Pobierz pełny numer IZOLACJI

Pełny numer IZOLACJI 6/2018 [PDF]

możesz pobrać BEZPŁATNIE - po prostu ZAREJESTRUJ konto w portalu

Problemy pomiaru wartości współczynnika przewodzenia ciepła w wysokich temperaturach

Aparatura do pomiarów | Błędy wynikajace z przygotowania próbki | Błędy wynikajace ze specyficznych własności próbki

Podstawową właściwością charakteryzującą materiały do izolacji cieplnej wyposażenia budynków i instalacji przemysłowych jest współczynnik przewodzenia ciepła λ.

Uzyskanie jego dokładnej i wiarygodnej wartości, szczególnie w przypadku pomiarów w wysokich temperaturach, wymaga przeanalizowania wielu zagadnień, m.in. związanych z właściwościami badanego materiału, przygotowania próbek do badań i wiedzy na temat zachowania materiału w zmiennych warunkach pomiarowych.

Do przykładowych materiałów stosowanych do izolacji cieplnej instalacji przemysłowej można zaliczyć następujące wyroby [1, 2], które również mogą znajdować zastosowanie w budownictwie ogólnym:

  •  wyroby włókniste – wełnę skalną, szklaną,
  •  wyroby komórkowe (spienione) – pianki z tworzyw sztucznych, szkło piankowe, aerożele, 
  •  wyroby ziarniste – wermikulit, perlit.

Oczywiście temperaturowy zakres ich stosowania jest różny. Wyroby z pianek z tworzyw sztucznych, takich jak pianki poliuretanowe (PUR), poliizocyjanuranowe (PIR), polietylenowe (PEF) czy elastomerowe (FEF), mają zastosowanie w znacznie niższych temperaturach niż wyroby np. z włókien szklanych, skalnych czy wyroby silikatowe (TABELA).

Przeczytaj też: Rodzaje izolacji wysokotemperaturowych

Współczynnik przewodzenia ciepła określający własności termiczne wyrobu izolacyjnego powinien charakteryzować wyrób w całym zakresie stosowania – w szczególności dotyczy to wyrobów stosowanych do izolacji cieplnej instalacji przemysłowych [3, 4].

W Europie, oprócz COBR PIB, możliwości aparaturowe pomiaru współczynnika przewodzenia ciepła w zakresie wykraczającym poza standardowe pomiary dla budownictwa ogólnego ma tylko kilka ośrodków laboratoryjnych, m.in. w Wielkiej Brytanii, Niemczech i Danii. Wynika to ze specyfiki samego aparatu, a także wysokich kosztów jego zakupu i realizacji badań.

Aparatura do pomiarów

ABSTRAKT

W artykule omówiono problemy związane z pomiarem wartości współczynnika przewodzenia ciepła materiałów do izolacji cieplnej wyposażenia budynków i instalacji przemysłowych. Przedstawiono błędy wynikające z przygotowania próbki oraz z jej specyficznych właściwości, wpływające na wiarygodność i dokładność wyników.

The article discusses problems related to the measurement of the values of thermal conductivity coefficient of materials to the thermal insulation of furnishings and installations for industrial plants. It also presents the faults resulting from sample preparation and particular properties of the sample, which influence the credibility and accuracy of results.

W pomiarach współczynnika przewodzenia ciepła materiałów do izolacji cieplnej instalacji przemysłowej w stanie ustalonym najczęściej wykorzystuje się aparaty z osłoniętą płytą grzejną (GHP) [4, 5].

Przeważnie są to aparaty dwupróbkowe z aktywnie izolowaną płytą grzejną. Badanie opiera się na pomiarze strumienia cieplnego przepływającego przez próbki pod wpływem generowanej różnicy temperatur pomiędzy płytą grzejną a płytami chłodzącymi [4].

W dobie coraz powszechniejszej automatyzacji pomiarów i konstruowania coraz lepszych i dokładniejszych urządzeń pomiarowych jednym z najistotniejszych czynników stanowiących o poprawności, dokładności czy wręcz o możliwości uzyskania wiarygodnego wyniku badania jest prawidłowe przygotowanie próbki do badań.

