Pobierz pełny numer IZOLACJI

Pełny numer IZOLACJI 6/2019 [PDF]

możesz pobrać BEZPŁATNIE - po prostu ZAREJESTRUJ konto w portalu

Projektowanie przegród poziomych z uwzględnieniem wymagań cieplno-wilgotnościowych od 1 stycznia 2021 roku

Designing horizontal partitions according to heat and humidity requirements from 1 January 2021.
Jak projektować przegrody poziome z uwzględnieniem wymagań cieplno-wilgotnościowych od 1 stycznia 2021 roku?
Jak projektować przegrody poziome z uwzględnieniem wymagań cieplno-wilgotnościowych od 1 stycznia 2021 roku?

Projektowanie poziomych przegród zewnętrznych budynku o niskim zużyciu energii (NZEB) jest kompleksowym działaniem projektanta i wymaga znajomości szczegółowych zagadnień z zakresu fizyki budowli, budownictwa ogólnego, materiałów budowlanych oraz przepisów prawnych w zakresie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie.

W związku z wprowadzeniem nowych zaostrzonych wymagań izolacyjności cieplnej i oszczędności energii (rozporządzenie ws. warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowania [1]) niezwykle istotne stanie się na etapie projektowania dokonywanie szczegółowych obliczeń i analiz, które będą podstawą do optymalnego wyboru rozwiązań konstrukcyjno-materiałowych przegród zewnętrznych i ich złączy.

Od 31 grudnia 2020 r. będą obowiązywały ostateczne wartości graniczne, m.in. w zakresie granicznej wartości współczynnika przenikania ciepła Uc(max)/Umax [W/(m2·K)] dotyczących pojedynczych przegród zewnętrznych oraz granicznego wskaźnika zapotrzebowania na nieodnawialną energię pierwotną EP(max) [kWh/(m2·rok)] dla całego analizowanego budynku. W artykule przedstawiono zasady projektowania przegród poziomych i ich złączy z uwzględnieniem wymagań cieplno-wilgotnościowych.

Przegrody stykające się z gruntem w świetle wymagań cieplno-wilgotnościowych

W przypadku połączenia budynku z gruntem należy poprawnie zaprojektować i wykonać nie tylko posadzkę na gruncie, ale również ścianę fundamentową, izolację cieplną oraz przeciwwilgociową. Dobór materiałów dla tych przegród nie może być przypadkowy i należy uwzględnić tutaj zarówno zagadnienia konstrukcyjne, jak i cieplno-wilgotnościowe.

Szczególnie ważne jest prawidłowe konstruowanie złącza na styku podłoga na gruncie – ściana fundamentowa – ściana parteru budynku.

Bardzo istotny jest odpowiedni wybór i kształtowanie następujących elementów przegród stykających się z gruntem:

  • ściany fundamentowe (monolityczne, murowane z różnych materiałów),
  • izolacje przeciwwilgociowe i przeciwwodne (izolacje przeciwwilgociowe typu lekkiego, średniego i ciężkiego),
  • izolacje cieplne ścian fundamentowych, części nadziemnej budynku oraz posadzki na gruncie.

W rozdziale 4 rozporządzenia [1] sformułowano szczegółowe wytyczne w zakresie ochrony przed zawilgoceniem i korozją biologiczną rozpatrywanych przegród:

§ 315.
Budynek powinien być zaprojektowany i wykonany w taki sposób, aby opady atmosferyczne, woda w gruncie i na jego powierzchni, woda użytkowa w budynkach oraz para wodna w powietrzu w tym budynku nie powodowały zagrożenia zdrowia i higieny użytkowania.

§ 316.
1. Budynek posadowiony na gruncie, na którym poziom wód gruntowych może spowodować przenikanie wody do pomieszczeń, należy zabezpieczyć za pomocą drenażu zewnętrznego lub w inny sposób przed infiltracją wody do wnętrza oraz zawilgoceniem.
2. Ukształtowanie terenu wokół‚ powinno zapewniać swobodny spływ wody opadowej od budynku.

§ 317.
1. Ściany piwnic budynku oraz stykające się z gruntem inne elementy budynku, wykonane z materiałów podciągających wodę kapilarnie, powinny być zabezpieczone odpowiednią izolacją przeciwwilgociową.
2. Części ścian zewnętrznych, bezpośrednio nad otaczającym terenem, tarasami, balkonami i dachami, powinny byÄć zabezpieczone przed przenikaniem wody opadowej i z topniejącego śniegu.

