Izolacje.com.pl

Zaawansowane wyszukiwanie

Analiza parametrów fizykalnych ścian zewnętrznych i ich złączy w aspekcie wymagań budownictwa niskoenergetycznego

Analysis of physical parameters of external walls and their joints in the perspective of low energy construction requirements

Analiza parametrów fizykalnych ścian zewnętrznych
arch. autora

Analiza parametrów fizykalnych ścian zewnętrznych


arch. autora

Zdefiniowanie budynku w standardzie niskoenergetycznym w warunkach polskich staje się bardzo trudne i dotychczas nie osiągnięto konsensusu w środowisku projektantów, inwestorów, wykonawców oraz ekspertów.
Często uważa się, że nowo projektowane budynki są energooszczędne, jednak przyjmowane rozwiązania odpowiadają zazwyczaj minimalnym wymaganiom prawnym w zakresie izolacyjności cieplnej.

Zobacz także

fischer Polska sp. z o.o. Zalecenia dotyczące renowacji istniejącego systemu ETICS

Zalecenia dotyczące renowacji istniejącego systemu ETICS Zalecenia dotyczące renowacji istniejącego systemu ETICS

Przed podjęciem decyzji o wykonaniu dodatkowego docieplenia konieczna jest szczegółowa inwentaryzacja istniejącego układu/systemu ocieplenia oraz podłoża. Ocenę taką należy wykonać etapowo.

Przed podjęciem decyzji o wykonaniu dodatkowego docieplenia konieczna jest szczegółowa inwentaryzacja istniejącego układu/systemu ocieplenia oraz podłoża. Ocenę taką należy wykonać etapowo.

RAXY Sp. z o.o. Nowoczesne technologie w ciepłych i zdrowych budynkach

Nowoczesne technologie w ciepłych i zdrowych budynkach Nowoczesne technologie w ciepłych i zdrowych budynkach

Poznaj innowacyjne, specjalistyczne produkty nadające przegrodom budowlanym odpowiednią trwałość, izolacyjność cieplną i szczelność. Jakie rozwiązania pozwolą nowe oraz remontowane chronić budynki i konstrukcje?

Poznaj innowacyjne, specjalistyczne produkty nadające przegrodom budowlanym odpowiednią trwałość, izolacyjność cieplną i szczelność. Jakie rozwiązania pozwolą nowe oraz remontowane chronić budynki i konstrukcje?

Purinova Sp. z o.o. Turkusowa drużyna Purios ciepło wita pomarańczowego bohatera

Turkusowa drużyna Purios ciepło wita pomarańczowego bohatera Turkusowa drużyna Purios ciepło wita pomarańczowego bohatera

Wy mówicie, a my słuchamy. Wskazujecie na nudne reklamy, inżynierów w garniturach, patrzących z każdego bilbordu i na Mister Muscle Budowlanki w ogrodniczkach. To wszystko już było, a wciąż zapomina się...

Wy mówicie, a my słuchamy. Wskazujecie na nudne reklamy, inżynierów w garniturach, patrzących z każdego bilbordu i na Mister Muscle Budowlanki w ogrodniczkach. To wszystko już było, a wciąż zapomina się o kimś bardzo ważnym.

Energochłonność budynku określa się za pomocą wskaźnika zapotrzebowania na ciepło do ogrzania budynku w odniesieniu do powierzchni ogrzewanej [kWh/(m2·rok)] lub kubatury ogrzewanej [kWh/(m3·rok)].

Na podstawie analiz i wytycznych projektowych za energooszczędne można uznać budynki charakteryzujące się powierzchniowym wskaźnikiem sezonowego zapotrzebowania na ciepło w granicach 70-100 kWh/(m2·rok).

Wśród grupy budynków niskoenergetycznych wyróżnia się także budynki energooszczędne i pasywne. Na RYS. 1 przedstawiono czynniki wpływające na osiągniecie standardu niskoenergetycznego projektowanych budynków.

Czytaj też: Domy pasywne - do poprawy?

Wymagania cieplne i energetyczne dotyczące budynków niskoenergetycznych, które będą podlegały dofinansowaniu przez NFOŚiGW [1], są bardziej zaostrzone niż wymagania Rozporządzenia Ministra Transportu, Budownictwa i Gospodarki Morskiej z dnia 5 lipca 2013 r. zmieniającego rozporządzenie w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie [2].

O czym przeczytasz w artykule?  Abstrakt

Rozwiązania materiałowe ścian zewnętrznych i ich złączy

Obliczenia parametrów fizykalnych ścian zewnętrznych i ich złączy

Analiza wyników obliczeń

W artykule przedstawiono wyniki analizy numerycznej przegród zewnętrznych i ich złączy budynków projektowanych w standardzie niskoenergetycznym. Rozpatrywano przegrody w układzie z różnymi materiałami izolacji cieplnej w celu osiągnięcia zalecanych wymagań cieplno-wilgotnościowych. Na podstawie przeprowadzonych obliczeń i analiz sformułowano wytyczne w zakresie projektowania złączy przegród zewnętrznych budynków w standardzie niskoenergetycznym.

Analysis of physical parameters of external walls and their joints in the perspective of low energy construction requirements

The article presents the results of numerical analysis of the building envelope and its joints for buildings designed to low energy standard. Space dividing elements were considered in combination with various thermal insulation materials to achieve the required temperature and moisture performance. On the basis of the calculations and analysis, guidelines were developed for designing joints for external envelopes of buildings developed to low energy standard.

czynniki ksztaltujace budownictwo niskoenergetyczne

RYS. 1. Czynniki kształtujące budownictwo niskoenergetyczne; rys. arch. autora

Charakterystyka rozwiązań materiałowych ścian zewnętrznych i ich złączy

Ściana zewnętrzna jest pionową przegrodą budynku, która powinna spełniać wymagania w zakresie nośności, izolacyjności termicznej, izolacyjności akustycznej, bezpieczeństwa użytkowania i pożarowego, zapewnienia odpowiednich warunków higienicznych i zdrowotnych oraz ochrony środowiska.

Układy konstrukcyjno-materiałowe ścian zewnętrznych budynku zmieniają się wraz ze zmianą wymagań, wprowadzenia nowych udoskonalonych materiałów lub technologii.

Najczęściej stosowanymi technologiami wznoszenia ścian zewnętrznych budynków w Polsce są technologie murowane (układy jednowarstwowe i warstwowe) lub drewniane.

W celu uzyskania odpowiednich parametrów fizykalnych ścian zewnętrznych i ich złączy według wymagań sformułowanych w Rozporządzeniu Ministra Transportu, Budownictwa i Gospodarki Morskiej z dnia 5 lipca 2013 r. zmieniającym rozporządzenie w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie [2], oraz wytycznych NFOŚiGW [1] preferowane są rozwiązania wielowarstwowe (RYS. 2, RYS. 3 i RYS. 4).

Materiały do warstwy izolacji cieplnej powinny charakteryzować się niską wartością współczynnika przewodzenia ciepła i dużą porowatością. Inne parametry techniczne zależą od pochodzenia materiałów.

