Analiza rozwiązań materiałowych podłóg na stropach w budynkach - studium przypadku

Rozwiązania materiałowe podłogi na stropie międzykondygnacyjnym w aspekcie wymagań cieplno-wilgotnościowym
W budynkach zastosowano izolację akustyczną do tłumienia dźwięków uderzeniowych
W budynkach zastosowano izolację akustyczną do tłumienia dźwięków uderzeniowych
BSW Polska
Ciąg dalszy artykułu...

Rozwiązania materiałowe podłogi na stropie międzykondygnacyjnym w aspekcie wymagań cieplno-wilgotnościowym

Osiągnięcie niskiego obliczeniowego zapotrzebowania na nieodnawialną energię pierwotną EP [kWh/(m2·rok)] dla "budynku o niskim zużyciu energii" jest możliwe m.in. poprzez poprawne zaprojektowanie przegród zewnętrznych i ich złączy.

Zgodnie z rozporządzeniem [5] maksymalna wartość współczynnika przenikania ciepła dla ściany zewnętrznej od 31.12.2020 roku Ucmax = 0,20 W/(m2·K), natomiast dla stropów nad przejazdami Ucmax = 0,15 W/(m2·K).

Czytaj też: Analiza parametrów fizykalnych wybranych przegród zewnętrznych i ich złączy w świetle wymagań cieplno-wilgotnościowych od 2017 r.

Należy także zwrócić uwagę na wymagania w zakresie kryterium wilgotnościowego:

  • kondensacji powierzchniowej (ryzyko występowania pleśni i grzybów pleśniowych),
  • kondensacji międzywarstwowej.

W związku z powyższym w artykule przedstawiono wyniki obliczeń parametrów fizykalnych kilku wariantów rozwiązań konstrukcyjno-materiałowych połączenia ściany zewnętrznej ze stropem z warstwami podłogi pływającej.

W pierwszym etapie obliczeń wytypowano połączenie ściany zewnętrznej dwuwarstwowej ze stropem międzykondygnacyjnym. Przyjęto następujące rozwiązania materiałowe:

  • podłoga pływająca:
    tynk gipsowy gr. 1 cm, λ = 0,40 W/(m·K),
    strop żelbetowy gr. 14 cm, λ = 1,70 W/(m·K),
    folia budowlana,
    wełna mineralna twarda gr. 5 cm, λ = 0,04 W/(m·K),
    folia budowlana,
    pas dylatacji obwodowej,
    wylewka cementowa gr. 3 cm, λ = 1,00 W/(m·K),
    parkiet drewniany gr. 1 cm, λ = 0,18 W/(m·K),
  • ściana zewnętrzna:
    tynk gipsowy gr. 1 cm, λ = 0,40 W/(m·K),
    bloczki z betonu komórkowego gr. 24 cm, λ = 0,21 W/(m·K),
    styropian gr. 10, 12, 15, 20 cm, λ = 0,04 W/(m·K),
    tynk cienkowarstwowy gr. 0,5 cm, λl = 0,76 W/(m·K).

Obliczenia parametrów fizykalnych wykonano przy zastosowaniu programu komputerowego TRISCO, przyjmując następujące założenia:

  • modelowanie złączy wykonano zgodnie z zasadami przedstawionymi w PN-EN ISO 10211 [6] oraz w pracach [7] i [8],
  • opory przejmowania ciepła (Rsi, Rse) przyjęto zgodnie z PN-EN ISO 6946 [9] przy obliczeniach strumieni cieplnych oraz według PN-EN ISO 13788[10] przy obliczeniach rozkładu temperatur i czynnika temperaturowego ƒRsi(2D),
  • temperatura powietrza wewnętrznego ti = 20°C (pokój dzienny), temperatura powietrza zewnętrznego te = –20°C (III strefa),
  • wartości współczynnika przewodzenia ciepła materiałów budowlanych λ [W/(m·K)] przyjęto na podstawie tabel w pracy [8].

