Izolacje.com.pl

Zaawansowane wyszukiwanie

Nowoczesne rozwiązania elewacyjne

Modern façade solutions

Zróżnicowane rozwiązania ogniw PV na elewacjach budynków
Fot. [2-6]

Zróżnicowane rozwiązania ogniw PV na elewacjach budynków


Fot. [2-6]

Tradycyjna forma elewacji wynika z konstrukcji budynku (np. murowej, drewnianej, drewniano-murowe, kamiennej) i jest jej elementem. Może występować także w postaci licowanej współczesną wyprawą tynkarską czy okładziną (ceramiczną, drewnianą, kamienną, stalową, z tworzyw sztucznych), nierzadko z bogatymi detalami architektonicznymi, charakterystycznymi dla okresu powstania budynku, zmodyfikowanymi lub dodanymi obecnie. Do tej grupy można zaliczyć także współczesne rozwiązania ścian żelbetowych z surowymi elewacjami z betonu architektonicznego.

Zobacz także

RAXY Sp. z o.o. Nowoczesne technologie w ciepłych i zdrowych budynkach

Nowoczesne technologie w ciepłych i zdrowych budynkach Nowoczesne technologie w ciepłych i zdrowych budynkach

Poznaj innowacyjne, specjalistyczne produkty nadające przegrodom budowlanym odpowiednią trwałość, izolacyjność cieplną i szczelność. Jakie rozwiązania pozwolą nowe oraz remontowane chronić budynki i konstrukcje?

Poznaj innowacyjne, specjalistyczne produkty nadające przegrodom budowlanym odpowiednią trwałość, izolacyjność cieplną i szczelność. Jakie rozwiązania pozwolą nowe oraz remontowane chronić budynki i konstrukcje?

Purinova Sp. z o.o. Turkusowa drużyna Purios ciepło wita pomarańczowego bohatera

Turkusowa drużyna Purios ciepło wita pomarańczowego bohatera Turkusowa drużyna Purios ciepło wita pomarańczowego bohatera

Wy mówicie, a my słuchamy. Wskazujecie na nudne reklamy, inżynierów w garniturach, patrzących z każdego bilbordu i na Mister Muscle Budowlanki w ogrodniczkach. To wszystko już było, a wciąż zapomina się...

Wy mówicie, a my słuchamy. Wskazujecie na nudne reklamy, inżynierów w garniturach, patrzących z każdego bilbordu i na Mister Muscle Budowlanki w ogrodniczkach. To wszystko już było, a wciąż zapomina się o kimś bardzo ważnym.

Gór-Stal Płyty termPIR® na dach i ścianę

Płyty termPIR® na dach i ścianę Płyty termPIR® na dach i ścianę

Izolacja dachu jest bardzo ważną kwestią w przypadku stawiania domu czy też innego lokalu użytkowego. Nowoczesne płyty termoizolacyjne termPIR® można stosować nie tylko przy ociepleniu stropów i dachów,...

Izolacja dachu jest bardzo ważną kwestią w przypadku stawiania domu czy też innego lokalu użytkowego. Nowoczesne płyty termoizolacyjne termPIR® można stosować nie tylko przy ociepleniu stropów i dachów, ale także przy izolacji ścian. Warto prawidłowo wykonać ocieplenie domu, aby przypadkowo nie narazić się na wysokie rachunki za ogrzewanie.

 

O czym przeczytasz w artykule?

Abstrakt

  • Elewacje fotowoltaiczne PV
  • Elewacje szklane
  • Elewacje zielone i pozostałe rozewiązania

W artykule autorzy zaprezentowali najbardziej innowacyjne i oryginalne rodzaje fasad: fotowoltaiczne, szklane, zielone i multimedialne. Omówili sposoby ich mocowania. Wymienili zalety ich zastosowania.

Modern façade solutions

In the article, the authors describe the most innovative and original types of façades: photovoltaic, glass, green and multimedia. The modes of their fixing are described, and the advantages from their use listed.

Na aktualny podział elewacji wpływają m.in. coraz nowsze rozwiązania technologiczne. Współcześnie można wyróżnić elewacje (fasady):

  • tradycyjne (także z zastosowaniem nowoczesnych rozwiązań materiałowych
  • wentylowane,
  • szklane,
  • fotowoltaiczne,
  • zielone,
  • multimedialne czy dynamiczne (z ruchomymi elementami, lub zmieniające kształt bryły i wyraz architektoniczny).

Elewacje fotowoltaiczne PV

Obok podstawowych zadań stawianych przed ścianami zewnętrznymi, takimi jak bezpieczeństwo konstrukcji, ochrona przeciwpożarowa, cieplna i akustyczna, odpowiednie rozwiązania techniczne umożliwiają także pozyskiwanie energii elektrycznej. Takimi rozwiązaniami są elewacje fotowoltaiczne PV (ang. Photovoltaics), których trwałe zintegrowanie z powłoką fasady określa się w skrócie jako BiPV (ang. Building Integrated Photovoltaics).

Najważniejszą składową technologii BiPV są moduły fotowoltaiczne, najczęściej łączone w złożone struktury. Fasadowe systemy fotowoltaiczne składają się z hermetycznych paneli z ogniwami PV wraz z pozostałymi elementami uzupełniającymi. Zaliczamy do nich m.in. skrzynki przyłączowe, okablowanie stałoprądowe, inwertery, regulatory napięcia, falowniki bądź akumulatory [1]. W tego typu rozwiązaniach stosowane są moduły o zróżnicowanych wielkościach, barwach i układach geometrycznych. Ich rozwiązania i powiązanie z konstrukcją budynku może być wykonane w zróżnicowany sposób (FOT. 1-5).

W zależności od rodzaju zastosowanych rozwiązań elewacyjnych można wymienić zróżnicowane techniki integracji modułów fotowoltaicznych z fasadą. Pierwszą jest nałożenie ogniw PV. W tej sytuacji konieczne jest odpowiednie zamocowanie poszczególnych modułów do specjalnej konstrukcji wsporczej. Takie rozwiązanie nie jest korzystnym z punktu widzenia estetyki elewacji. Innym rozwiązaniem jest zastąpienie w istniejących remontowanych lub przebudowywanych budynkach elementów okładzinowych fasad (płyty HPL itp.) ogniwami PV. Z technicznego punktu, a także uwzględniając zróżnicowane wymagania wizualne i trwałościowe, rozwiązaniem jest bezpośrednia integracja ogniw PV z fasadą budynku.

