i właściwości”.
  28. PN-EN 14909:2007, „Elastyczne wyroby wodochronne. Wyroby z tworzyw sztucznych i kauczuku do poziomej izolacji przeciwwilgociowej. Definicje i właściwości”.
  29. PN-EN 13491:2006/A1:2007, „Bariery geosyntetyczne. Właściwości wymagane w odniesieniu do wyrobów stosowanych jako bariery nieprzepuszczalne dla płynów do budowy tunelów i budowli podziemnych”.
  30. M. Rokiel, „Poradnik. Hydroizolacje w budownictwie. Wybrane zagadnienia w praktyce”, wyd. II, Dom Wydawniczy MEDIUM, Warszawa 2009.

Chcesz być na bieżąco? Zapisz się do naszego newslettera!

Galeria zdjęć

Tytuł
przejdź do galerii

Komentarze

  • Zniwiarz Zniwiarz, 26.09.2013r., 20:59:02 Fajny artykuł o hydroizolacjach, ale przydało by się info o tym gdzie kupić materiały i za ile co najważniejsze

Powiązane

mgr inż. Jarosław Gasewicz Grubowarstwowe bitumiczne powłoki hydroizolacyjne

Grubowarstwowe bitumiczne powłoki hydroizolacyjne Grubowarstwowe bitumiczne powłoki hydroizolacyjne

Grubowarstwowe powłoki hydroizolacyjne wykonywane z mas na bazie emulsji bitumicznych modyfikowanych tworzywami sztucznymi dostępne są na rynku materiałów budowlanych już od ok. czterdziestu lat. Ich wprowadzenie...

Grubowarstwowe powłoki hydroizolacyjne wykonywane z mas na bazie emulsji bitumicznych modyfikowanych tworzywami sztucznymi dostępne są na rynku materiałów budowlanych już od ok. czterdziestu lat. Ich wprowadzenie miało ułatwić wykonywanie hydroizolacji na pionowych elementach budowli stykających się z gruntem.

mgr inż. Cezariusz Magott, mgr inż. Maciej Rokiel Jak powódź wpływa na budynek oraz stan jego przyziemi?

Jak powódź wpływa na budynek oraz stan jego przyziemi? Jak powódź wpływa na budynek oraz stan jego przyziemi?

Odra zaczyna swój bieg na terenie Czech w Górach Odrzańskich. O rozmiarach fal powodziowych na jej górnym odcinku, tzn. w Raciborzu, Opolu i we Wrocławiu, decydują wielkości opadów w zlewniach jej czeskich...

Odra zaczyna swój bieg na terenie Czech w Górach Odrzańskich. O rozmiarach fal powodziowych na jej górnym odcinku, tzn. w Raciborzu, Opolu i we Wrocławiu, decydują wielkości opadów w zlewniach jej czeskich górnych dopływów: największej Opawy i mniejszych Ostrawicy i Olzy. Opawa i Odra prowadzą wodę z Sudetów Wschodnich, a Ostrawica i Olza z Beskidu Zachodniego. W dalszym biegu rzeki decydujący wpływ na przebieg wezbrań już poniżej Wrocławia mają jej lewobrzeżne dopływy: Osobłoga i Nysa Kłodzka.

dr inż. Anna Kaczmarek, dr hab. inż. Maria Wesołowska, dr inż. Krzysztof Pawłowski, prof. uczelni Jaki wpływ na wybrane materiały budowlane mają woda i wilgoć?

Jaki wpływ na wybrane materiały budowlane mają woda i wilgoć? Jaki wpływ na wybrane materiały budowlane mają woda i wilgoć?

Woda wywiera negatywny wpływ na materiał budowlany. Zawilgocony traci swoje właściwości izolacyjne – wzrasta jego współczynnik przewodzenia ciepła, a co za tym idzie zwiększają się straty ciepła w budynku....

Woda wywiera negatywny wpływ na materiał budowlany. Zawilgocony traci swoje właściwości izolacyjne – wzrasta jego współczynnik przewodzenia ciepła, a co za tym idzie zwiększają się straty ciepła w budynku. Ponadto materiały takie jak gips, anhydryt, czyli o dużym współczynniku rozmiękania, pod wpływem wilgoci zmniejszają swoją wytrzymałość mechaniczną. Jest to przyczyną niszczenia płyt gipsowo-kartonowych, tynków i podkładów gipsowych oraz anhydrytowych. Woda powoduje również korozję chemiczną tynków,...

dr inż. Paula Szczepaniak, dr hab. inż. Maria Wesołowska Obliczanie strat ciepła przez przegrody stykające się z gruntem

Obliczanie strat ciepła przez przegrody stykające się z gruntem

W obowiązującym rozporządzeniu ministra infrastruktury w sprawie metodologii obliczania charakterystyki energetycznej budynku opis procedury obliczania strat ciepła przez przegrody stykające się z gruntem...