Ocena poprawności rozwiązania konstrukcyjno-materiałowego przegrody zewnętrznej i złącza budowlanego w aspekcie cieplno-wilgotnościowym powinna opierać na podstawie analizy następujących parametrów fizykalnych:

  • strumień cieplny Φ [W],
  • współczynnik przenikania ciepła pełnej przegrody U (U1D) [W/(m2·K)],
  • liniowy współczynnik sprzężenia cieplnego L2D [W/(m·K)],
  • liniowy współczynnik przenikania ciepła (określający dodatkowe straty ciepła wynikające z występowania liniowych mostków cieplnych) ψ [W/(m·K)],
  • temperatura minimalna na wewnętrznej powierzchni przegrody w miejscu mostka cieplnego tmin. [°C],
  • czynnik temperaturowy, określony na podstawie temperatury minimalnej na wewnętrznej powierzchni przegrody w miejscu mostka cieplnego ƒRsi(2D) [-].

Szczegółowe procedury obliczeniowe w zakresie określania parametrów fizykalnych podłóg przedstawiono także w pracach [11] i [12].
Na RYS. 4-6 przedstawiono graficzne wyniki symulacji komputerowej analizowanego złącza przy zastosowaniu programu komputerowego TRISCO, a w TAB. 1 zestawiono wyniki przeprowadzonych obliczeń.

RYS. 4–6. Przykładowe graficzne przedstawienie wyników symulacji komputerowej dla połączenia zewnętrznej ściany dwuwarstwowej ze stropem w przekroju przez wieniec z warstwami podłogi pływającej: model obliczeniowy (4), linie strumieni cieplnych (adiabaty) (5) oraz rozkład temperatur (izotermy) (6); opracowanie autora (K. Pawłowski)
RYS. 4-6. Przykładowe graficzne przedstawienie wyników symulacji komputerowej dla połączenia zewnętrznej ściany dwuwarstwowej ze stropem w przekroju przez wieniec z warstwami podłogi pływającej: model obliczeniowy (4), linie strumieni cieplnych (adiabaty) (5) oraz rozkład temperatur (izotermy) (6); opracowanie autora 
TABELA 1. Wyniki obliczeń parametrów fizykalnych połączenia ściany zewnętrznej dwuwarstwowej ze stropem w przekroju przez wieniec z warstwami podłogi pływającej
TABELA 1. Wyniki obliczeń parametrów fizykalnych połączenia ściany zewnętrznej dwuwarstwowej ze stropem w przekroju przez wieniec z warstwami podłogi pływającej

Następnie określono parametry fizykalne złącza przy założeniu, że pod stropem znajduje się pomieszczenie nieogrzewane o temperaturze obliczeniowej t = 5°C (RYS. 7-9). Wyniki obliczeń zestawiono w TAB. 2.

RYS. 7–9. Przykładowe graficzne przedstawienie wyników symulacji komputerowej dla połączenia zewnętrznej ściany dwuwarstwowej ze stropem w przekroju przez wieniec z warstwami podłogi pływającej nad pomieszczeniem nieogrzewanym: model obliczeniowy (7), linie strumieni cieplnych (adiabaty) (8) oraz rozkład temperatur (izotermy) (9); opracowanie autora (K. Pawłowski)
RYS. 7-9. Przykładowe graficzne przedstawienie wyników symulacji komputerowej dla połączenia zewnętrznej ściany dwuwarstwowej ze stropem w przekroju przez wieniec z warstwami podłogi pływającej nad pomieszczeniem nieogrzewanym: model obliczeniowy (7), linie strumieni cieplnych (adiabaty) (8) oraz rozkład temperatur (izotermy) (9); opracowanie autora
 TABELA 2. Wyniki obliczeń parametrów fizykalnych połączenia ściany zewnętrznej dwuwarstwowej ze stropem w przekroju przez wieniec z warstwami podłogi pływającej nad pomieszczeniem nieogrzewanym
TABELA 2. Wyniki obliczeń parametrów fizykalnych połączenia ściany zewnętrznej dwuwarstwowej ze stropem w przekroju przez wieniec z warstwami podłogi pływającej nad pomieszczeniem nieogrzewanym

W wielu sytuacjach warstwy podłogi pływającej projektuje się nad przejazdami (narażone na oddziaływanie parametrów powietrza zewnętrznego) -RYS. 10-12.

