Metoda limitowanego oporu cieplnego
Metoda limitowanego oporu cieplnego, której istotę przedstawiono na RYS. 1, polega na zwiększeniu oporu cieplnego wewnętrzną warstwą dociepleniową do poziomu niezagrażającego nadmierną kondensacją wewnętrzną pary wodnej w poszczególnych warstwach docieplonej przegrody.
Rozwiązanie spełniające warunek (1) było stosowane w praktyce już w latach siedemdziesiątych ubiegłego wieku. Strumień ukośnego deszczu oznaczony na RYS. 1, RYS. 2, RYS. 3 , RYS. 4, RYS. 5, RYS. 6 , RYS. 7 i RYS. 8 liczbą (3) oraz strumienie dyfuzyjne pary wodnej w okresie zimowym (4) oraz letnim (5) mogą naturalnie przepływać przez docieplaną przegrodę (1), zgodnie z jej naturalnymi zdolnościami do transportu wody i wilgoci. Osłona (10) w tym przypadku pełni jedynie funkcję mechanicznej osłony materiału termoizolacyjnego (2) oraz wystroju wnętrza.
W przypadku otwartodyfuzyjnych właściwości warstwy termoizolacyjnej zachodzi swobodny przepływ strumieni pary wodnej, podwyższający ryzyko zimowej kondensacji pary wodnej. Warstwy dociepleniowe o ograniczonej grubości umożliwiają jednak odparowywanie również w okresie letnim wilgoci skondensowanej w przegrodzie w okresie zimowym do wewnętrznego środowiska. Zwiększenie oporu cieplnego warstwą dociepleniową do poziomu, na który pozwalał pierwotny opór cieplny przegrody, był jednak traktowany przez projektantów jako "ryzykowna konieczność". Lansowano wówczas zalecenie, że docieplać można jedynie ściany na tyle "ciepłe", aby dodatkowe warstwy temoizolacyjne w okresie zimowym nie spowodowały obniżenia temperatury na ich wewnętrznej powierzchni poniżej punktu rosy. Po latach badań koncepcja ta została opisana w niemieckiej instrukcji WTA 6.4. [1].
Na RYS. 9 podano minimalne wymagania w zakresie Sdi warstwy dociepleniowej (łącznie z opóźniaczem przepływu pary wodnej), w zależności od oporu cieplnego docieplenia ΔRinsul. dla podłoży charakteryzujących się różną aktywnością kapilarną. Badania wykazały, że podłoża o stosunkowo niskiej aktywności kapilarnej, których podciąganie kapilarne wody (współczynnik nasiąkliwości powierzchniowej) w spełnia warunek w < 0,5 kg/m2 √h mogą być docieplane warstwami o oporze do ΔRinsul. = 2 m2·K/W i Sdi = 4 m.
![]() |
RYS. 9. Minimalne wymagania w zakresie warstwy dociepleniowej (łącznie z opóźniaczem przepływu pary wodnej) w zależności od oporu cieplnego docieplenia dla podłoży charakteryzujących się różną aktywnością kapilarną; rys.: według [1] |
Przegrody o wyższej aktywności kapilarnej (w < 10 kg/m2 √h) mogą być bezpiecznie docieplane warstwami o oporze ΔRinsul. = 2,5 m2·K/W i Sdi = 1 m. Formalnie tego typu rozwiązanie powinno być zalecane jedynie w przypadku przegród nie tylko charakteryzujących się pierwotnie zadowalającym oporem cieplnym, lecz także dobrze pochłaniających wilgoć, których docieplenie warstwą o ograniczonych walorach termoizolacyjnych nie spowoduje nadmiernej kondensacji na styku warstwy dociepleniowej z przegrodą.
Występowanie koniecznego zapasu wartości czynnika temperaturowego upoważniającego do ułożenia na wewnętrznej powierzchni dodatkowej warstwy izolacji termicznej o ograniczonym oporze cieplnym nie zawsze było respektowane. W latach osiemdziesiątych ubiegłego wieku metodę ograniczonego oporu cieplnego R-Lim stosowano do poprawy właściwości termoizolacyjnych ścian zewnętrznych w budynkach wielkopłytowych i wielkoblokowych, wielokrotnie lekceważąc znane już wówczas zalecenia. Skutkowało to wieloma niepowodzeniami i ogólnie ugruntowaniem się krytycznych opinii w odniesieniu do docieplania od wewnątrz.
Podczas prowadzonych przez autora w latach osiemdziesiątych ubiegłego wieku przeglądów wad technologicznych systemów prefabrykowanych, obejmujących ponad 6000 mieszkań, przebadano około 700 docieplanych od wewnątrz pojedynczych lokali. Stwierdzono wówczas, że tylko w około 300 przypadkach nie występowały problemy mykologiczne. Zdecydowany wpływ na taki stan rzeczy miały występujące wady technologiczne systemów wielkopłytowych (np. OWT 67, OWT-R, WK-70) oraz wielkoblokowych (cegła żerańska).