W obowiązującym rozporządzeniu ministra infrastruktury w sprawie metodologii obliczania charakterystyki energetycznej budynku opis procedury obliczania strat ciepła przez przegrody stykające się z gruntem ogranicza się do wskazania normy PN-EN 12831:2006 , według której należy przeprowadzić obliczenia. Jednak przywołana norma nie wyczerpuje problematyki przegród stykających się z gruntem, dlatego problem ten bardzo często pojawia się w dyskusjach przed ministerialnymi egzaminami czy też w trakcie...

mgr inż. Maciej Rokiel Hydroizolacje fundamentów z użyciem mas KMB

Hydroizolacje fundamentów z użyciem mas KMB Hydroizolacje fundamentów z użyciem mas KMB

Bezwzględnym wymogiem bezproblemowej i długoletniej eksploatacji budynku jest jego poprawne (zgodne ze sztuką budowlaną) zaprojektowanie i wykonanie. Podstawą jest m.in. zastosowanie odpowiedniej hydroizolacji...

Bezwzględnym wymogiem bezproblemowej i długoletniej eksploatacji budynku jest jego poprawne (zgodne ze sztuką budowlaną) zaprojektowanie i wykonanie. Podstawą jest m.in. zastosowanie odpowiedniej hydroizolacji części zagłębionej w gruncie.

mgr inż. Maciej Rokiel Masy KMB do hydroizolacji fundamentów

Masy KMB do hydroizolacji fundamentów Masy KMB do hydroizolacji fundamentów

O skuteczności prac hydroizolacyjnych decyduje przyjęcie poprawnego rozwiązania projektowego, a następnie prawidłowe wykonanie. Dlatego w wytycznych precyzyjnie zdefiniowano stopnie obciążenia wilgocią/wodą,...

O skuteczności prac hydroizolacyjnych decyduje przyjęcie poprawnego rozwiązania projektowego, a następnie prawidłowe wykonanie. Dlatego w wytycznych precyzyjnie zdefiniowano stopnie obciążenia wilgocią/wodą, przedstawiono szczegółowe rysunki detali oraz podano zalecenia będące w zasadzie warunkami technicznymi wykonania i odbioru robót.

mgr inż. Maciej Rokiel Hydroizolacje fundamentów z masami KMB

Hydroizolacje fundamentów z masami KMB Hydroizolacje fundamentów z masami KMB

Niemieckie wytyczne, wobec braku polskich norm i wytycznych dotyczących wykonywania hydroizolacji z mas KMB, stanowią źródło informacji na temat m.in. poprawnej aplikacji zapewniającej skuteczność izolacji.

Niemieckie wytyczne, wobec braku polskich norm i wytycznych dotyczących wykonywania hydroizolacji z mas KMB, stanowią źródło informacji na temat m.in. poprawnej aplikacji zapewniającej skuteczność izolacji.

mgr inż. Cezariusz Magott Renowacja obiektów zabytkowych - izolacja pozioma i pionowa

Renowacja obiektów zabytkowych - izolacja pozioma i pionowa Renowacja obiektów zabytkowych - izolacja pozioma i pionowa

Odtwarzanie izolacji hydrofobowych w przyziemiach budynków istniejących wykonuje się wówczas, gdy dotychczasowe zabezpieczenia uległy degradacji lub nie wykonano ich podczas wznoszenia obiektu. Izolacje...

Odtwarzanie izolacji hydrofobowych w przyziemiach budynków istniejących wykonuje się wówczas, gdy dotychczasowe zabezpieczenia uległy degradacji lub nie wykonano ich podczas wznoszenia obiektu. Izolacje poziome i pionowe mają ponownie zabezpieczyć przegrody budynku lub budowli poddawanych renowacji przed wilgocią podciąganą z gruntu, wodą opadową lub naporową.

dr inż. Jacek Hulimka, dr inż. Marta Kałuża Przyczyny zalania kondygnacji piwnicznej budynku mieszkalnego - błędy projektowe i wykonawcze

Przyczyny zalania kondygnacji piwnicznej budynku mieszkalnego - błędy projektowe i wykonawcze Przyczyny zalania kondygnacji piwnicznej budynku mieszkalnego - błędy projektowe i wykonawcze

W 2010 r., zaledwie 3 lata po przekazaniu do eksploatacji wielorodzinnego budynku mieszkalnego o bardzo wysokim standardzie, doszło do zalania garażu podziemnego. Analiza dokumentacji technicznej obiektu...