Należy zauważyć, że w takiej sytuacji (czyli bez dodatkowej warstwy izolacji cieplnej stropu) następuje znaczne obniżenie temperatury na wewnętrznej powierzchni przegrody na styku ściany zewnętrznej i warstw podłogi pływającej (TAB. 3). W związku z tym zaproponowano docieplenie dolnej powierzchni stropu płytami z pianki poliuretanowej gr. 10 cm o współczynniku λ = 0,022 W/(m·K) (RYS. 13-15).

Uzyskano wartość współczynnika przenikania ciepła dla poziomej przegrody na poziomie U = 0,141 W/(m2·K), co daje możliwość spełnienia kryterium cieplnego U Umax. = 0,15 W/(m2·K) według rozporządzenia [5].

Wyniki parametrów fizykalnych przy uwzględnieniu docieplenia dolnej powierzchni stropu zestawiono w TAB. 4.

RYS. 10–12. Przykładowe graficzne przedstawienie wyników symulacji komputerowej dla połączenia zewnętrznej ściany dwuwarstwowej ze stropem w przekroju przez wieniec z warstwami podłogi pływającej nad przejazdami (bez dodatkowej warstwy izolacji): model obliczeniowy (10), linie strumieni cieplnych (adiabaty) (11) oraz rozkład temperatur (izotermy) (12); opracowanie własne
RYS. 10-12. Przykładowe graficzne przedstawienie wyników symulacji komputerowej dla połączenia zewnętrznej ściany dwuwarstwowej ze stropem w przekroju przez wieniec z warstwami podłogi pływającej nad przejazdami (bez dodatkowej warstwy izolacji): model obliczeniowy (10), linie strumieni cieplnych (adiabaty) (11) oraz rozkład temperatur (izotermy) (12); opracowanie autora
TABELA 3. Wyniki obliczeń parametrów fizykalnych połączenia ściany zewnętrznej dwuwarstwowej ze stropem w przekroju przez wieniec z warstwami podłogi pływającej nad przejazdami (bez dodatkowej warstwy izolacji)
TABELA 3. Wyniki obliczeń parametrów fizykalnych połączenia ściany zewnętrznej dwuwarstwowej ze stropem w przekroju przez wieniec z warstwami podłogi pływającej nad przejazdami (bez dodatkowej warstwy izolacji)
RYS. 13–15. Przykładowe graficzne przedstawienie wyników symulacji komputerowej dla połączenia zewnętrznej ściany dwuwarstwowej ze stropem w przekroju przez wieniec z warstwami podłogi pływającej nad przejazdami (z dodatkową warstwą izolacji cieplnej): model obliczeniowy (13), linie strumieni cieplnych (adiabaty) (14) oraz rozkład temperatur (izotermy) (15); opracowanie własne
RYS. 13-15. Przykładowe graficzne przedstawienie wyników symulacji komputerowej dla połączenia zewnętrznej ściany dwuwarstwowej ze stropem w przekroju przez wieniec z warstwami podłogi pływającej nad przejazdami (z dodatkową warstwą izolacji cieplnej): model obliczeniowy (13), linie strumieni cieplnych (adiabaty) (14) oraz rozkład temperatur (izotermy) (15); opracowanie autora
TABELA 4. Wyniki obliczeń parametrów fizykalnych połączenia ściany zewnętrznej dwuwarstwowej ze stropem w przekroju przez wieniec z warstwami podłogi pływającej nad przejazdami (z dodatkową warstwą izolacji cieplnej)
TABELA 4. Wyniki obliczeń parametrów fizykalnych połączenia ściany zewnętrznej dwuwarstwowej ze stropem w przekroju przez wieniec z warstwami podłogi pływającej nad przejazdami (z dodatkową warstwą izolacji cieplnej)

Wprowadzenie dodatkowej warstwy w postaci płyt z pianki poliuretanowej w dolnej powierzchni stropu pozwala na obniżenie strat ciepła przez strop nad przejazdami oraz minimalizację strat ciepła wynikające z połączenia ściany zewnętrznej ze stropem w postaci liniowego współczynnika przenikania ciepła Ψi (TAB. 3 i TAB. 4).

Należy także zauważyć podwyższenie temperatury na wewnętrznej powierzchni przegrody na styku dwóch przegród w porównaniu z analizowanym złączem bez docieplenia (TAB. 3 i TAB. 4), co prowadzi do wyeliminowania ryzyka kondensacji na wewnętrznej powierzchni przegrody w miejscu mostka cieplnego.

