Pobierz pełny numer IZOLACJI

Pełny numer IZOLACJI 1/2017 [PDF]

możesz pobrać BEZPŁATNIE - po prostu ZAREJESTRUJ konto w portalu

Zastosowanie różnych grubości geowłóknin do zabezpieczenia geomembrany poddanej przebiciu w warunkach laboratoryjnych

Use of geotextiles of different thickness to protect geomembrane punctured in laboratory conditions
Geosyntetyki służą mi.in do uszczelniania, drenażu, filtracji czy wzmacniania podłoża
Geosyntetyki służą mi.in do uszczelniania, drenażu, filtracji czy wzmacniania podłoża
Griltex

Geosyntetyki spełniają wiele różnych funkcji hydraulicznych i mechanicznych, takich jak uszczelnianie, drenaż, filtracja, wzmacnianie podłoża, separacja materiałów o zróżnicowanym uziarnieniu czy ochrona materiałów przed uszkodzeniami mechanicznymi. Przykładem zastosowania tych materiałów w kilku funkcjach jednocześnie jest budowa dna składowiska odpadów komunalnych lub przemysłowych.

Zastosowanie materiałów geosyntetycznych do budowy dna składowiska odpadów komunalnych lub przemysłowych (RYS. 1) ma uniemożliwiać kontakt odpadów i produktów ich rozkładu z wodami powierzchniowymi i gruntowymi.

Tego typu osłony buduje się z wykorzystaniem konstrukcji kompozytowych, czyli układanych stycznie różnych rodzajów geosyntetyków, takich jak geomembrany, geowłókniny czy maty bentonitowe, gdzie poszczególne elementy pakietu pełnią różne funkcje - geomembrany i maty bentonitowe stanowią nieprzepuszczalną barierę, a geowłókniny chronią materiały uszczelniające przed przebiciem, separują [1].

Podatność na przebicie to jedna z głównych wad geosyntetyków [2]. W wypadku dna składowiska odpadów ryzyko przebicia stwarzają zarówno same odpady, jak i ostre cząstki gruntu pod składowiskiem [3, 4].

Warto przeczytać: Awarie i uszkodzenia konstrukcji z geosyntetykami - błędy projektowe i wykonawcze

ABSTRAKT

W artykule przestawiono wyniki badań podatności na przebicie geosyntetyków układanych w różnych konfi-guracjach. Analizie poddano średnice przebić poszczególnych kompozytów (z uwzględnieniem wartości sił przebicia zmierzonych w czasie badań). Wskazano, jaki układ przeniesie uszkodzenia w sposób najmniej urazowy.

The article presents the results of puncture resistance of geosynthetic materials laid in different configura-tions. The analysis covers the diameters of puncture holes in specific composites (accounting for the values of puncture forces measured during the tests). The article presents a system that would transfer damage with as little injury as possible.

Zaprojektowanie skutecznej przesłony uszczelniającej wymaga więc odpowiedniego doboru materiałów składających się na kompozyt, z uwzględnieniem warunków, w jakich materiały te będą funkcjonować [5, 6].

Celem badań przedstawionych w artykule było określenie podatności na przebicie geosyntetyków układanych w różnych konfiguracjach.

Analizie poddano średnice przebić poszczególnych kompozytów (z uwzględnieniem wartości sił przebicia zmierzonych w czasie badań), aby wskazać, jaki układ przeniesie w sposób najmniej urazowy uszkodzenia, na które będzie narażony w trakcie eksploatacji.

Materiały i metody badań

Badania przeprowadzono na dwóch typach geomembran oraz sześciu typach geowłóknin (TABELA). Badane geomembrany (Gm1 i Gm2) wytworzono z polietylenu o wysokiej gęstości, różniły się jedynie grubością (1,0 mm i 2,0 mm).

Pod względem technologii wykonania były takie same (obustronnie gładkie). Wszystkie użyte do badań geowłókniny wytworzono z włókien polipropylenowych ciągłych lub ciętych.

