Izolacje.com.pl

Zaawansowane wyszukiwanie

Klasyfikacja metod docieplania od wewnątrz

Classification of internal thermal insulation amendment methods

Poznaj kryteria klasyfikacji i wyboru metod docieplania budynków od wewnątrz
Fot. R. Wójcik

Poznaj kryteria klasyfikacji i wyboru metod docieplania budynków od wewnątrz


Fot. R. Wójcik

W podstawowym nurcie zainteresowań dociepleniami od wewnątrz pozostają głównie budynki zabytkowe, pełniące pierwotnie różne funkcje, w tym niemieszkalne, które nie mogą być docieplane od zewnątrz. Gruntownej poprawy termoizolacyjności przegród zewnętrznych wymagają budynki przemysłowe, rolnicze, wojskowe, magazynowe, które obecnie przystosowuje się do funkcji mieszkalnych, biurowych, handlowych, o wysokich wymaganiach w zakresie komfortu cieplnego.

Zobacz także

fischer Polska sp. z o.o. Zalecenia dotyczące renowacji istniejącego systemu ETICS

Zalecenia dotyczące renowacji istniejącego systemu ETICS Zalecenia dotyczące renowacji istniejącego systemu ETICS

Przed podjęciem decyzji o wykonaniu dodatkowego docieplenia konieczna jest szczegółowa inwentaryzacja istniejącego układu/systemu ocieplenia oraz podłoża. Ocenę taką należy wykonać etapowo.

Przed podjęciem decyzji o wykonaniu dodatkowego docieplenia konieczna jest szczegółowa inwentaryzacja istniejącego układu/systemu ocieplenia oraz podłoża. Ocenę taką należy wykonać etapowo.

RAXY Sp. z o.o. Nowoczesne technologie w ciepłych i zdrowych budynkach

Nowoczesne technologie w ciepłych i zdrowych budynkach Nowoczesne technologie w ciepłych i zdrowych budynkach

Poznaj innowacyjne, specjalistyczne produkty nadające przegrodom budowlanym odpowiednią trwałość, izolacyjność cieplną i szczelność. Jakie rozwiązania pozwolą nowe oraz remontowane chronić budynki i konstrukcje?

Poznaj innowacyjne, specjalistyczne produkty nadające przegrodom budowlanym odpowiednią trwałość, izolacyjność cieplną i szczelność. Jakie rozwiązania pozwolą nowe oraz remontowane chronić budynki i konstrukcje?

Purinova Sp. z o.o. Turkusowa drużyna Purios ciepło wita pomarańczowego bohatera

Turkusowa drużyna Purios ciepło wita pomarańczowego bohatera Turkusowa drużyna Purios ciepło wita pomarańczowego bohatera

Wy mówicie, a my słuchamy. Wskazujecie na nudne reklamy, inżynierów w garniturach, patrzących z każdego bilbordu i na Mister Muscle Budowlanki w ogrodniczkach. To wszystko już było, a wciąż zapomina się...

Wy mówicie, a my słuchamy. Wskazujecie na nudne reklamy, inżynierów w garniturach, patrzących z każdego bilbordu i na Mister Muscle Budowlanki w ogrodniczkach. To wszystko już było, a wciąż zapomina się o kimś bardzo ważnym.

Abstrakt

W artykule przedstawiono kryteria klasyfikacji i wyboru metod docieplania istniejących budynków od wewnątrz, wybrane z wydanej w 2017 r. przez Grupę MEDIUM monografii "Docieplanie budynków od wewnątrz" - pierwszej na polskim rynku pozycji poświęconej w całości tej tematyce.

Classification of internal thermal insulation amendment methods.

The article presents criteria on the classification and selection of thermal insulation methods of existing buildings from the inside, selected from the monograph ‘Internal thermal insulation of buildings’ published in the year 2017 by the MEDIUM Group - Poland’s first publication devoted entirely to this issue.

Szybki rozwój technologii docieplania od wewnątrz jest również możliwy dzięki rozwojowi i stałemu udoskonalaniu metod ochrony budynków przed wilgocią. Na podstawie wieloletnich badań obiektów poddawanych termomodernizacji można sformułować tezę, że skuteczność i trwałość dociepleń wewnętrznych w głównej mierze zależy od niezawodnego zabezpieczenia budynku przed wilgocią oraz zapewnienia wymaganej wymiany powietrza wewnętrznego.

Zgodnie z kryterium uwzgledniającym specyficzne parametry cieplno-wilgotnościowe omówionych materiałów termoizolacyjnych można wyodrębnić sposoby docieplania od wewnątrz, które pretendują do miana odrębnych metod. Przepływ ciepła, pary wodnej oraz wody kapilarnej przez materiał można scharakteryzować, wykorzystując następujące parametry:

  • opór cieplny wewnętrznej warstwy dociepleniowej RTinsul., odniesiony do poziomu dopuszczalnego Rlimit, po przekroczeniu którego następuje wzrost zawartości wilgoci w przegrodzie, a także do oporu RWT  21 spełniającego wymagania określone w Warunkach technicznych, określone jako obowiązujące od 2021 roku,
  • przenikanie pary wodnej przez układ warstw dociepleniowych, charakteryzowane współczynnikiem oporu dyfuzyjnego wszystkich warstw materiału termoizolacyjnego μ, łącznie z osłonami paroizolacyjnymi ułożonymi jednostronnie lub dwustronnie (jeśli takie paroizolacje występują),
  • zdolność do transportu kapilarnego wody materiału dociepleniowego lub jego fragmentów, charakteryzowanej przez kąt zwilżania materiału przez wodę (γ = 0° - zwilżanie bardzo dobre lub γ ≥  90°- brak zwilżania spowodowany na przykład hydrofobizacją materiału).

Posługując się wymienionymi wielkościami, można sklasyfikować docieplenia wykonywane w praktyce według różnych koncepcji technologicznych, którym w celu ułatwienia dalszych opisów, prowadzonych na potrzeby analiz obliczeniowych, nadano opisowe nazwy.

Na RYS. 1, RYS. 2, RYS. 3, RYS. 4, RYS. 5, RYS. 6, RYS. 7 i RYS. 8 przedstawiono schematycznie zróżnicowane zjawiska transportu wody i wilgoci, które stanowią podstawę zaproponowanej klasyfikacji metod docieplania od wewnątrz.

RYS. 1. Docieplanie od wewnątrz metodą limitowanego oporu cieplnego. RYS. 2. Docieplanie od wewnątrz metodą jednostronnej bariery. 
Oznaczenia: 1 - istniejąca przegroda, 2 - izolacja termiczna, 3 - strumień ukośnego deszczu, 4 - zimowy strumień dyfuzji pary wodnej, 5 - letni strumień dyfuzji pary wodnej, 6 - paroizolacja, 7 - bariera wodo- i paroszczelna, 8  - strukturalna blokada przeciwwodna, 9 - strumień infiltracyjny powietrza, 10 - okładzina lub wyprawa wewnętrzna; rys.: R. Wójcik 
  • Metoda limitowanego oporu cieplnego (R-Lim.) - docieplenie materiałem otwartodyfuzyjnym o ograniczonym oporze cieplnym bez odrębnej paroizolacji (RYS. 1):

 (1)

  • Metoda jednostronnej bariery - docieplenie materiałem otwartodyfuzyjnym (komórkowym lub włóknistym) z paroizolacją oddzielającą warstwę termoizolacyjną od środowiska wewnętrznego (RYS. 2), spełniająca warunek:

(2)

RYS. 3. Docieplanie od wewnątrz metodą aktywną kapilarnie. RYS. 4. Docieplanie od wewnątrz metodą pełnej bariery dwustronnej.
Oznaczenia: 1 - istniejąca przegroda, 2 - izolacja termiczna, 3 - strumień ukośnego deszczu, 4 - zimowy strumień dyfuzji pary wodnej, 5 - letni strumień dyfuzji pary wodnej, 6 - paroizolacja, 7 - bariera wodo- i paroszczelna, 8 - strukturalna blokada przeciwwodna, 9 - strumień infiltracyjny powietrza, 10 - okładzina lub wyprawa wewnętrzna; rys.: R. Wójcik
  • Metoda aktywna kapilarnie - docieplenie materiałem otwartodyfuzyjnym, kapilarno-porowatym (RYS. 3), spełniająca warunek:

(3)

  • Metoda pełnej bariery dwustronnej - docieplenie materiałem paroszczelnym lub w paroszczelnej osłonie dwustronnej (RYS. 4), spełniająca warunek:

(4)

RYS. 5. Docieplanie od wewnątrz metodą punktowo-kapilarną. RYS. 6. Docieplanie od wewnątrz metodą liniowo-kapilarną.
Oznaczenia: 1 - istniejąca przegroda, 2 - izolacja termiczna, 3 - strumień ukośnego deszczu, 4 - zimowy strumień dyfuzji pary wodnej, 5 - letni strumień dyfuzji pary wodnej, 6 - paroizolacja, 7 - bariera wodo- i paroszczelna, 8 - strukturalna blokada przeciwwodna, 9 - strumień infiltracyjny powietrza, 10 - okładzina lub wyprawa wewnętrzna; rys.: R. Wójcik
  • Metoda punktowo-kapilarna - docieplenie materiałem paroszczelnym, (zamkniętokomórkowym), punktowo-kapilarnym (RYS. 5), spełniająca warunek:

(5)

  • Metoda liniowo-kapilarna - docieplenie materiałem odgazowanym, osłoniętym wysokobarierową powłoką gazoszczelną, liniowo-kapilarnym (system VIP-ART®), z funkcją kapilarności zwrotnej i aktywnym dogrzewaniem obwodowych stref mostków termicznych (RYS. 6), spełniająca warunek:

(6)

RYS. 7. Docieplanie od wewnątrz metodą aktywną kapilarnie. RYS. 8. Docieplanie od wewnątrz metodą pełnej bariery dwustronnej.
Oznaczenia: 1 - istniejąca przegroda, 2 - izolacja termiczna, 3 - strumień ukośnego deszczu, 4 - zimowy strumień dyfuzji pary wodnej, 5 - letni strumień dyfuzji pary wodnej, 6 - paroizolacja, 7 - bariera wodo- i paroszczelna, 8 - strukturalna blokada przeciwwodna, 9 - strumień infiltracyjny powietrza, 10 - okładzina lub wyprawa wewnętrzna; rys.: R. Wójcik

Metoda limitowanego oporu cieplnego

Metoda limitowanego oporu cieplnego, której istotę przedstawiono na RYS. 1, polega na zwiększeniu oporu cieplnego wewnętrzną warstwą dociepleniową do poziomu niezagrażającego nadmierną kondensacją wewnętrzną pary wodnej w poszczególnych warstwach docieplonej przegrody.

Rozwiązanie spełniające warunek (1) było stosowane w praktyce już w latach siedemdziesiątych ubiegłego wieku. Strumień ukośnego deszczu oznaczony na RYS. 1RYS. 2RYS. 3RYS. 4RYS. 5RYS. 6RYS. 7 i RYS. 8 liczbą (3) oraz strumienie dyfuzyjne pary wodnej w okresie zimowym (4) oraz letnim (5) mogą naturalnie przepływać przez docieplaną przegrodę (1), zgodnie z jej naturalnymi zdolnościami do transportu wody i wilgoci. Osłona (10) w tym przypadku pełni jedynie funkcję mechanicznej osłony materiału termoizolacyjnego (2) oraz wystroju wnętrza.

W przypadku otwartodyfuzyjnych właściwości warstwy termoizolacyjnej zachodzi swobodny przepływ strumieni pary wodnej, podwyższający ryzyko zimowej kondensacji pary wodnej. Warstwy dociepleniowe o ograniczonej grubości umożliwiają jednak odparowywanie również w okresie letnim wilgoci skondensowanej w przegrodzie w okresie zimowym do wewnętrznego środowiska. Zwiększenie oporu cieplnego warstwą dociepleniową do poziomu, na który pozwalał pierwotny opór cieplny przegrody, był jednak traktowany przez projektantów jako "ryzykowna konieczność". Lansowano wówczas zalecenie, że docieplać można jedynie ściany na tyle "ciepłe", aby dodatkowe warstwy temoizolacyjne w okresie zimowym nie spowodowały obniżenia temperatury na ich wewnętrznej powierzchni poniżej punktu rosy. Po latach badań koncepcja ta została opisana w niemieckiej instrukcji WTA 6.4. [1].

Na RYS. 9 podano minimalne wymagania w zakresie Sdi warstwy dociepleniowej (łącznie z opóźniaczem przepływu pary wodnej), w zależności od oporu cieplnego docieplenia ΔRinsul. dla podłoży charakteryzujących się różną aktywnością kapilarną. Badania wykazały, że podłoża o stosunkowo niskiej aktywności kapilarnej, których podciąganie kapilarne wody (współczynnik nasiąkliwości powierzchniowej) w spełnia warunek w < 0,5 kg/m2 √h mogą być docieplane warstwami o oporze do ΔRinsul. = 2 m2·K/W i Sdi = 4 m.

RYS. 9. Minimalne wymagania w zakresie warstwy dociepleniowej (łącznie z opóźniaczem przepływu pary wodnej) w zależności od oporu cieplnego docieplenia dla podłoży charakteryzujących się różną aktywnością kapilarną; rys.: według [1]

RYS. 9. Minimalne wymagania w zakresie warstwy dociepleniowej (łącznie z opóźniaczem przepływu pary wodnej) w zależności od oporu cieplnego docieplenia dla podłoży charakteryzujących się różną aktywnością kapilarną; rys.: według [1]

Przegrody o wyższej aktywności kapilarnej (w < 10 kg/m2 √h) mogą być bezpiecznie docieplane warstwami o oporze ΔRinsul. = 2,5 m2·K/W i Sdi = 1 m. Formalnie tego typu rozwiązanie powinno być zalecane jedynie w przypadku przegród nie tylko charakteryzujących się pierwotnie zadowalającym oporem cieplnym, lecz także dobrze pochłaniających wilgoć, których docieplenie warstwą o ograniczonych walorach termoizolacyjnych nie spowoduje nadmiernej kondensacji na styku warstwy dociepleniowej z przegrodą.

Występowanie koniecznego zapasu wartości czynnika temperaturowego upoważniającego do ułożenia na wewnętrznej powierzchni dodatkowej warstwy izolacji termicznej o ograniczonym oporze cieplnym nie zawsze było respektowane. W latach osiemdziesiątych ubiegłego wieku metodę ograniczonego oporu cieplnego R-Lim stosowano do poprawy właściwości termoizolacyjnych ścian zewnętrznych w budynkach wielkopłytowych i wielkoblokowych, wielokrotnie lekceważąc znane już wówczas zalecenia. Skutkowało to wieloma niepowodzeniami i ogólnie ugruntowaniem się krytycznych opinii w odniesieniu do docieplania od wewnątrz.

Podczas prowadzonych przez autora w latach osiemdziesiątych ubiegłego wieku przeglądów wad technologicznych systemów prefabrykowanych, obejmujących ponad 6000 mieszkań, przebadano około 700 docieplanych od wewnątrz pojedynczych lokali. Stwierdzono wówczas, że tylko w około 300 przypadkach nie występowały problemy mykologiczne. Zdecydowany wpływ na taki stan rzeczy miały występujące wady technologiczne systemów wielkopłytowych (np. OWT 67, OWT-R, WK-70) oraz wielkoblokowych (cegła żerańska).

Docieplenie wewnętrzne było wówczas traktowane nie tylko jako sposób likwidacji przemarzania w miejscach słabo izolowanych termicznie, w ten sposób próbowano również tamować przecieki wód opadowych przez uszkodzone złącza lub zarysowane warstwy fasadowe, które wadliwie kwalifikowano jako przemarzanie. Rozpowszechnione wówczas rozwiązanie polegające na dociepleniu wełną mineralną oraz boazerią, z jednoczesnym brakiem dodatkowej ochrony mostków cieplnych, było obarczone wysokim poziomem ryzyka pogłębienia się kondensacji pary wodnej na styku wełna mineralna–prefabrykat. Powszechnie zjawiskom tym towarzyszył wysoki poziom wilgotności względnej powietrza wewnętrznego, spowodowany zaburzeniami wentylacji.