Błędy popełnione w tej fazie procesu badawczego ewidentnie wpływają na końcowy wynik, a czasami nawet go dyskwalifikują.

Z uwagi na wysokospecjalistyczną aparaturę, zautomatyzowany proces pomiarowy, kontrolę przez przeznaczone do tego celu oprogramowanie, a więc coraz bardziej zaawansowane techniki pomiarowe, wciąż najważniejszym elementem całego procesu badawczego są kwalifikacje personelu i jego doświadczenia w przeprowadzaniu badań.

Problematyka związana z przygotowaniem próbek i pomiarami ich właściwości to obszar, który obejmuje m.in. takie zagadnienia, jak: wyselekcjonowanie próbki do badań z próbki ogólnej materiału, określanie wymiarów próbki, przygotowanie powierzchni czołowych próbki do badań, wymagane klimatyzowanie, zachowanie się próbki podczas pomiaru, ograniczenia związane z badaniami w temperaturach granicznych dla próbki, a także ograniczenia wynikające z możliwości badawczych aparatu.

Błędy wynikajace z przygotowania próbki

Próbkę do badań należy pobrać z próbki ogólnej badanego materiału, tak by była reprezentatywna dla tego materiału. W szczególności jej gęstość i grubość powinny być możliwie zbliżone do średniej gęstości i grubości badanego materiału.

Gdy pomiary wykonywane są z zastosowaniem aparatów dwupróbkowych, próbki należy dobierać tak, by ich różnice w grubości i gęstości były możliwie jak najmniejsze i nie przekraczały dopuszczalnych wartości (< 2%).

 

Ważne jest, by powierzchnie czołowe próbki podczas pomiaru ściśle przylegały do powierzchni gorącej i zimnej płyty aparatu, co związane jest z koniecznością przygotowania próbek o płaskich i równoległych powierzchniach czołowych. Jest to zwłaszcza istotne w wypadku próbek sztywnych. Płaskość i równoległość powierzchni czołowych można uzyskać np. przez przycięcie czy szlifowanie powierzchni próbki.

 

Zobacz także: Przegląd izolacji technicznych

Pomiar grubości próbek w aparatach GHP stosowanych do pomiarów w wysokich temperaturach ogólnie wykonywany jest przed umieszczeniem próbki w aparacie. To, pod jakim obciążeniem powinna być mierzona grubość próbki, określone jest w normach wyrobu [6].

Jednakże po umieszczeniu próbek w aparacie jej grubość może się zmniejszyć pod wpływem nacisku płyty badawczej, co może próbkę zniekształcić i spowodować jednocześnie zmianę jej gęstości. Jednym ze sposobów ominięcia problemu z naciskiem płyty na próbkę jest wykorzystywanie kołków dystansowych o wysokości za każdym razem dostosowanej do grubości próbki.

Z uwagi na wysokie temperatury pomiaru, a także zmiany temperatur w czasie badania kołki dystansowe powinny być tak dobrane, aby przede wszystkim w trakcie pomiaru nie zmieniały swoich wymiarów. Drugim istotnym elementem jest kontrola wymiarów kołków dystansowych za każdym razem przed pomiarem.

Często stosowanym materiałem używanym do przygotowania kołków dystansowych jest krzemian wapnia – materiał odporny na wysoką temperaturę. Zauważono jednak, że z uwagi na np. nacisk płyt badawczych w aparacie kołki dystansowe z krzemianu wapnia z czasem mogą zmniejszyć swoją wysokość (w szczególności dotyczy to kołków zrobionych z materiału o mniejszej gęstości). Dlatego częstym błędem jest traktowanie raz przygotowanych kołków dystansowych jako kołków o ustalonej wysokości.