W 2010 r., zaledwie 3 lata po przekazaniu do eksploatacji wielorodzinnego budynku mieszkalnego o bardzo wysokim standardzie, doszło do zalania garażu podziemnego. Analiza dokumentacji technicznej obiektu oraz wyniki wykonanych badań wykazały błędy popełnione na etapie projektowania oraz budowy obiektu.

Austrotherm Płyty Austrotherm XPS TOP - efektywna termoizolacja fundamentów

Płyty Austrotherm XPS TOP - efektywna termoizolacja fundamentów Płyty Austrotherm XPS TOP - efektywna termoizolacja fundamentów

Ocieplenie fundamentów to decyzja, której konsekwencje ponosimy przez cały okres użytkowania domu. Warto do tego zastosować płyty z polistyrenu ekstrudowanego XPS.

Ocieplenie fundamentów to decyzja, której konsekwencje ponosimy przez cały okres użytkowania domu. Warto do tego zastosować płyty z polistyrenu ekstrudowanego XPS.

dr Bogumiła Chmielewska, mgr inż. Jerzy Koper Naprawa rys w konstrukcjach żelbetowych metodą iniekcji

Naprawa rys w konstrukcjach żelbetowych metodą iniekcji Naprawa rys w konstrukcjach żelbetowych metodą iniekcji

W pierwszej części artykułu dotyczącego problemu naprawy rys w konstrukcjach żelbetowych metodą iniekcji omówiono klasyfikację i przyczyny powstawania rys w betonie. Wymieniono także możliwości naprawy...

W pierwszej części artykułu dotyczącego problemu naprawy rys w konstrukcjach żelbetowych metodą iniekcji omówiono klasyfikację i przyczyny powstawania rys w betonie. Wymieniono także możliwości naprawy ze szczególnym uwzględnieniem metody iniekcji.

dr Bogumiła Chmielewska, mgr inż. Jerzy Koper Konstrukcje żelbetowe - naprawa rys metodą iniekcji Cz. 1. Powstawanie rys i metody ich naprawy

Konstrukcje żelbetowe - naprawa rys metodą iniekcji Cz. 1. Powstawanie rys i metody ich naprawy Konstrukcje żelbetowe - naprawa rys metodą iniekcji Cz. 1. Powstawanie rys i metody ich naprawy

Aby zapewnić przyjęty w projekcie okres użytkowania konstrukcji, należy zabezpieczyć ją przed oddziaływaniami mogącymi wpłynąć na trwałość. Dotyczy to m.in. naprawy rys.

Aby zapewnić przyjęty w projekcie okres użytkowania konstrukcji, należy zabezpieczyć ją przed oddziaływaniami mogącymi wpłynąć na trwałość. Dotyczy to m.in. naprawy rys.

Redakcja miesięcznika IZOLACJE Budowa fundamentów - poradnik

Budowa fundamentów - poradnik Budowa fundamentów - poradnik

Fundament to podstawa każdego budynku. Aby skutecznie spełniał swoje zadanie - stanowił oparcie dla konstrukcji domu i chronił przed wilgocią z zewnątrz- musi być dopasowany do istniejących warunków oraz...

Fundament to podstawa każdego budynku. Aby skutecznie spełniał swoje zadanie - stanowił oparcie dla konstrukcji domu i chronił przed wilgocią z zewnątrz- musi być dopasowany do istniejących warunków oraz przewidywanych obciążeń. Jak prawidłowo wykonać fundamenty?

Damian Żabicki Penetrujące materiały hydroizolacyjne

Penetrujące materiały hydroizolacyjne Penetrujące materiały hydroizolacyjne

Na etapie wykonywania hydroizolacji budynku warto rozważyć zastosowanie materiałów penetrujących. Nowoczesne preparaty tego typu zastępują tradycyjne izolacje w postaci papy i lepiku.

Na etapie wykonywania hydroizolacji budynku warto rozważyć zastosowanie materiałów penetrujących. Nowoczesne preparaty tego typu zastępują tradycyjne izolacje w postaci papy i lepiku.