§ 318.
Rozwiązania konstrukcyjno-materiałowe przegród zewnętrznych i ich uszczelnienie powinny uniemożiwiać przenikanie wody opadowej do wnętrza budynków.

Do ocieplania przegród stykających się z gruntem (izolacja obwodowa), cokołów i podłóg stosowane są najczęściej następujące materiały termoizolacyjne:

  • polistyren ekstrudowany (XPS),
  • płyty z pianek poliuretanowych,
  • szkło piankowe.
RYS. 1. Schemat izolacji krawędziowej według normy PN-EN ISO 13370:2008: pozioma izolacja krawędziowa. Objaśnienia: 1 – płyta podłogi, 2 – pozioma izolacja krawędziowa, 3 – ściana fundamentu, dn – grubość izolacji krawędziowej (lub fundamentu), D – szerokość poziomej izolacji krawędziowej; rys.: opracowanie własne na podstawie [2]
RYS. 1. Schemat izolacji krawędziowej według normy PN-EN ISO 13370:2008: pozioma izolacja krawędziowa (1) oraz pionowa izolacja krawędziowa (2); rys.: opracowanie własne na podstawie [2]
1 – płyta podłogi, 2 – pozioma izolacja krawędziowa, 3 – ściana fundamentu, dn – grubość izolacji krawędziowej (lub fundamentu), D – szerokośćpoziomej izolacji krawędziowej (1), D – głębokość pionowej izolacji krawędziowej (lub fundamentu) poniżej poziomu gruntu (2)
RYS. 2. Schematy izolacji krawędziowej według normy PN-EN ISO 13370:2008: pionowa izolacja krawędziowa. Objaśnienia: 1 – płyta podłogi, 2 – pozioma izolacja krawędziowa, 3 – ściana fundamentu, dn – grubość izolacji krawędziowej (lub fundamentu), D – głębokość pionowej izolacji krawędziowej (lub fundamentu) poniżej poziomu gruntu (2); rys.: opracowanie własne na podstawie [2]
RYS. 2. Schemat izolacji krawędziowej według normy PN-EN ISO 13370:2008: pozioma izolacja krawędziowa (1) oraz pionowa izolacja krawędziowa (2); rys.: opracowanie własne na podstawie [2]
1 – płyta podłogi, 2 – pozioma izolacja krawędziowa, 3 – ściana fundamentu, dn – grubość izolacji krawędziowej (lub fundamentu), D – szerokośćpoziomej izolacji krawędziowej (1), D – głębokość pionowej izolacji krawędziowej (lub fundamentu) poniżej poziomu gruntu (2)

W tym miejscu należy zwrócić uwagę na rozbieżności w nazewnictwie izolacji cieplnej występującej w złączu przegród stykających się z gruntem.

Izolacja termiczna na ścianach fundamentowych w budynkach niepodpiwniczonych, określana w rozporządzeniu [1] jako izolacja obwodowa, w normach określona jest następująco:

  • według PN-EN ISO 13370:2008 [2] – izolacja krawędziowa i jest obliczeniowo włączana do wartości współczynnika przenikania ciepła podłogi (RYS. 1 i RYS. 2),
  • według PN-EN 12831:2006 [3] – izolacja boczna i nie jest uwzględniana w wartości współczynnika przenikania ciepła podłogi.

Izolacja krawędziowa może być umieszczona poziomo, pionowo lub występować jako fundament o małej gęstości (RYS. 1 i RYS. 2).
Efekt izolacji krawędziowej jest traktowany jako liniowy współczynnik przenikania ciepĹła ψg,e [W/(m·K)]. Jeżeli złącze przegród stykających się z gruntem ma więcej niż jedną część izolacji krawędziowej (pionowej lub poziomej, wewnętrznej lub zewnętrznej), należy do dalszych obliczeń uwzględnić tę, która daje wiekszą redukcję straty ciepła.

Metody przybliżone opierają sie na zbliżonych i numerycznych procedurach obliczeniowych według PN-EN ISO 13370:2008 [2], PN-EN 12831:2006 [3] i rozporządzenia [4]. W obliczeniach wykorzystuje się opracowane algorytmy z zastosowaniem wzorów empirycznych, pozwalając na uniknięcie skomplikowanych symulacji numerycznych.