RYS. 2. Przykładowe rozwiązanie materiałowe ściany dwuwarstwowej: 1 – tynk gipsowy, 2 – warstwa konstrukcyjna, 3 – izolacja cieplna, 4 – tynk cementowo‑wapienny; rys. arch. autora RYS. 3. Przykładowe rozwiązanie materiałowe ściany trójwarstwowej: 1 – tynk gipsowy, 2 – warstwa konstrukcyjna, 3 – izolacja cieplna, 4 – warstwa elewacyjna; rys. arch. autora RYS. 4. Przykładowe rozwiązanie materiałowe ściany szczelinowej: 1 – tynk gipsowy, 2 – warstwa konstrukcyjna, 3 – izolacja cieplna, 4 – szczelina dobrze wentylowana, 5 – warstwa elewacyjna; rys. arch. autora

Do grupy materiałów warstwy izolacji cieplnej można zaliczyć:

  • styropian - materiał syntetyczny, sztuczny, produkowany z granulek poliestrowych, które podczas spienienia powiększają swoją objętość ponad czterokrotnie;
  • wełnę mineralną - materiał nieorganiczny, włóknisty, produkowany z mieszaniny surowców naturalnych (bazalty, margle) i odpadowych (żużel wielkopiecowy);
  • polistyren ekstrudowany - materiał nienasiąkliwy, nieulegający korozji biologicznej;
  • płyty z poliuretanu (PUR) i poliizocyjanuratu (PIR) - twarde płyty piankowe, odporne termicznie i niepalne o niższych wartościach współczynnika przewodzenia ciepła niż np. wełna mineralna i styropian;
  • aerożele - materiały będące rodzajem sztywnej piany o wyjątkowo małej gęstości (na ich masę składa się w 90–99,8% powietrze, resztę stanowi porowaty materiał tworzący strukturę);
  • izolacje próżniowe - płyty z porowatego materiału na bazie krzemionki lub włókien szklanych z mikroporami o rozmiarach 0,0001 mm, które umieszcza się w szczelnym "opakowaniu" z nieprzepuszczalnej dla powietrza i pary wodnej wielowarstwowej folii.

Przed wyborem odpowiedniego materiału do izolacji cieplnej należy zwrócić uwagę na następujące właściwości: wartość współczynnika przewodzenia ciepła (λ [W/(m·K)]), gęstość objętościową, izolacyjność akustyczną, przepuszczalność pary wodnej (współczynnik oporu dyfuzyjnego μ [-]), wrażliwość na czynniki biologiczne i chemiczne.

Sprawdzenie podstawowego kryterium cieplnego ścian zewnętrznych polega na określeniu wartości współczynnika przenikania ciepła UC [W/(m2·K)] według normy PN-EN ISO 6946:2008 [3] i porównaniu z wartościami granicznymi określonymi w Rozporządzeniu Ministra Transportu, Budownictwa i Gospodarki Morskiej z dnia 5 lipca 2013 r. zmieniającym rozporządzenie w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie [2], [1] - TABELA 1.

Wartości maksymalne współczynnika przenikania ciepła UC(max) [W/(m2·K)] i liniowego współczynnika przenikania ciepła mostków cieplnych Ψ

TABELA 1. Wartości maksymalne współczynnika przenikania ciepła UC(max) [W/(m2·K)] i liniowego współczynnika przenikania ciepła mostków cieplnych Ψ [W/(m·K)]

Sprawdzenie kryterium wilgotnościowego, ryzyka rozwoju pleśni i grzybów pleśniowych w miejscu mostka cieplnego, przeprowadza się przez porównanie wartości obliczeniowej czynnika temperaturowego fRsi.(obl.) w miejscu mostka cieplnego z wartością graniczną (krytyczną) fRsi.(kryt.).

Czytaj też: Ile kosztuje wzniesienie budynku jednorodzinnego w standardzie niskoenergetycznym?

Jeżeli spełniona jest zależność fRsi.(obl.) ≥ fRsi.(kryt.), nie występuje ryzyko rozwoju pleśni i grzybów pleśniowych na wewnętrznej powierzchni przegrody. Czynnik temperaturowy (w miejscu mostka cieplnego) fRsi.(obl) określa się według wzoru:

gdzie:

qsi,min - temperatura minimalna na wewnętrznej powierzchni przegrody mostka cieplnego [°C],

qe- temperatura powietrza zewnętrznego [°C],

qi- temperatura powietrza wewnętrznego [°C].

Czynnik temperaturowy krytyczny fRsi.(kryt.) można określić w sposób:

  • uproszczony dla ti ≥ 20°C, j = 50%, fRsi.(kryt.) = 0,72,
  • dokładny, z uwzględnieniem położenia budynku, parametrów powietrza wewnętrznego; wartość graniczna (krytyczna) czynnika temperaturowego, z uwzględnieniem parametrów powietrza wewnętrznego (III klasa wilgotności, ti = 20°C) i zewnętrznego (Toruń) wynosi fRsi(kryt) = 0,778.

W artykule przedstawiono analizę parametrów fizykalnych wybranych trójwarstwowych ścian zewnętrznych i ich złączy w aspekcie wymagań w zakresie budownictwa niskoenergetycznego.

Obliczenia parametrów fizykalnych ścian zewnętrznych i ich złączy

Do obliczeń wytypowano przykładowe rozwiązania ścian zewnętrznych trójwarstwowych o następującym układzie warstw materiałowych:

  • wariant I:
    - tynk gipsowy gr. 1,5 cm, o λ = 0,40 W/(m·K),
    - bloczek z betonu komórkowego gr. 24 cm, o λ = 0,20 W/(m·K),
    - płyty z pianki PIR gr. 12 cm, o λ = 0,022 W/(m·K),
    - bloczek z betonu komórkowego gr. 12 cm, o λ = 0,20 W/(m·K),
    - tynk cienkowarstwowy gr. 0,5 cm, o λ = 0,76 W/(m·K),
Zestawienie analizowanych złączy budowlanych

TABELA 2. Zestawienie analizowanych złączy budowlanych

  • wariant II:
    - tynk gipsowy gr. 1,5 cm, o λ = 0,40 W/(m·K),
    - bloczek z betonu komórkowego gr. 24 cm, o λ = 0,20 W/(m·K),
    - płyty z pianki PUR gr. 12 cm, o λ = 0,035 W/(m·K),
    - bloczek z betonu komórkowego gr. 12 cm, o λ = 0,20 W/(m·K),
    - tynk cienkowarstwowy gr. 0,5 cm o λ = 0,76 W/(m·K),
  • wariant III:
    - tynk gipsowy gr. 1,5 cm, o λ = 0,40 W/(m·K),
    - bloczek z betonu komórkowego gr. 24 cm, o λ = 0,20 W/(m·K),
    - płyty styropianowe gr. 12 cm, o λ = 0,040 W/(m·K),
    - bloczek z betonu komórkowego gr. 12 cm, o λ = 0,20 W/(m·K),
    - tynk cienkowarstwowy gr. 0,5 cm, o λ=0,76 W/(m·K).