Redakcja miesięcznika IZOLACJE Materiały rolowe do izolacji fundamentów

Materiały rolowe do izolacji fundamentów Materiały rolowe do izolacji fundamentów

Do najstarszych materiałów stosowanych do hydroizolacji fundamentów można zaliczyć materiały rolowe, które mają tę przewagę nad izolacjami bezspoinowymi, że pozwalają na niemal natychmiastowe zasypanie...

Do najstarszych materiałów stosowanych do hydroizolacji fundamentów można zaliczyć materiały rolowe, które mają tę przewagę nad izolacjami bezspoinowymi, że pozwalają na niemal natychmiastowe zasypanie wykopu, a folie z tworzyw sztucznych - o ile nie są klejone do podłoża - pozwalają na zaizolowanie niestabilnego lub zanieczyszczonego podłoża.

KOESTER Polska Żel akrylowy KÖSTER do iniekcji kurtynowych i strukturalnych

Żel akrylowy KÖSTER do iniekcji kurtynowych i strukturalnych Żel akrylowy KÖSTER do iniekcji kurtynowych i strukturalnych

Przy odtwarzaniu hydroizolacji ścian zewnętrznych nie zawsze jest możliwe odkopanie ścian budynku (np. gdy na działce obok stoi budynek lub przebiega ulica). W takich przypadkach często wykonywana jest...

Przy odtwarzaniu hydroizolacji ścian zewnętrznych nie zawsze jest możliwe odkopanie ścian budynku (np. gdy na działce obok stoi budynek lub przebiega ulica). W takich przypadkach często wykonywana jest zewnętrzna hydroizolacja piwnic od środka w technice iniekcji kurtynowej z użyciem żelów iniekcyjnych - np. KÖSTER Injectionsgel G4.

Saint Gobain Construction Products Polska/ Weber Hydroizolacja fundamentów - jak chronić dom przed wodą?

Hydroizolacja fundamentów - jak chronić dom przed wodą? Hydroizolacja fundamentów - jak chronić dom przed wodą?

Jednym z najważniejszych, a jednocześnie najtrudniejszych zadań wśród prac budowlanych jest zabezpieczenie obiektu przed działaniem wód gruntowych. Na działanie wody szczególnie narażone są fundamenty....

Jednym z najważniejszych, a jednocześnie najtrudniejszych zadań wśród prac budowlanych jest zabezpieczenie obiektu przed działaniem wód gruntowych. Na działanie wody szczególnie narażone są fundamenty. Aby zapewnić ich skuteczną i trwałą ochronę, należy zastosować nowoczesne materiały izolacyjne, właściwie dobrać rozwiązania konstrukcyjne i zadbać o prawidłowe wykonanie.

dr inż. Grzegorz Dmochowski, dr inż. Piotr Berkowski Zarysowania skurczowe płyt fundamentowych i ścian w budynkach mieszkalnych z garażami podziemnymi

Zarysowania skurczowe płyt fundamentowych i ścian w budynkach mieszkalnych z garażami podziemnymi Zarysowania skurczowe płyt fundamentowych i ścian w budynkach mieszkalnych z garażami podziemnymi

Zdecydowana większość budynków mieszkalnych i użyteczności publicznej ma obecnie garaże podziemne, co wiąże się z reguły z posadowieniem ich na płycie fundamentowej i wykonaniem ścian żelbetowych dolnej...

Zdecydowana większość budynków mieszkalnych i użyteczności publicznej ma obecnie garaże podziemne, co wiąże się z reguły z posadowieniem ich na płycie fundamentowej i wykonaniem ścian żelbetowych dolnej kondygnacji.

dr inż. Paula Szczepaniak Pionowa izolacja obwodowa budynków ze ścianami jednowarstwowymi

Pionowa izolacja obwodowa budynków ze ścianami jednowarstwowymi Pionowa izolacja obwodowa budynków ze ścianami jednowarstwowymi

Mostek termiczny połączenia budynku z gruntem, w przypadku stosowania typowego liniowego posadowienia budynku, czyli przy zastosowaniu ław fundamentowych, jest elementem, w którym trudno zachować podstawowy...