W normie PN-EN ISO 13370:2008 [2] przedstawiono procedury obliczeniowe w zakresie następujących przypadków występujących w praktyce (RYS. 3, RYS. 4 i RYS. 5):

  • podłoga typu płyta na gruncie,
  • podłoga podniesiona,
  • budynek z podziemiem ogrzewanym.
RYS. 3. Schematy podłóg analizowane w PN-EN ISO 13370:2008: podłoga typu płyta na gruncie. Objaśnienia: W – grubość ścian zewnętrznych; rys.: opracowanie własne na podstawie [2] RYS. 4. Schematy podłóg analizowane w PN-EN ISO 13370:2008: podłoga podniesiona. Objaśnienia: Rf – opór cieplny podłogi [(m2·K)/W], Rg – opór efektywny cieplny gruntu [(m2·K)/W], h – wysokość powierzchni podłogi powyżej zewnętrznego poziomu gruntu; rys.: opracowanie własne na podstawie [2]
RYS. 3–4. Schematy podłóg analizowane w PN-EN ISO 13370:2008: podłoga typu płyta na gruncie (3), podłoga podniesiona (4) oraz budynek z podziemiem ogrzewanym (5);rys.: opracowanie własne na podstawie [2]
W – grubość ścian zewnętrznych, Rf – opór cieplny podłogi [(m2·K)/W], Rg – opór efektywny cieplny gruntu [(m2·K)/W], Rw – opór cieplny ścianpodziemia, łącznie z wszystkimi warstwami [(m2·K)/W], Z – głębokość podłogi podziemia poniżej poziomu grunt, h – wysokość powierzchni podłogipowyżej zewnętrznego poziomu gruntu

RYS. 5. Schemat podłogi analizowany w PN-EN ISO 13370:2008: podłoga typu płyta na gruncie (3), podłoga podniesiona (4) oraz budynek z podziemiem ogrzewanym (5);rys.: opracowanie własne na podstawie [2]
W – grubość ścian zewnętrznych, Rf – opór cieplny podłogi [(m2·K)/W], Rg – opór efektywny cieplny gruntu [(m2·K)/W], Rw – opór cieplny ścianpodziemia, łącznie z wszystkimi warstwami [(m2·K)/W], Z – głębokość podłogi podziemia poniżej poziomu grunt, h – wysokość powierzchni podłogipowyżej zewnętrznego poziomu gruntu

Przykład obliczeniowy 1

Określono straty ciepła przez grunt według normy PN-EN ISO 13370:2008 [2], czyli: współczynnika przenikania cieła‚a podłogi na gruncie {U [W/(m2·K)]} oraz współczynnika sprzężenia cieplnego dla płyty podłogowej z pionową izolacją krawędziową (Hg [W/K]).

Do obliczeń przyjeto następujące założenia:

  • budynek jednorodzinnyrzut ścian parteru budynku (RYS. 6),
  • płyta podłogowa izolowana – styropianem XPS gr. 10 cm o λ = 0,035 W/(m·K),
  • ściana zewnętrzna parteru trójwarstwowa:
    - tynk gipsowy 1,5 cm,
    - bloczek wapienno-piaskowy 24 cm,
    - płyta z poliizocyjanuratu PIR 10 cm,
    - bloczek wapienno-piaskowy 12 cm,
  • izolacja krawędziowa pionowa grubości dn = 5 cm, z poliizocyjanuratu PIR o λn = 0,022 W/(m·K),
  • budynek posadowiony na piasku zwykłym.

Określenie wymiaru charakterystycznego podłogi na gruncie

Wymiar charakterystyczny podłogi wprowadza się w celu uwzględnienia trójwymiarowej natury strumienia ciepła w obrębie gruntu.

  • Wymiar charakterystyczny podłogi określa się wg wzoru:

gdzie:


A – pole powierzchni podłogi, [m2]
P – obwód podłogi, [m].

