Pobierz pełny numer IZOLACJI

Pełny numer IZOLACJI 6/2018 [PDF]

możesz pobrać BEZPŁATNIE - po prostu ZAREJESTRUJ konto w portalu

Działanie opasek i kołnierzy ogniochronnych a materiały pęczniejące

Działanie opasek i kołnierzy ogniochronnych a materiały pęczniejące / Comparison of the effectiveness of fireproof collars and wraps with intumescent materials
Działanie opasek i kołnierzy ogniochronnych a materiały pęczniejące / Comparison of the effectiveness of fireproof collars and wraps with intumescent materials
Archiwum autora

Przejścia instalacji na drugą stronę przegrody to miejsca, przez które w trakcie pożaru ogień może łatwo przedostać się do sąsiedniego pomieszczenia.

Dlatego jeśli rury przechodzą przez przegrodę, dla której wymagana jest dana klasa odporności ogniowej, należy uszczelnić ich przejście w sposób zapewniający przynajmniej taką samą klasę odporności ogniowej, jaką ma przegroda.

Dobrym rozwiązaniem zapewniającym odpowiednią klasę odporności ogniowej uszczelnień przejść instalacyjnych, stosowanym głównie do uszczelniania rur z tworzyw sztucznych, są opaski i kołnierze ogniochronne.

Charakterystyka kołnierzy i opasek ogniochronnych

Kołnierze ogniochronne zakładane są na rurę, której przejście mają zabezpieczyć. Mocowane są do przegrody, przez którą dana instalacja przechodzi. Opaski ogniochronne natomiast zakłada się na rurę i wsuwa do wnętrza przegrody. Kołnierze najczęściej mocowane są po obu stronach w przypadku ścian i od spodu w przypadku stropu.

Zobacz także: Izolacje techniczne – grubość izolacji oraz charakterystyka współczesnych materiałów izolacyjnych

Opaski zaś najczęściej montowane są w ścianie w sposób podobny do kołnierzy – parami, po obu stronach ściany, lub pojedynczo w środku przegrody, a w przypadku stropu – pojedynczo w przegrodzie, choć również zdarza się mocowanie ich parami.

Przykładowe uszczelnienie przejścia rury z tworzywa sztucznego przez ścianę przy użyciu kołnierza ogniochronnego przedstawiono na rys. 1, natomiast przy użyciu opaski ogniochronnej – na rys. 2.

ABSTRAKT

W artykule opisano metodykę badań oraz ogólne zasady klasyfikacji w zakresie odporności ogniowej uszczelnień przejść rur z tworzyw sztucznych zabezpieczonych przy użyciu kołnierzy i opasek ogniochronnych z zastosowanymi materiałami pęczniejącymi. Porównano przyrost temperatury na nienagrzewanej powierzchni uszczelnień przejść rur zabezpieczonych kołnierzami i opaskami.

The article presents fire resistance tests methodology and general principles of fire resistance classification of plastic pipes penetration seals sealed with the use of fireproof collars and wraps with intumescent materials. It also compares temperature rises on unexposed surface of plastic pipes sealed with the use of collars and wraps.

Na fot. 1 przedstawiono uszczelnienia przejść rur przy użyciu kołnierzy oraz opasek. Oczywiście, opaski są niewidoczne, ponieważ znajdują się wewnątrz ściany.

Głównym elementem składowym kołnierzy i opasek są warstwy materiału pęczniejącego. Liczba warstw, ich długość oraz grubość zależą od średnicy oraz grubości ścianki zabezpieczanej rury oraz od oczekiwanej klasy odporności ogniowej.

Zasada działania kołnierzy i opasek w przypadku wystąpienia pożaru jest podobna – znajdujący się w nich materiał pęczniejący pod wpływem temperatury zwiększa swoją objętość i zgniata mięknącą rurę. Powoduje to zamknięcie obszaru, przez który ogień mógłby przedostać się do sąsiedniego pomieszczenia.

Na fot. 2 przedstawiona została powierzchnia uszczelnień wykonanych przy użyciu kołnierzy ogniochronnych po badaniu odporności ogniowej. Zdjęcie obrazuje, jak materiał pęczniejący zamknął przestrzeń zajmowaną wcześniej przez rurę.

Warstwy pęczniejące stosowane w kołnierzach i opaskach ogniochronnych wykonane są najczęściej z materiału na bazie tzw. grafitu ekspandującego. Materiały te zaczynają pęcznieć w temp. ok. 140°C i mogą zwiększyć swoją objętość od kilkunastu nawet do kilkudziesięciu razy.