Mostek termiczny połączenia budynku z gruntem, w przypadku stosowania typowego liniowego posadowienia budynku, czyli przy zastosowaniu ław fundamentowych, jest elementem, w którym trudno zachować podstawowy warunek dobrej izolacyjności przegrody zewnętrznej - ciągłość na obwodzie bryły.

mgr inż. Irena Domska Styropian hydrofobowy w izolacji cieplnej ścian fundamentowych

Styropian hydrofobowy w izolacji cieplnej ścian fundamentowych Styropian hydrofobowy w izolacji cieplnej ścian fundamentowych

Styropian jest materiałem izolacyjnym, który charakteryzuje się wysoką odpornością na wilgoć. Odporność ta obejmuje nie tylko niewielką, w stosunku do innych materiałów izolacyjnych, nasiąkliwość wodą,...

Styropian jest materiałem izolacyjnym, który charakteryzuje się wysoką odpornością na wilgoć. Odporność ta obejmuje nie tylko niewielką, w stosunku do innych materiałów izolacyjnych, nasiąkliwość wodą, lecz również brak negatywnego wpływu na właściwości wytrzymałościowe. Doświadczenia laboratoryjne wskazują również na odporność wytrzymałościową styropianu na wielokrotne zamrażanie i odmrażanie.

dr hab. inż., prof. nadzw. UTP Dariusz Bajno, dr inż. Anna Rawska-Skotniczny Wybrane zagadnienia dotyczące zabezpieczeń podziemnych części istniejących budynków przed wilgocią

Wybrane zagadnienia dotyczące zabezpieczeń podziemnych części istniejących budynków przed wilgocią Wybrane zagadnienia dotyczące zabezpieczeń podziemnych części istniejących budynków przed wilgocią

Wilgoć zawsze będzie towarzyszyć obiektom budowlanym w okresie eksploatacyjnym, dlatego zabezpiecza się je przed nadmiernym zawilgoceniem oraz przed przedostawaniem się wilgoci do ich pomieszczeń poprzez...

Wilgoć zawsze będzie towarzyszyć obiektom budowlanym w okresie eksploatacyjnym, dlatego zabezpiecza się je przed nadmiernym zawilgoceniem oraz przed przedostawaniem się wilgoci do ich pomieszczeń poprzez odpowiedni dobór materiałów oraz izolacje zewnętrzne. Nie istnieją uniwersalne metody zabezpieczeń materiałów przed wilgocią, dlatego podjęcie decyzji o zasadności wykonania izolacji lub też o doborze odpowiedniej technologii powinno zostać poparte przeprowadzoną wcześniej analizą, odpowiadającą...

mgr inż. Marcin Jaroszyński Szary styropian do termoizolacji fundamentów

Szary styropian do termoizolacji fundamentów Szary styropian do termoizolacji fundamentów

Fundament to realizowany jako pierwszy przy budowie budynku, ale też najważniejszy element konstrukcyjny, gwarantujący stabilność i trwałość znajdującej się na nim konstrukcji. Oczywiście metod posadowienia...

Fundament to realizowany jako pierwszy przy budowie budynku, ale też najważniejszy element konstrukcyjny, gwarantujący stabilność i trwałość znajdującej się na nim konstrukcji. Oczywiście metod posadowienia jest kilka, skupmy się jednak na dwóch najbardziej popularnych i najczęściej stosowanych w budownictwie jednorodzinnym i mieszkaniowym. Chodzi o ławy fundamentowe ze ścianką fundamentową i o płytę fundamentową.

dr inż. Mariusz Jackiewicz Hydroizolacja elementów budowli stykających się z gruntem

Hydroizolacja elementów budowli stykających się z gruntem Hydroizolacja elementów budowli stykających się z gruntem

Projektowanie oraz wykonawstwo hydroizolacji konstrukcji budowlanych w Niemczech regulowała wprowadzona w 1983 r. i w międzyczasie wielokrotnie nowelizowana norma DIN 18195. Ta norma jest stosunkowo dobrze...

Projektowanie oraz wykonawstwo hydroizolacji konstrukcji budowlanych w Niemczech regulowała wprowadzona w 1983 r. i w międzyczasie wielokrotnie nowelizowana norma DIN 18195. Ta norma jest stosunkowo dobrze znana w Polsce, z dwóch powodów - braku krajowej, tak kompleksowej normy oraz znaczącego udziału na polskim rynku produktów hydroizolacyjnych niemieckich producentów.

dr inż. Paula Szczepaniak Ocena jakości termicznej rozwiązań węzła połączenia budynku z gruntem posadowionym na płycie fundamentowej

Ocena jakości termicznej rozwiązań węzła połączenia budynku z gruntem posadowionym na płycie fundamentowej Ocena jakości termicznej rozwiązań węzła połączenia budynku z gruntem posadowionym na płycie fundamentowej

Płyta fundamentowa należy do grupy posadowień bezpośrednich. Jest stosowana przy występowaniu słabego podłoża gruntowego, poziomie posadowienia poniżej zwierciadła wody gruntowej, stosowaniu konstrukcji...