W pierwszym etapie obliczeń określono wartości współczynnika przenikania ciepła UC [W/(m2·K)] zgodnie z normą PN-EN ISO 6946:2008 [3].

Zobacz parametry: Ścian zewnętrznych w budynkach o obniżonym zapotrzebowaniu na energię

Zasadniczą część obliczeń stanowi określenie parametrów fizykalnych wybranych (reprezentatywnych) złączy analizowanych ścian zewnętrznych (TABELA 2 i TABELA 3) przy zastosowaniu programu komputerowego.

Do obliczeń numerycznych przyjęto następujące założenia początkowe:

  • modelowanie geometryczne złączy budowlanych zgodnie z normą PN-EN ISO 10211:2008 [4],
  • temperatura powietrza wewnętrznego ti = 20°C, temperatura powietrza zewnętrznego te = –20°C,
  • warunki przejmowania ciepła na wewnętrznej i zewnętrznej powierzchni przegrody przyjęto zgodnie z normą PN-EN ISO 6946:2008 [3] dla obliczeń wielkości strumienia cieplnego oraz zgodnie z normą PN-EN ISO 13788:2003 [5] przy obliczeniach rozkładu temperatur i czynnika temperaturowego fRsi [-].
Wyniki obliczeń parametrów fizykalnych przegród zewnętrznych i ich złączy

TABELA 3. Wyniki obliczeń parametrów fizykalnych przegród zewnętrznych i ich złączy – opracowanie własne na podstawie [9]

Według znowelizowanego Rozporządzenia Ministra Transportu, Budownictwa i Gospodarki Morskiej z dnia 5 lipca 2013 r. zmieniającego rozporządzenie w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie [2], mostki cieplne (złącza budowlane) należy uwzględniać w aspekcie oceny cieplno-wilgotnościowej, dotyczącej obliczeń związanych z kondensacją wilgoci na wewnętrznej powierzchni przegrody w miejscu mostka cieplnego, wyznaczając czynnik temperaturowy fRsi [-].

Sprawdzenie kryterium izolacyjności cieplnej zewnętrznych przegród budowlanych i ich złączy polega natomiast na wyznaczeniu wartości współczynnika przenikania ciepła UC określanego według polskich norm, która musi być mniejsza od wartości UC(max) poszczególnych przegród budowlanych.

Zobacz założenia: Krajowego planu mającego na celu zwiększenie liczby budynków o niskim zużyciu energii

Należy zwrócić uwagę, że wartości UC(max) podane w załączniku do rozporządzenia oraz w TABELI 1 nie uwzględniają wpływu przepływu ciepła w polu 2D (dwuwymiarowym) i 3D (trójwymiarowym), czyli nie uwzględniają wpływu mostków cieplnych na straty ciepła przez przegrody.

W obliczeniach praktycznych korzysta się z uzyskanej w wyniku obliczeń numerycznych indywidualnej właściwości każdego mostka cieplnego, zwanej "liniowym współczynnikiem przenikania ciepła - Ψ [W/(m×K)]".

Współczynnik Ψ określa dodatkową wartość strumienia ciepła (strata - plus, zysk - minus), wywołaną przez mostek cieplny i podaną na 1 mb jego długości.

Wartości liniowego współczynnika przenikania ciepła zależą od sposobu wymiarowania budynku zastosowanego w obliczeniach pola powierzchni, przez którą przepływa strumień cieplny, stąd podczas obliczeniach liniowego współczynnika przenikania ciepła Ψ należy podać system wymiarowania, na którym są one oparte:

  • Ψi - przy zastosowaniu wymiarów wewnętrznych,
  • Ψoi - przy zastosowaniu wymiarów całkowitych wewnętrznych,
  • Ψe - przy zastosowaniu wymiarów zewnętrznych.

Aby określić miarodajną (rzeczywistą) wielkość strat ciepła, określa się wartości gałęziowych współczynników przenikania ciepła.

W Polsce katalogi, opracowania i normy podają wartości współczynników Ψi dotyczące całej dodatkowej straty ciepła przez mostek.

Poprawne wykonanie obliczeń cieplnych odniesionych do pewnych fragmentów budynku, np. poszczególnych ścian zewnętrznych, wymaga dokonania podziału wartości współczynnika Ψ na odpowiednie gałęzie złącza uczestniczące w stratach ciepła.

Wykonanie podziałów jest często bardzo uciążliwe, wymaga analizy składowych strumieni ciepła płynących przez mostek termiczny. Wydzielenie częściowych (gałęziowych) strumieni ciepła w złączu jest praktycznie możliwe w warunkach stosowania numerycznych metod obliczeniowych.

W obliczeniach własnych zastosowano program komputerowy, który umożliwia uzyskanie wartości poszukiwanych częściowych strumieni bezpośrednio, po uprzednim dokładnym zdefiniowaniu gałęzi (powierzchni złącza), przez które przepływają strumienie. Może to dotyczyć opisywanych w pracy złączy dwuwymiarowych, jak również trójwymiarowych.

W Polsce przyjęty model realizacji wymagań termoizolacyjnych nakazuje obliczenie współczynników przenikania ciepła poszczególnych przegród w budynkach, co nie jest możliwe bez podziału liniowych współczynników przenikania ciepła występujących mostków.

Procedura określania parametrów fizykalnych złącza budowlanego

RYS. 5. Procedura określania parametrów fizykalnych złącza budowlanego: układ materiałowy złącza budowlanego; rys. arch. autora

Procedura obliczania gałęziowych współczynników przenikania ciepła Ψ polega na:

  • wydzieleniu wewnętrznych gałęzi mostka termicznego, przypisaniu warunków początkowych i brzegowych,
  • obliczeniu (numerycznie) przy zastosowaniu programu komputerowego strumieni ciepła płynących przez wydzielone gałęzie (części) mostka,
  • obliczeniu odpowiednich współczynników gałęziowych według odpowiednich zależności z zastosowaniem danych odpowiadających wydzielonym gałęziom.

Szczegółowe procedury określania parametrów fizykalnych złączy budowlanych przedstawiono w pracach A. Dylli [6] i K. Pawłowskiego [7].

Na RYS. 5, RYS. 6, RYS. 7, RYS. 8 i RYS. 9 zestawiono podstawowe etapy obliczeń złącza budowlanego: połączenie ściany zewnętrznej ze stropem w przekroju przez wieniec.

RYS. 6. Procedura określania parametrów fizykalnych złącza budowlanego: warunki brzegowe – obliczenia strumienia ciepła; rys.: archiwum autora RYS. 7. Procedura określania parametrów fizykalnych złącza budowlanego: linie strumieni cieplnych – adiabaty; rys. arch. autora
RYS. 8. Procedura określania parametrów fizykalnych złącza budowlanego: warunki brzegowe – obliczenia rozkładu temperatury; rys. arch. autora RYS. 9. Procedura określania parametrów fizykalnych złącza budowlanego: linie rozkładu temperatur – izotermy; rys. arch. autora

W ramach przeprowadzonych obliczeń określono wartości gałęziowych współczynników przenikania ciepła Ψ dla złączy Z3, Z7, Z8 i Z9.