A =

RYS. 6. Geometria przegród stykających się z gruntem dla wybranego budynku; rys.: [5]
1 – tynk gipsowy gr. 1,5 cm, 2 – bloczek wapienno‑piaskowygr. 24 cm,3 – płyta z poliizocyjanuratu PIR gr. 10 cm, 4 – bloczek wapienno‑piaskowygr. 12 cm, 5 – parkiet gr. 2 cm, 6 – wylewka betonowagr. 5 cm, 7 – folia budowlana, 8 – styropian XPS gr. 10 cm, 9 – foliakubełkowa, 10 – płyta betonowa gr. 10 cm, 11 – ubity grunt (posypkapiaskowa) gr. 15 cm, 12 – bloczek betonowy gr. 12 cm, 13 – płytaz poliizocyjanuratu PIR gr. 5 cm, 14 – izolacja przeciwwilgociowa,15 – bloczek betonowy gr. 24 cm, 16 – izolacja przeciwwilgociowa2×papa na lepiku, 17 – płytki ceramiczne, 18 – papa bitumiczna,19 – ława fundamentowa

Określenie grubości ekwiwalentnej

Koncepcja grubości ekwiwalentnej została wprowadzona w celu uproszczenia wyrażenia wspó‚czynnika przenikania ciepła. Opór cieplny jest reprezentowany przez jego grubość ekwiwalentną, będącą grubością gruntu, która ma ten sam opór cieplny.

Grubość ekwiwalentna podłogi na gruncie:

gdzie:

w – całkowita grubość ścian, łącznie ze wszystkimi warstwami,[m],
λ – współczynnik przewodzenia ciepła gruntu – tablica 1 PN-ENISO 13370:2008 [2], [W/(m·K)],
Rf – opór cieplny płyty podłogi, łącznie z każdą warstwą izolacyjnąna całej powierzchni powyżej lub poniżej płyty podłogi i każdympokryciem podłogi [(m2·K)/W]; opór cieplny płyt z ciężkiego betonui cienkich pokryć podłogi można pominąć; zakłada się, że chudybeton poniżej płyty ma taki sam współczynnik przewodzenia ciepła jak grunt i zaleca się jego pominięcie,
Rsi – opór przejmowania ciepła na wewnętrznej powierzchni przegrodywedług tablicy PN-EN ISO 6946 [6]; Rsi = 0,17 (m2·K)/W – kierunekprzepływu ciepła w dół
Rse – opór przejmowania ciepła na zewnętrznej powierzchniprzegrody według tablicy PN-EN ISO 6946 [6]; Rse = 0 (m2·K)/W.

Układ warstw podłogi na gruncie (RYS. 6):

  • parkiet drewniany 2 cm, λ = 0,18 W/(m·K),
  • posadzka betonowa 5 cm, λ = 1,0 W/(m·K),
  • folia budowlana,
  • styropian XPS 10 cm, λ = 0,035 W/(m·K),
  • folia budowlana,
  • beton podkładowy 10 cm, λ = 1,7 W/(m·K),
  • ubity grunt (podsypka piaskowa) 15 cm,
  • grubość ściany w = 0,475 m,
  • grunt piasek zwykły λ = 2,0 W/(m·K) – tablica 1 PN-EN ISO 13370:2008 [2].

Do obliczeń oporu cieplnego Rf uwzględniono parkiet drewniany, a także styropian XPS:

Grubość ekwiwalentna podłogi:

Określenie współczynnika przenikania ciepła U

Obliczenie współczynnika przenikania ciepła U zależy od izolacji cieplnej podłogi:

  • jeżeli dt < B′ (podłogi nieizolowane lub podłogi średnio izolowane), to:

  • jeżeli dt ≥ B′ (podłogi dobrze izolowane), to:

Współczynnik przenikania ciepła powinien być zaokrąglony do dwóch miejsc znaczących, jeżeli jest prezentowany jako wynik końcowy. Obliczenia pośrednie powinny być przeprowadzone z co najmniej trzema cyframi znaczącymi.