Nagminne zmniejszanie przekroju kratek wentylacyjnych, osłabianie wentylacji przez podłączanie do niej okresowo uruchamianego okapu kuchennego, doszczelnianie stolarki okiennej z jednocześnie występującymi problemami z dostawami ciepła miały dość powszechny charakter. Wszystko to razem skutkowało ugruntowywaniem się złej opinii o dociepleniach wewnętrznych.

Koncepcja docieplania, którą po latach doświadczeń można nazwać "metodą limitowanego oporu cieplnego", jest obecnie realizowana z powodzeniem dzięki rozwojowi technologii ultralekkich betonów komórkowych. Porowaty ośrodek w dużym stopniu niweluje występujące mankamenty stosowanych pierwotnie rozwiązań, opartych na materiałach o wysokiej wilgociochłonności oraz niskim oporze dyfuzyjnym - porównywalnym z oporem powietrza, takich jak niehydrofobizowana wełna mineralna.

Mieszana struktura współcześnie oferowanych ultralekkich betonów komórkowych zapewnia przewodzenie pary wodnej, natomiast hydrofobizacja eliminuje nadmierną akumulację wilgoci. Zwiększenie oporu cieplnego warstwami dociepleniowymi o ograniczonym oporze cieplnym, który gwarantuje odparowanie w okresie letnim wilgoci skondensowanej we wnętrzu przegrody, należy zakwalifikować jako rozwiązanie sprawdzone i bezpieczne. Jego dodatkowym atutem jest znaczna odporność betonu komórkowego na zagrożenia biologiczne.

W ostatnich latach nastąpił również istotny rozwój programów symulacyjnych, umożliwiających w miarę precyzyjne sprawdzenie poprawności zaproponowanej grubości docieplenia - limitowanej koniecznością zapewnienia ujemnego rocznego bilansu wilgoci w przegrodzie. Zwiększenie grubości warstwy dociepleniowej ponad wartość dopuszczalną skutkuje stałym przyrostem zawilgocenia przegrody.

Przy okazji omawiania koncepcji "limitowanego oporu cieplnego" należy również wspomnieć o tzw. gwarantowanej ochronie cieplnej, która jest praktykowana w niektórych krajach zachodnich, na przykład zgodnie z zapisami w normy DIN 4108-2 (aktualne wydanie 2013-02 Minimalne wymagania dotyczące izolacyjności cieplnej budynków zapobiegające kondensacji i zagrożeniom higienicznym…), obowiązującej podczas rozbudowy i modernizacji budynków. W normie tej określono wartości minimalne oporu cieplnego, które mają zabezpieczyć wyłącznie przed występowaniem szkód spowodowanych przez wilgoć; na przykład dla ścian zewnętrznych pomieszczeń przeznaczonych na pobyt ludzi wartość Rmin wynosi 1,2 m2·K/W.

Określenie minimalnego oporu cieplnego dla przegród tylko częściowo wynika z potrzeby oszczędzania energii, gdyż warunek ten w przypadku muru o grubości jednej cegły spełniają warstwy wełny mineralnej grubości 4 cm lub krzemianu wapniowego grubości 6 cm - minimalny opór cieplny ma zapewniać bezpieczeństwo higieniczne. W polskich aktach normatywnych pojęcie minimalnego oporu cieplnego funkcjonowało również w poprzednich dekadach. Obecnie ochronę higieniczną przed rozwojem pleśni zapewniono przez określenie dopuszczalnej wartości czynnika temperaturowego ƒRsi.

Metoda jednostronnej bariery

Metodę jednostronnej bariery przedstawiono schematycznie na RYS. 2. Rozwiązanie polega na zwiększeniu oporu cieplnego przegrody (1) warstwą termoizolacyjną (2) o dowolnej wartości oporu cieplnego, oddzieloną od środowiska wewnętrznego paroizolacją (6). Takie rozwiązanie powstrzymuje dyfuzję pary wodnej z wnętrza pomieszczenia w kierunku zewnętrznym. Nadal nierozwiązany pozostaje problem kondensacji pary wodnej napływającej w okresie letnim od strony środowiska zewnętrznego w kierunku wnętrza pomieszczenia, jak również problem wilgoci pochodzącej z opadów atmosferycznych. Wadą takiego rozwiązania jest całkowite zablokowanie wysychania wilgoci do wnętrza pomieszczenia.

Teoretycznie letnia kondensacja powinna być szczególnie niekorzystna w przypadku pomieszczeń klimatyzowanych w okresie letnim. Prowadzone przez autora badania kilku budynków docieplonych metodą "jednostronnej bariery" (w tym również klimatyzowanych w okresie letnim), w których wystąpiły problemy wilgotnościowe w stopniu wymagającym ponownego wykonania prac dociepleniowych, potwierdzają te obawy.

Pomiary prowadzone bezpośrednio po rozebraniu eksploatowanej w okresie kilkunastu lat zabudowy dociepleniowej, składającej się z 12 cm wełny mineralnej, paroizolacji polietylenowej oraz osłony g-k na ruszcie z profili blaszanych, wykazały występowanie miejsc o lokalnie podwyższonym poziomie zawilgocenia. Problemy wilgotnościowe występowały szczególnie w miejscach intensywnego oddziaływania wód opadowych od strony zewnętrznej (okresowo uszkodzone rynny, wadliwie zabezpieczone gzymsy, uszkodzenia korozyjne powierzchni zewnętrznej elewacji itp.). Ustalenie w takich przypadkach bilansu wilgoci i wskazanie udziału poszczególnych źródeł wymagałoby prowadzenia długotrwałych badań, co nie było możliwe ze względu na konieczność szybkiego zakończenia remontu.

Dobre warunki do prowadzenia szczegółowych badań występowały w przeznaczonym do rozbiórki budynku byłego laboratorium budownictwa UWM w Olsztynie. Doświadczalnie sprawdzono, że funkcjonujące tam przez 15 lat docieplania z jednostronną paroizolacją bardzo dobrze się sprawdzały, na przegrodach wykonywanych zarówno z cegły silikatowej, jak i z płyt PW8. Ściany docieplone od wewnątrz wełną mineralną grubości 12 cm, osłonięte folią polietylenową oraz płytami g-k na ruszcie z profili zimnogiętych, po upływie kilkunastu lat eksploatacji znajdowały się w bardzo dobrym, powietrzno-suchym stanie. Nie stwierdzono występowania jakichkolwiek problemów mykologicznych, co wskazywało na skuteczność tego rozwiązania. Należy jednak zaznaczyć, że badany obiekt pełnił funkcje biurowo-dydaktyczne, a wilgotność powietrza wewnętrznego w sezonie zimowym była w nim zazwyczaj bardzo niska i nie przekraczała poziomu 30-40%. Poprawnie zmontowane płyty PW8, składające się z warstwy poliuretanu w obudowie z blach falistych, są również wodo- i paroszczelne, pozytywnej opinii nie można więc rozszerzać na inne rozwiązania materiałowe.

Metoda docieplania z jednostronną barierą może być obecnie zaliczona do najczęściej stosowanych rozwiązań w Polsce. Docieplenie warstwą termoizolacyjną szczelnie osłoniętą paroizolacją, która nie dopuszcza dopływu wilgoci od strony pomieszczenia, wymaga monitorowania stanu fasady, jednak z wykonawczego punktu widzenia jest to wariant zdecydowanie najłatwiejszy. Teoretyczne założenie, że para wodna w okresie zimowym nie dyfunduje w głąb przegrody, wyklucza możliwość kondensacji pary wodnej we wnętrzu przegrody. Uzyskanie takiego stanu wymaga jednak monitorowania oddziaływań atmosferycznych i dobrej jakości robót. Praktyka wskazuje, że w niektórych przypadkach paroizolacje są wykonywane wadliwie. Najczęściej popełnianymi błędami są brak wymaganych zakładów oraz uszkadzanie folii podczas wykonywania kolejnych etapów prac (głównie instalacyjnych), a także pozostawianie wewnętrznych pustek lub celowe wykonywanie szczelin powietrznych. Na FOT. przedstawiono pozostawione pustki wewnętrzne w okolicach nadproży, które zidentyfikowano podczas prac eksperckich prowadzonych w związku z zakwestionowaniem jakości robót dociepleniowych.