W TABELI 3 zestawiono wyniki i przedstawiono parametry fizykalne analizowanych ścian zewnętrznych trójwarstwowych i ich złączy oraz wartości graniczne sformułowane według Rozporządzenia Ministra Transportu, Budownictwa i Gospodarki Morskiej z dnia 5 lipca 2013 r. zmieniającego rozporządzenie w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie [2], oraz według wytycznych NFOŚiGW [1].

Analiza wyników obliczeń parametrów fizykalnych ścian zewnętrznych i ich złączy

Na podstawie prezentowanych wyników obliczeń parametrów fizykalnych trójwarstwowych ścian zewnętrznych i ich złączy, które stanowią tylko część prowadzonych przez autora artykułu badań własnych, można sformułować kilka wniosków i wytycznych praktycznych.

Do podstawowych parametrów fizykalnych przegród zewnętrznych i ich złączy zalicza się: współczynnik przenikania ciepła UC [W/(m2·K)] - określany dla przepływów jednowymiarowych (1D), liniowy współczynnik przenikania ciepła Ψ [W/(m·K)] oraz gałęziowy współczynnik przenikania ciepła Ψg(d) [W/(m·K)] - określane dla przepływów ciepła dwuwymiarowych (2D), czynnik temperaturowy fRsi [-] - określany na podstawie temperatury minimalnej w złączu w celu sprawdzenia ryzyka występowania kondensacji na wewnętrznej powierzchni przegrody (ryzyka rozwoju pleśni i grzybów pleśniowych).

Rozpatrywanie tylko płaskiej przegrody zewnętrznej, bez uwzględnienia złączy budowlanych, staje się podstawowym błędem w aspekcie oceny cieplno-wilgotnościowej. Wykonanie szczegółowych obliczeń, przy zastosowaniu programu komputerowego, pozwala na uzyskanie miarodajnych wyników parametrów fizykalnych.

Czytaj też: Projektowanie budynków niskoenergetycznych

Ich wartości zależą od zastosowanego materiału budowlanego (konstrukcyjnego), rodzaju i grubości izolacji cieplnej oraz ukształtowania struktury materiałowej analizowanego złącza. Posługiwanie się wartościami przybliżonymi i orientacyjnymi, np. na podstawie normy PN-EN ISO 14683:2008 [8], staje się nieuzasadnione, ponieważ nie uwzględnia zmiany układów materiałowych oraz rodzaju i grubości izolacji cieplnej.

Analizowane ściany zewnętrzne trójwarstwowe spełniają kryterium izolacyjności cieplnej (UC  ≤  UC(max))według Rozporządzenia Ministra Transportu, Budownictwa i Gospodarki Morskiej z dnia 5 lipca 2013 r. zmieniającego rozporządzenie w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie [2]. Jeśli uwzględnić wymagania sformułowane przez NFOŚiGW [1], tylko ściana zewnętrzna (wariant I) spełnia warunek (UC  ≤  UC(max)) w odniesieniu do standardu NF40.

Rozpatrywane złącza budowlane nie spełniają wymagania w zakresie dodatkowych strat ciepła wynikających z występowania mostków cieplnych (wyrażonych w postaci liniowego współczynnika przenikania ciepła Ψ [W/(m·K)] - TABELA 3) w standardzie NF15, ponieważ wartości Ψ  >  Ψmax = 0,01 W/(m·K). W przypadku spełnienia wymagań w zakresie standardu NF40 analizowane złącza budowlane (oprócz złącza 7 i 9 – TABELA 3) spełniają kryterium Ψ  ≤  Ψmax.

Jednak przy ocenie strat ciepła należy przeanalizować także inne parametry: Φ (wielość strumienia cieplnego przepływającego przez złącze) [W] lub L2D (współczynnik sprzężenia cieplnego) [W/(m·K)], odzwierciedlające straty ciepła przez złącze. Zasadne staje się także określanie gałęziowych współczynników przenikania ciepła w przypadku określania strat ciepła przez pojedynczą przegrodę z uwzględnieniem przepływów ciepła (2D).

Z analizy złącza ścian zewnętrznych (TABELA 3) wynika, że nie występuje ryzyko kondensacji powierzchniowej, ponieważ obliczone wartości czynników temperaturowych fRsi [-] są większe od wartości granicznej czynnika temperaturowego fRsi,(kryt.) [-]. Wartość graniczna (krytyczna) czynnika temperaturowego, przy uwzględnieniu parametrów powietrza wewnętrznego i zewnętrznego, analizowanych wariantów obliczeniowych wynosi fRsi,(kryt.) = 0,778.

Indywidualna symulacja komputerowa złączy jest bardzo pracochłonna i wymaga znajomości specyficznych szczegółów programowania warunków geometryczno-fizycznych złączy. Może być podejmowana przez osoby odpowiednio przeszkolone w tym zakresie. Wynikiem końcowym obliczeń są katalogi mostków cieplnych, uwzględniających różne parametry powietrza zewnętrznego i wewnętrznego, niezbędne dla biur projektów i celów dydaktyczno-szkoleniowych.

Przykładową kartę przedstawiono na RYS. 10. Istnieje jednak potrzeba prowadzenia dalszych badań i obliczeń zarówno dla złączy dwuwymiarowych, jak i trójwymiarowych (przestrzennych), ponieważ rozwój technologii produkcji materiałów rozwija się, a na rynek budowlany wprowadzane są nowe produkty.

Przykładowa karta katalogowa

RYS. 10. Przykładowa karta katalogowa, rys. archiwum autora na podstawie [9]

Podsumowanie i wnioski

Analiza parametrów fizykalnych przegród zewnętrznych i ich złączy ma istotne znaczenie w zakresie poprawnego kształtowania układów materiałowych i geometrii projektowanego budynku niskoenergetycznego. Kompleksowa ocena cieplno-wilgotnościowa powinna dotyczyć nie tylko pełnej przegrody zewnętrznej, lecz także jej złączy.

Tymczasem podane w Rozporządzeniu Ministra Transportu, Budownictwa i Gospodarki Morskiej z dnia 5 lipca 2013 r. zmieniającym rozporządzenie w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie [2], wartości graniczne współczynnika przenikania ciepła UC(max) [W/(m2·K)] nie uwzględniają przepływów ciepła w polu (2D) i (3D), co powoduje rzeczywiste dopuszczenie większych strat ciepła przez przegrody budowlane i ich złącza.

Zasadne staje się także określenie wartości granicznych liniowego współczynnika przenikania ciepła Ψmax w Rozporządzeniu Ministra Transportu, Budownictwa i Gospodarki Morskiej z dnia 5 lipca 2013 r. zmieniającym rozporządzenie w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie [2], na poziomie 0,10-0,20 W/(m·K) w zależności od specyfiki analizowanego złącza. Bardzo ważnym aspektem jest także sprawdzenie ryzyka kondensacji powierzchniowej (w miejscu mostka cieplnego) i międzywarstwowej.

