Naprawa rys w konstrukcjach żelbetowych metodą iniekcji

Cz. 2. Przykłady napraw konstrukcji żelbetowej
Naprawa rys w konstrukcjach żelbetowych metodą iniekcji | Repairs of cracks in reinforced concrete structures using crack injection method. Part 2: Exemplary repairs of a reinforced concrete structure
Naprawa rys w konstrukcjach żelbetowych metodą iniekcji | Repairs of cracks in reinforced concrete structures using crack injection method. Part 2: Exemplary repairs of a reinforced concrete structure

W pierwszej części artykułu dotyczącego problemu naprawy rys w konstrukcjach żelbetowych metodą iniekcji omówiono klasyfikację i przyczyny powstawania rys w betonie. Wymieniono także możliwości naprawy ze szczególnym uwzględnieniem metody iniekcji.

DOŁĄCZ DO NEWSLETTERA – kliknij tutaj »

Iniekcja jest użyteczną i skuteczną metodą naprawy zarysowanych konstrukcji żelbetowych. Niejednokrotnie jest także jedyną metodą efektywną ekonomicznie.

Stabilizacja podłogi na gruncie

Brak podparcia płyty żelbetowej ułożonej na gruncie może powodować pękanie podłogi i przemieszczanie krawędzi szczelin pod wpływem obciążeń użytkowych. W takich przypadkach skuteczną i tanią metodą naprawy jest wypełnienie pustek iniekcyjnym zaczynem cementowym (RYS. 1–2).

Najczęściej wystarczy oczyścić i ponownie uszczelnić szczeliny dylatacyjne. Jeśli jednak wystąpiło np. samoistne zdylatowanie podłogi równolegle do istniejącej szczeliny, należy wbudować nową szczelinę i scalić dotychczasową. Jeśli naroża płyt się odłamały, konieczne będzie ich odbudowanie.

Przeczytaj: Ochrona konstrukcji żelbetowych w obiektach rolniczych – wymagania norm i wytycznych ITB

W sytuacji rys ruchomych i gdy przewidywane rozwarcie szczeliny nie gwarantuje przenoszenia obciążeń, należy wbudować system dybli. W tym celu można usunąć pas zarysowanego betonu płyty i zabudować system dybli, a następnie odtworzyć dylatację.

Redukcja odkształceń fundamentów maszyn

Charakterystyka obiektu

ABSTRAKT

W drugiej części artykułu dotyczącego problemu naprawy rys w konstrukcjach żelbetowych metodą iniekcji przedstawiono przykład konkretnego obiektu. Omówiono realizację prac w jednym z fundamentów. Podano także charakterystykę parametrów iniekcji.

The second part of the article on the problem of repairing cracks in reinforced concrete structures using crack injection method presents an example of a particular facility. It discusses the implementation of works on one of the foundations. The article also specifies the characteristics of injection parameters.

W ramach prowadzonej rozbudowy istniejącej fabryki w jednej z hal wykonano 3 żelbetowe fundamenty, na których miały zostać zamontowane urządzenia mechaniczne (RYS. 3). Nieregularne bloki z betonu monolitycznego klasy C20/25 zbrojono prętami o śrenicy 10 mm ze stali klasy A-IIIN (TABELA 1).

Na pochylonych skarpach wykopu i pod fundamentami ułożono beton o niskiej wytrzymałości, na który rozłożono matę wibroizolacyjną (zarówno w dnie, jak i na ścianach wykopu). Fundamenty oddylatowano od warstw podbudowy i posadzki. W poziomie posadzki dylatacje wypełniono materiałem sprężystym. Fundamenty nie wystawały ponad posadzkę. Krawędzie okuto stalą.

W trakcie eksploatacji maszyn zauważono brak stabilności tzw. punktu 0, mającego zasadniczy wpływ na dokładność obrabianych elementów. Wykonano pomiary odkształceń fundamentów i po przeprowadzeniu analizy postawiono tezę, iż brak spowodowany jest nadmiernymi deformacjami fundamentów. Analizowano m.in.:

  • ocenę sztywności fundamentu i określenie dokładności geometrycznej maszyn,
  • kartę katalogową zastosowanych mat wibroizolacyjnych,
  • dane techniczne zamontowanych maszyn,
  • wyciąg z projektu przebudowy i rozbudowy fabryki, ze szczególnym uwzględnieniem oceny wpływu podłoża gruntowego i zastosowanej maty na sztywność fundamentów.

