Diagnostyka cieplna budynków z wykorzystaniem termografii niejednokrotnie wskazuje na występowanie mostków cieplnych wzdłuż ościeżnic ram okiennych i drzwiowych.
Zwykle w takich przypadkach mówi się o złym montażu stolarki otworowej, np. o występowaniu pustek powietrznych wynikających z niewłaściwego dozowana pianki (Czytaj więcej na ten temat). Przyczyn problemu może być jednak wiele.
Problem zastosowania pianek wokół stolarki otworowej
Pod względem właściwości technicznych pianki jednoskładnikowe mogą mieć gorsze parametry ze względu na niewłaściwe wykonanie bądź niedobór wilgoci podczas dojrzewania [1, 2]. Niekorzystne jest także przycinanie nadmiaru stwardniałej pianki i brak osłonięcia jej materiałem zabezpieczającym, co w praktyce często się zdarza.
Przy aplikacji pianka jest podawana zwykle w formie tzw. warkocza, który ulega stopniowemu pęcznieniu i utwardzeniu.
Występująca na powierzchni pianki gruba warstwa skórki przyczynia się do wzrostu współczynnika przewodzenia ciepła, m.in. dlatego, że skoncentrowany w warstwie naskórka polimer osnowy (składnik stały) ma gorsze właściwości cieplne niż porofory.
Wartość współczynnika przewodzenia ciepła polimeru osnowy wynosi ok. 0,2-0,4 W/(m·K) [3, 4]. Należy jednak pamiętać, że udział objętościowy materiału osnowy w piankach zamkniętokomórkowych jest mały i tylko naskórek odznacza się większą gęstością pozorną, czyli większym udziałem polimeru.
Przeczytaj cz. 1 |
---|
Izolacyjność cieplna wysokoprężnej pianki poliuretanowej w aerozolu |
Dodatkowo, wykazano, że podczas wzrostu pianki pod naskórkiem powstają zwykle rozległe pory pogarszające izolacyjność cieplną pianek PU [5, 6]. Obcinanie pianki z jednej strony eliminuje co prawda warstwę powierzchniową o gorszych właściwościach izolacyjnych, lecz jednocześnie pozbawia izolację naturalnej bariery antydyfuzyjnej dla pary wodnej.
W ten sposób otwiera się strukturę wewnętrzną, a co gorsza także występujące w niej głębokie otwarte pory (kanały). Absorpcja wody i pary wodnej ulega więc zwiększeniu wraz ze zmniejszeniem gęstości pozornej pianki PU. Dotyczy to przede wszystkim pianek wysokoprężnych.
W piankach zamkniętokomórkowych nasiąkliwość wynosi do 2,5%. W piankach półsztywnych ok. 1.5% (według danych producentów). Chociaż szkielet pianki wykazuje małą chłonność wody, to w piankach jednoskładnikowych możliwa jest dyfuzja pary wodnej w głąb izolacji.
Jednoskładnikowe pianki w aerozolu niekoniecznie należy traktować jako zamkniętokomórkowe. Kryterium podziału pianek PU nie jest ściśle unormowane, ale przyjmuje się, że pianka zamkniętokomórkowa powinna mieć co najmniej 90-95% komórek zamkniętych.
W typowych piankach jednoskładnikowych jest ok. 80% takich komórek. Nawet pianki o komórkach zamkniętych niezabezpieczone odpowiednio farbą lub lakierem mogą w znacznym stopniu chłonąć wilgoć. Absorpcja 1% wag. wody zwiększa wartość współczynnika przewodzenia ciepła pianki o ok. 0,0015 W/(m·K) [5].
Badanie właściwości pianek w aerozolu
ABSTRAKT |
---|
W drugiej części artykułu dotyczącego izolacyjności cieplnej wysokoprężnej pianki poliuretanowej omówiono rezultaty pomiarów, tj. wartości współczynnika przewodzenia ciepła i oporu cieplnego, dla płaskich płyt uformowanych z pianki PU. |
Thermal performance of high-pressure one-component foam in spray. Part 2: A study of thermal performance of foam used in construction woodworkThe second part of the article on thermal insulation of high-pressure polyurethane foam discusses the results of measurements, i.e. thermal conductivity and thermal resistance coefficients of flat panels made of PU foam. |
Mimo powszechnego stosowania półsztywnych pianek w aerozolu nie ustanowiono dla nich norm przedmiotowych. W aprobatach technicznych wykonywanych przez ITB nie sprawdza się właściwości cieplnych pianek montażowo-uszczelniających i montażowych, przepuszczalności pary wodnej ani zawartości zamkniętych porów [7, 8].
Postępowanie takie wynika stąd, że pianki w aerozolu traktuje się jako materiał o niedużym znaczeniu przy obliczeniach strat ciepła przez przegrody. Najczęściej opór cieplny pianki uszczelniającej nie jest brany pod uwagę z powodu stosunkowo małej objętości pianki względem pozostałych materiałów występujących w przegrodzie.
Umniejszanie znaczenia materiału stosowanego nawet w niewielkiej ilości, który w poszczególnych miejscach w konstrukcji pełni rolę termoizolacyjną i uszczelniającą, nie wydaje się słuszne. Problem mostków cieplnych występujących wzdłuż ościeżnic stolarki budowlanej jest istotny i nie można go pominąć.
Założenie o zabezpieczaniu pianki uszczelniającej stolarkę materiałami nieprzepuszczającymi pary wodnej (farbami, lakierami itp.) również nie jest odpowiednie, gdyż często nie ma pokrycia w praktyce.
Charakterystyka badanej pianki
Badane próbki w postaci płaskich płyt wykonano z montażowo-uszczelniającej pianki poliuretanowej, powszechnie dostępnej na rynku. Jest to wysokoprężna, jednokomponentowa pianka aerozolowa utwardzana z udziałem wilgoci. W TABELI 1 zestawiono podstawowe dane techniczne gwarantowane przez producenta.
Materiał należy do grupy pianek wężykowych. Spienianie za pomocą aplikatora następowało po wcześniejszym zwilżeniu formy. Aplikację pianek przeprowadzono zgodnie z zaleceniami podanymi przez producenta.
W eksperymencie zastosowano formę pionową o regulowanej grubości i powierzchniach bocznych dostosowanych do wymiaru komory aparatu płytowego (600×600 mm). Konstrukcja formy zapewniła uzyskanie w próbkach komórek wydłużonych prostopadle do zadawanego strumienia ciepła.
Wykonano trzy próbki gr. ok. 40 mm, 80 mm oraz 130 mm. Fragmenty powierzchni analizowanych materiałów przedstawiono na FOT. 1-3.
Zapewniono różne warunki wzrostu piany w celu zróżnicowania struktury próbek. Dwie próbki gr. 40 mm oraz 80 mm powstały przy ograniczonym spienianiu, a jedna gr. 130 mm przy swobodnym wzroście piany. Gęstość pozorna po utwardzeniu poliuretanu zależy od ilości dozowanej pianki w danej objętości.
Dlatego w eksperymencie zastosowano za każdym razem inne ilości aplikowanej pianki z pojemników. Uzyskano w ten sposób różne oczekiwane gęstości próbek. Niewątpliwie przyczyniły się do tego także inne ustawienia odległości ścianek w formie oraz ograniczenie lub brak ograniczenia wzrostu piany.
W efekcie uzyskano zmniejszenie gęstości pozornej wraz ze wzrostem grubości próbek. Makroskopowa ocena pianek wykazała wzrost wielkości porów wraz ze wzrostem grubości.