Literatura

1. Wymagania określające podstawowe wymogi niezbędne do osiągnięcia oczekiwanych standardów energetycznych dla budynków mieszkalnych oraz sposób weryfikacji projektów i sprawdzania wykonywanych domów energooszczędnych, strona internetowa: www.nfosigw.gov.pl.
2. Rozporządzenie Ministra Transportu, Budownictwa i Gospodarki Morskiej z dnia 5 lipca 2013 r. zmieniające rozporządzenie w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie (DzU z 2013 r., poz. 926).
3. PN-EN ISO 6946:2008, "Komponenty budowlane i elementy budynku. Opór cieplny i współczynnik przenikania ciepła. Metoda obliczania".
4. PN-EN ISO 10211:2008, "Mostki cieplne w budynkach. Strumienie ciepła i temperatury powierzchni. Obliczenia szczegółowe".
5. PN-EN ISO 13788:2003, "Cieplno-wilgotnościowe właściwości komponentów budowlanych i elementów budynku. Temperatura powierzchni wewnętrznej umożliwiająca uniknięcie krytycznej wilgotności powierzchni wewnętrznej kondensacji. Metody obliczania".
6. A. Dylla, "Fizyka cieplna budowli w praktyce. Obliczenia cieplno­‑wilgotnościowe", PWN, Warszawa 2015.
7. K. Pawłowski, "Projektowanie przegród zewnętrznych w świetle nowych warunków technicznych dotyczących budynków WT 2013", DW Medium, Warszawa 2013.
8. PN-EN ISO 14683:2008, "Mostki cieplne w budynkach. Liniowy współczynnik przenikania ciepła. Metody uproszczone i wartości orientacyjne".
9. S. Walczak, "Analiza numeryczna złączy ścian zewnętrznych trójwarstwowych w świetle nowych wymagań cieplnych" [praca magisterska napisana pod kierunkiem dr. inż. Krzysztofa Pawłowskiego], Uniwersytet Technologiczno-Przyrodniczy w Bydgoszczy, Bydgoszcz 2015.

Galeria zdjęć

Tytuł
przejdź do galerii

Komentarze

Powiązane

dr inż. Krzysztof Pawłowski prof. PBŚ Podstawowe zagadnienia fizyki cieplnej budowli w aspekcie wymagań prawnych (cz. 1)

Podstawowe zagadnienia fizyki cieplnej budowli w aspekcie wymagań prawnych (cz. 1) Podstawowe zagadnienia fizyki cieplnej budowli w aspekcie wymagań prawnych (cz. 1)

Od wielu lat przepisy prawne związane z procesami projektowania, wznoszenia i eksploatacji budynków wymuszają takie rozwiązania technologiczne i organizacyjne, w wyniku których nowo wznoszone budynki zużywają...

Od wielu lat przepisy prawne związane z procesami projektowania, wznoszenia i eksploatacji budynków wymuszają takie rozwiązania technologiczne i organizacyjne, w wyniku których nowo wznoszone budynki zużywają w trakcie eksploatacji coraz mniej energii na ogrzewanie, wentylację i przygotowanie ciepłej wody użytkowej. Zmiany maksymalnej wartości współczynnika przenikania ciepła Umax. (dawniej kmax.) wpływają na wielkość zużycia energii w trakcie eksploatacji budynków.

mgr inż. Ireneusz Stachura Jak eliminować mostki cieplne w budynku?

Jak eliminować mostki cieplne w budynku? Jak eliminować mostki cieplne w budynku?

Planując budynek, czy to mieszkalny, czy o innej funkcji (np. biurowiec, hotel, szpital), projektant tworzy konkretną bryłę, która ma spełnić szereg funkcji – wizualną, funkcjonalną, ekonomiczną w fazie...

Planując budynek, czy to mieszkalny, czy o innej funkcji (np. biurowiec, hotel, szpital), projektant tworzy konkretną bryłę, która ma spełnić szereg funkcji – wizualną, funkcjonalną, ekonomiczną w fazie realizacji i eksploatacji – i zapewnić właściwe warunki do przebywania w tym budynku ludzi.

dr inż. Krzysztof Pawłowski prof. PBŚ Kształtowanie układu warstw materiałowych podłóg na stropach w budynkach

Kształtowanie układu warstw materiałowych podłóg na stropach w budynkach Kształtowanie układu warstw materiałowych podłóg na stropach w budynkach

Dobór układu warstw materiałowych podłóg na stropach w budynkach nie powinien być przypadkowy, ale oparty na szczegółowych obliczeniach i analizach w zakresie nośności i wytrzymałości, wymagań cieplno-wilgotnościowych,...

Dobór układu warstw materiałowych podłóg na stropach w budynkach nie powinien być przypadkowy, ale oparty na szczegółowych obliczeniach i analizach w zakresie nośności i wytrzymałości, wymagań cieplno-wilgotnościowych, izolacyjności akustycznej oraz ochrony przeciwpożarowej.

dr inż. Andrzej Konarzewski Panele architektoniczne do budownictwa komercyjnego

Panele architektoniczne do budownictwa komercyjnego Panele architektoniczne do budownictwa komercyjnego

W Europie do opisywania konstrukcji ścian osłonowych z płyt warstwowych w obustronnej okładzinie stalowej z rdzeniem izolacyjnym można wykorzystywać zapisy podane w normie PN-EN 13830.

W Europie do opisywania konstrukcji ścian osłonowych z płyt warstwowych w obustronnej okładzinie stalowej z rdzeniem izolacyjnym można wykorzystywać zapisy podane w normie PN-EN 13830.

mgr inż. Julia Blazy, prof. dr hab. inż. Łukasz Drobiec, dr hab. inż. arch. Rafał Blazy prof. PK Zastosowanie fibrobetonu z włóknami polipropylenowymi w przestrzeniach publicznych

Zastosowanie fibrobetonu z włóknami polipropylenowymi w przestrzeniach publicznych Zastosowanie fibrobetonu z włóknami polipropylenowymi w przestrzeniach publicznych

Beton to materiał o dużej wytrzymałości na ściskanie, ale około dziesięciokrotnie mniejszej wytrzymałości na rozciąganie. Ponadto charakteryzuje się kruchym pękaniem i nie pozwala na przenoszenie naprężeń...

Beton to materiał o dużej wytrzymałości na ściskanie, ale około dziesięciokrotnie mniejszej wytrzymałości na rozciąganie. Ponadto charakteryzuje się kruchym pękaniem i nie pozwala na przenoszenie naprężeń po zarysowaniu.

Redakcja miesięcznika IZOLACJE Tynki gipsowe w pomieszczeniach mokrych i łazienkach

Tynki gipsowe w pomieszczeniach mokrych i łazienkach Tynki gipsowe w pomieszczeniach mokrych i łazienkach

Dobór tynku wewnętrznego do pomieszczeń mokrych lub narażonych na wilgoć nie jest prosty. Takie pomieszczenia mają specjalne wymagania, a rodzaj pokrycia ścian wewnętrznych powinien uwzględniać trudne...