Przedstawione warianty obliczeniowe nie wyczerpują wszystkich przypadków, dlatego istnieje potrzeba prowadzenia dalszych obliczeń i analiz oraz opracowania katalogu rozwiązań materiałowych podłóg na stropach i ich złączy.

Literatura

1. W.M. Francuz, A. Kusina, M. Machnik, "Technologia budownictwa" cz. 2, Wydawnictwo REA, Warszawa 2012.
2. P. Markiewicz, "Budownictwo ogólne dla architektów", Wydawnictwo ARCHI-PLUS, Kraków 2011.
3. PN-B-02151-03:1999, "Akustyka budowlana. Ochrona przed hałasem w budynkach. Izolacyjność akustyczna przegród w budynkach oraz izolacyjność akustyczna elementów budowlanych. Wymagania".
4. PN-B-02151-3:2015-10, "Akustyka budowlana. Ochrona przed hałasem w budynkach. Część 3: Wymagania dotyczące izolacyjności akustycznej przegród w budynkach i elementów budowlanych".
5. Rozporządzenie Ministra Transportu, Budownictwa i Gospodarki Morskiej zmieniające rozporządzenie w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowania (DzU z 2013 r., poz. 926)/Obwieszczenie Ministra Infrastruktury i Rozwoju z dnia 17 lipca 2015 r. w sprawie ogłoszenia jednolitego tekstu rozporządzenia Ministra Infrastruktury w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie (DzU 2015 poz. 1422).
6. PN-EN ISO 10211:2008, "Mostki cieplne w budynkach. Strumienie ciepła i temperatury powierzchni. Obliczenia szczegółowe".
7. A. Dylla, "Fizyka cieplna budowli w praktyce. Obliczenia cieplno­‑wilgotnościowe", Wydawnictwo Naukowe PWN, Warszawa 2015.
8. K. Pawłowski, "Projektowanie przegród zewnętrznych w świetle aktualnych warunków technicznych dotyczących budynków. Obliczenia cieplno-wilgotnościowe przegród zewnętrznych i ich złączy", Grupa MEDIUM, Warszawa 2016.
9. PN-EN ISO 6946:2008, "Komponenty budowlane i elementy budynku. Opór cieplny i współczynnik przenikania ciepła. Metoda obliczania".
10. PN-EN ISO 13788: 2003, "Cieplno-wilgotnościowe właściwości komponentów budowlanych i elementów budynku. Temperatura powierzchni wewnętrznej umożliwiająca uniknięcie krytycznej wilgotności powierzchni wewnętrznej kondensacji. Metody obliczania".
11. K. Pawłowski, "Projektowanie podłóg, stropów i ich złączy w aspekcie nowych wymagań cieplnych. Wymagania i metody obliczeniowe", "IZOLACJE" 2/2015, s. 18-22.
12. K. Pawłowski, "Projektowanie podłóg, stropów i ich złączy w aspekcie nowych wymagań cieplnych. Obliczenia parametrów fizykalnych", "IZOLACJE" 3/2015, s. 56-66.

DOŁĄCZ DO NEWSLETTERA – kliknij tutaj »

[podłogi, stropy, podłoga na stropie, strop międzykondygnacyjny, podłoga pływająca, posadzki, podłoże, rodzaje podłóg]

Artykuł pochodzi z: miesięcznika IZOLACJE 2/2018

Komentarze

(0)

Wybrane dla Ciebie


Najlepszy system stropowy?


Betonowe stropy można produkować na różne sposoby – z betonu przygotowanego na placu budowy lub w fabryce, gdzie panują kutemu optymalne warunki. ZOBACZ »



Odkryj nowy wymiar bezpieczeństwa dla Twojego domu »

Żaluzje ceramiczne, szklane, wentylowane. Co wybrać?

Każdemu z nas zależy na zapewnieniu odpowiedniego bezpieczeństwa swoim bliskim i miejscu, które jest dla nas najważniejsze. Wybór...
czytaj dalej »

Które rozwiązanie sprawdzi się w Twoim przypadku? Jak ochronić wnętrze przed słońcem, hałasem lub zimnem? czytaj dalej »

Czym skutecznie zaizolować fundament?