Współczynnik przenoszenia ciepła przez grunt w stanie ustalonym między środowiskiem wewnętrznym i zewnętrznym:

gdzie:

Ψg – liniowy współczynnik przenikania ciepła [W/(m·K)] przyjmujesię na podstawie obliczeń własnych lub na podstawie katalogumostków cieplnych lub na podstawie PN-EN ISO 14683:2008 [7],

  • dt = 6,75 m; B′ = 5,00 m → dt > B′ podłoga dobrze izolowana
  • współczynnik przenikania ciepła U:

Uwzględnienie wpływu izolacji krawędziowej (zał. B PN-EN ISO 13370 [2])

W przykładzie obliczeniowym (RYS. 6) występuje pionowa izolacja krawędziowa grubości 5 cm – płyta z poliizocyjanuratu PIR o λn = 0,022 W/(m·K).
Dodatkowa grubość ekwiwalentna wynikająca z izolacji krawędziowej:

R′ – dodatkowy opór cieplny wprowadzony przez izolację krawędziową (lub fundament), tzn. zastępuje ją różnica między oporem cieplnym izolacji krawędziowej a oporem cieplnym podłoża (lub płyty):

gdzie:

R opór cieplny poziomej lub pionowej izolacji krawędziowej (lub fundamentu), [(m2·K)/W]
dn – grubość izolacji krawędziowej (lub fundamentu), [m]
 = (opór płyty z poliizocyjanuratu PIR gr. 5 cm) =  = 2,27 (m2·K)/W

Uwzględnienie izolacji krawędziowej (poniżej gruntu wzdłuż obwodu podłogi):

D – szerokość pionowej izolacji krawędziowej (lub fundamentu) poniżej poziomu gruntu, [m]
d′ – dodatkowa grubość ekwiwalentna, m
D = 0,7 m; d′ = 4,50 m; dt = 6,75 m; λ = 2,0 W/(m·K)

Uwzględnienie izolacji krawędziowej do obliczeń współczynnika przenikania ciepła U:

Współczynnik przenoszenia ciepła przez grunt w stanie ustalonym między środowiskiem wewnętrznym a zewnętrznym Hg [W/K]

Hg (wg PN-EN ISO 13370:2008) = HT,ig (wg PN-EN 12831:2006)
Ψg – liniowy współczynnik przenikania ciepła na styku ściana zewnętrzna – ściana fundamentowa – podłoga na gruncie przyjęto na podstawie obliczeń własnych (jako gałęziowy współczynnik przenikania ciepła dotyczący strat ciepła dla podłogi na gruncie):
Ψg = 0,29 W/(m·K)

Analizowana przegroda spełnia wymagania sformułowane w rozporządzeniu [1] w zakresie współczynnika przenikania ciepła U = 0,22 < U(max) = 0,30 W/(m2·K). Natomiast w zakresie oceny wartości oporu cieplnego izolacji cieplnej (obwodowej/krawędziowej) R = 2,27 > Rmin. = 2,0 (m2·K)/W – warunek został‚ także spełniony.

Czytaj też: Ocieplanie podłóg na gruncie i stropów nad nieogrzewanymi piwnicami >>>

Abstrakt

Podstawowym celem artykułu jest prezentacja najistotniejszych zagadnień fizyki cieplnej budowli oraz wymagań w zakresie ochrony cieplnej budynków z uwzględnieniem standardów budownictwa niskoenergetycznego w odniesieniu do następujących przegród poziomych: przegrody stykające się z gruntem, stropy,dachy oraz stropodachy. W artykule przedstawiono ogólną charakterystykę rozwiązań materiałowych analizowanych przegród i ich złączy ze szczególnym uwzględnieniem materiałów termoizolacyjnych. Na uwagę zasługują liczne przykłady obliczeniowe z wykorzystaniem profesjonalnych programów komputerowych oraz ocena przykładowych rozwiązań w świetle obowiązujących wymagań cieplno-wilgotnościowych.

The primary objective of the paper is to present the most important notions of thermal physics of buildings and requirements regarding thermal protection of buildings considering low energybuilding standards about the following horizontal partitions: partitions in contact with the ground, ceilings, roofs, and slabroofs. The article demonstrates some general characteristics of material solutions of the analyzed partitions and their joints with particular emphasis on thermal insulation materials. Numerous calculation examples using professional computer programs and the evaluation of the examples in the light of the applicable heat and humidity requirements are worth noting.

DOŁĄCZ DO NEWSLETTERA – kliknij tutaj »
Artykuł pochodzi z: miesięcznika IZOLACJE 3/2020

Komentarze

(0)

Wybrane dla Ciebie


Sprawdzone sposoby na ocieplenie budynku »


Konieczność ocieplania ścian zewnętrznych wynika nie tylko ze względów ekonomicznych – im lepiej izolowane ściany, tym... ZOBACZ »


Uzyskaj pomoc w finansowaniu termomodernizacji »

Kiedy i gdzie stosować płyty warstwowe?