Istotnym elementem wiążącym się ze starannością doboru kołków dystansowych jest odchylenie od równoległości płyt badawczych. Nierówne kołki bądź kołki o niedokładnie wyszlifowanych powierzchniach mogą powodować, że górna płyta nie będzie ułożona równolegle do płyty dolnej, co w sposób oczywisty powoduje nieprawidłowości w przepływie ciepła.

Błędy wynikajace ze specyficznych własności próbki

Dodatkowe trudności podczas pomiarów współczynnika przewodzenia ciepła, w szczególności w wysokich temperaturach, wynikają ze specyficznych własności materiałów do izolacji cieplnej, np. zachowania się materiału pod wpływem zmiany temperatury. Brak wiedzy na ten temat może wpływać negatywnie na przebieg pomiaru i skutkować wzrostem błędu pomiarowego, uzyskaniem błędnego wyniku końcowego pomiaru lub uszkodzeniem aparatury.

Dostępna oferta wyrobów, w tym wyrobów organicznych (np. FEF, PEF), jest różnorodna, co uniemożliwia zastosowanie do wszystkich materiałów tej samej procedury pomiarowej (obejmującej również przygotowanie próbek). Nieodzownym elementem poprawności badania pozwalającego na uzyskanie miarodajnego, rzetelnego wyniku jest doświadczenie osoby wykonującej pomiary.

Elementem wymaganym przez praktycznie wszystkie normy wyrobów do izolacji cieplnej jest kondycjonowanie próbek przed badaniem. Część wyrobów nie wymaga specjalnego traktowania (np. wełna mineralna), jednak w kilku wypadkach wymagane jest kondycjonowanie inne niż w temp. (23 ± 2)°C i wilgotności względnej (50 ± 5)%.

Przykładem może być wyrób z pianki fenolowej, gdzie do określenia początkowej wartości współczynnika przewodzenia ciepła i gęstości pozornej wymagane jest, by próbki przed badaniem były klimatyzowane zgodnie z normą PN-EN 12429:2001 w temp. (70 ± 2)°C, a następnie w temp. (23 ± 2)°C i wilgotności względnej (50 ± 5)% [7].

Dość częstym problemem występującym podczas klimatyzacji pianki fenolowej w temp. (70 ± 2)°C jest wyginanie się próbki. W konsekwencji nie jest ona płaska, a jej powierzchnie czołowe nie są do siebie równoległe. Z uwagi na to, że po klimatyzacji w takich warunkach pianki fenolowe są sztywne i kruche, w wyniku nacisku płyty aparatury pomiarowej taka próbka zostaje uszkodzona (pęka).

Pęknięcie próbki skutkuje powstaniem szczeliny (bardzo często jest to szczelina powstająca blisko środka próbki), przez którą następuje diametralnie inny przepływ ciepła niż przez warstwę pianki nieuszkodzonej, co uniemożliwia uzyskanie prawidłowego wyniku.

Z tego powodu niezbędne jest, by operator wykonujący badanie miał wiedzę i doświadczenie pozwalające na odpowiednie ułożenie próbek w trakcie kondycjonowania, co zapewni zachowanie płaskości i równoległości powierzchni czołowych próbki.

Zupełnie innym zagadnieniem związanym z wysokotemperaturowymi pomiarami wartości współczynnika przewodzenia ciepła jest określenie maksymalnej średniej temperatury, w jakiej jest możliwe wykonanie badania danego materiału.

Konieczna jest znajomość maksymalnej temperatury stosowania, definiowanej jako najwyższa temperatura, w której może być stosowany wyrób do izolacji cieplnej o danej grubości i w której będzie spełniać funkcje w zakresie określonych granic własności użytkowej [8].

	 TABELA. Orientacyjne maksymalne temperatury stosowania wyrobów do izolacji cieplnej

Ze względu na specyfikę pomiaru najwyższą temperaturą w badaniach jest temperatura płyty grzejnej, co powoduje, że średnia temperatura badania musi być niższa niż maksymalna temperatura stosowania.

Co więcej, podczas pomiaru płyta grzejna przeważnie początkowo osiąga wyższą temperaturę niż docelowa, by w trakcie stabilizacji do stanu ustalonego osiągnąć docelową temperaturę.