Przyjęto hipotezę, że w trakcie wykonywania fundamentów przestrzeń między stożkami maty wibroizolacyjnej została częściowo wypełniona zaczynem cementowym lub betonem, np. na skutek przebicia izolacji w trakcie prac betoniarskich.

Zobacz także: Ocena skuteczności hydrofobizacji powierzchniowej betonu

W efekcie mogły zostać zmienione wartości nacisków fundamentu na stożki maty (rozkład i wartości ugięć statycznych) oraz rozkład obciążeń przekazywanych z fundamentu na podłoże gruntowe (wartości ugięcia podłoża gruntowego pod fundamentem).

Projektant w celu zweryfikowania takiego założenia zaproponował, by w przestrzeń między stożkami maty wprowadzić ciecz o maksymalnie dużej gęstości i jak najmniejszej lepkości, która spowoduje usztywnienie fundamentu. W wyniku takich działań fundament powinien pozostać w ustalonej pozycji.

Projektowanie przegród zewnętrznych w świetle nowych warunków technicznych dotyczących budynków, autor: Krzysztof Pawłowski,oprawa miękka, stron 168, ISSN 2300-3944, numer 2/2013
CZYTAJ OPIS »
PRZEJDŹ
DO KSIĘGARNI »

Oceniono, że ciężar wprowadzonej cieczy stanowiący dodatkowe obciążenie przekazywane na podłoże gruntowe jest mały w porównaniu z całkowitym ciężarem przekazywanym z fundamentu. Skutkiem wprowadzenia materiału iniekcyjnego jest jednak utrata przez matę wibroizolacyjną funkcji ochrony maszyny (wrażliwej na wstrząsy i drgania) przed zakłóceniami dynamicznymi pochodzącymi z zewnątrz.

Rozwiązanie to nie było wcześniej stosowane przez producenta maszyny. Uznano, że najskuteczniejszą metodą wykonania naprawy będzie iniekcja zaczynem cementowym z równoczesnym monitorowaniem parametrów posadowienia maszyn. Na RYS. 3 zaznaczono poszczególne bloki fundamentu:

  • niebieski, o głębokości posadowienia 150 cm; poniżej tej głębokości zamontowana jest mata wibroizolacyjna;
  • czerwony, o głębokości posadowienia 100 cm z brakiem możliwości dostępu do prac wiertniczych w części, w której posadowiona jest maszyna (niebieskie koła posadowienia);
  • żółty, o głębokości posadowienia 60 cm.

Wokół fundamentu wskazano numerami od 1 do 33 (punkty i napisy niebieskie) miejsca umieszczenia rurek iniekcyjnych w szczelinach dylatacyjnych. Numery od 1 do 24 (cyfry na białych polach) dotyczą pakerów próżniowych.

Żółte linie przerywane wskazują linie przekrojów. Linie niebieskie przerywane oznaczają schematycznie miejsca przebiegu zasilania elektrycznego, a linie niebieskie, ciągłe – miejsce posadowienia i pracy maszyny. Linie zielone to kanały/koryta technologiczne wykonane w górnej części fundamentu, niezbędne do prawidłowej pracy maszyny (transportu medium chłodzącego, odstawy wiór, napędów itp.). Przekroje, np. 1–1, 2–2, pokazują głębokości posadowienia poszczególnych bloków, kanałów, koryt, grubości ścian i grubość płyty dennej.

Realizacja prac iniekcyjnych na przykładzie fundamentu nr 4

Pustki w macie wibroizolacyjnej w fundamencie maszyny wypełniano iniekcyjnie w 2012 r. Jako materiał iniekcyjny zastosowano mieszankę mikrocementu z dodatkami, o stosunku wodno-cementowym 9:10.

W wyniku prac uzyskano pożądane zmiany położenia fundamentu. Odkształcenia obserwowano za pomocą 4 czujników pomiarowych w strefie stołu roboczego, będącego integralną częścią maszyny, na którym leży element obrabiany. Wyniosły one od 0,24 mm do 0,82 mm. Prace prowadzono w następującej kolejności:

  • wykonanie otworów w szczelinach dylatacyjnych, na złączu z posadzką w celu wprowadzenia przewodów iniekcyjnych (16x1 mm) na całą głębokość posadowienia fundamentu;
  • wykonanie w fundamencie maszyny otworów podciśnieniowych o średnicy 38 mm sięgających do dolnej powierzchni fundamentów, w miejscu występowania maty wibroizolacyjnej. Ze względu na zróżnicowaną głębokość posadowienia poszczególnych elementów fundamentów długości otworów były różne. Przez otwory odsysano powietrze, aby wyeliminować korki powietrzne przy iniekcji zaczynem cementowym.