 RYS. 1. Przykładowy przekrój przez zamknięte składowisko odpadów innych niż niebezpieczne i obojętne
RYS. 1. Przykładowy przekrój przez zamknięte składowisko odpadów innych niż niebezpieczne i obojętne: 1 - darnina, 2 - warstwa rekultywacyjna, 3 - warstwa drenażu wodnego, 4 - warstwa drenażu gazowego, 5 - odpady komunalne, 6 - warstwa uszczelnienia mineralnego; rys.: archiwa autorów

Na geowłókninie o gr. 0,7 mm (Gw1) widać wyraźne ułożone w jednym kierunku (wzdłużnie) włókna ciągłe, sklejone chemicznie od strony dolnej. Pozostałe geowłókniny (Gw2-Gw6) o gr. od 1,3 mm do 5,9 mm należą do geowłóknin igłowanych. 

DOŁĄCZ DO NEWSLETTERA – kliknij tutaj »

Badania przeprowadzono na prasie pionowej (FOT. 1). Służy ona do badania próbek gruntu oraz innych materiałów na ściskanie i zginanie przy nacisku do 50 kN.

TABELA. Ogólna charakterystyka badanych geosyntetyków
TABELA. Ogólna charakterystyka badanych geosyntetyków

Na maszynie zamontowano zestaw do badania przebicia materiałów geosyntetycznych zgodnie z normą PN-EN 14574:2005 [7]. Zestaw składał się z aluminiowej płytki o gr. 3 mm ułożonej na stalowej płycie, tłoka zakończonego stalową piramidką (o 4 bokach i kącie wierzchołkowym 90°) oraz obwodu elektrycznego sygnalizującego moment przebicia (FOT. 2).

Próbki materiałów wykorzystane do badań miały wymiary 100×100 mm (FOT. 3). Przygotowano po 5 próbek każdego geosyntetyku do badania „na sucho" i 5 do badania "na mokro", czyli próbek nawodnionych. Próbki przeznaczone do badań na mokro zostały uprzednio umieszczone w pojemniku z wodą o temp. 19°C na 72 godz. przy całkowitym zanurzeniu.

Artykuł pochodzi z: miesięcznika IZOLACJE 7/8/2015

Komentarze

(1)
Rafał | 05.03.2018, 14:53

Najważniejsze jest znalezienie odpowiedniego producenta. Jak wszyscy wiemy, towar lepszej jakości daje lepsze rezultaty. Osobiście u siebie użyłem producenta geomembran i geokompozytów. Efekt jest rewelacyjny. Wilgoć nie przechodzi przez membrany, jest ładnie izolowana. Dodatkowo zastosowałem korytka odprowadzające wzdłuż działki. Całkowity rezultat oceniam na na 4+. Wiadomo teren robi swoje, stąd nie mogę dać pełnej 5.

   1 / 1   

Wybrane dla Ciebie


Dachówki dla remontowanych dachów »

Właściwości techniczne sprawiają, że takie dachówki są mrozo- i ognioodporne, wytrzymałe i mają bardzo niską nasiąkliwość.  czytaj dalej »

 


Kołki, wkręty, kotwy i śruby, czyli wszystko o rodzajach zamocowań

Dobrze dobrane śruby zapewniają bezawaryjny i długi okres użytkowania. Co trzeba o nich wiedzieć? czytaj dalej »

 


Uszczelniaj i oszczędzaj - nowoczesne systemy uszczelnień »

Jak prawidłowo wykonać połączenia w instalacjach wodnych?

W obszarze zabezpieczeń przed wnikaniem wody do obiektów budowlanych doskonałą alternatywą dla hydroizolacji typu ciężkiego (pap, bitumów, mat, membran) może być konstrukcja... czytaj dalej »

Największą zmorą połączeń gwintowanych stosowanych w instalacjach wodociągowych jest przeciekanie. Wszelkiego typu nieszczelności mogą powodować szereg przykrych konsekwencji... czytaj dalej »

Jak dobrze wybrać materiał celulozowy do ociepleń?


Pytanie nie brzmi czy wybrać materiał celulozowy do dociepleń, tylko jak go dobrze wybrać, by spełniał oczekiwania inwestora. czytaj dalej »

 


Jak szybko naprawić uszkodzenia na powierzchni dachu?