Wady metody polegającej na docieplaniu warstwami termoizolacyjnymi osłoniętymi wewnętrzną paroizolacją mogą się uwidaczniać podczas ulewnego deszczu. Wilgoć w takich przypadkach nie może wysychać do wnętrza, przez co w docieplonej przegrodzie utrzymuje się stan podwyższonego zawilgocenia.

Odrębnym, równie ważnym, problemem jest wysychanie pozalewowe, które rutynowo badano w szerokim zakresie, na przykład po powodziach w gminie Wilków. W nawodnionych przegrodach z wewnętrznymi izolacjami termicznymi i paroizolacjami obserwowano praktycznie zahamowanie procesu wysychania przegród. Proces wysychania muru uruchamiało dopiero usunięcie wszystkich warstw docieplających.

Podczas projektowania szczegółów występują również liczne utrudnienia w strefach ościeży okiennych oraz cienkich filarków międzyokiennych, gdzie praktycznie nie ma miejsca na ułożenie dodatkowych warstw. Choć w tych przypadkach z założenia powinno się przyjmować rozwiązania umożliwiające transport pary wodnej w kierunku wewnętrznym, to praktyka wykazuje na trend zgoła odmienny.

Metoda aktywna kapilarnie

Metoda aktywna kapilarnie (RYS. 3) polega na zwiększeniu oporu cieplnego warstwą izolacyjną, wykonaną z materiału o wysokiej zdolności do transportu kapilarnego wody. Pierwowzorem tego typu współczesnych materiałów są tradycyjne tynki wapienno-piaskowe, które bardzo dobrze chronią powierzchnie geometrycznych mostków cieplnych (naroży ścian) przed rozwojem pleśni, nawet w pomieszczeniach o okresowo podwyższonej zawartości wilgoci w powietrzu.

Bardzo dobre właściwości transportowe tynków wapiennych, które umożliwiają skuteczną redystrybucję kondensatu pary wodnej poza strefę bezpośredniego skraplania, buforowanie wilgoci zawartej w powietrzu wewnętrznym oraz stabilny odczyn zasadowy, są atutami również współcześnie produkowanych materiałów krzemianowo-wapiennych. Dodatkowa modyfikacja włóknami celulozowymi lub perlitem ekspandowanym, a ostatnio również aerożelami, nie zakłóca przemieszczania się wody objętościowej, a w większości rozwiązań materiałowych nawet je wspomaga. Właściwości te charakteryzuje współczynnik transportu kapilarnego Dw [m2/s], który bardzo silnie zależy od zawartości wilgoci oraz temperatury (przedział zmienności obejmuje nawet kilka rzędów wielkości [2]). Oznaczenie przeprowadza się w pełnym zwilżaniu powierzchni materiału, które w równym stopniu zapewnia wypełnienie zarówno małych, jak i dużych kapilar.

W odniesieniu do materiałów aktywnych kapilarnie szczególnie istotna jest redystrybucja wilgoci występująca wówczas, gdy źródło wilgoci jest ograniczone. Właściwość tę charakteryzuje współczynnik redystrybucji wilgoci (Dww), który zależy od współczynnika nasiąkliwości powierzchniowej wody (aktywności kapilarnej) w [kg/(m2·s0,5)], zawartości wody u [kg/m3] oraz zawartości wody podczas swobodnego nasączania uf [kg/m3]. Zoptymalizowanie tych parametrów przez dobór składu surowców, ich odpowiedni przemiał oraz proces utwardzający autoklawizacji wykluczający rozmiękanie sprawia, że materiały aktywne kapilarnie ugruntowały swoją pozycję nie tylko w zwalczaniu pleśni i buforowaniu zawartości wilgoci w powietrzu, lecz także jako docieplenie wewnętrzne przegród [λ = 0,065÷0,1 W/(m·K)].

Oczywiście, w okresie bezpośredniego oddziaływania źródeł wilgoci walory termoizolacyjne materiałów aktywnych kapilarnie zostają znacznie ograniczone.

W zastosowaniu do dociepleń wewnętrznych transport wilgoci w różnych fazach nie został dostatecznie przebadany. Pierwsze próby podjęli pracownicy Instytutu Fizyki Budowli im. Fraunhofera: Daniel Zirkelbach, Andrea Binder oraz Hartwig M. Künzel, którzy opracowali nową laboratoryjną metodę testowania, odzwierciedlającą transport wilgoci w materiale w warunkach nieizotermicznych [3]. Stanowiska pomiarowe zaprojektowano w taki sposób, aby móc badać aktywność kapilarną izolacji wewnętrznej bez bezpośredniego kontaktu materiału z wodą w postaci ciekłej. Wymodelowano przepływ pary wodnej oraz wody w przeciwnych kierunkach.

Podobne badania, również z bezpośrednim kontaktem z wodą objętościową, są prowadzone w Laboratorium Fizyki Budowli Uniwersytetu Warmińsko-Mazurskiego w Olsztynie. Do badań rozkładu zawartości wilgoci wykorzystuje się metodę absorpcji promieniowania podczerwonego. Uzyskane wyniki badań przedstawiono w pracy [4].

Metoda pełnej bariery dwustronnej

Metoda pełnej bariery dwustronnej (RYS. 4) może być opisana na przykładzie docieplenia przegrody płytami poliuretanowymi, zamkniętokomórkowymi w dwustronnej osłonie barierowej lub z warstwą zamkniętokomórkowego szkła spienionego.

Metoda eliminuje zagrożenia spowodowane zawilgacaniem materiału dociepleniowego na skutek infiltracji wód opadowych oraz kondensacji pary wodnej w okresie zimowym. Zminimalizowane są również oddziaływania spowodowane dyfuzją i akumulacją wilgoci w materiale warstwy dociepleniowej, co przekłada się na spowolnienie procesów starzeniowych. Wzrastają jednak wymagania dotyczące ochrony przed oddziaływaniem wód opadowych warstw fasadowych.

Poziom zawartości wilgoci powinien być monitorowany szczególnie wnikliwie, tak aby w materiale fasadowym nie dopuścić do przekroczenia poziomu krytycznego, skutkującego zniszczeniami mrozowymi. Powłokowa ochrona przeciwwilgociowa materiału dociepleniowego sprawia, że można zastosować grubość materiału spełniającą wymagania określone w WT 2021. Zwiększają się natomiast wymagania w zakresie mrozoodporności materiału docieplanej przegrody, szczególnie w jej części fasadowej, gdyż materiał dociepleniowy nie uczestniczy w redystrybucji wilgoci napływającej ze środowiska zewnętrznego. Szczelna bariera sprzyja również letniej kondensacji pary wodnej.

Teoretycznie rozwiązania z obustronną izolacją wysokobarierową materiału termoizolacyjnego mogłyby być zalecane w obiektach o wysokiej wilgotności powietrza wewnętrznego, z uwagi jednak na inne uwarunkowania i problemy, związane na przykład z mostkami termicznymi, należy przyjąć, że wysoka wilgotność powietrza wewnętrznego jest poważną przeszkodą w zalecaniu docieplenia wewnętrznego. Przede wszystkim należy zawsze rozwiązać problemy wilgotnościowe.

Metoda punktowo-kapilarna

Metoda punktowo-kapilarna (RYS. 5) bazuje na zamkniętokomórkowym rdzeniu poliuretanowym, poddanym perforacji z wypełnieniem otworów materiałem aktywnym kapilarnie - dobrze transportującym wilgoć.

Przykładem takiego rozwiązania są perforowane płyty poliuretanowe. Usytuowane w rozstawie 50×50 mm na całej powierzchni płyt "kanały kapilarne" pełnią funkcję regulatorów zawartości wilgoci w warstwie zaprawy podkładowej, okresowo gromadzącej się również w aktywnych kapilarnie warstwach tynku oraz gładzi. Jest to koncepcja, w której rozdzielono funkcje ochrony cieplnej i ochrony przeciwwilgociowej.