    Usytuowanie poszczególnych elementów maszyn determinowało konieczność wykonania części otworów jako skośnych, których kąty były ściśle określone według przygotowanego schematu wykonania otworów. Do otworów wprowadzono pakery podciśnieniowe z manowakuometrami mierzącymi wielkość podciśnienia;
  • opomiarowanie fundamentu czujnikami mikrometrycznymi;
  • opomiarowanie maszyny urządzeniami laserowymi;
  • wyzerowanie czujników mikrometrycznych;
  • podłączenie do końcówek pakerów podciśnieniowych pomp próżniowych;
  • wykonanie zabezpieczenia w celu ograniczenia rozlewania się iniektu po posadzce;
  • przeprowadzenie iniekcji;
  • rejestracja wskazania mierników odchyłu poziomu fundamentu w trakcie realizacji procesu iniekcji;
  • odtworzenie zamknięć dylatacji.

Czujniki mikrometryczne posadowiono na podłożu stabilnym poza fundamentami, tj. na posadzce obok fundamentu. Wysięgnik z iglicą czujnika oparto na fundamencie i wyzerowano wskazania. Lasery mierzyły odchyłki maszyny na poziomie jej najwyższego elementu na wysokości ok. 7,0 m.

WARTO PRZECZYTAĆ

Termoizolacyjne systemy natryskowe – właściwości
i zastosowanie

Wytworzono próżnię w pakerach podciśnieniowych, a tym samym w przestrzeni między fundamentem a matą wibroizolacyjną. Wydajność pomp próżniowych utrzymywano tak, aby uzyskać stabilne podciśnienie rzędu –80%. W tych warunkach kolejno do poszczególnych rurek iniekcyjnych wprowadzano zaczyn cementowy, który zamykał wolną przestrzeń na drodze rurka iniekcyjna/paker podciśnieniowy.

Wzrost podciśnienia na manowakuometrze do wartości większej niż –0,8 barów stanowił sygnał, że dany obszar pod fundamentem został wypełniony. Zaczyn cementowy w końcu wypełnił paker podciśnieniowy i pompa próżniowa przestawała wysysać powietrze, co powodowało wzrost podciśnienia na manowakuometrze.

Iniekcja prowadzona była sukcesywnie między poszczególnymi rurkami iniekcyjnymi w założonych wcześniej kierunkach wystąpienia podciśnienia w wykonanych otworach na danym elemencie fundamentu.

Iniekcję rozpoczęto w kolejności od najgłębiej posadowionej części fundamentu do najwyżej posadowionej. Zakończono ją przez wypełnianie pionowej przestrzeni dylatacyjnej między poszczególnymi rurkami iniekcyjnymi. W trakcie usuwania rurek iniekcyjnych wypełnienie miejsc po demontowanych rurkach następowało przez podawanie iniektu systemem nadążnym (w miarę wypełniania się otworu wyjmowano rurkę iniekcyjną).

Potrzebujesz więcej TREŚCI?

Odbierz TUTAJ
IZO-newsletter »

Charakterystyka parametrów iniekcji

W trakcie naprawy fundamentu nr 4 (TABELA 2) rzeczywista objętość wtłoczonego zaczynu cementowego miała wartość 1715,00 dcm³, a ponadto:

  • obliczeniowa objętość zaczynu cementowego wyniosła 1713,56 dcm³;
  • ciśnienie tłoczenia – grawitacyjne;
  • podciśnienie tłoczenia – od 0,01 do 0,05 barów;
  • liczba pionowych rurek iniekcyjnych, usytuowanych w dylatacjach – 33 szt.;
  • liczba otworów zasysających (z pakerami) w konstrukcji żelbetowej fundamentu – 24 szt.; część tych otworów z uwagi na zbrojenie, instalacje i brak dostępności do miejsca wiercenia została wykonana pod różnymi kątami nachylenia (od 43º do 75º).