Mocowanie elementów fotowoltaicznych może być realizowane w różny sposób. Jednym z częstszych rozwiązań jest ich stosowanie na konstrukcji wsporczej z wytworzeniem pustki powietrznej jako przestrzeni wentylowanej, minimalizującej możliwość powstawania kondensacji pary wodnej.

FOT. 1-5. Zróżnicowane rozwiązania ogniw PV na elewacjach budynków; fot.: [2-6]

FOT. 1-5. Zróżnicowane rozwiązania ogniw PV na elewacjach budynków; fot.: [2-6]

Zaletą zastosowania elementów fotowoltaicznych w rozwiązaniach fasad wentylowanych jest też obniżenie temperatury zastosowanych modułów, poprawiające ich wydajność, a także możliwość umiejscowienia okablowania i wyposażenia uzupełniającego w wolnej przestrzeni.

W przypadku stosowania konstrukcji słupowo-ryglowych (np. aluminiowych) elementy fotowoltaiczne stanowią wypełnienie szkieletu. W takim przypadku ogniwa PV są mocowane mechanicznie do profili nośnych, a także uszczelniane przy wykorzystaniu specjalnego szczeliwa silikonowego [1].

Innymi stosowanymi sposobami kotwienia są połączenia ogniw do konstrukcji ściennej za pomocą kotew lub konsol. Mogą się wówczas tworzyć się punktowe mostki termiczne, powstające poprzez przebicie warstwy ocieplenia elementem o wyższym współczynniku przewodzenia ciepła. Najczęściej wykorzystywane rozwiązania w postaci kształtowników stalowych lub aluminiowych mogą mieć negatywny wpływ na stan ochrony cieplnej ścian zewnętrznych oraz możliwość kondensacji pary wodnej w przegrodzie.

RYS. 1-3. Konsola ciepła AGS typu HI+ (λ = 4,3 W/(m·K)) (1-2) wraz z rozkładem izoterm (3); rys.: [7]

RYS. 1-3. Konsola ciepła AGS typu HI+ (λ = 4,3 W/(m·K)) (1-2) wraz z rozkładem izoterm (3); rys.: [7]

W celu minimalizacji negatywnego wpływu punktowych mostków cieplnych można stosować konsole np. z dodatkowymi elementami rozdzielającymi konstrukcje, poprawiając ich negatywny wpływ w postaci punktowych mostków cieplnych. Należy pamiętać, iż zastosowanie tego typu rozwiązań obok zagadnień ochrony cieplnej powinno spełniać także wymagania ochrony przeciwpożarowej. Przykład opisywanego rozwiązania przedstawiono na RYS. 1-3 i RYS. 4.

Rozkład izoterm w przykładowej przegrodzie pozwala na ocenę jakości cieplnej zastosowanych rozwiązań projektowych [7]. Obok konieczności ograniczenia negatywnego wpływu mostków termicznych na stan ochrony cieplnej fasad fotowoltaicznych ważną kwestią jest izolacyjność cieplna stosowanych elementów pełnych PV. Materiały BiPV zapewniają nierzadko wartości współczynnika przenikania ciepła na poziomie zbliżonym do izolacyjności cieplnej konwencjonalnego podwójnego szklenia z warstwą niskoemisyjną, co jest szczególnie istotne w przypadku fasad z przestrzenią niewentylowaną lub słabo wentylowaną [1]. 

RYS. 4. Rozkład izoterm ściany z konsolą zimną aluminiową [λ = 200 W/(m·K)]; rys.: [7]

RYS. 4. Rozkład izoterm ściany z konsolą zimną aluminiową [λ = 200 W/(m·K)]; rys.: [7]

Elewacje szklane

Fasada szklana powinna spełniać wszystkie funkcje ściany zewnętrznej, nie stanowiąc jednakże konstrukcji nośnej budynku. Wśród elewacji szklanych wyróżnia się dwa zasadnicze typy: wykonane w systemie ramowym lub systemie bezramowym.

  • W systemie ramowym tafla szklana jest osadzana w profilach stalowych aluminiowych.
  • W systemach bezramowych przeszkleń strukturalnych tafla szklana jest mocowana punktowo do niezależnej konstrukcji nośnej [9].

Do najpopularniejszych rozwiązań elewacji szklanych należy fasada słupowo-ryglowa, która składa się z połączonych ze sobą w sposób trwały pionowych i poziomych elementów (słupów i rygli), zakotwionych bezpośrednio do konstrukcji nośnej budynku.

Fasady szklane możemy podzielić na fasady strukturalne i fasady półstrukturalne.

  • Fasada strukturalna jest rozwiązaniem, w którym wypełnienie jest zamocowane do ram aluminiowych za pomocą klejenia. Ramy mocowane są do konstrukcji fasady (słupów, rygli) za pomocą elementów niewidocznych od zewnątrz.
  • Fasada półstrukturalna (fasada semistrukturalna) jest rozwiązaniem, gdzie wypełnienie mocowane jest za pomocą niewidocznych od zewnątrz łapek mocujących. Od strony zewnętrznej widoczna jest jedynie fuga silikonowa.

Fasady szklane mogą być także mocowane do konstrukcji budynku punktowo. Rozwiązanie takie bazuje na pojedynczych uchwytach mocowanych do konstrukcji nośnej.

Rozwiązania materiałowo-konstrukcyjne fasad są stosunkowo dobrze znane i szeroko stosowane przez architektów i projektantów konstrukcji. Nieco więcej problemów dostarcza strona "fizykalnych" rozwiązań fasad szklanych.

Jednymi z podstawowych parametrów charakteryzujących szklenie fasadowe są współczynnik przepuszczalności energii słonecznej g [%], współczynnik przepuszczalności światła TL (lub LT) [%], a także współczynnik przenikania ciepła U [W/(m2·K)].

Ze względu na zapewnienie odpowiednich wymagań mikroklimatu wnętrz (komfort cieplny latem) najistotniejszymi parametrami są dwa pierwsze ze wskazanych powyżej. Na ich wielkość wpływają rodzaj i charakterystyka zastosowanego przeszklenia. Współcześnie stosowane są różne sposoby ograniczające ilość promieniowania słonecznego do wnętrza budynku. Jednym z nich jest szklenie elektrochromatyczne, które "ciemnieje" przy zwiększonym nasłonecznieniu, mogąc ograniczać zużycie energii elektrycznej na klimatyzację w okresach letnich do 30% [10]. Szkło elektrochromatyczne wymaga użycia na powłoce tafli materiałów, które zmieniają swoje właściwości na skutek działania pola elektrycznego. To ich zdolność do pozyskiwania i oddawania jonów decyduje o przepuszczalności światła [10].