W praktyce, przeprowadzając termomodernizację budynku dociepla się ściany zewnętrzne, wymienia się okna i drzwi, modernizuje się systemy grzewcze i wentylacyjne...czytaj dalej »

Panele wybierane są przez wielu architektów jako elementy wieńczące i tworzące... czytaj dalej »

Co warto wiedzieć o ocieplaniu wełną skalną?


Konieczności ocieplania ścian zewnętrznych wynika nie tylko ze względów ekonomicznych – im lepiej izolowane ściany, tym ZOBACZ »


Jak wytłumić podłogę? Czego użyć?

Wszystko o izolacjach technicznych »

Zapewnienie dobrej wibroakustyki dla budynku to coraz częściej wyzwanie dla świadomych i wymagających... czytaj dalej » Produkty przeznaczone do instalacji klimatyzacyjnych i wentylacyjnych, jak i... czytaj dalej »

Fakty i mity na temat szarego styropianu »

Od kilku lat rośnie popyt na styropiany szare. W Niemczech i Szwajcarii większość spr...
czytaj dalej »


Od czego zacząć termomodernizację domu? Co zrobić, aby uzyskać dotację?

Czego użyć do naprawy balkonu lub tarasu?

Jak dzięki termomodernizacji zmniejszyć zuzycie energii na ogrzewanie domów nawet o 69%?.. czytaj dalej » Nawierzchnia drenażowa typu kamienny dywan powstaje z połączenia naturalnego kruszywa marmurowego... czytaj dalej »

Farby do wnętrz i elewacji - jakie powinny być?


W 2002 r. rynek farb fasadowych został zrewolucjonizowany przez farbę zolowo-krzemianową, która bazuje na całkowicie nowatorskiej koncepcji spoiw, dzięki czemu... ZOBACZ »


Jak oszczędzić na ogrzewaniu budynku?

Izolacja ze szkła komórkowego - co warto wiedzieć »

Zarabiaj pieniądze sprzedając prąd... czytaj dalej » Oprócz zastosowań przemysłowych, morskich, HVAC... czytaj dalej »

Na czym polega osuszanie budynków metodą cięcia?


Profesjonalne wykonanie usługi to 100% gwarancja na zabezpieczenie budynku przed... ZOBACZ »


Co warto wiedzieć o systemach natryskowych?

Jak zabezpieczyć budynek przed wilgocią?

Budynek ocieplony pianką jest szczelny akustycznie a przede wszystkim... czytaj dalej »

Wilgoć pojawiająca się w budynku i związana z nią pleśń szkodzą naszemu zdrowiu, powodują wyższe rachunki za ogrzewanie i niszczą mury... czytaj dalej »

Szukasz specjalistycznych farb i produktów?


Służymy fachowym doradztwem i pomagamy w doborze systemu malarskiego... ZOBACZ »


Elewacja, która wygląda jak drewno, marmur czy kamień »

Jak budować energooszczędnie?

Ładna fasada stanowi wizerunek budynku. Estetyczny wygląd elewacji często... czytaj dalej »

Przekonaj się, jakie rozwiązania sprawdzą się w nowoczesnym, energooszczędnym budownictwie... czytaj dalej »

Ekspert Budowlany - zlecenia

Dodaj komentarz
Nie jesteś zalogowany - zaloguj się lub załóż konto. Dzięki temu uzysksz możliwość obserwowania swoich komentarzy oraz dostęp do treści i możliwości dostępnych tylko dla zarejestrowanych użytkowników portalu Izolacje.com.pl... dowiedz się więcej »
9/2020

Aktualny numer:

Izolacje 9/2020
W miesięczniku m.in.:
  • - Akustyka w budownictwie mieszkaniowym
  • - Renowacja i uszczelnianie cokołów
Zobacz szczegóły
Dom Wydawniczy MEDIUM Rzetelna Firma
Copyright @ 2004-2012 Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Spółka komandytowa, nr KRS: 0000537655. Wszelkie prawa w tym Autora, Wydawcy i Producenta bazy danych zastrzeżone. Jakiekolwiek dalsze rozpowszechnianie artykułów zabronione. Korzystanie z serwisu i zamieszczonych w nim utworów i danych wyłącznie na zasadach określonych w Zasadach korzystania z serwisu.
realizacja i CMS: omnia.pl

.