Po wykonaniu prac iniekcyjnych nie zaobserwowano wpływu czynników zewnętrznych na pracę maszyn, tzn. przenoszenia drgań ze środowiska gruntowego i budowlanego. Potwierdza to stanowisko producenta maszyn o niecelowości stosowania mat wibroizolacyjnych na fundamencie, powodujących odkształcenia fundamentu pod wpływem wielkich obciążeń od elementów obrabianych (rzędu kilkudziesięciu ton). W przypadku kolejnych dwóch fundamentów zużycie materiału iniekcyjnego wynosiło:

POBIERZ E-BOOK [bezpłatnie]
warunki techniczne
Warunki techniczne, jakim powinny odpowiadać budynki
– stan na 2014 r.
  • fundament nr 6:
    – objętość zatłoczonego zaczynu cementowego: 1917,00 dcm³,
    – objętość obliczeniowa zaczynu cementowego: 946,64 dcm³,
  • fundament nr 2:
    – objętość zatłoczonego zaczynu cementowego: 3984,00 dcm³,
    – objętość obliczeniowa zaczynu cementowego: 2708,90 dcm³.

Na podstawie zamieszczonego przykładu można stwierdzić, że specyfika metody iniekcji wymaga dużego doświadczenia wykonawców, a także stosowania specjalistycznego sprzętu i materiałów o kontrolowanej jakości.

Artykuł był referowany na XXIX Ogólnopolskiej Konferencji „Warsztaty Pracy Projektanta Konstrukcji” w Szczyrku

LITERATURA

  1. ACI RAP Bulletin1, „Field guide for concrete repair. Application procedures. Structural crack repair by epoxy injection”, ACI Committee E706, 2003.
  2. PN-EN 1992-1-1:2008, 1 „Eurokod 2. Projektowanie konstrukcji z betonu. Część 1-1: Reguły ogólne i reguły dla budynków”.
  3. B. Chmielewska, J. Koper, „Naprawa rys w konstrukcjach żelbetowych metodą iniekcji”, XXI Ogólnopolska Konferencja „Warsztaty Pracy Projektanta Konstrukcji”, Szczyrk 2006, s. 55–78.
  4. PN-EN 206-1:2003, „Beton. Część 1: Wymagania, właściwości, produkcja i zgodność”.
  5. L. Czarnecki, P.H. Emmons, „Naprawa i ochrona konstrukcji betonowych”, Polski Cement Sp. z o.o., Kraków 2000.
  6. L. Czarnecki, J. Skwara, „Naprawa rys konstrukcji żelbetowych metodą iniekcji”, XIII Ogólnopolska Konferencja „Warsztaty Pracy Projektanta Konstrukcji”, Ustroń 1998, s. 39–55
  7. M. Michałowska, J. Kazański, „Zasady naprawy zarysowanych konstrukcji betonowych kompozycją epoksydową za pomocą iniekcji ciśnieniowej. Studia i materiały”, z. 35, IBDiM, Warszawa 1991.
  8. M. Michałowska, J. Kazański, „Zasady naprawy zarysowanych konstrukcji betonowych za pomocą iniekcji średniociśnieniowej (0,8-8,0 MPa)”, z. 38, IBDiM, Warszawa 1992.
Artykuł pochodzi z: miesięcznika IZOLACJE 6/2014

Komentarze

(1)
Henryk Włodarczyk | 04.09.2015, 14:09
W dziesiecioletnim budynku rysy w stropie między garażami, przez które punktowo przeciekała woda,
uszczelniono poprzez wylanie na posadzkę nadlewki. Sposób uszczelnienia jest skuteczny ale kosztowny, nie wypełnia rys,przez co, nie zabezpiecza stropu przed działaniem KOROZJI zbrojenia
i betonu i miejscach rys. Czy w związku z tym nie powinien być stosowany?
   1 / 1   

Wybrane dla Ciebie


Najlepszy system stropowy?


Betonowe stropy można produkować na różne sposoby – z betonu przygotowanego na placu budowy lub w fabryce, gdzie panują kutemu optymalne warunki. ZOBACZ »



Odkryj nowy wymiar bezpieczeństwa dla Twojego domu »

Żaluzje ceramiczne, szklane, wentylowane. Co wybrać?

Każdemu z nas zależy na zapewnieniu odpowiedniego bezpieczeństwa swoim bliskim i miejscu, które jest dla nas najważniejsze. Wybór...
czytaj dalej »

Które rozwiązanie sprawdzi się w Twoim przypadku? Jak ochronić wnętrze przed słońcem, hałasem lub zimnem? czytaj dalej »

Czym skutecznie zaizolować fundament?