We wszystkich rodzajach budynków współczynnik przepuszczalności energii całkowitej promieniowania słonecznego okien oraz przegród szklanych i przezroczystych g liczony według wzoru:

gdzie:

gn - współczynnik całkowitej przepuszczalności energii promieniowania słonecznego dla typu oszklenia,

ƒC - współczynnik redukcji promieniowania ze względu na zastosowane urządzenia przeciwsłoneczne, w okresie letnim nie może być większy niż 0,35.

Wartości współczynnika całkowitej przepuszczalności energii promieniowania słonecznego dla typu oszklenia gn należy przyjmować na podstawie deklaracji właściwości użytkowych okna. W przypadku braku danych wartość gn określa TABELA 1

TABELA 1. Wartości współczynnika całkowitej przepuszczalności energii promieniowania słonecznego dla typu oszklenia [11]

TABELA 1. Wartości współczynnika całkowitej przepuszczalności energii promieniowania słonecznego dla typu oszklenia [11]

Wartości współczynnika redukcji promieniowania ze względu na zastosowane urządzenia przeciwsłoneczne ƒC określa TABELA 2.

TABELA 2. Wartości współczynnika redukcji promieniowania ze względu na zastosowane urządzenia przeciwsłoneczne ƒC [11]

TABELA 2. Wartości współczynnika redukcji promieniowania ze względu na zastosowane urządzenia przeciwsłoneczne ƒC [11]

W przypadku rozwiązań fasad, obejmujących swoją powierzchnią stosunkowo duży obszar przegród zewnętrznych powinny one charakteryzować się współczynnikami przenikania ciepła poniżej 0,9 W/(m2·K). Tego typu rozwiązania, w przypadku nieprawidłowego ich doboru bądź wykonania, mogą powodować duże straty ciepła przez przenikanie. Fasady o współczynniku przenikania ciepła nie przekraczającym 0,6 W/(m2·K) (współczynnik uwzględniający zarówno przeszklenia, jak i konstrukcję fasady szklanej) traktuje się jako rozwiązania energooszczędne.

Obok izolacyjności termicznej fasady szklanej należy także zapewnić odpowiednie rozwiązania i właściwy poziom wykonawstwa na styku połączeń konstrukcji i przeszklenia w miejscach szczególnych, np. w obrębie dachu lub tarasu. W takich przypadkach wymagane jest wykonanie szczegółowych obliczeń numerycznych, potwierdzających słuszność założonych rozwiązań projektowych w zakresie minimalizacji negatywnego oddziaływania mostków termicznych i powstawania kondensacji pary wodnej na wewnętrznych powierzchniach przegród budowlanych i w ich wnętrzu.

Elewacje zielone

Zielone fasady powstały wskutek zastosowania nowych rozwiązań materiałowo-technologicznych w połączeniu z wymogami budownictwa ekologicznego. Ze względu na stosowanie zróżnicowanej roślinności nazywane są także "żywymi elewacjami".

Przyjęcie rozwiązań projektowych w postaci zielonych fasad ma wiele zalet. Rozwiązania fasad zielonych wpływają bowiem na poprawę warunków mikroklimatu zewnętrznego wskutek ograniczenia zanieczyszczeń powietrza i wody, a także zmniejszenia różnicy temperatury pomiędzy temperaturą powierzchni ściany zewnętrznej a temperaturą powietrza. Ma to związek m.in. z ograniczeniem promieniowania cieplnego ściany.

Zastosowanie warstwy roślinności na elewacji budynku może powodować korzystne zmiany w ochronie akustycznej budynków. Rozwiązania te mają dodatkowo korzystny wpływ na izolacyjność cieplną ścian zewnętrznych, zarówno w odniesieniu do zagadnień ochrony cieplnej zimą (ograniczenie strat ciepła), jak i ochrony cieplnej latem (ograniczenie efektu przegrzewania pomieszczeń).

Na podstawie badań zróżnicowanych zespołów naukowych, opisanych przez [12], można stwierdzić, że zastosowanie zielonych fasad powoduje:

  • obniżenie temperatury fasady latem wskutek zacienienia o maks. 30°C,
  • obniżenie temperatury fasady latem wskutek parowania wody od 2 do 10°C,
  • obniżenie temperatury powietrza zewnętrznego w obrębie roślinności o 0,8-1,3°C,
  • wzrost temperatury powierzchni ściany zimą za roślinnością o 3-7°C,
  • minimalizacja naprężeń termicznych elewacji wskutek ograniczenia temperatury jej powierzchni,
  • zmniejszenie zużycia energii pierwotnej wskutek ograniczenia energii chłodu latem,
  • produkcja tlenu w ilości do 1,7 kg·O2/m2·a,
  • związanie i filtracja zanieczyszczeń powietrza w ilości 2,3 kg·CO2/m2·a dla roślinności o szerokości 20 cm.

Istnieją zróżnicowane koncepcje umożliwiające realizację fasad zielonych. Jedną z nich jest koncepcja "żywej ściany". Rozwiązanie to polega na zamocowaniu do ściany zewnętrznej stelażu, do którego przytwierdza się materiał, w którym ukorzenia się roślinność. Jest ona podlewana przy wykorzystaniu systemów nawadniających. Występują dwie podstawowe metody tworzenia żywych fasad.

  • Pierwsza wykorzystuje trzywarstwowy system, na który składają się kolejno: warstwa PVC, warstwa filcu i metalowa konstrukcja. Woda wzbogacona o substancje odżywcze jest przepuszczana przez całą wysokość ściany, a jej nadwyżka zbierana jest na samym dole i specjalnym systemem transportowana jest z powrotem na górę ściany.
  • Innym rozwiązaniem jest zastosowanie kasetonów wykonanych z odpornego na erozję metalu lub z tworzywa sztucznego [13].

Fasady zielone mogą zostać wykonane w oparciu o zróżnicowane warianty rozwiązań (FOT. 8-10). Najprostszą konstrukcję stanowią stalowe linki mocowane do elewacji za pomocą specjalnych kotew. Inną możliwością jest umieszczenie roślinności na elewacjach skonstruowanych na zasadzie rusztu metalowego.

FOT. 8-10. Zróżnicowane rozwiązania fasad zielonych; fot. [13], [15]

FOT. 8-10. Zróżnicowane rozwiązania fasad zielonych; fot. [13], [15]

Inny podział systemów budowy pionowych ogrodów, uwzględniający sposób sadzenia roślin uwzględnia: system filcowy, system modułowy (panelowy) i system kontenerowy [14].