Płyta fundamentowa należy do grupy posadowień bezpośrednich. Jest stosowana przy występowaniu słabego podłoża gruntowego, poziomie posadowienia poniżej zwierciadła wody gruntowej, stosowaniu konstrukcji szczelnej wanny lub w przypadku konieczności zapewnienia równomiernego osiadania budynku [1].

Wybrane dla Ciebie

Przewody i izolacje nierozprzestrzeniające ognia

Przewody i izolacje nierozprzestrzeniające ognia Przewody i izolacje nierozprzestrzeniające ognia

Zalety wełny celulozowej w krótkim podsumowaniu:

Zalety wełny celulozowej w krótkim podsumowaniu: Zalety wełny celulozowej w krótkim podsumowaniu:

Wszystko na temat dachów »

Wszystko na temat dachów » Wszystko na temat dachów »

Znajdź swój kierunek

Znajdź swój kierunek Znajdź swój kierunek

Kompletne systemy dociepleń POLSTYR

Kompletne systemy dociepleń POLSTYR Kompletne systemy dociepleń POLSTYR

Jest nowa receptura hydroizolacji! »

Jest nowa receptura hydroizolacji! » Jest nowa receptura hydroizolacji! »

Kiedy fotowoltaika się opłaca?

Kiedy fotowoltaika się opłaca? Kiedy fotowoltaika się opłaca?

Budownictwo przyszłości

Budownictwo przyszłości Budownictwo przyszłości

Kompleksowa ceramika dla domu

Kompleksowa ceramika dla domu Kompleksowa ceramika dla domu

Skuteczna izolacja dachu płaskiego »

Skuteczna izolacja dachu płaskiego » Skuteczna izolacja dachu płaskiego »

Czego użyć do naprawy balkonu lub tarasu?

Czego użyć do naprawy balkonu lub tarasu? Czego użyć do naprawy balkonu lub tarasu?

Indywidualne usługi w zakresie produkcji dowolnych elementów z tworzyw sztucznych » »

Indywidualne usługi w zakresie produkcji dowolnych elementów z tworzyw sztucznych » » Indywidualne usługi w zakresie produkcji dowolnych elementów z tworzyw sztucznych » »

Porównaj ceny styropianu i oszczędzaj »

Porównaj ceny styropianu i oszczędzaj » Porównaj ceny styropianu i oszczędzaj »

Zalety ocieplania styropianem pasywnym »

Zalety ocieplania styropianem pasywnym » Zalety ocieplania styropianem pasywnym »

Izolacja natryskowa budynków »

Izolacja natryskowa budynków » Izolacja natryskowa budynków »

Uprawnienia budowlane 2021 Część 1. Poradnik z kluczem. 523 pytania i 20 testów egzaminacyjnych

Uprawnienia budowlane 2021 Część 1. Poradnik z kluczem. 523 pytania i 20 testów egzaminacyjnych Uprawnienia budowlane 2021 Część 1. Poradnik z kluczem. 523 pytania i 20 testów egzaminacyjnych

Część B: Roboty wykończeniowe, zeszyt 17: Podłogi zewnętrzne z desek kompozytowych

Część B: Roboty wykończeniowe, zeszyt 17: Podłogi zewnętrzne z desek kompozytowych Część B: Roboty wykończeniowe, zeszyt 17: Podłogi zewnętrzne z desek kompozytowych

Warunki techniczne jakim powinny odpowiadać budynki i ich usytuowanie 2021

Warunki techniczne jakim powinny odpowiadać budynki i ich usytuowanie 2021 Warunki techniczne jakim powinny odpowiadać budynki i ich usytuowanie 2021

Najnowsze produkty i technologie

Stropy.pl Stropy panelowe – łatwy i szybki montaż, modułowość, niskie koszty

Stropy panelowe – łatwy i szybki montaż, modułowość, niskie koszty Stropy panelowe – łatwy i szybki montaż, modułowość, niskie koszty

Stropy w budynkach pełnią elementarne funkcje oddzielania kondygnacji oraz przenoszenia obciążeń własnych i użytkowych, jak również warstw podłogowych i ścian działowych. Współczesny rynek budowlany oczekuje...