Dobór tynku wewnętrznego do pomieszczeń mokrych lub narażonych na wilgoć nie jest prosty. Takie pomieszczenia mają specjalne wymagania, a rodzaj pokrycia ścian wewnętrznych powinien uwzględniać trudne warunki panujące wewnątrz kuchni czy łazienki. Na szczęście technologia wychodzi inwestorom naprzeciw i efektywne położenie tynku gipsowego w mokrych i wilgotnych pomieszczeniach jest możliwe.

mgr inż. Maciej Rokiel System ETICS – skutki braku analizy dokumentacji projektowej (cz. 4)

System ETICS – skutki braku analizy dokumentacji projektowej (cz. 4) System ETICS – skutki braku analizy dokumentacji projektowej (cz. 4)

Artykuł jest kontynuacją publikacji zamieszczonych kolejno w numerach 3/2022, 4/2022 i 6/2022 miesięcznika IZOLACJE. W tej części skupimy się na tym, jak skutki braku analizy czy wręcz nieprzeczytania...

Artykuł jest kontynuacją publikacji zamieszczonych kolejno w numerach 3/2022, 4/2022 i 6/2022 miesięcznika IZOLACJE. W tej części skupimy się na tym, jak skutki braku analizy czy wręcz nieprzeczytania dokumentacji projektowej mogą wpłynąć na uszkodzenia systemu. Przez „przeczytanie” należy tu także rozumieć zapoznanie się z tekstem kart technicznych stosowanych materiałów.

dr inż. Pavel Zemene, przewodniczący Stowarzyszenia EPS w Republice Czeskiej Bezpieczeństwo pożarowe złożonych systemów izolacji cieplnej ETICS

Bezpieczeństwo pożarowe złożonych systemów izolacji cieplnej ETICS Bezpieczeństwo pożarowe złożonych systemów izolacji cieplnej ETICS

Do bezpieczeństwa pożarowego w budynkach przywiązuje się niezmiernie dużą wagę. Zagadnienie to jest ważne nie tylko ze względu na bezpieczeństwo użytkowników budynku, ale także ze względu na bezpieczną...

Do bezpieczeństwa pożarowego w budynkach przywiązuje się niezmiernie dużą wagę. Zagadnienie to jest ważne nie tylko ze względu na bezpieczeństwo użytkowników budynku, ale także ze względu na bezpieczną eksploatację budynków i ochronę mienia. W praktyce materiały i konstrukcje budowlane muszą spełniać szereg wymagań, związanych między innymi z podstawowymi wymaganiami dotyczącymi stabilności konstrukcji i jej trwałości, izolacyjności termicznej i akustycznej, a także higieny i zdrowia, czy wpływu...

mgr inż. Maciej Rokiel Jak układać płytki wielkoformatowe?

Jak układać płytki wielkoformatowe? Jak układać płytki wielkoformatowe?

Wraz ze wzrostem wielkości płytek (długości ich krawędzi) wzrastają wymogi dotyczące jakości materiałów, precyzji przygotowania podłoża oraz reżimu technologicznego wykonawstwa.

Wraz ze wzrostem wielkości płytek (długości ich krawędzi) wzrastają wymogi dotyczące jakości materiałów, precyzji przygotowania podłoża oraz reżimu technologicznego wykonawstwa.

dr inż. Krzysztof Pawłowski prof. PBŚ Właściwości cieplno-wilgotnościowe materiałów budowlanych (cz. 2)

Właściwości cieplno-wilgotnościowe materiałów budowlanych (cz. 2) Właściwości cieplno-wilgotnościowe materiałów budowlanych (cz. 2)

Proces wymiany ciepła przez przegrody budowlane jest nieustalony w czasie, co wynika ze zmienności warunków klimatycznych na zewnątrz budynku oraz m.in. nierównomierności pracy urządzeń grzewczych. Opis...

Proces wymiany ciepła przez przegrody budowlane jest nieustalony w czasie, co wynika ze zmienności warunków klimatycznych na zewnątrz budynku oraz m.in. nierównomierności pracy urządzeń grzewczych. Opis matematyczny tego procesu jest bardzo złożony, dlatego w większości rozwiązań inżynierskich stosuje się uproszczony model ustalonego przepływu ciepła.

mgr inż. Jarosław Stankiewicz Zastosowanie kruszyw lekkich w warstwach izolacyjnych

Zastosowanie kruszyw lekkich w warstwach izolacyjnych Zastosowanie kruszyw lekkich w warstwach izolacyjnych

Kruszywa lekkie są materiałem znanym od starożytności. Aktualnie wyrób ten ma liczną grupę odbiorców nie tylko we współczesnym budownictwie, ale i w innych dziedzinach gospodarki. Spowodowane to jest licznymi...

Kruszywa lekkie są materiałem znanym od starożytności. Aktualnie wyrób ten ma liczną grupę odbiorców nie tylko we współczesnym budownictwie, ale i w innych dziedzinach gospodarki. Spowodowane to jest licznymi zaletami tego wyrobu, takimi jak wysoka izolacyjność cieplna, niska gęstość, niepalność i wysoka mrozoodporność, co pozwala stosować go zarówno w budownictwie, ogrodnictwie, jak i innych branżach.

dr inż. Andrzej Konarzewski, mgr Marek Skowron, mgr inż. Mateusz Skowron Przegląd metod recyklingu i utylizacji odpadowej pianki poliuretanowo‑poliizocyjanurowej powstającej przy produkcji wyrobów budowlanych

Przegląd metod recyklingu i utylizacji odpadowej pianki poliuretanowo‑poliizocyjanurowej powstającej przy produkcji wyrobów budowlanych Przegląd metod recyklingu i utylizacji odpadowej pianki poliuretanowo‑poliizocyjanurowej powstającej przy produkcji wyrobów budowlanych

W trakcie szerokiej i różnorodnej produkcji wyrobów budowlanych ze sztywnej pianki poliuretanowo/poliizocyjanurowej powstaje stosunkowo duża ilość odpadów, które muszą zostać usunięte. Jak przeprowadzić...

W trakcie szerokiej i różnorodnej produkcji wyrobów budowlanych ze sztywnej pianki poliuretanowo/poliizocyjanurowej powstaje stosunkowo duża ilość odpadów, które muszą zostać usunięte. Jak przeprowadzić recykling odpadów z pianki?

Joanna Szot Rodzaje stropów w domach jednorodzinnych

Rodzaje stropów w domach jednorodzinnych Rodzaje stropów w domach jednorodzinnych

Strop dzieli budynek na kondygnacje. Jednak to nie jedyne jego zadanie. Ponadto ten poziomy element konstrukcyjny usztywnia konstrukcję domu i przenosi obciążenia. Musi także stanowić barierę dla dźwięków...

Strop dzieli budynek na kondygnacje. Jednak to nie jedyne jego zadanie. Ponadto ten poziomy element konstrukcyjny usztywnia konstrukcję domu i przenosi obciążenia. Musi także stanowić barierę dla dźwięków i ciepła.