  • System filcowy wykorzystuje zdolność mat zbudowanych ze splecionych ze sobą włókien syntetycznych do akumulacji wody. Maty te są połączone wzajemnie tworząc kieszenie, w których sadzone są rośliny.
  • W przypadku systemów modułowych należy wykonać konstrukcję nośną, do której mocowane są panele z filcem, a elewacja zabezpieczana jest izolacją przeciwwodną o właściwościach przeciwkorzennych.
  • Systemy kontenerowe zwane są także systemami hybrydowymi. Rozwiązanie to wymaga stosunkowo wytrzymałych konstrukcji. System jest rozwiązaniem kaskadowym i polega na umieszczeniu pojemników z roślinnością na poszczególnych kondygnacjach. Istotną kwestią z punktu widzenia utrzymania roślinności jest system nawadniający. Prawidłowo wykonany, z systemem rur doprowadzających wodę, minimalizuje możliwość wbijania się korzeni w konstrukcję ściany.

Pozostałe rozwiązania

Jednym z ciekawych rozwiązań fasad są elewacje multimedialne. Powstają one z wykorzystaniem siatek metalowych z wbudowanymi diodami LED, zawieszanych w postaci kurtyny na elewacji budynku. Dzięki nim możliwe jest przekazywanie informacji graficznej w formie napisów, znaków lub obrazów, ruchomych lub nieruchomych, w pełnej palecie barw. Jakość wyświetlanego obrazu zależy od pionowego rozstawu siatek i poziomego odstępu pomiędzy poszczególnymi diodami [9]. Instalowane systemy pozwalają na dynamiczne sterowanie podświetleniem. Stosowane są ochrony i zabezpieczenia przed niską i wysoką temperaturą. Zamocowane na Stadionie Narodowym oprawy LED przeznaczone są do pracy w zakresie od –20°C do +40°C. W momencie wystąpienia temperatury krytycznej system wyłącza oświetlenie, które zostaje przywrócone ponownie po jej ustąpieniu. Możliwe także jest także programowanie scenariuszy świetlnych [16].

Jednym z największych ekranów LED w Polsce jest fasada Centrum Spotkania Kultur w Lublinie. W tym wypadku punkty świetlne LED umieszczone są na stalowych linkach, za mleczną fasadą, przekrywającą właściwą elewację.

Fasady multimedialne mogą być zintegrowane z systemami wytwarzającymi energię. Przykładem takiego obiektu jest budynek Greenpix w Pekinie (FOT. 11), gdzie frontową elewację wyposażono w instalację medialną LED i zintegrowane wielowarstwowe ogniwa fotowoltaiczne, połączone warstwowo ze szkłem (tzw. ogniwa BIPV).

FOT. 11. Fasada multimedialna Greenpix w Pekinie; fot. [17]

FOT. 11. Fasada multimedialna Greenpix w Pekinie; fot. [17]

Umożliwia to pozyskanie energii w ciągu dnia na pokrycie zapotrzebowania fasady medialnej nocą. Kwadratowe płyty elewacyjne mają dodatkowo nadruk w formie małych kwadratów z kilkoma rodzajami modułów graficznych [17].

Innym rozwiązaniem są elewacje dynamiczne. Od dawna mobilność fasad wyznaczały takie elementy jak markizy, okiennice i żaluzje. Dzisiejsze technologie umożliwiają projektowanie i realizację całkowicie zmieniających się elewacji. Najpopularniejsze na tym polu są ruchome fasady, które reagują na zmieniające się pory dnia, temperaturę i nasłonecznienie.

Jednym z pierwszych budynków, w którym zastosowano fasady reagujące na zewnętrzne środowisko, jest gmach Instytut Świata Arabskiego w Paryżu, gdzie na południowej fasadzie obiektu zastosowany został system zacieniający. Za szkłem ustawiono kwadratowe pola stalowych soczewek, zamykające się przy dużym nasłonecznieniu.

Systemy osłon mogą jednak przyjmować różne formy, od klasycznych lamelowanych żaluzji, poruszających się wokół własnej osi, przez zwijane rolety do bardzo skomplikowanych geometrycznie wielopłaszczyznowych systemów, które składają się lub rozkładają, reagując na zmiany oświetlenia. Przykładem są mobilne wieże w Abu Zabi, wyposażone w ruchomą powłokę, złożoną z przestrzennych elementów (trójkątów). Powłoka (ekran) działa jako ściana osłonowa, zamocowana na niezależnej ramie oddalonej dwa metry od budynku. Każdy trójkąt pokryty jest powłoką z włókna szklanego i zaprogramowany do reagowania na ruch słońca w taki sposób, aby zmniejszać intensywność ciepła i blask. Osłona w całości zamyka się w godzinach wieczornych [18].

Literatura

  1. www.muratorplus.pl/technika/fasady/fotowoltaika-nowy-element­‑projektowania-fasad-aa-rnBF-NQ3e-GqTj.html
  2. www.pvdatabase.org
  3. www.mark-magazine.com
  4. www.baunetzwissen.de
  5. www.ligocka103.pl
  6. www.geb-info.de
  7. www.gramwzielone.pl/energia-sloneczna/28214/moduly-pv-na­‑elewacjach-budynkow-analiza-rozwiazan-dostepnych-na-rynku
  8. www: planungshilfen und details stoventec artline-photovoltaik­‑fassadensysteme
  9. J. Adamowski, "Nowoczesne elewacje budynków projektowane zgodnie z zasadami inżynierii fasad", "Materiały budowlane" 9/2012, s. 2-6.
  10. T. Malkowski, "Skóra która żyje. Warsztat architekta", "Fasady", wyd. Murator, 2018.
  11. Rozporządzenie Ministra Infrastruktury w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie z dnia 12 kwietnia 2002 r. (DzU Nr 75, poz. 690) wraz z późniejszymi zmianami.
  12. J. Dettmar, N. Pfoser, M. Sieber, Gutachten fassadenbegrünung gutachten über quartiersorientierte unterstützungsansätze von fassadenbegrünungen für das Ministerium für Klimaschutz, Umwelt, Landwirtschaft, Natur- und Verbraucherschutz (MKUNLV) NRW tu Darmstadt, Darmstadt 2016.
  13. www.architekturakrajobrazu.info
  14. www.inzynierbudownictwa.pl/technika,materialy_i_technologie,artykul,green_walls czyli_zielone_sciany_jako_ekologiczne_przegrody_budowlane-cz_I, 6612
  15. www.vertuss.com
  16. "Multimedialne fasady z oświetleniem LED", artykuł sponsorowany firmy OSRAM,
  17. "Materiały Budowlane" 9/2012, str. 8-9.
  18. K. Szmuryło, "Fasada inspirowana technologiami", "Świat szkła" 4/2015.
  19. www.infoarchitekta.pl/artykuly:4-projekty:5730-czule-wieze-al-bahar.html.