Jak czyścić i zabezpieczać posadzki przemysłowe?

Na płaskich dachach papowych - zwłaszcza w trakcie lub tuż po okresie zimowym - można zaobserowować dwa zasadnicze rodzaje uszkodzeń. Są to z jednej strony... czytaj dalej » Niezależnie od rodzaju posadzki czyszczenie zaczynamy od dokładnego usunięcia pyłu, kurzu i innych luźnych zanieczyszczeń znajdujących się na powierzchni. Następnie... czytaj dalej »

 

Czego użyć do mocowania termoizolacji?

Łączniki do termoizolacji to ważny element zapewniający stabilność układu ociepleniowego. Powinny być dobrane z uwzględnieniem rodzaju podłoża, ciężaru systemu oraz... czytaj dalej »


Sposób na elewację bez grzybów i glonów

Jaki sposób ogrzewania domu wybrać?

Gdy na ścianach zewnętrznych budynku zauważymy charakterystyczne zielone plamy, czas przystąpić do działania. czytaj dalej » Obecnie na rynku dostępnych jest wiele systemów ogrzewania. Jednak ceny poszczególnych rozwiązań są różne, tak jak komfort ich użytkowania czy wpływ na środowisko. Na co więc warto zwrócić uwagę przy wyborze ogrzewania i którą opcję wybrać? czytaj dalej »

Posadzki do każdego typu pomieszczeń. Zobacz prezentacje »

 czytaj dalej »

dr inż. Mariusz Cholewa
dr inż. Mariusz Cholewa
Autor ukończył studia na Wydziale Inżynierii Środowiska i Geodezji Akademii Rolniczej w Krakowie. Pracuje w Katedrze Inżynierii Wodnej i Geotechniki. Zawodowo interesuje się zastosowaniem geosyntety... więcej »
dr inż. Przemysław Baran
dr inż. Przemysław Baran
Przemysław Baran ukończył Wydział Inżynierii Środowiska i Geodezji Akademii Rolniczej w Krakowie. Pracuje w Katedrze Inżynierii Wodnej i Geotechniki. Zawodowo interesuje się wykorzystaniem gruntó... więcej »
dr inż. Katarzyna Kamińska
dr inż. Katarzyna Kamińska
Katarzyna Kamińska ukończyła studia wyższe na Wydziale Inżynierii Środowiska i Geodezji Akademii Rolniczej w Krakowie. Pracuje w Katedrze Inżynierii Wodnej i Geotechniki. Zawodowo interesuje si... więcej »
Dodaj komentarz
Nie jesteś zalogowany - zaloguj się lub załóż konto. Dzięki temu uzysksz możliwość obserwowania swoich komentarzy oraz dostęp do treści i możliwości dostępnych tylko dla zarejestrowanych użytkowników portalu Izolacje.com.pl... dowiedz się więcej »
Synthos S.A. Synthos S.A.
Grupa Kapitałowa Synthos S.A. jest jednym z największych producentów surowców chemicznych w Polsce. Spółka jest pierwszym w Europie...
6/2018

Aktualny numer:

Izolacje 6/2018
W miesięczniku m.in.:
  • - Izolacje w dachach zielonych odwróconych
  • - Renowacja dachu drewnianego
Zobacz szczegóły
Podłoga na gruncie - ciepła i trwała

Podłoga na gruncie - ciepła i trwała

Coraz bardziej restrykcyjne wymagania dotyczące izolacyjności przegród cieplnych w budynkach zwiększają zapotrzebowanie na nowoczesne i skuteczniejsze rozwiązania. Prawie...
Dom Wydawniczy MEDIUM Rzetelna Firma
Copyright @ 2004-2012 Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Spółka komandytowa, nr KRS: 0000537655. Wszelkie prawa w tym Autora, Wydawcy i Producenta bazy danych zastrzeżone. Jakiekolwiek dalsze rozpowszechnianie artykułów zabronione. Korzystanie z serwisu i zamieszczonych w nim utworów i danych wyłącznie na zasadach określonych w Zasadach korzystania z serwisu.
realizacja i CMS: omnia.pl

.