Gdy grubość rdzenia poliuretanowego wynosi 30 mm i λ = 0,031 W/(m·K), oferowane płyty są stosowane głównie jako ochrona antypleśniowa, natomiast gdy rdzeń jest grubszy, jest to już efektywna metoda dociepleniowa.

W celu pełniejszego rozpoznania właściwości systemu opartego na perforowanych płytach poliuretanowych podjęto badania ukierunkowane na określenie wpływu wilgoci na trwałość rdzenia tych płyt w zakresie ewentualnego zwiększenia przewodnictwa cieplnego i przyspieszenia procesów starzeniowych. Do tego typu badań skłaniały wieloletnie obserwacje autora dotyczące oddziaływania wody i wilgoci na trwałość uszczelnień wykonywanych z zastosowaniem pianek poliuretanowych, prowadzonych w ramach uszczelnień podziemnych obiektów przemysłowych (głównie fundamentów skrzyniowych pod maszyny precyzyjne).

Wyniki obserwacji wskazywały, że trwałość takich uszczelnień nie przekraczała pięciu lat. W celu wydłużenia trwałości prowadzonych zabiegów stosowano tzw. iniekcję podwójną. Najpierw wykonuje się uszczelnienia z zastosowaniem pianki poliuretanowej, a następnie uzupełnia się wypienioną w szczelinie strukturę poliuretanową z zastosowaniem znacznie trwalszej żywicy epoksydowej. Taki zabieg (iniekcja podwójna) znacznie podnosi trwałość uszczelnienia. Czy tego typu oddziaływania można przenosić na trwałość rdzenia w płycie termoizolacyjnej z funkcją punktowo-kapilarnego transportu wilgoci?

RYS. 10. Termogram powierzchni płyty punktowo-kapilarnej z widocznymi strefami wychłodzenia wokół kanałów transportujących wodę; rys.: R. Wójcik

RYS. 10. Termogram powierzchni płyty punktowo-kapilarnej z widocznymi strefami wychłodzenia wokół kanałów transportujących wodę; rys.: R. Wójcik

W celu rozpoznania ewentualnego oddziaływania wilgoci na trwałość rdzenia poliuretanowego przeprowadzono badania laboratoryjne zarówno w odniesieniu do właściwości termoizolacyjnych, jak i właściwości transportowych kanałów kapilarnych. Na podstawie ponaddwuletnich badań laboratoryjnych z pełnym kontaktem perforowanych płyt poliuretanowych z wodą objętościową nie stwierdzono utraty trwałości termoizolacyjnej i właściwości transportu wody. Wykluczając przypadki oddziaływania na strukturę sperforowanej pianki wody pod ciśnieniem hydrostatycznym, można sformułować wniosek, że wprowadzenie wilgoci w strukturę wewnętrzną rdzenia nie wywołuje negatywnego oddziaływania w postaci przyspieszenia procesów starzeniowych lub postępującej w czasie utraty drożności "osuszających" kanałów. Potwierdzają to badania ilościowe ukierunkowane na ocenę oddziaływania wilgoci w postaci pary wodnej zawartej w gazie wypełniającym pory, a także w fazie ciekłej, tj. filmu pokrywającego powierzchnię spodnią badanych próbek, jak i wody kapilarnej transportowanej przez masę wypełniającą otwory.

Na RYS. 10 pokazano termogram powierzchni płyty poliuretanowej, ilustrujący efekty termiczne potwierdzające nieustannie zachodzący proces skrośnego transportu kapilarnego wody przez rdzeń po dwuletnim, bezpośrednim kontakcie z lustrem wody.

Metoda aktywnego docieplania, liniowo­‑kapilarna

Metodę liniowo-kapilarną aktywnego docieplania (RYS. 6 i RYS. 8) opracowano w wyniku połączenia wieloletnich doświadczeń z badań nad różnymi dociepleniami wewnętrznymi z zainteresowaniem technologią materiałów próżniowych. Uzyskane wyniki dały asumpt do opracowania metody polegającej na zwiększeniu oporu cieplnego warstwą dociepleniową, z wykorzystaniem paneli próżniowych VIP wyposażonych w obwodowe złącza umożliwiające sterowanie skrośnym przepływem kapilarnym wilgoci do środowiska wewnętrznego.

W metodzie przewidziano również aktywne dogrzewanie obwodowych stref mostków termicznych (metoda aktywna IN). Instalacja grzewcza sterowana automatycznie zapobiega kondensacji powierzchniowej, a także przyspiesza efekt suszarniczy w strefach szczególnie narażonych na zawilgocenie kondensacyjne parą wodną. Optymalizacja proporcji powierzchni paroszczelnych do powierzchni aktywnych kapilarnie nakazywała, aby poszczególne panele miały wymiary nie większe niż 25×50 cm.

Przedstawiony podział stosowanych w praktyce rozwiązań, w którym za główne kryterium przyjęto ochronę przed wewnętrznym zawilgoceniem, nie wyczerpuje całej oferty rynkowej. Przemysł materiałów termoizolacyjnych jest bardzo aktywny i pojawiają się rozwiązania wykorzystujące materiały nowej generacji: próżniowe typu VIP, materiały aerożelowe o nowych właściwościach oraz różne ich połączenia.

Literatura

  1. WTA Merkblatt 6-4, 2009/D, Innendämmung nach WTA I, Planungsleitfaden.
  2. R. Wójcik, "Wpływ temperatury i wilgoci na współczynniki kinetyczne dyfuzji i termodyfuzji betonu komórkowego", praca doktorska, Politechnika Łódzka, Łódź 1990.
  3. D. Zirkelbach, A. Binder, H.M. Künzel, "Kapillaraktive Innendämmung - Wirkung und Beurteilun", Internationaler Innendämmkongress, Technische Uniwersität, Dresden 2011.
  4. R. Wójcik, A. Panuś, M. Tunkiewicz, "Influence of chemical damp proof cream on the capillary action and microstructure of mortars", 11th Nordic Symposium on Building Physics, Trondheim, Norway 2017.

Chcesz być na bieżąco? Zapisz się do naszego newslettera!

Komentarze

Powiązane

dr inż. Krzysztof Pawłowski prof. PBŚ Podstawowe zagadnienia fizyki cieplnej budowli w aspekcie wymagań prawnych (cz. 1)

Podstawowe zagadnienia fizyki cieplnej budowli w aspekcie wymagań prawnych (cz. 1) Podstawowe zagadnienia fizyki cieplnej budowli w aspekcie wymagań prawnych (cz. 1)

Od wielu lat przepisy prawne związane z procesami projektowania, wznoszenia i eksploatacji budynków wymuszają takie rozwiązania technologiczne i organizacyjne, w wyniku których nowo wznoszone budynki zużywają...

Od wielu lat przepisy prawne związane z procesami projektowania, wznoszenia i eksploatacji budynków wymuszają takie rozwiązania technologiczne i organizacyjne, w wyniku których nowo wznoszone budynki zużywają w trakcie eksploatacji coraz mniej energii na ogrzewanie, wentylację i przygotowanie ciepłej wody użytkowej. Zmiany maksymalnej wartości współczynnika przenikania ciepła Umax. (dawniej kmax.) wpływają na wielkość zużycia energii w trakcie eksploatacji budynków.

mgr inż. Ireneusz Stachura Jak eliminować mostki cieplne w budynku?

Jak eliminować mostki cieplne w budynku? Jak eliminować mostki cieplne w budynku?

Planując budynek, czy to mieszkalny, czy o innej funkcji (np. biurowiec, hotel, szpital), projektant tworzy konkretną bryłę, która ma spełnić szereg funkcji – wizualną, funkcjonalną, ekonomiczną w fazie...