Chcesz być na bieżąco? Zapisz się do naszego newslettera!

Komentarze

Powiązane

mgr inż. Maciej Rokiel System ETICS – dokumentacja projektowa prac ociepleniowych (cz. 3)

System ETICS – dokumentacja projektowa prac ociepleniowych (cz. 3) System ETICS – dokumentacja projektowa prac ociepleniowych (cz. 3)

Artykuł jest kontynuacją artykułów opublikowanych w numerach 3/2022 i 4/2022 miesięcznika „IZOLACJE”.

Artykuł jest kontynuacją artykułów opublikowanych w numerach 3/2022 i 4/2022 miesięcznika „IZOLACJE”.

dr inż. Mariusz Garecki Wykonywanie systemów ociepleń ETICS na zawilgoconych budynkach

Wykonywanie systemów ociepleń ETICS na zawilgoconych budynkach Wykonywanie systemów ociepleń ETICS na zawilgoconych budynkach

Prowadzone od wielu lat rewitalizacje, remonty, przebudowy i rozbudowy istniejących budynków nieodłącznie powiązane są z kwestiami podniesienia ich efektywności energetycznej, oczywiście w miarę możliwości....

Prowadzone od wielu lat rewitalizacje, remonty, przebudowy i rozbudowy istniejących budynków nieodłącznie powiązane są z kwestiami podniesienia ich efektywności energetycznej, oczywiście w miarę możliwości. Dotyczy to zarówno obiektów wpisanych do rejestru zabytków, jak i tych, które znajdują się w strefach ochrony konserwatorskiej i poza nimi. Systematyczny wzrost cen nośników energii, a na przestrzeni ostatniego roku – wzrost wręcz lawinowy, będzie wymuszał na inwestorach konieczność instalacji...

dr inż. Krzysztof Pawłowski prof. PBŚ Podstawowe zagadnienia fizyki cieplnej budowli w aspekcie wymagań prawnych (cz. 1)

Podstawowe zagadnienia fizyki cieplnej budowli w aspekcie wymagań prawnych (cz. 1) Podstawowe zagadnienia fizyki cieplnej budowli w aspekcie wymagań prawnych (cz. 1)

Od wielu lat przepisy prawne związane z procesami projektowania, wznoszenia i eksploatacji budynków wymuszają takie rozwiązania technologiczne i organizacyjne, w wyniku których nowo wznoszone budynki zużywają...

Od wielu lat przepisy prawne związane z procesami projektowania, wznoszenia i eksploatacji budynków wymuszają takie rozwiązania technologiczne i organizacyjne, w wyniku których nowo wznoszone budynki zużywają w trakcie eksploatacji coraz mniej energii na ogrzewanie, wentylację i przygotowanie ciepłej wody użytkowej. Zmiany maksymalnej wartości współczynnika przenikania ciepła Umax. (dawniej kmax.) wpływają na wielkość zużycia energii w trakcie eksploatacji budynków.

mgr inż. Ireneusz Stachura Jak eliminować mostki cieplne w budynku?

Jak eliminować mostki cieplne w budynku? Jak eliminować mostki cieplne w budynku?

Planując budynek, czy to mieszkalny, czy o innej funkcji (np. biurowiec, hotel, szpital), projektant tworzy konkretną bryłę, która ma spełnić szereg funkcji – wizualną, funkcjonalną, ekonomiczną w fazie...

Planując budynek, czy to mieszkalny, czy o innej funkcji (np. biurowiec, hotel, szpital), projektant tworzy konkretną bryłę, która ma spełnić szereg funkcji – wizualną, funkcjonalną, ekonomiczną w fazie realizacji i eksploatacji – i zapewnić właściwe warunki do przebywania w tym budynku ludzi.

dr inż. Krzysztof Pawłowski prof. PBŚ Kształtowanie układu warstw materiałowych podłóg na stropach w budynkach

Kształtowanie układu warstw materiałowych podłóg na stropach w budynkach Kształtowanie układu warstw materiałowych podłóg na stropach w budynkach

Dobór układu warstw materiałowych podłóg na stropach w budynkach nie powinien być przypadkowy, ale oparty na szczegółowych obliczeniach i analizach w zakresie nośności i wytrzymałości, wymagań cieplno-wilgotnościowych,...

Dobór układu warstw materiałowych podłóg na stropach w budynkach nie powinien być przypadkowy, ale oparty na szczegółowych obliczeniach i analizach w zakresie nośności i wytrzymałości, wymagań cieplno-wilgotnościowych, izolacyjności akustycznej oraz ochrony przeciwpożarowej.

dr inż. Andrzej Konarzewski Panele architektoniczne do budownictwa komercyjnego

Panele architektoniczne do budownictwa komercyjnego Panele architektoniczne do budownictwa komercyjnego

W Europie do opisywania konstrukcji ścian osłonowych z płyt warstwowych w obustronnej okładzinie stalowej z rdzeniem izolacyjnym można wykorzystywać zapisy podane w normie PN-EN 13830.

W Europie do opisywania konstrukcji ścian osłonowych z płyt warstwowych w obustronnej okładzinie stalowej z rdzeniem izolacyjnym można wykorzystywać zapisy podane w normie PN-EN 13830.

mgr inż. Julia Blazy, prof. dr hab. inż. Łukasz Drobiec, dr hab. inż. arch. Rafał Blazy prof. PK Zastosowanie fibrobetonu z włóknami polipropylenowymi w przestrzeniach publicznych

Zastosowanie fibrobetonu z włóknami polipropylenowymi w przestrzeniach publicznych Zastosowanie fibrobetonu z włóknami polipropylenowymi w przestrzeniach publicznych

Beton to materiał o dużej wytrzymałości na ściskanie, ale około dziesięciokrotnie mniejszej wytrzymałości na rozciąganie. Ponadto charakteryzuje się kruchym pękaniem i nie pozwala na przenoszenie naprężeń...

Beton to materiał o dużej wytrzymałości na ściskanie, ale około dziesięciokrotnie mniejszej wytrzymałości na rozciąganie. Ponadto charakteryzuje się kruchym pękaniem i nie pozwala na przenoszenie naprężeń po zarysowaniu.