Zadaniem hydroizolacji jest zablokowanie dostępu wody i wilgoci do wnętrza obiektu budowlanego. Istnieje kilka rodzajów izolacji krystalizujących, a ich znajomość ułatwia zaprojektowanie i wykonanie szczelnej budowli. czytaj dalej »

 


Izolacja natryskowa - co warto wiedzieć?

Dobierz najlepszy materiał izolacyjny »

Produkty polimocznikowe można stosować wszędzie tam, gdzie wymagana jest... czytaj dalej » Niski poziom ochrony cieplnej generuje wysokie koszty utrzymania budynku, stanowiące duże obciążenie budżetu... czytaj dalej »

Uszczelnianie trudnych powierzchni! Zobacz, jak to zrobić skutecznie »


Doszczelniając przegrodę od strony wewnętrznej budynku ograniczamy przenikanie pary wodnej do warstwy izolacyjnej, natomiast... ZOBACZ »


Fakty i mity na temat szarego styropianu »

Jak zabezpieczyć rury przed stratami ciepła?

Od kilku lat rośnie popyt na styropiany szare. W Niemczech i Szwajcarii większość spr... czytaj dalej » Czym powinieneś kierować się przy wyborze odpowiedniej izolacji rur? czytaj dalej »

Jak wykonać trwałe posadzki?

Jakich technologii oraz materiałów użyć do wykonania podłóg przemysłowych, naprawy betonów lub przeprowadzenia renowacji posadzek?  czytaj dalej »


Najlepszy produkt na tynku termoizolacji? Sprawdź »

Jak uzyskać pełne uprawnienia architektoniczne?

Obniżona wartość λ pozwala zmniejszyć straty energetyczne oraz wydatki na eksploatacje budynków.
czytaj dalej »

Zobacz, jak otrzymać uprawnienia do samodzielnego wykonywania zawodu architekta w Polsce i UE czytaj dalej »

Dlaczego hydroizolacja budynków jest tak ważna?

Sprawdzony sposób na przyspieszenie ocieplenia »

W budynkach nowo wznoszonych barierę dla wody gruntowej stanowi hydroizolacja zewnętrzna ścian piwnic i izolacja pod płytą fundamentową... czytaj dalej » Jakiego produktu użyć, by aplikacja była łatwa, efektywność większa, a tempo pracy ekspresowe? czytaj dalej »

Czego użyć do izolacji podłóg, dachów i fasad?


Istotną różnicą pomiędzy styropianami białymi i grafitowymi jest ich odporność na ZOBACZ »



Dodaj komentarz
Nie jesteś zalogowany - zaloguj się lub załóż konto. Dzięki temu uzysksz możliwość obserwowania swoich komentarzy oraz dostęp do treści i możliwości dostępnych tylko dla zarejestrowanych użytkowników portalu Izolacje.com.pl... dowiedz się więcej »
Triflex Polska Triflex Polska
Triflex zyskał na rynku europejskim pozycję lidera w zakresie opracowywania, kompleksowego doradztwa oraz zastosowania uszczelnień i powłok...
7/8/2019

Aktualny numer:

Izolacje 7/8/2019
W miesięczniku m.in.:
  • - Wtórne hydroizolacje poziome
  • - Mocowanie elewacji wentylowanych
Zobacz szczegóły
Jaką technologię wykonania tarasu wybrać w naszym klimacie?

Jaką technologię wykonania tarasu wybrać w naszym klimacie?

Zarówno w starych, jak i nowo wzniesionych budynkach coraz częściej można zauważyć bardzo zły stan balkonów i tarasów. Dlaczego tak się dzieje?
Dom Wydawniczy MEDIUM Rzetelna Firma
Copyright @ 2004-2012 Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Spółka komandytowa, nr KRS: 0000537655. Wszelkie prawa w tym Autora, Wydawcy i Producenta bazy danych zastrzeżone. Jakiekolwiek dalsze rozpowszechnianie artykułów zabronione. Korzystanie z serwisu i zamieszczonych w nim utworów i danych wyłącznie na zasadach określonych w Zasadach korzystania z serwisu.
realizacja i CMS: omnia.pl

.