Docieplenie wewnętrzne było wówczas traktowane nie tylko jako sposób likwidacji przemarzania w miejscach słabo izolowanych termicznie, w ten sposób próbowano również tamować przecieki wód opadowych przez uszkodzone złącza lub zarysowane warstwy fasadowe, które wadliwie kwalifikowano jako przemarzanie. Rozpowszechnione wówczas rozwiązanie polegające na dociepleniu wełną mineralną oraz boazerią, z jednoczesnym brakiem dodatkowej ochrony mostków cieplnych, było obarczone wysokim poziomem ryzyka pogłębienia się kondensacji pary wodnej na styku wełna mineralna–prefabrykat. Powszechnie zjawiskom tym towarzyszył wysoki poziom wilgotności względnej powietrza wewnętrznego, spowodowany zaburzeniami wentylacji.
Nagminne zmniejszanie przekroju kratek wentylacyjnych, osłabianie wentylacji przez podłączanie do niej okresowo uruchamianego okapu kuchennego, doszczelnianie stolarki okiennej z jednocześnie występującymi problemami z dostawami ciepła miały dość powszechny charakter. Wszystko to razem skutkowało ugruntowywaniem się złej opinii o dociepleniach wewnętrznych.
Koncepcja docieplania, którą po latach doświadczeń można nazwać "metodą limitowanego oporu cieplnego", jest obecnie realizowana z powodzeniem dzięki rozwojowi technologii ultralekkich betonów komórkowych. Porowaty ośrodek w dużym stopniu niweluje występujące mankamenty stosowanych pierwotnie rozwiązań, opartych na materiałach o wysokiej wilgociochłonności oraz niskim oporze dyfuzyjnym - porównywalnym z oporem powietrza, takich jak niehydrofobizowana wełna mineralna.
Mieszana struktura współcześnie oferowanych ultralekkich betonów komórkowych zapewnia przewodzenie pary wodnej, natomiast hydrofobizacja eliminuje nadmierną akumulację wilgoci. Zwiększenie oporu cieplnego warstwami dociepleniowymi o ograniczonym oporze cieplnym, który gwarantuje odparowanie w okresie letnim wilgoci skondensowanej we wnętrzu przegrody, należy zakwalifikować jako rozwiązanie sprawdzone i bezpieczne. Jego dodatkowym atutem jest znaczna odporność betonu komórkowego na zagrożenia biologiczne.
W ostatnich latach nastąpił również istotny rozwój programów symulacyjnych, umożliwiających w miarę precyzyjne sprawdzenie poprawności zaproponowanej grubości docieplenia - limitowanej koniecznością zapewnienia ujemnego rocznego bilansu wilgoci w przegrodzie. Zwiększenie grubości warstwy dociepleniowej ponad wartość dopuszczalną skutkuje stałym przyrostem zawilgocenia przegrody.
Wpływ usytuowania ocieplenia od wewnątrz na parametry fizykalne złączy budowlanych >>>
Przy okazji omawiania koncepcji "limitowanego oporu cieplnego" należy również wspomnieć o tzw. gwarantowanej ochronie cieplnej, która jest praktykowana w niektórych krajach zachodnich, na przykład zgodnie z zapisami w normy DIN 4108-2 (aktualne wydanie 2013-02 Minimalne wymagania dotyczące izolacyjności cieplnej budynków zapobiegające kondensacji i zagrożeniom higienicznym…), obowiązującej podczas rozbudowy i modernizacji budynków. W normie tej określono wartości minimalne oporu cieplnego, które mają zabezpieczyć wyłącznie przed występowaniem szkód spowodowanych przez wilgoć; na przykład dla ścian zewnętrznych pomieszczeń przeznaczonych na pobyt ludzi wartość Rmin wynosi 1,2 m2·K/W.
Określenie minimalnego oporu cieplnego dla przegród tylko częściowo wynika z potrzeby oszczędzania energii, gdyż warunek ten w przypadku muru o grubości jednej cegły spełniają warstwy wełny mineralnej grubości 4 cm lub krzemianu wapniowego grubości 6 cm - minimalny opór cieplny ma zapewniać bezpieczeństwo higieniczne. W polskich aktach normatywnych pojęcie minimalnego oporu cieplnego funkcjonowało również w poprzednich dekadach. Obecnie ochronę higieniczną przed rozwojem pleśni zapewniono przez określenie dopuszczalnej wartości czynnika temperaturowego ƒRsi.
DOŁĄCZ DO NEWSLETTERA – kliknij tutaj » |