Wobec powyższego pomiar nie może być wykonany w temperaturze średniej równej maksymalnej temperaturze stosowania materiału, tylko średnia temperatura pomiaru powinna być odpowiednio niższa i dobrana tak, by temperatura gorącej płyty nie była wyższa niż maksymalna temperatura stosowania [9]. Błędne określenie wartości temperatur płyt badawczych może skutkować różnorakimi błędami powodującymi otrzymanie fałszywego wyniku, a nawet uszkodzenie aparatu pomiarowego.

W praktyce zakres temperatury pomiaru współczynnika przewodzenia ciepła ustala się na podstawie deklarowanej przez producenta maksymalnej i minimalnej temperatury stosowania materiału [4, 10, 11, 12].

Przy rozpatrywaniu możliwego zachowania się próbek podczas pomiarów w wysokiej temperaturze należy w szczególności wziąć pod uwagę efekt zmiany grubości podczas badania. Występowanie tego efektu można zaobserwować przy próbkach z wełny mineralnej, które zawierają lepiszcze.

Wzrost temperatury badania może powodować degradację części organicznych, przez co struktura próbki nie jest na tyle stabilna, aby zachować odpowiednią sprężystość. Degradacja lepiszcza może skutkować zmniejszeniem grubości. W związku z tym pomiędzy górną płytą a próbką może powstać szczelina, zmienia się struktura materiału, skutkiem czego uzyskanie miarodajnego wyniku może być niemożliwe.

Oczywiście taka szczelina może powstać, gdy grubość ustalona jest za pomocą kołków dystansowych. Jeśli ich nie ma, nacisk płyty górnej może spowodować zmniejszenie grubości próbki, a uzyskany wynik również nie może być uznany za miarodajny dla danego wyrobu.

Możliwe jest również zwiększenie wymiarów próbki. Taki efekt można zaobserwować np. dla próbek z pianki elastomerowej (FEF). Pod wpływem temperatury pianki mogą zwiększyć swoją objętość (przez zwiększenie objętości gazu wypełniającego zamknięte komórki pianki).

Z tego względu pomiar współczynnika przewodzenia ciepła może zostać zaburzony przez zmianę gęstości próbki (próbka wypływa poza obszar płyt badawczych), a uzyskiwany wynik nie może być traktowany jako wiarygodny.

Zwiększenie objętości próbki oprócz problemów pomiarowych może spowodować również uszkodzenia aparatu, a przekroczenie maksymalnej temperatury stosowania w przypadku materiałów topliwych może spowodować przyklejenie się powierzchni próbki badanego materiału do płyty badawczej aparatu.

Degradacja części organicznych (rozkład pirolityczny, utlenianie itp.) może stanowić zagrożenie wynikające z uwalniania się związków powodujących korozję poszczególnych elementów aparatury i/lub stanowić zagrożenie związane z emisją gazów toksycznych i palnych.

Przedstawione przykłady wskazują, że znajomość właściwości badanych próbek jest nieodzowna w procesie pomiarowym w celu zapewnienia prawidłowości wykonania pomiaru i ograniczenia błędów pomiaru.

W wypadkach próbek wątpliwych lub o nie do końca poznanych własnościach stosuje się wiele wstępnych badań, takich jak określanie maksymalnej temperatury stosowania [13], wstępne wygrzewanie próbki ponad maksymalną temperaturę stosowania, określenie reakcji próbki na zmiany temperatury, czynników degradujących czy też innych powodujących zmianę kształtów, wymiarów.

Wnioski

Analiza opisanych problemów związanych z uzyskiwaniem wiarygodnych i dokładnych wyników pomiaru wartości współczynnika przewodzenia ciepła oraz szeroko rozumianym bezpieczeństwem użytkowym aparatu nasuwa wniosek, że stopień skomplikowania i trudności pomiarowych rośnie wraz ze wzrostem średniej temperatury badania.