P.P.H.U. EURO-MIX sp. z o.o. EURO-MIX – zaprawy klejące w systemach ociepleń

EURO-MIX – zaprawy klejące w systemach ociepleń EURO-MIX – zaprawy klejące w systemach ociepleń

EURO-MIX to producent chemii budowlanej. W asortymencie firmy znajduje się obecnie ponad 30 produktów, m.in. kleje, tynki, zaprawy, szpachlówki, gładzie, system ocieplania ścian na wełnie i na styropianie....

EURO-MIX to producent chemii budowlanej. W asortymencie firmy znajduje się obecnie ponad 30 produktów, m.in. kleje, tynki, zaprawy, szpachlówki, gładzie, system ocieplania ścian na wełnie i na styropianie. Zaprawy klejące EURO-MIX przeznaczone są do przyklejania wełny lub styropianu do podłoża z cegieł ceramicznych, betonu, tynków cementowych i cementowo­-wapiennych, gładzi cementowej, styropianu i wełny mineralnej w temperaturze od 5 do 25°C.

dr inż. Krzysztof Pawłowski prof. PBŚ Układy materiałowe wybranych przegród zewnętrznych w aspekcie wymagań cieplnych (cz. 3)

Układy materiałowe wybranych przegród zewnętrznych w aspekcie wymagań cieplnych (cz. 3) Układy materiałowe wybranych przegród zewnętrznych w aspekcie wymagań cieplnych (cz. 3)

Rozporządzenie w sprawie warunków technicznych [1] wprowadziło od 31 grudnia 2020 r. nowe wymagania dotyczące izolacyjności cieplnej poprzez zaostrzenie wymagań w zakresie wartości granicznych współczynnika...

Rozporządzenie w sprawie warunków technicznych [1] wprowadziło od 31 grudnia 2020 r. nowe wymagania dotyczące izolacyjności cieplnej poprzez zaostrzenie wymagań w zakresie wartości granicznych współczynnika przenikania ciepła Uc(max) [W/(m2·K)] dla przegród zewnętrznych oraz wartości granicznych wskaźnika zapotrzebowania na energię pierwotną EP [kWh/(m2·rok)] dla całego budynku. Jednak w rozporządzeniu nie sformułowano wymagań w zakresie ograniczenia strat ciepła przez złącza przegród zewnętrznych...

mgr inż. arch. Tomasz Rybarczyk Zastosowanie keramzytu w remontowanych stropach i podłogach na gruncie

Zastosowanie keramzytu w remontowanych stropach i podłogach na gruncie Zastosowanie keramzytu w remontowanych stropach i podłogach na gruncie

Są sytuacje i miejsca w budynku, w których nie da się zastosować termoizolacji w postaci wełny mineralnej lub styropianu. Wówczas w rozwiązaniach występują inne, alternatywne materiały, które nadają się...

Są sytuacje i miejsca w budynku, w których nie da się zastosować termoizolacji w postaci wełny mineralnej lub styropianu. Wówczas w rozwiązaniach występują inne, alternatywne materiały, które nadają się również do standardowych rozwiązań. Najczęściej ma to miejsce właśnie w przypadkach, w których zastosowanie styropianu i wełny się nie sprawdzi. Takim materiałem, który może w pewnych miejscach zastąpić wiodące materiały termoizolacyjne, jest keramzyt. Ten materiał ma wiele właściwości, które powodują,...

Sebastian Malinowski Kleje żelowe do płytek – właściwości i zastosowanie

Kleje żelowe do płytek – właściwości i zastosowanie Kleje żelowe do płytek – właściwości i zastosowanie

Kleje żelowe do płytek cieszą się coraz większą popularnością. Produkty te mają świetne parametry techniczne, umożliwiają szybki montaż wszelkiego rodzaju okładzin ceramicznych na powierzchni podłóg oraz...

Kleje żelowe do płytek cieszą się coraz większą popularnością. Produkty te mają świetne parametry techniczne, umożliwiają szybki montaż wszelkiego rodzaju okładzin ceramicznych na powierzchni podłóg oraz ścian.

dr inż. Krzysztof Pawłowski prof. PBŚ Projektowanie cieplne przegród stykających się z gruntem

Projektowanie cieplne przegród stykających się z gruntem Projektowanie cieplne przegród stykających się z gruntem

Dla przegród stykających się z gruntem straty ciepła przez przenikanie należą do trudniejszych w obliczeniu. Strumienie cieplne wypływające z ogrzewanego wnętrza mają swój udział w kształtowaniu rozkładu...

Dla przegród stykających się z gruntem straty ciepła przez przenikanie należą do trudniejszych w obliczeniu. Strumienie cieplne wypływające z ogrzewanego wnętrza mają swój udział w kształtowaniu rozkładu temperatur w gruncie pod budynkiem i jego otoczeniu.

Jacek Sawicki, konsultacja dr inż. Szczepan Marczyński – Clematis Źródło Dobrych Pnączy, prof. Jacek Borowski Roślinne izolacje elewacji

Roślinne izolacje elewacji Roślinne izolacje elewacji

Naturalna zieleń na elewacjach obecna jest od dawna. W formie pnączy pokrywa fasady wielu średniowiecznych budowli, wspina się po murach secesyjnych kamienic, nierzadko zdobi frontony XX-wiecznych budynków...

Naturalna zieleń na elewacjach obecna jest od dawna. W formie pnączy pokrywa fasady wielu średniowiecznych budowli, wspina się po murach secesyjnych kamienic, nierzadko zdobi frontony XX-wiecznych budynków jednorodzinnych czy współczesnych, nowoczesnych obiektów budowlanych, jej istnienie wnosi wyjątkowe zalety estetyczne i użytkowe.

mgr inż. Wojciech Rogala Projektowanie i wznoszenie ścian akustycznych w budownictwie wielorodzinnym na przykładzie przegród z wyrobów silikatowych

Projektowanie i wznoszenie ścian akustycznych w budownictwie wielorodzinnym na przykładzie przegród z wyrobów silikatowych Projektowanie i wznoszenie ścian akustycznych w budownictwie wielorodzinnym na przykładzie przegród z wyrobów silikatowych

Ściany z elementów silikatowych w ciągu ostatnich 20 lat znacznie zyskały na popularności [1]. Stanowią obecnie większość przegród akustycznych w budynkach wielorodzinnych, gdzie z uwagi na wiele źródeł...

Ściany z elementów silikatowych w ciągu ostatnich 20 lat znacznie zyskały na popularności [1]. Stanowią obecnie większość przegród akustycznych w budynkach wielorodzinnych, gdzie z uwagi na wiele źródeł hałasu izolacyjność akustyczna stanowi jeden z głównych czynników wpływających na komfort.

LERG SA Poliole poliestrowe Rigidol®

Poliole poliestrowe Rigidol® Poliole poliestrowe Rigidol®

Od lat obserwujemy dynamicznie rozwijający się trend eko, który stopniowo z mody konsumenckiej zaczął wsiąkać w coraz głębsze dziedziny życia społecznego, by w końcu dotrzeć do korzeni funkcjonowania wielu...