Redakcja miesięcznika IZOLACJE Tynki gipsowe w pomieszczeniach mokrych i łazienkach

Tynki gipsowe w pomieszczeniach mokrych i łazienkach Tynki gipsowe w pomieszczeniach mokrych i łazienkach

Dobór tynku wewnętrznego do pomieszczeń mokrych lub narażonych na wilgoć nie jest prosty. Takie pomieszczenia mają specjalne wymagania, a rodzaj pokrycia ścian wewnętrznych powinien uwzględniać trudne...

Dobór tynku wewnętrznego do pomieszczeń mokrych lub narażonych na wilgoć nie jest prosty. Takie pomieszczenia mają specjalne wymagania, a rodzaj pokrycia ścian wewnętrznych powinien uwzględniać trudne warunki panujące wewnątrz kuchni czy łazienki. Na szczęście technologia wychodzi inwestorom naprzeciw i efektywne położenie tynku gipsowego w mokrych i wilgotnych pomieszczeniach jest możliwe.

mgr inż. Maciej Rokiel System ETICS – skutki braku analizy dokumentacji projektowej (cz. 4)

System ETICS – skutki braku analizy dokumentacji projektowej (cz. 4) System ETICS – skutki braku analizy dokumentacji projektowej (cz. 4)

Artykuł jest kontynuacją publikacji zamieszczonych kolejno w numerach 3/2022, 4/2022 i 6/2022 miesięcznika IZOLACJE. W tej części skupimy się na tym, jak skutki braku analizy czy wręcz nieprzeczytania...

Artykuł jest kontynuacją publikacji zamieszczonych kolejno w numerach 3/2022, 4/2022 i 6/2022 miesięcznika IZOLACJE. W tej części skupimy się na tym, jak skutki braku analizy czy wręcz nieprzeczytania dokumentacji projektowej mogą wpłynąć na uszkodzenia systemu. Przez „przeczytanie” należy tu także rozumieć zapoznanie się z tekstem kart technicznych stosowanych materiałów.

dr inż. Pavel Zemene, przewodniczący Stowarzyszenia EPS w Republice Czeskiej Bezpieczeństwo pożarowe złożonych systemów izolacji cieplnej ETICS

Bezpieczeństwo pożarowe złożonych systemów izolacji cieplnej ETICS Bezpieczeństwo pożarowe złożonych systemów izolacji cieplnej ETICS

Do bezpieczeństwa pożarowego w budynkach przywiązuje się niezmiernie dużą wagę. Zagadnienie to jest ważne nie tylko ze względu na bezpieczeństwo użytkowników budynku, ale także ze względu na bezpieczną...

Do bezpieczeństwa pożarowego w budynkach przywiązuje się niezmiernie dużą wagę. Zagadnienie to jest ważne nie tylko ze względu na bezpieczeństwo użytkowników budynku, ale także ze względu na bezpieczną eksploatację budynków i ochronę mienia. W praktyce materiały i konstrukcje budowlane muszą spełniać szereg wymagań, związanych między innymi z podstawowymi wymaganiami dotyczącymi stabilności konstrukcji i jej trwałości, izolacyjności termicznej i akustycznej, a także higieny i zdrowia, czy wpływu...

mgr inż. Maciej Rokiel Jak układać płytki wielkoformatowe?

Jak układać płytki wielkoformatowe? Jak układać płytki wielkoformatowe?

Wraz ze wzrostem wielkości płytek (długości ich krawędzi) wzrastają wymogi dotyczące jakości materiałów, precyzji przygotowania podłoża oraz reżimu technologicznego wykonawstwa.

Wraz ze wzrostem wielkości płytek (długości ich krawędzi) wzrastają wymogi dotyczące jakości materiałów, precyzji przygotowania podłoża oraz reżimu technologicznego wykonawstwa.

dr inż. Krzysztof Pawłowski prof. PBŚ Właściwości cieplno-wilgotnościowe materiałów budowlanych (cz. 2)

Właściwości cieplno-wilgotnościowe materiałów budowlanych (cz. 2) Właściwości cieplno-wilgotnościowe materiałów budowlanych (cz. 2)

Proces wymiany ciepła przez przegrody budowlane jest nieustalony w czasie, co wynika ze zmienności warunków klimatycznych na zewnątrz budynku oraz m.in. nierównomierności pracy urządzeń grzewczych. Opis...

Proces wymiany ciepła przez przegrody budowlane jest nieustalony w czasie, co wynika ze zmienności warunków klimatycznych na zewnątrz budynku oraz m.in. nierównomierności pracy urządzeń grzewczych. Opis matematyczny tego procesu jest bardzo złożony, dlatego w większości rozwiązań inżynierskich stosuje się uproszczony model ustalonego przepływu ciepła.

mgr inż. Jarosław Stankiewicz Zastosowanie kruszyw lekkich w warstwach izolacyjnych

Zastosowanie kruszyw lekkich w warstwach izolacyjnych Zastosowanie kruszyw lekkich w warstwach izolacyjnych

Kruszywa lekkie są materiałem znanym od starożytności. Aktualnie wyrób ten ma liczną grupę odbiorców nie tylko we współczesnym budownictwie, ale i w innych dziedzinach gospodarki. Spowodowane to jest licznymi...

Kruszywa lekkie są materiałem znanym od starożytności. Aktualnie wyrób ten ma liczną grupę odbiorców nie tylko we współczesnym budownictwie, ale i w innych dziedzinach gospodarki. Spowodowane to jest licznymi zaletami tego wyrobu, takimi jak wysoka izolacyjność cieplna, niska gęstość, niepalność i wysoka mrozoodporność, co pozwala stosować go zarówno w budownictwie, ogrodnictwie, jak i innych branżach.

dr inż. Andrzej Konarzewski, mgr Marek Skowron, mgr inż. Mateusz Skowron Przegląd metod recyklingu i utylizacji odpadowej pianki poliuretanowo‑poliizocyjanurowej powstającej przy produkcji wyrobów budowlanych

Przegląd metod recyklingu i utylizacji odpadowej pianki poliuretanowo‑poliizocyjanurowej powstającej przy produkcji wyrobów budowlanych Przegląd metod recyklingu i utylizacji odpadowej pianki poliuretanowo‑poliizocyjanurowej powstającej przy produkcji wyrobów budowlanych

W trakcie szerokiej i różnorodnej produkcji wyrobów budowlanych ze sztywnej pianki poliuretanowo/poliizocyjanurowej powstaje stosunkowo duża ilość odpadów, które muszą zostać usunięte. Jak przeprowadzić...