Stropy w budynkach pełnią elementarne funkcje oddzielania kondygnacji oraz przenoszenia obciążeń własnych i użytkowych, jak również warstw podłogowych i ścian działowych. Współczesny rynek budowlany oczekuje jednak czegoś więcej, systemów stropowych ułatwiających i przyspieszających proces budowlany, zestandaryzowanych, o niskim koszcie inwestycyjnym, wysokich parametrach technicznych, zdrowych i ekologicznych. Do takich rozwiązań należą stropy panelowe.

Festool Polska Festool stawia na FSCTM

Festool stawia na FSCTM Festool stawia na FSCTM

Jako jeden z pierwszych producentów elektronarzędzi Festool zaangażował się w ochronę lasów i pozyskiwanych z nich surowców. To istotny krok w kierunku zrównoważonego rozwoju, w którym wybrane produkty...

Jako jeden z pierwszych producentów elektronarzędzi Festool zaangażował się w ochronę lasów i pozyskiwanych z nich surowców. To istotny krok w kierunku zrównoważonego rozwoju, w którym wybrane produkty tej marki z powodzeniem uzyskały certyfikację FSC.

Balex Metal Sp. z o. o. Płyta ścienna PIR Light – ekonomiczna i ekologiczna izolacja

Płyta ścienna PIR Light – ekonomiczna i ekologiczna izolacja Płyta ścienna PIR Light – ekonomiczna i ekologiczna izolacja

Płyty ścienne z rdzeniem z twardej pianki poliuretanowej od momentu pojawienia się na rynku uznane zostały za doskonały materiał termoizolacyjny. Budownictwo stale się rozwija i dzisiaj nie są już nowością,...

Płyty ścienne z rdzeniem z twardej pianki poliuretanowej od momentu pojawienia się na rynku uznane zostały za doskonały materiał termoizolacyjny. Budownictwo stale się rozwija i dzisiaj nie są już nowością, jednak producenci nie spoczęli na laurach i wciąż udoskonalają swoje produkty, na nowo dopasowując do potrzeb inwestorów. Firma Balex Metal oferuje ekonomiczną wersję – płytę ścienną PIR Light.

merXu Bogata oferta firmy KIM na merXu

Bogata oferta firmy KIM na merXu Bogata oferta firmy KIM na merXu

Stan surowy budynku to etap, na którym wykonane są roboty ziemne, fundamenty, konstrukcje poziome i pionowe, a także izolacje wodne i przeciwwilgociowe. Może również obejmować wykonanie prac ociepleniowych...

Stan surowy budynku to etap, na którym wykonane są roboty ziemne, fundamenty, konstrukcje poziome i pionowe, a także izolacje wodne i przeciwwilgociowe. Może również obejmować wykonanie prac ociepleniowych oraz ślusarskich i stolarskich. Wykorzystane do tego materiały ścienne, systemy elewacyjne czy izolacje termiczne, jak również produkty chemii budowlanej, takie jak tynki, kleje, hydroizolacje i uszczelniacze, powinny być dobre jakościowo, jak również odpowiednio dobrane do przeznaczenia obiektu...

FOAMGLAS® Building Poland Gdy materiału nie staje…, rozważ FOAMGLAS®

Gdy materiału nie staje…, rozważ FOAMGLAS® Gdy materiału nie staje…, rozważ FOAMGLAS®

Stare porzekadło mówi, że tak krawiec kraje, jak mu materii staje. Niestety w przypadku ekip wykonawczych sprawa bywa bardziej skomplikowana, a niedostępność lub długi oczekiwania na materiały izolacyjne...

Stare porzekadło mówi, że tak krawiec kraje, jak mu materii staje. Niestety w przypadku ekip wykonawczych sprawa bywa bardziej skomplikowana, a niedostępność lub długi oczekiwania na materiały izolacyjne mogą być niemałym utrudnieniem. W takiej sytuacji warto rozważyć rozwiązania specjalistyczne, które są na wyciągnięcie ręki, a przy tym oferują wymierne korzyści.

PU Polska - Związek Producentów Płyt Warstwowych i Izolacji Płyty warstowe jako elementy prefabrykowane

Płyty warstowe jako elementy prefabrykowane Płyty warstowe jako elementy prefabrykowane

Prefabrykacja elementów budowlanych oznacza produkcję gotowych, często wielkowymiarowych elementów sposobem przemysłowym poza miejscem wbudowania. Ideą prefabrykacji jest ich wytwarzanie w warunkach niezależnych...