Do określenia czynników wpływających na miarodajność pomiaru bezwzględna jest znajomość badanych materiałów. Konieczne jest zatem poprzedzanie właściwego pomiaru stosownymi procedurami badawczymi, pozwalającymi w sposób parametryczny określać dopuszczalny poziom czynników wpływających na miarodajność pomiarów.

Literatura

  1. P. Furmański, T.S. Wiśniewski, J. Banaszek, „Izolacje cieplne. Mechanizmy wymiany ciepła, właściwości cieplne i ich pomiary”, ITC, Warszawa 2006.
  2. J. Sawicki, „Surowce stosowane do wysokotemperaturowych izolacji termicznych”, „IZOLACJE”, nr 6/2012, s. 33–37.
  3. PN-EN ISO 13787:2005, „Wyroby do izolacji cieplnej wyposażenia budynków i instalacji przemysłowych. Określanie deklarowanego współczynnika przewodzenia ciepła”.
  4. A. Miros, „Wyroby płaskie do izolacji cieplnej wyposażenia budynków i instalacji przemysłowych”, „IZOLACJE”, nr 9/2012, s. 42–45.
  5. PN-ISO 8302:1999, „Określanie oporu cieplnego i właściwości z nim związanych w stanie ustalonym. Aparat płytowy z osłoniętą płytą grzejną”.
  6. PN-EN 12667:2002, „Właściwości cieplne materiałów i wyrobów budowlanych. Określanie oporu cieplnego metodami osłoniętej płyty grzejnej i czujnika strumienia cieplnego. Wyroby o dużym i średnim oporze cieplnym”.
  7. PN-EN 12429:2001, „Wyroby do izolacji cieplnej w budownictwie. Klimatyzowanie do wilgotności równowagowej w określonych warunkach temperatury i wilgotności”.
  8. EN ISO 9229:2007, „Izolacja cieplna. Słownik”.
  9. Guidance from the Group of Notified Bodies for the Construction Products Directive 89/106/EEC, „GNB-CPD position paper from SG19 – EN 14303 to EN 14309, EN 14313 and EN 14314 ITT of factory made thermal insulation products for building equipment and industrial installations”.
  10. PN-EN 14303:2012, „Wyroby do izolacji cieplnej wyposażenia budynków i instalacji przemysłowych. Wyroby z wełny mineralnej (MW) produkowane fabrycznie. Specyfikacja”.
  11. PN-EN 14313:2009, „Wyroby do izolacji cieplnej wyposażenia budynków i instalacji przemysłowych. Wyroby z pianki polietylenowej (PEF) produkowane fabrycznie. Specyfikacja”.
  12. PN-EN 14308:2012, „Wyroby do izolacji cieplnej wyposażenia budynków i instalacji przemysłowych. Wyroby ze sztywnej pianki poliuretanowej (PUR) i pianki poliizocyjanurowej (PIR) produkowane fabrycznie. Specyfikacja”.
  13. PN-EN 14706:2006, „Wyroby do izolacji cieplnej wyposażenia budowli i instalacji przemysłowych. Określanie maksymalnej temperatury stosowania”.
Artykuł pochodzi z: miesięcznika IZOLACJE 10/2012

Komentarze

(0)

Wybrane dla Ciebie



Dobierz najlepszy materiał ociepleniowy. Sprawdź »

Sposób na trwałe mocowanie termoizolacji »

Inwestorzy szukają wciąż lepszych, mocniejszych i bardziej wytrzymałych, a przede wszystkim bezpiecznych dla zdrowia produktów. Gdzie je znaleźć? czytaj dalej » Siła ssąca wiatru może doprowadzić do zerwania elewacji z budynku. Jak temu zapobiec? czytaj dalej »

Gdzie stosować izolację z wełny mineralnej?

Zastosowanie mineralnej wełny skalnej jako przyczynia się do znacznych oszczędności i ochrony środowiska poprzez ograniczenie zużycia energii i emisji dwutlenku węgla do atmosfery...  czytaj dalej »


Zarabiaj pieniądze sprzedając prąd »

Czy przysługują Ci dotacje na termomodernizację domu?