Planując budynek, czy to mieszkalny, czy o innej funkcji (np. biurowiec, hotel, szpital), projektant tworzy konkretną bryłę, która ma spełnić szereg funkcji – wizualną, funkcjonalną, ekonomiczną w fazie realizacji i eksploatacji – i zapewnić właściwe warunki do przebywania w tym budynku ludzi.

dr inż. Krzysztof Pawłowski prof. PBŚ Kształtowanie układu warstw materiałowych podłóg na stropach w budynkach

Kształtowanie układu warstw materiałowych podłóg na stropach w budynkach Kształtowanie układu warstw materiałowych podłóg na stropach w budynkach

Dobór układu warstw materiałowych podłóg na stropach w budynkach nie powinien być przypadkowy, ale oparty na szczegółowych obliczeniach i analizach w zakresie nośności i wytrzymałości, wymagań cieplno-wilgotnościowych,...

Dobór układu warstw materiałowych podłóg na stropach w budynkach nie powinien być przypadkowy, ale oparty na szczegółowych obliczeniach i analizach w zakresie nośności i wytrzymałości, wymagań cieplno-wilgotnościowych, izolacyjności akustycznej oraz ochrony przeciwpożarowej.

dr inż. Andrzej Konarzewski Panele architektoniczne do budownictwa komercyjnego

Panele architektoniczne do budownictwa komercyjnego Panele architektoniczne do budownictwa komercyjnego

W Europie do opisywania konstrukcji ścian osłonowych z płyt warstwowych w obustronnej okładzinie stalowej z rdzeniem izolacyjnym można wykorzystywać zapisy podane w normie PN-EN 13830.

W Europie do opisywania konstrukcji ścian osłonowych z płyt warstwowych w obustronnej okładzinie stalowej z rdzeniem izolacyjnym można wykorzystywać zapisy podane w normie PN-EN 13830.

mgr inż. Julia Blazy, prof. dr hab. inż. Łukasz Drobiec, dr hab. inż. arch. Rafał Blazy prof. PK Zastosowanie fibrobetonu z włóknami polipropylenowymi w przestrzeniach publicznych

Zastosowanie fibrobetonu z włóknami polipropylenowymi w przestrzeniach publicznych Zastosowanie fibrobetonu z włóknami polipropylenowymi w przestrzeniach publicznych

Beton to materiał o dużej wytrzymałości na ściskanie, ale około dziesięciokrotnie mniejszej wytrzymałości na rozciąganie. Ponadto charakteryzuje się kruchym pękaniem i nie pozwala na przenoszenie naprężeń...

Beton to materiał o dużej wytrzymałości na ściskanie, ale około dziesięciokrotnie mniejszej wytrzymałości na rozciąganie. Ponadto charakteryzuje się kruchym pękaniem i nie pozwala na przenoszenie naprężeń po zarysowaniu.

Redakcja miesięcznika IZOLACJE Tynki gipsowe w pomieszczeniach mokrych i łazienkach

Tynki gipsowe w pomieszczeniach mokrych i łazienkach Tynki gipsowe w pomieszczeniach mokrych i łazienkach

Dobór tynku wewnętrznego do pomieszczeń mokrych lub narażonych na wilgoć nie jest prosty. Takie pomieszczenia mają specjalne wymagania, a rodzaj pokrycia ścian wewnętrznych powinien uwzględniać trudne...

Dobór tynku wewnętrznego do pomieszczeń mokrych lub narażonych na wilgoć nie jest prosty. Takie pomieszczenia mają specjalne wymagania, a rodzaj pokrycia ścian wewnętrznych powinien uwzględniać trudne warunki panujące wewnątrz kuchni czy łazienki. Na szczęście technologia wychodzi inwestorom naprzeciw i efektywne położenie tynku gipsowego w mokrych i wilgotnych pomieszczeniach jest możliwe.

mgr inż. Maciej Rokiel System ETICS – skutki braku analizy dokumentacji projektowej (cz. 4)

System ETICS – skutki braku analizy dokumentacji projektowej (cz. 4) System ETICS – skutki braku analizy dokumentacji projektowej (cz. 4)

Artykuł jest kontynuacją publikacji zamieszczonych kolejno w numerach 3/2022, 4/2022 i 6/2022 miesięcznika IZOLACJE. W tej części skupimy się na tym, jak skutki braku analizy czy wręcz nieprzeczytania...

Artykuł jest kontynuacją publikacji zamieszczonych kolejno w numerach 3/2022, 4/2022 i 6/2022 miesięcznika IZOLACJE. W tej części skupimy się na tym, jak skutki braku analizy czy wręcz nieprzeczytania dokumentacji projektowej mogą wpłynąć na uszkodzenia systemu. Przez „przeczytanie” należy tu także rozumieć zapoznanie się z tekstem kart technicznych stosowanych materiałów.

dr inż. Pavel Zemene, przewodniczący Stowarzyszenia EPS w Republice Czeskiej Bezpieczeństwo pożarowe złożonych systemów izolacji cieplnej ETICS

Bezpieczeństwo pożarowe złożonych systemów izolacji cieplnej ETICS Bezpieczeństwo pożarowe złożonych systemów izolacji cieplnej ETICS

Do bezpieczeństwa pożarowego w budynkach przywiązuje się niezmiernie dużą wagę. Zagadnienie to jest ważne nie tylko ze względu na bezpieczeństwo użytkowników budynku, ale także ze względu na bezpieczną...

Do bezpieczeństwa pożarowego w budynkach przywiązuje się niezmiernie dużą wagę. Zagadnienie to jest ważne nie tylko ze względu na bezpieczeństwo użytkowników budynku, ale także ze względu na bezpieczną eksploatację budynków i ochronę mienia. W praktyce materiały i konstrukcje budowlane muszą spełniać szereg wymagań, związanych między innymi z podstawowymi wymaganiami dotyczącymi stabilności konstrukcji i jej trwałości, izolacyjności termicznej i akustycznej, a także higieny i zdrowia, czy wpływu...

mgr inż. Maciej Rokiel Jak układać płytki wielkoformatowe?

Jak układać płytki wielkoformatowe? Jak układać płytki wielkoformatowe?

Wraz ze wzrostem wielkości płytek (długości ich krawędzi) wzrastają wymogi dotyczące jakości materiałów, precyzji przygotowania podłoża oraz reżimu technologicznego wykonawstwa.

Wraz ze wzrostem wielkości płytek (długości ich krawędzi) wzrastają wymogi dotyczące jakości materiałów, precyzji przygotowania podłoża oraz reżimu technologicznego wykonawstwa.

dr inż. Krzysztof Pawłowski prof. PBŚ Właściwości cieplno-wilgotnościowe materiałów budowlanych (cz. 2)

Właściwości cieplno-wilgotnościowe materiałów budowlanych (cz. 2) Właściwości cieplno-wilgotnościowe materiałów budowlanych (cz. 2)

Proces wymiany ciepła przez przegrody budowlane jest nieustalony w czasie, co wynika ze zmienności warunków klimatycznych na zewnątrz budynku oraz m.in. nierównomierności pracy urządzeń grzewczych. Opis...

Proces wymiany ciepła przez przegrody budowlane jest nieustalony w czasie, co wynika ze zmienności warunków klimatycznych na zewnątrz budynku oraz m.in. nierównomierności pracy urządzeń grzewczych. Opis matematyczny tego procesu jest bardzo złożony, dlatego w większości rozwiązań inżynierskich stosuje się uproszczony model ustalonego przepływu ciepła.

mgr inż. Jarosław Stankiewicz Zastosowanie kruszyw lekkich w warstwach izolacyjnych

Zastosowanie kruszyw lekkich w warstwach izolacyjnych Zastosowanie kruszyw lekkich w warstwach izolacyjnych

Kruszywa lekkie są materiałem znanym od starożytności. Aktualnie wyrób ten ma liczną grupę odbiorców nie tylko we współczesnym budownictwie, ale i w innych dziedzinach gospodarki. Spowodowane to jest licznymi...