Zadaniem hydroizolacji jest zablokowanie dostępu wody i wilgoci do wnętrza obiektu budowlanego. Istnieje kilka rodzajów izolacji krystalizujących, a ich znajomość ułatwia zaprojektowanie i wykonanie szczelnej budowli. czytaj dalej »

 


Izolacja natryskowa - co warto wiedzieć?

Dobierz najlepszy materiał izolacyjny »

Produkty polimocznikowe można stosować wszędzie tam, gdzie wymagana jest... czytaj dalej » Niski poziom ochrony cieplnej generuje wysokie koszty utrzymania budynku, stanowiące duże obciążenie budżetu... czytaj dalej »

Uszczelnianie trudnych powierzchni! Zobacz, jak to zrobić skutecznie »


Doszczelniając przegrodę od strony wewnętrznej budynku ograniczamy przenikanie pary wodnej do warstwy izolacyjnej, natomiast... ZOBACZ »


Fakty i mity na temat szarego styropianu »

Jak zabezpieczyć rury przed stratami ciepła?

Od kilku lat rośnie popyt na styropiany szare. W Niemczech i Szwajcarii większość spr... czytaj dalej » Czym powinieneś kierować się przy wyborze odpowiedniej izolacji rur? czytaj dalej »

Jak wykonać trwałe posadzki?

Jakich technologii oraz materiałów użyć do wykonania podłóg przemysłowych, naprawy betonów lub przeprowadzenia renowacji posadzek?  czytaj dalej »


Dlaczego hydroizolacja budynków jest tak ważna?

Sprawdzony sposób na przyspieszenie ocieplenia »

W budynkach nowo wznoszonych barierę dla wody gruntowej stanowi hydroizolacja zewnętrzna ścian piwnic i izolacja pod płytą fundamentową... czytaj dalej » Jakiego produktu użyć, by aplikacja była łatwa, efektywność większa, a tempo pracy ekspresowe? czytaj dalej »

Czego użyć do izolacji podłóg, dachów i fasad?


Istotną różnicą pomiędzy styropianami białymi i grafitowymi jest ich odporność na ZOBACZ »


Najlepszy produkt na tynku termoizolacji? Sprawdź »

Jak dobrać posadzkę do obiektu?

Obniżona wartość λ pozwala zmniejszyć straty energetyczne oraz wydatki na eksploatacje budynków.
czytaj dalej »

Wybierz posadzkę, która będzie funkcjonalna i łatwa w czyszczeniu... czytaj dalej »

dr  Bogumiła Chmielewska
dr   Bogumiła Chmielewska
Ukończyła Wydział Chemii Uniwersytetu Warszawskiego. W 2000 r. obroniła rozprawę doktorską (praca nagrodzona została przez Radę WIL oraz Ministerstwa Nauki i Szkolnictwa Wyższego). Pracuje jako adi... więcej »
mgr inż. Jerzy Koper
mgr inż. Jerzy Koper
Jerzy Koper ukończył Akademię Górniczo-Hutniczą w Krakowie. Jest właścicielem pracowni projektowo-consultingowej. Zawodowo interesuje się uszczelnianiem i naprawą konstrukcji budowlanych i ziemnych. więcej »
Dodaj komentarz
Nie jesteś zalogowany - zaloguj się lub załóż konto. Dzięki temu uzysksz możliwość obserwowania swoich komentarzy oraz dostęp do treści i możliwości dostępnych tylko dla zarejestrowanych użytkowników portalu Izolacje.com.pl... dowiedz się więcej »
Triflex Polska Triflex Polska
Triflex zyskał na rynku europejskim pozycję lidera w zakresie opracowywania, kompleksowego doradztwa oraz zastosowania uszczelnień i powłok...
9/2019

Aktualny numer:

Izolacje 9/2019
W miesięczniku m.in.:
  • - Nowoczesne rozwiązania elewacyjne
  • - Jakość wykonania izolacji z szarego styropianu
Zobacz szczegóły
Dom Wydawniczy MEDIUM Rzetelna Firma
Copyright @ 2004-2012 Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Spółka komandytowa, nr KRS: 0000537655. Wszelkie prawa w tym Autora, Wydawcy i Producenta bazy danych zastrzeżone. Jakiekolwiek dalsze rozpowszechnianie artykułów zabronione. Korzystanie z serwisu i zamieszczonych w nim utworów i danych wyłącznie na zasadach określonych w Zasadach korzystania z serwisu.
realizacja i CMS: omnia.pl

.