Wszystkie znane obecnie źródła energii, poza energią geotermalną i atomową, są pośrednio efektem działania promieniowania słonecznego...
czytaj dalej »

W Polsce z powodu zanieczyszczenia powietrza umiera ok. 45 000 osób! Co możesz zrobić, żeby poprawić jakość powietrza? czytaj dalej »

Building Information Modelling - jak to działa?

BIM odnosi się do programów, które wspomagają projektowanie. Ich działanie polega na... czytaj dalej »

 


Jak ograniczyć straty ciepła i wyciszyć hałas?

Wybierz rozwiązanie, które ochroni uszczelniane powierzchnie przed tworzeniem się mostków termicznych... czytaj dalej »

 


Ciepło ucieka przez dach! Jak temu zapobiec?

Wnętrze bez hałasu - jak zwiększyć izolacyjność akustyczną?

Montując na swoim dachu termomembranę i paroizolację zaoszczędzasz nawet 9% na ogrzewaniu.
czytaj dalej »

Jakość pochłaniania dźwięku w dużym stopniu uzależniona jest od układu wnętrza oraz zatosowanych materialów. czytaj dalej »

Jak skutecznie ocieplić poddasze?


Ocieplenie dachu jest konieczne, by przebywanie na poddaszu było komfortowe. Izolacja musi być wykonana prawidłowo... ZOBACZ »


Fakty i mity na temat szarego styropianu »

Skutecznie zabezpiecz budowane konstrukcje przed pożarem »

Od kilku lat rośnie popyt na styropiany szare. W Niemczech i Szwajcarii większość spr... czytaj dalej » Masywne elementy budowlane w starych obiektach często nie spełniają wymagań przeciwpożarowych określonych w obowiązujących przepisach. czytaj dalej »

Chcesz ograniczyć straty ciepła z budynku? Zobacz »


W obecnych czasach rosnące ceny energii cieplnej i elektrycznej skłaniają do analizy strat ciepła w budynkach mieszkalnych. Jedynym sposobem ograniczenia kosztów jest... ZOBACZ »



Termomodernizacja


POBIERZ E-BOOK TERMOMODERNIZACJA  » Termomodernizacja budynków - dowiedz się więcej »


Dodaj komentarz
Nie jesteś zalogowany - zaloguj się lub załóż konto. Dzięki temu uzysksz możliwość obserwowania swoich komentarzy oraz dostęp do treści i możliwości dostępnych tylko dla zarejestrowanych użytkowników portalu Izolacje.com.pl... dowiedz się więcej »
Triflex Polska Triflex Polska
Triflex zyskał na rynku europejskim pozycję lidera w zakresie opracowywania, kompleksowego doradztwa oraz zastosowania uszczelnień i powłok...
2/2019

Aktualny numer:

Izolacje 2/2019
W miesięczniku m.in.:
  • - Hydroizolacje podziemych części budynków
  • - Mechaniczne mocowanie systemów ETICS
Zobacz szczegóły
Kiedy ciepło drożeje, nie trać energii - ociepl swój dom!

Kiedy ciepło drożeje, nie trać energii - ociepl swój dom!

Rosnące ceny gazu i węgla, jak również coraz wyższe koszty uprawnień do emisji dwutlenku węgla sprawiają, że sezon grzewczy 2018/2019 to bardzo gorący temat....
Dom Wydawniczy MEDIUM Rzetelna Firma
Copyright @ 2004-2012 Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Spółka komandytowa, nr KRS: 0000537655. Wszelkie prawa w tym Autora, Wydawcy i Producenta bazy danych zastrzeżone. Jakiekolwiek dalsze rozpowszechnianie artykułów zabronione. Korzystanie z serwisu i zamieszczonych w nim utworów i danych wyłącznie na zasadach określonych w Zasadach korzystania z serwisu.
realizacja i CMS: omnia.pl

.