Kruszywa lekkie są materiałem znanym od starożytności. Aktualnie wyrób ten ma liczną grupę odbiorców nie tylko we współczesnym budownictwie, ale i w innych dziedzinach gospodarki. Spowodowane to jest licznymi zaletami tego wyrobu, takimi jak wysoka izolacyjność cieplna, niska gęstość, niepalność i wysoka mrozoodporność, co pozwala stosować go zarówno w budownictwie, ogrodnictwie, jak i innych branżach.

dr inż. Andrzej Konarzewski, mgr Marek Skowron, mgr inż. Mateusz Skowron Przegląd metod recyklingu i utylizacji odpadowej pianki poliuretanowo‑poliizocyjanurowej powstającej przy produkcji wyrobów budowlanych

Przegląd metod recyklingu i utylizacji odpadowej pianki poliuretanowo‑poliizocyjanurowej powstającej przy produkcji wyrobów budowlanych Przegląd metod recyklingu i utylizacji odpadowej pianki poliuretanowo‑poliizocyjanurowej powstającej przy produkcji wyrobów budowlanych

W trakcie szerokiej i różnorodnej produkcji wyrobów budowlanych ze sztywnej pianki poliuretanowo/poliizocyjanurowej powstaje stosunkowo duża ilość odpadów, które muszą zostać usunięte. Jak przeprowadzić...

W trakcie szerokiej i różnorodnej produkcji wyrobów budowlanych ze sztywnej pianki poliuretanowo/poliizocyjanurowej powstaje stosunkowo duża ilość odpadów, które muszą zostać usunięte. Jak przeprowadzić recykling odpadów z pianki?

Joanna Szot Rodzaje stropów w domach jednorodzinnych

Rodzaje stropów w domach jednorodzinnych Rodzaje stropów w domach jednorodzinnych

Strop dzieli budynek na kondygnacje. Jednak to nie jedyne jego zadanie. Ponadto ten poziomy element konstrukcyjny usztywnia konstrukcję domu i przenosi obciążenia. Musi także stanowić barierę dla dźwięków...

Strop dzieli budynek na kondygnacje. Jednak to nie jedyne jego zadanie. Ponadto ten poziomy element konstrukcyjny usztywnia konstrukcję domu i przenosi obciążenia. Musi także stanowić barierę dla dźwięków i ciepła.

P.P.H.U. EURO-MIX sp. z o.o. EURO-MIX – zaprawy klejące w systemach ociepleń

EURO-MIX – zaprawy klejące w systemach ociepleń EURO-MIX – zaprawy klejące w systemach ociepleń

EURO-MIX to producent chemii budowlanej. W asortymencie firmy znajduje się obecnie ponad 30 produktów, m.in. kleje, tynki, zaprawy, szpachlówki, gładzie, system ocieplania ścian na wełnie i na styropianie....

EURO-MIX to producent chemii budowlanej. W asortymencie firmy znajduje się obecnie ponad 30 produktów, m.in. kleje, tynki, zaprawy, szpachlówki, gładzie, system ocieplania ścian na wełnie i na styropianie. Zaprawy klejące EURO-MIX przeznaczone są do przyklejania wełny lub styropianu do podłoża z cegieł ceramicznych, betonu, tynków cementowych i cementowo­-wapiennych, gładzi cementowej, styropianu i wełny mineralnej w temperaturze od 5 do 25°C.

dr inż. Krzysztof Pawłowski prof. PBŚ Układy materiałowe wybranych przegród zewnętrznych w aspekcie wymagań cieplnych (cz. 3)

Układy materiałowe wybranych przegród zewnętrznych w aspekcie wymagań cieplnych (cz. 3) Układy materiałowe wybranych przegród zewnętrznych w aspekcie wymagań cieplnych (cz. 3)

Rozporządzenie w sprawie warunków technicznych [1] wprowadziło od 31 grudnia 2020 r. nowe wymagania dotyczące izolacyjności cieplnej poprzez zaostrzenie wymagań w zakresie wartości granicznych współczynnika...

Rozporządzenie w sprawie warunków technicznych [1] wprowadziło od 31 grudnia 2020 r. nowe wymagania dotyczące izolacyjności cieplnej poprzez zaostrzenie wymagań w zakresie wartości granicznych współczynnika przenikania ciepła Uc(max) [W/(m2·K)] dla przegród zewnętrznych oraz wartości granicznych wskaźnika zapotrzebowania na energię pierwotną EP [kWh/(m2·rok)] dla całego budynku. Jednak w rozporządzeniu nie sformułowano wymagań w zakresie ograniczenia strat ciepła przez złącza przegród zewnętrznych...

mgr inż. arch. Tomasz Rybarczyk Zastosowanie keramzytu w remontowanych stropach i podłogach na gruncie

Zastosowanie keramzytu w remontowanych stropach i podłogach na gruncie Zastosowanie keramzytu w remontowanych stropach i podłogach na gruncie

Są sytuacje i miejsca w budynku, w których nie da się zastosować termoizolacji w postaci wełny mineralnej lub styropianu. Wówczas w rozwiązaniach występują inne, alternatywne materiały, które nadają się...

Są sytuacje i miejsca w budynku, w których nie da się zastosować termoizolacji w postaci wełny mineralnej lub styropianu. Wówczas w rozwiązaniach występują inne, alternatywne materiały, które nadają się również do standardowych rozwiązań. Najczęściej ma to miejsce właśnie w przypadkach, w których zastosowanie styropianu i wełny się nie sprawdzi. Takim materiałem, który może w pewnych miejscach zastąpić wiodące materiały termoizolacyjne, jest keramzyt. Ten materiał ma wiele właściwości, które powodują,...

Sebastian Malinowski Kleje żelowe do płytek – właściwości i zastosowanie

Kleje żelowe do płytek – właściwości i zastosowanie Kleje żelowe do płytek – właściwości i zastosowanie

Kleje żelowe do płytek cieszą się coraz większą popularnością. Produkty te mają świetne parametry techniczne, umożliwiają szybki montaż wszelkiego rodzaju okładzin ceramicznych na powierzchni podłóg oraz...

Kleje żelowe do płytek cieszą się coraz większą popularnością. Produkty te mają świetne parametry techniczne, umożliwiają szybki montaż wszelkiego rodzaju okładzin ceramicznych na powierzchni podłóg oraz ścian.

dr inż. Krzysztof Pawłowski prof. PBŚ Projektowanie cieplne przegród stykających się z gruntem

Projektowanie cieplne przegród stykających się z gruntem Projektowanie cieplne przegród stykających się z gruntem

Dla przegród stykających się z gruntem straty ciepła przez przenikanie należą do trudniejszych w obliczeniu. Strumienie cieplne wypływające z ogrzewanego wnętrza mają swój udział w kształtowaniu rozkładu...

Dla przegród stykających się z gruntem straty ciepła przez przenikanie należą do trudniejszych w obliczeniu. Strumienie cieplne wypływające z ogrzewanego wnętrza mają swój udział w kształtowaniu rozkładu temperatur w gruncie pod budynkiem i jego otoczeniu.

Jacek Sawicki, konsultacja dr inż. Szczepan Marczyński – Clematis Źródło Dobrych Pnączy, prof. Jacek Borowski Roślinne izolacje elewacji

Roślinne izolacje elewacji Roślinne izolacje elewacji

Naturalna zieleń na elewacjach obecna jest od dawna. W formie pnączy pokrywa fasady wielu średniowiecznych budowli, wspina się po murach secesyjnych kamienic, nierzadko zdobi frontony XX-wiecznych budynków...

Naturalna zieleń na elewacjach obecna jest od dawna. W formie pnączy pokrywa fasady wielu średniowiecznych budowli, wspina się po murach secesyjnych kamienic, nierzadko zdobi frontony XX-wiecznych budynków jednorodzinnych czy współczesnych, nowoczesnych obiektów budowlanych, jej istnienie wnosi wyjątkowe zalety estetyczne i użytkowe.

mgr inż. Wojciech Rogala Projektowanie i wznoszenie ścian akustycznych w budownictwie wielorodzinnym na przykładzie przegród z wyrobów silikatowych

Projektowanie i wznoszenie ścian akustycznych w budownictwie wielorodzinnym na przykładzie przegród z wyrobów silikatowych Projektowanie i wznoszenie ścian akustycznych w budownictwie wielorodzinnym na przykładzie przegród z wyrobów silikatowych

Ściany z elementów silikatowych w ciągu ostatnich 20 lat znacznie zyskały na popularności [1]. Stanowią obecnie większość przegród akustycznych w budynkach wielorodzinnych, gdzie z uwagi na wiele źródeł...