W trakcie szerokiej i różnorodnej produkcji wyrobów budowlanych ze sztywnej pianki poliuretanowo/poliizocyjanurowej powstaje stosunkowo duża ilość odpadów, które muszą zostać usunięte. Jak przeprowadzić recykling odpadów z pianki?

Joanna Szot Rodzaje stropów w domach jednorodzinnych

Rodzaje stropów w domach jednorodzinnych Rodzaje stropów w domach jednorodzinnych

Strop dzieli budynek na kondygnacje. Jednak to nie jedyne jego zadanie. Ponadto ten poziomy element konstrukcyjny usztywnia konstrukcję domu i przenosi obciążenia. Musi także stanowić barierę dla dźwięków...

Strop dzieli budynek na kondygnacje. Jednak to nie jedyne jego zadanie. Ponadto ten poziomy element konstrukcyjny usztywnia konstrukcję domu i przenosi obciążenia. Musi także stanowić barierę dla dźwięków i ciepła.

P.P.H.U. EURO-MIX sp. z o.o. EURO-MIX – zaprawy klejące w systemach ociepleń

EURO-MIX – zaprawy klejące w systemach ociepleń EURO-MIX – zaprawy klejące w systemach ociepleń

EURO-MIX to producent chemii budowlanej. W asortymencie firmy znajduje się obecnie ponad 30 produktów, m.in. kleje, tynki, zaprawy, szpachlówki, gładzie, system ocieplania ścian na wełnie i na styropianie....

EURO-MIX to producent chemii budowlanej. W asortymencie firmy znajduje się obecnie ponad 30 produktów, m.in. kleje, tynki, zaprawy, szpachlówki, gładzie, system ocieplania ścian na wełnie i na styropianie. Zaprawy klejące EURO-MIX przeznaczone są do przyklejania wełny lub styropianu do podłoża z cegieł ceramicznych, betonu, tynków cementowych i cementowo­-wapiennych, gładzi cementowej, styropianu i wełny mineralnej w temperaturze od 5 do 25°C.

dr inż. Krzysztof Pawłowski prof. PBŚ Układy materiałowe wybranych przegród zewnętrznych w aspekcie wymagań cieplnych (cz. 3)

Układy materiałowe wybranych przegród zewnętrznych w aspekcie wymagań cieplnych (cz. 3) Układy materiałowe wybranych przegród zewnętrznych w aspekcie wymagań cieplnych (cz. 3)

Rozporządzenie w sprawie warunków technicznych [1] wprowadziło od 31 grudnia 2020 r. nowe wymagania dotyczące izolacyjności cieplnej poprzez zaostrzenie wymagań w zakresie wartości granicznych współczynnika...

Rozporządzenie w sprawie warunków technicznych [1] wprowadziło od 31 grudnia 2020 r. nowe wymagania dotyczące izolacyjności cieplnej poprzez zaostrzenie wymagań w zakresie wartości granicznych współczynnika przenikania ciepła Uc(max) [W/(m2·K)] dla przegród zewnętrznych oraz wartości granicznych wskaźnika zapotrzebowania na energię pierwotną EP [kWh/(m2·rok)] dla całego budynku. Jednak w rozporządzeniu nie sformułowano wymagań w zakresie ograniczenia strat ciepła przez złącza przegród zewnętrznych...

mgr inż. arch. Tomasz Rybarczyk Zastosowanie keramzytu w remontowanych stropach i podłogach na gruncie

Zastosowanie keramzytu w remontowanych stropach i podłogach na gruncie Zastosowanie keramzytu w remontowanych stropach i podłogach na gruncie

Są sytuacje i miejsca w budynku, w których nie da się zastosować termoizolacji w postaci wełny mineralnej lub styropianu. Wówczas w rozwiązaniach występują inne, alternatywne materiały, które nadają się...

Są sytuacje i miejsca w budynku, w których nie da się zastosować termoizolacji w postaci wełny mineralnej lub styropianu. Wówczas w rozwiązaniach występują inne, alternatywne materiały, które nadają się również do standardowych rozwiązań. Najczęściej ma to miejsce właśnie w przypadkach, w których zastosowanie styropianu i wełny się nie sprawdzi. Takim materiałem, który może w pewnych miejscach zastąpić wiodące materiały termoizolacyjne, jest keramzyt. Ten materiał ma wiele właściwości, które powodują,...

Sebastian Malinowski Kleje żelowe do płytek – właściwości i zastosowanie

Kleje żelowe do płytek – właściwości i zastosowanie Kleje żelowe do płytek – właściwości i zastosowanie

Kleje żelowe do płytek cieszą się coraz większą popularnością. Produkty te mają świetne parametry techniczne, umożliwiają szybki montaż wszelkiego rodzaju okładzin ceramicznych na powierzchni podłóg oraz...

Kleje żelowe do płytek cieszą się coraz większą popularnością. Produkty te mają świetne parametry techniczne, umożliwiają szybki montaż wszelkiego rodzaju okładzin ceramicznych na powierzchni podłóg oraz ścian.

dr inż. Krzysztof Pawłowski prof. PBŚ Projektowanie cieplne przegród stykających się z gruntem

Projektowanie cieplne przegród stykających się z gruntem Projektowanie cieplne przegród stykających się z gruntem

Dla przegród stykających się z gruntem straty ciepła przez przenikanie należą do trudniejszych w obliczeniu. Strumienie cieplne wypływające z ogrzewanego wnętrza mają swój udział w kształtowaniu rozkładu...

Dla przegród stykających się z gruntem straty ciepła przez przenikanie należą do trudniejszych w obliczeniu. Strumienie cieplne wypływające z ogrzewanego wnętrza mają swój udział w kształtowaniu rozkładu temperatur w gruncie pod budynkiem i jego otoczeniu.

Jacek Sawicki, konsultacja dr inż. Szczepan Marczyński – Clematis Źródło Dobrych Pnączy, prof. Jacek Borowski Roślinne izolacje elewacji

Roślinne izolacje elewacji Roślinne izolacje elewacji

Naturalna zieleń na elewacjach obecna jest od dawna. W formie pnączy pokrywa fasady wielu średniowiecznych budowli, wspina się po murach secesyjnych kamienic, nierzadko zdobi frontony XX-wiecznych budynków...