Prefabrykacja elementów budowlanych oznacza produkcję gotowych, często wielkowymiarowych elementów sposobem przemysłowym poza miejscem wbudowania. Ideą prefabrykacji jest ich wytwarzanie w warunkach niezależnych od warunków atmosferycznych w powtarzalnym procesie zapewniającym możliwość kontroli parametrów produkcji i stabilnego, najwyższego poziomu dopuszczalnych odchyłek wykraczających daleko poza możliwości realizacyjne na placu budowy. Taki model wznoszenia obiektów przenosi zasadniczo zaangażowanie...

obido.pl W jaki sposób ocieplić poddasze?

W jaki sposób ocieplić poddasze? W jaki sposób ocieplić poddasze?

Posiadasz dom z poddaszem i zastanawiasz się jak je ocieplić? Odpowiednia izolacja poddasza wpłynie na zatrzymanie ciepła w całym domu, ale także stworzy w pełni użyteczną powierzchnię, którą będzie można...

Posiadasz dom z poddaszem i zastanawiasz się jak je ocieplić? Odpowiednia izolacja poddasza wpłynie na zatrzymanie ciepła w całym domu, ale także stworzy w pełni użyteczną powierzchnię, którą będzie można zagospodarować jako dodatkową sypialnię lub domowe biuro. Jaki materiał wybrać, aby skutecznie i na lata ocieplić poddasze? Podpowiadamy.

SUEZ Izolacje Budowlane Spadki styropianowe na dachu płaskim

Spadki styropianowe na dachu płaskim Spadki styropianowe na dachu płaskim

Nowoczesny wygląd budynku, brak skosów, nowe możliwości aranżacyjne – zalet dachu płaskiego jest wiele. Jego zastosowanie powinno jednak iść w parze z dbałością o dobre rozwiązania technologiczne. Jednym...

Nowoczesny wygląd budynku, brak skosów, nowe możliwości aranżacyjne – zalet dachu płaskiego jest wiele. Jego zastosowanie powinno jednak iść w parze z dbałością o dobre rozwiązania technologiczne. Jednym z nich są spadki styropianowe. Umożliwiają one właściwe odprowadzanie wody i dają dodatkową warstwę docieplenia.

SUEZ Izolacje Budowlane Badanie szczelności dachu

Badanie szczelności dachu Badanie szczelności dachu

Dach nad głową to nie tylko metafora. To jeden z najważniejszych elementów budynku. Nieszczelny może spowodować spore problemy. Remont pomieszczeń, do których dostanie się woda poprzez nieszczelności,...

Dach nad głową to nie tylko metafora. To jeden z najważniejszych elementów budynku. Nieszczelny może spowodować spore problemy. Remont pomieszczeń, do których dostanie się woda poprzez nieszczelności, jest zawsze skomplikowany i kosztowny. Dlatego tak istotne jest kontrolowanie stanu dachu. To nie tylko gwarancja bezpieczeństwa, ale też spokój finansowy.

Copyright © 2004-2019 Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Spółka komandytowa, nr KRS: 0000537655. Wszelkie prawa, w tym Autora, Wydawcy i Producenta bazy danych zastrzeżone. Jakiekolwiek dalsze rozpowszechnianie artykułów zabronione. Korzystanie z serwisu i zamieszczonych w nim utworów i danych wyłącznie na zasadach określonych w Zasadach korzystania z serwisu.
Portal Budowlany - Izolacje.com.pl

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim urządzeniu końcowym. W każdym momencie możesz dokonać zmiany ustawień przeglądarki dotyczących cookies. Nim Państwo zaczną korzystać z naszego serwisu prosimy o zapoznanie się z naszą polityką prywatności oraz Informacją o Cookies. Więcej szczegółów w naszej Polityce Prywatności oraz Informacji o Cookies. Administratorem Państwa danych osobowych jest Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Sp.K., nr KRS: 0000537655, z siedzibą w 04-112 Warszawa, ul. Karczewska 18, tel. +48 22 810-21-24, właściciel strony www.izolacje.com.pl. Twoje Dane Osobowe będą chronione zgodnie z wytycznymi polityki prywatności www.izolacje.com.pl oraz zgodnie z Rozporządzeniem Parlamentu Europejskiego i Rady (UE) 2016/679 z dnia 27 kwietnia 2016r i z Ustawą o ochronie danych osobowych Dz.U. 2018 poz. 1000 z dnia 10 maja 2018r.