Od lat obserwujemy dynamicznie rozwijający się trend eko, który stopniowo z mody konsumenckiej zaczął wsiąkać w coraz głębsze dziedziny życia społecznego, by w końcu dotrzeć do korzeni funkcjonowania wielu biznesów. Obecnie marki, które chcą odnieść sukces, powinny oferować swoim odbiorcom zdecydowanie więcej niż tylko produkt czy usługę wysokiej jakości.

mgr inż. arch. Tomasz Rybarczyk Prefabrykacja w budownictwie

Prefabrykacja w budownictwie Prefabrykacja w budownictwie

Prefabrykacja w projektowaniu i realizacji budynków jest bardzo nośnym tematem, co przekłada się na duże zainteresowanie wśród projektantów i inwestorów tą tematyką. Obecnie wzrasta realizacja budynków...

Prefabrykacja w projektowaniu i realizacji budynków jest bardzo nośnym tematem, co przekłada się na duże zainteresowanie wśród projektantów i inwestorów tą tematyką. Obecnie wzrasta realizacja budynków z prefabrykatów. Można wśród nich wyróżnić realizacje realizowane przy zastosowaniu elementów prefabrykowanych stosowanych od lat oraz takich, które zostały wyprodukowane na specjalne zamówienie do zrealizowania jednego obiektu.

dr inż. Gerard Brzózka Płyty warstwowe o wysokich wskaźnikach izolacyjności akustycznej – studium przypadku

Płyty warstwowe o wysokich wskaźnikach izolacyjności akustycznej – studium przypadku Płyty warstwowe o wysokich wskaźnikach izolacyjności akustycznej – studium przypadku

Płyty warstwowe zastosowane jako przegrody akustyczne stanowią rozwiązanie charakteryzujące się dobrymi własnościami izolacyjnymi głównie w paśmie średnich, jak również wysokich częstotliwości, przy obciążeniu...

Płyty warstwowe zastosowane jako przegrody akustyczne stanowią rozwiązanie charakteryzujące się dobrymi własnościami izolacyjnymi głównie w paśmie średnich, jak również wysokich częstotliwości, przy obciążeniu niewielką masą powierzchniową. W wielu zastosowaniach wyparły typowe rozwiązania przegród masowych (np. z ceramiki, elementów wapienno­ piaskowych, betonu, żelbetu czy gipsu), które cechują się kilkukrotnie wyższymi masami powierzchniowymi.

dr hab. inż. Tomasz Tański, Roman Węglarz Prawidłowy dobór stalowych elementów konstrukcyjnych i materiałów lekkiej obudowy w środowiskach korozyjnych według wytycznych DAFA

Prawidłowy dobór stalowych elementów konstrukcyjnych i materiałów lekkiej obudowy w środowiskach korozyjnych według wytycznych DAFA Prawidłowy dobór stalowych elementów konstrukcyjnych i materiałów lekkiej obudowy w środowiskach korozyjnych według wytycznych DAFA

W świetle zawiłości norm, wymogów projektowych oraz tych istotnych z punktu widzenia inwestora okazuje się, że problem doboru właściwego materiału staje się bardzo złożony. Materiały odpowiadające zarówno...

W świetle zawiłości norm, wymogów projektowych oraz tych istotnych z punktu widzenia inwestora okazuje się, że problem doboru właściwego materiału staje się bardzo złożony. Materiały odpowiadające zarówno za estetykę, jak i przeznaczenie obiektu, m.in. w budownictwie przemysłowym, muszą sprostać wielu wymogom technicznym oraz wizualnym.

Wybrane dla Ciebie

Odkryj trendy projektowania elewacji »

Odkryj trendy projektowania elewacji » Odkryj trendy projektowania elewacji »

Jak estetycznie wykończyć ściany - wewnątrz i na zewnątrz? »

Jak estetycznie wykończyć ściany - wewnątrz i na zewnątrz? » Jak estetycznie wykończyć ściany - wewnątrz i na zewnątrz? »

Przeciekający dach? Jak temu zapobiec »

Przeciekający dach? Jak temu zapobiec » Przeciekający dach? Jak temu zapobiec »

Dach biosolarny - co to jest? »

Dach biosolarny - co to jest? » Dach biosolarny - co to jest? »

Zobacz, które płyty termoizolacyjne skutecznie ochronią dom przed zimnem »

Zobacz, które płyty termoizolacyjne skutecznie ochronią dom przed zimnem » Zobacz, które płyty termoizolacyjne skutecznie ochronią dom przed zimnem »

Jak poprawić izolacyjność akustyczną ścian murowanych »

Jak poprawić izolacyjność akustyczną ścian murowanych »  Jak poprawić izolacyjność akustyczną ścian murowanych »

Wszystko, co powinieneś wiedzieć o izolacjach natryskowych »

Wszystko, co powinieneś wiedzieć o izolacjach natryskowych » Wszystko, co powinieneś wiedzieć o izolacjach natryskowych »

Przekonaj się, jak inni izolują pianką poliuretanową »

Przekonaj się, jak inni izolują pianką poliuretanową » Przekonaj się, jak inni izolują pianką poliuretanową »

Na czym polega fenomen technologii białej wanny »

Na czym polega fenomen technologii białej wanny » Na czym polega fenomen technologii białej wanny »

Podpowiadamy, jak wybrać system ociepleń

Podpowiadamy, jak wybrać system ociepleń Podpowiadamy, jak wybrać system ociepleń

Podpowiadamy, jak skutecznie przeprowadzić renowacje piwnicy »

Podpowiadamy, jak skutecznie przeprowadzić renowacje piwnicy » Podpowiadamy, jak skutecznie przeprowadzić renowacje piwnicy »

300% rozciągliwości membrany - TAK! »

300% rozciągliwości membrany - TAK! » 300% rozciągliwości membrany - TAK! »

Copyright © 2004-2019 Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Spółka komandytowa, nr KRS: 0000537655. Wszelkie prawa, w tym Autora, Wydawcy i Producenta bazy danych zastrzeżone. Jakiekolwiek dalsze rozpowszechnianie artykułów zabronione. Korzystanie z serwisu i zamieszczonych w nim utworów i danych wyłącznie na zasadach określonych w Zasadach korzystania z serwisu.
Portal Budowlany - Izolacje.com.pl

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim urządzeniu końcowym. W każdym momencie możesz dokonać zmiany ustawień przeglądarki dotyczących cookies. Nim Państwo zaczną korzystać z naszego serwisu prosimy o zapoznanie się z naszą polityką prywatności oraz Informacją o Cookies. Więcej szczegółów w naszej Polityce Prywatności oraz Informacji o Cookies. Administratorem Państwa danych osobowych jest Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Sp.K., nr KRS: 0000537655, z siedzibą w 04-112 Warszawa, ul. Karczewska 18, tel. +48 22 810-21-24, właściciel strony www.izolacje.com.pl. Twoje Dane Osobowe będą chronione zgodnie z wytycznymi polityki prywatności www.izolacje.com.pl oraz zgodnie z Rozporządzeniem Parlamentu Europejskiego i Rady (UE) 2016/679 z dnia 27 kwietnia 2016r i z Ustawą o ochronie danych osobowych Dz.U. 2018 poz. 1000 z dnia 10 maja 2018r.