Ściany z elementów silikatowych w ciągu ostatnich 20 lat znacznie zyskały na popularności [1]. Stanowią obecnie większość przegród akustycznych w budynkach wielorodzinnych, gdzie z uwagi na wiele źródeł hałasu izolacyjność akustyczna stanowi jeden z głównych czynników wpływających na komfort.

LERG SA Poliole poliestrowe Rigidol®

Poliole poliestrowe Rigidol® Poliole poliestrowe Rigidol®

Od lat obserwujemy dynamicznie rozwijający się trend eko, który stopniowo z mody konsumenckiej zaczął wsiąkać w coraz głębsze dziedziny życia społecznego, by w końcu dotrzeć do korzeni funkcjonowania wielu...

Od lat obserwujemy dynamicznie rozwijający się trend eko, który stopniowo z mody konsumenckiej zaczął wsiąkać w coraz głębsze dziedziny życia społecznego, by w końcu dotrzeć do korzeni funkcjonowania wielu biznesów. Obecnie marki, które chcą odnieść sukces, powinny oferować swoim odbiorcom zdecydowanie więcej niż tylko produkt czy usługę wysokiej jakości.

mgr inż. arch. Tomasz Rybarczyk Prefabrykacja w budownictwie

Prefabrykacja w budownictwie Prefabrykacja w budownictwie

Prefabrykacja w projektowaniu i realizacji budynków jest bardzo nośnym tematem, co przekłada się na duże zainteresowanie wśród projektantów i inwestorów tą tematyką. Obecnie wzrasta realizacja budynków...

Prefabrykacja w projektowaniu i realizacji budynków jest bardzo nośnym tematem, co przekłada się na duże zainteresowanie wśród projektantów i inwestorów tą tematyką. Obecnie wzrasta realizacja budynków z prefabrykatów. Można wśród nich wyróżnić realizacje realizowane przy zastosowaniu elementów prefabrykowanych stosowanych od lat oraz takich, które zostały wyprodukowane na specjalne zamówienie do zrealizowania jednego obiektu.

dr inż. Gerard Brzózka Płyty warstwowe o wysokich wskaźnikach izolacyjności akustycznej – studium przypadku

Płyty warstwowe o wysokich wskaźnikach izolacyjności akustycznej – studium przypadku Płyty warstwowe o wysokich wskaźnikach izolacyjności akustycznej – studium przypadku

Płyty warstwowe zastosowane jako przegrody akustyczne stanowią rozwiązanie charakteryzujące się dobrymi własnościami izolacyjnymi głównie w paśmie średnich, jak również wysokich częstotliwości, przy obciążeniu...

Płyty warstwowe zastosowane jako przegrody akustyczne stanowią rozwiązanie charakteryzujące się dobrymi własnościami izolacyjnymi głównie w paśmie średnich, jak również wysokich częstotliwości, przy obciążeniu niewielką masą powierzchniową. W wielu zastosowaniach wyparły typowe rozwiązania przegród masowych (np. z ceramiki, elementów wapienno­ piaskowych, betonu, żelbetu czy gipsu), które cechują się kilkukrotnie wyższymi masami powierzchniowymi.

dr hab. inż. Tomasz Tański, Roman Węglarz Prawidłowy dobór stalowych elementów konstrukcyjnych i materiałów lekkiej obudowy w środowiskach korozyjnych według wytycznych DAFA

Prawidłowy dobór stalowych elementów konstrukcyjnych i materiałów lekkiej obudowy w środowiskach korozyjnych według wytycznych DAFA Prawidłowy dobór stalowych elementów konstrukcyjnych i materiałów lekkiej obudowy w środowiskach korozyjnych według wytycznych DAFA

W świetle zawiłości norm, wymogów projektowych oraz tych istotnych z punktu widzenia inwestora okazuje się, że problem doboru właściwego materiału staje się bardzo złożony. Materiały odpowiadające zarówno...

W świetle zawiłości norm, wymogów projektowych oraz tych istotnych z punktu widzenia inwestora okazuje się, że problem doboru właściwego materiału staje się bardzo złożony. Materiały odpowiadające zarówno za estetykę, jak i przeznaczenie obiektu, m.in. w budownictwie przemysłowym, muszą sprostać wielu wymogom technicznym oraz wizualnym.

Wybrane dla Ciebie

Odkryj trendy projektowania elewacji »

Odkryj trendy projektowania elewacji » Odkryj trendy projektowania elewacji »

Jak estetycznie wykończyć ściany - wewnątrz i na zewnątrz? »

Jak estetycznie wykończyć ściany - wewnątrz i na zewnątrz? » Jak estetycznie wykończyć ściany - wewnątrz i na zewnątrz? »

Przeciekający dach? Jak temu zapobiec »

Przeciekający dach? Jak temu zapobiec » Przeciekający dach? Jak temu zapobiec »

Dach biosolarny - co to jest? »

Dach biosolarny - co to jest? » Dach biosolarny - co to jest? »

Zobacz, które płyty termoizolacyjne skutecznie ochronią dom przed zimnem »

Zobacz, które płyty termoizolacyjne skutecznie ochronią dom przed zimnem » Zobacz, które płyty termoizolacyjne skutecznie ochronią dom przed zimnem »

Jak poprawić izolacyjność akustyczną ścian murowanych »

Jak poprawić izolacyjność akustyczną ścian murowanych »  Jak poprawić izolacyjność akustyczną ścian murowanych »

Wszystko, co powinieneś wiedzieć o izolacjach natryskowych »

Wszystko, co powinieneś wiedzieć o izolacjach natryskowych » Wszystko, co powinieneś wiedzieć o izolacjach natryskowych »

Przekonaj się, jak inni izolują pianką poliuretanową »

Przekonaj się, jak inni izolują pianką poliuretanową » Przekonaj się, jak inni izolują pianką poliuretanową »

Na czym polega fenomen technologii białej wanny »

Na czym polega fenomen technologii białej wanny » Na czym polega fenomen technologii białej wanny »

Podpowiadamy, jak wybrać system ociepleń

Podpowiadamy, jak wybrać system ociepleń Podpowiadamy, jak wybrać system ociepleń

Podpowiadamy, jak skutecznie przeprowadzić renowacje piwnicy »

Podpowiadamy, jak skutecznie przeprowadzić renowacje piwnicy » Podpowiadamy, jak skutecznie przeprowadzić renowacje piwnicy »

300% rozciągliwości membrany - TAK! »

300% rozciągliwości membrany - TAK! » 300% rozciągliwości membrany - TAK! »

Copyright © 2004-2019 Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Spółka komandytowa, nr KRS: 0000537655. Wszelkie prawa, w tym Autora, Wydawcy i Producenta bazy danych zastrzeżone. Jakiekolwiek dalsze rozpowszechnianie artykułów zabronione. Korzystanie z serwisu i zamieszczonych w nim utworów i danych wyłącznie na zasadach określonych w Zasadach korzystania z serwisu.
Portal Budowlany - Izolacje.com.pl

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim urządzeniu końcowym. W każdym momencie możesz dokonać zmiany ustawień przeglądarki dotyczących cookies. Nim Państwo zaczną korzystać z naszego serwisu prosimy o zapoznanie się z naszą polityką prywatności oraz Informacją o Cookies. Więcej szczegółów w naszej Polityce Prywatności oraz Informacji o Cookies. Administratorem Państwa danych osobowych jest Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Sp.K., nr KRS: 0000537655, z siedzibą w 04-112 Warszawa, ul. Karczewska 18, tel. +48 22 810-21-24, właściciel strony www.izolacje.com.pl. Twoje Dane Osobowe będą chronione zgodnie z wytycznymi polityki prywatności www.izolacje.com.pl oraz zgodnie z Rozporządzeniem Parlamentu Europejskiego i Rady (UE) 2016/679 z dnia 27 kwietnia 2016r i z Ustawą o ochronie danych osobowych Dz.U. 2018 poz. 1000 z dnia 10 maja 2018r.