Naturalna zieleń na elewacjach obecna jest od dawna. W formie pnączy pokrywa fasady wielu średniowiecznych budowli, wspina się po murach secesyjnych kamienic, nierzadko zdobi frontony XX-wiecznych budynków jednorodzinnych czy współczesnych, nowoczesnych obiektów budowlanych, jej istnienie wnosi wyjątkowe zalety estetyczne i użytkowe.

mgr inż. Wojciech Rogala Projektowanie i wznoszenie ścian akustycznych w budownictwie wielorodzinnym na przykładzie przegród z wyrobów silikatowych

Projektowanie i wznoszenie ścian akustycznych w budownictwie wielorodzinnym na przykładzie przegród z wyrobów silikatowych Projektowanie i wznoszenie ścian akustycznych w budownictwie wielorodzinnym na przykładzie przegród z wyrobów silikatowych

Ściany z elementów silikatowych w ciągu ostatnich 20 lat znacznie zyskały na popularności [1]. Stanowią obecnie większość przegród akustycznych w budynkach wielorodzinnych, gdzie z uwagi na wiele źródeł...

Ściany z elementów silikatowych w ciągu ostatnich 20 lat znacznie zyskały na popularności [1]. Stanowią obecnie większość przegród akustycznych w budynkach wielorodzinnych, gdzie z uwagi na wiele źródeł hałasu izolacyjność akustyczna stanowi jeden z głównych czynników wpływających na komfort.

LERG SA Poliole poliestrowe Rigidol®

Poliole poliestrowe Rigidol® Poliole poliestrowe Rigidol®

Od lat obserwujemy dynamicznie rozwijający się trend eko, który stopniowo z mody konsumenckiej zaczął wsiąkać w coraz głębsze dziedziny życia społecznego, by w końcu dotrzeć do korzeni funkcjonowania wielu...

Od lat obserwujemy dynamicznie rozwijający się trend eko, który stopniowo z mody konsumenckiej zaczął wsiąkać w coraz głębsze dziedziny życia społecznego, by w końcu dotrzeć do korzeni funkcjonowania wielu biznesów. Obecnie marki, które chcą odnieść sukces, powinny oferować swoim odbiorcom zdecydowanie więcej niż tylko produkt czy usługę wysokiej jakości.

mgr inż. arch. Tomasz Rybarczyk Prefabrykacja w budownictwie

Prefabrykacja w budownictwie Prefabrykacja w budownictwie

Prefabrykacja w projektowaniu i realizacji budynków jest bardzo nośnym tematem, co przekłada się na duże zainteresowanie wśród projektantów i inwestorów tą tematyką. Obecnie wzrasta realizacja budynków...

Prefabrykacja w projektowaniu i realizacji budynków jest bardzo nośnym tematem, co przekłada się na duże zainteresowanie wśród projektantów i inwestorów tą tematyką. Obecnie wzrasta realizacja budynków z prefabrykatów. Można wśród nich wyróżnić realizacje realizowane przy zastosowaniu elementów prefabrykowanych stosowanych od lat oraz takich, które zostały wyprodukowane na specjalne zamówienie do zrealizowania jednego obiektu.

Wybrane dla Ciebie

Odkryj trendy projektowania elewacji »

Odkryj trendy projektowania elewacji » Odkryj trendy projektowania elewacji »

Jak estetycznie wykończyć ściany - wewnątrz i na zewnątrz? »

Jak estetycznie wykończyć ściany - wewnątrz i na zewnątrz? » Jak estetycznie wykończyć ściany - wewnątrz i na zewnątrz? »

Przeciekający dach? Jak temu zapobiec »

Przeciekający dach? Jak temu zapobiec » Przeciekający dach? Jak temu zapobiec »

Dach biosolarny - co to jest? »

Dach biosolarny - co to jest? » Dach biosolarny - co to jest? »

Zobacz, które płyty termoizolacyjne skutecznie ochronią dom przed zimnem »

Zobacz, które płyty termoizolacyjne skutecznie ochronią dom przed zimnem » Zobacz, które płyty termoizolacyjne skutecznie ochronią dom przed zimnem »

Jak poprawić izolacyjność akustyczną ścian murowanych »

Jak poprawić izolacyjność akustyczną ścian murowanych »  Jak poprawić izolacyjność akustyczną ścian murowanych »

Wszystko, co powinieneś wiedzieć o izolacjach natryskowych »

Wszystko, co powinieneś wiedzieć o izolacjach natryskowych » Wszystko, co powinieneś wiedzieć o izolacjach natryskowych »

Przekonaj się, jak inni izolują pianką poliuretanową »

Przekonaj się, jak inni izolują pianką poliuretanową » Przekonaj się, jak inni izolują pianką poliuretanową »

Na czym polega fenomen technologii białej wanny »

Na czym polega fenomen technologii białej wanny » Na czym polega fenomen technologii białej wanny »

Podpowiadamy, jak wybrać system ociepleń

Podpowiadamy, jak wybrać system ociepleń Podpowiadamy, jak wybrać system ociepleń

Podpowiadamy, jak skutecznie przeprowadzić renowacje piwnicy »

Podpowiadamy, jak skutecznie przeprowadzić renowacje piwnicy » Podpowiadamy, jak skutecznie przeprowadzić renowacje piwnicy »

300% rozciągliwości membrany - TAK! »

300% rozciągliwości membrany - TAK! » 300% rozciągliwości membrany - TAK! »

Copyright © 2004-2019 Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Spółka komandytowa, nr KRS: 0000537655. Wszelkie prawa, w tym Autora, Wydawcy i Producenta bazy danych zastrzeżone. Jakiekolwiek dalsze rozpowszechnianie artykułów zabronione. Korzystanie z serwisu i zamieszczonych w nim utworów i danych wyłącznie na zasadach określonych w Zasadach korzystania z serwisu.
Portal Budowlany - Izolacje.com.pl

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim urządzeniu końcowym. W każdym momencie możesz dokonać zmiany ustawień przeglądarki dotyczących cookies. Nim Państwo zaczną korzystać z naszego serwisu prosimy o zapoznanie się z naszą polityką prywatności oraz Informacją o Cookies. Więcej szczegółów w naszej Polityce Prywatności oraz Informacji o Cookies. Administratorem Państwa danych osobowych jest Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Sp.K., nr KRS: 0000537655, z siedzibą w 04-112 Warszawa, ul. Karczewska 18, tel. +48 22 810-21-24, właściciel strony www.izolacje.com.pl. Twoje Dane Osobowe będą chronione zgodnie z wytycznymi polityki prywatności www.izolacje.com.pl oraz zgodnie z Rozporządzeniem Parlamentu Europejskiego i Rady (UE) 2016/679 z dnia 27 kwietnia 2016r i z Ustawą o ochronie danych osobowych Dz.U. 2018 poz. 1000 z dnia 10 maja 2018r.