Badania odporności ogniowej uszczelnień przejść instalacyjnych

Należy je przeprowadzać zgodnie z normą PN-EN 1366-3:2010 [1]. Określa ona metodykę badania uszczelnień przejść znajdujących się zarówno w stropie, jak i w ścianie. Badanie uszczelnień w stropie przeprowadza się tylko przy oddziaływaniu ognia od spodu stropu, natomiast w ścianie – przy nagrzewaniu z jednej strony w odniesieniu do uszczelnień przejść o symetrycznym rozwiązaniu przekroju lub z dwóch stron przy rozwiązaniu niesymetrycznym.

Nagrzewanie badanych elementów odbywa się według standardowej krzywej temperatura–czas określonej w normie PN-EN 1363-1:2012 [2].

Istotne jest wytypowanie odpowiednich elementów próbnych do badania w celu uzyskania oczekiwanego zakresu zastosowania. W przypadku uszczelnień przejść rur z tworzyw sztucznych zabezpieczonych przy użyciu kołnierzy lub opasek ogniochronnych zakres zastosowania zależy m.in. od średnicy i grubości ścianek rur oraz konfiguracji ich zakończenia (tabela 1), a także od wymiarów materiału pęczniejącego kołnierzy/opasek zastosowanych w badaniu.

Podczas badania odporności ogniowej uszczelnień przejść instalacyjnych sprawdzane są dwa kryteria skuteczności działania: szczelność ogniowa i izolacyjność ogniowa.

Szczelność ogniowa to zdolność elementu konstrukcji, który pełni funkcję oddzielającą do wytrzymania oddziaływania ognia tylko z jednej strony bez przeniesienia ognia na stronę nienagrzewaną w wyniku przeniknięcia płomieni lub gorących gazów.

Podczas badania szczelność ogniowa sprawdzana jest za pomocą tamponu bawełnianego, szczelinomierzy lub wizualnie. Utrata szczelności następuje wtedy, gdy na nienagrzewanej powierzchni elementu próbnego pojawi się ogień ciągły trwający dłużej niż 10 s lub, tampon bawełniany ulegnie zapaleniu w czasie 30 s od momentu przyłożenia go do elementu próbnego albo gdy w wyniku działania ognia powstanie na tyle duża szczelina, że możliwa będzie jej penetracja szczelinomierzem gr. 25 mm lub 6 mm na długości 150 mm.

Izolacyjność ogniowa to zdolność elementu konstrukcji do wytrzymania oddziaływania ognia tylko z jednej strony bez przeniesienia ognia w wyniku znaczącego przepływu ciepła ze strony nagrzewanej na stronę nienagrzewaną.

ZOBACZ TAKŻE
Jak obniżyć koszty ogrzewania budynku?
Jak obniżyć koszty ogrzewania budynku?
Pobierz ZA DAMO PDF!

Przyrost temperatury maksymalnej na nienagrzewanej powierzchni elementu próbnego sprawdzany jest za pomocą termoelementów powierzchniowych mocowanych do badanego elementu za pomocą kleju odpornego na temperaturę.

Na rys. 3 przedstawiono przykładowy rozkład termoelementów dla uszczelnienia przejścia rury z tworzywa sztucznego przez ścianę przy użyciu kołnierza, natomiast na rys. 4 – dla uszczelnienia przejścia rury przy użyciu opaski ogniochronnej.

Klasyfikacja w zakresie odporności ogniowej uszczelnień przejść instalacyjnych

Sporządza się ją zgodnie z normą PN-EN 13501-2 + A1:2010 [3]. Klasę odporności ogniowej przyznaje się na podstawie badania przeprowadzonego zgodnie PN-EN 1366-3:2010 [1]. Przy jej przyznawaniu pod uwagę brane są następujące kryteria skuteczności działania:

  • szczelność ogniowa (E) – oceniana jest na podstawie trzech aspektów: pęknięć lub otworów przekraczających dopuszczalne wymiary, utrzymywania się płomienia na powierzchni nienagrzewanej, zapalenia tamponu bawełnianego, przy czym jeśli element klasyfikowany jest tylko w zakresie szczelności ogniowej, bez uwzględnienia klasyfikacji izolacyjności ogniowej, ostatni z aspektów nie jest brany pod uwagę;
  • izolacyjność ogniowa (I) – poziomem skuteczności działania stosowanym do określenia izolacyjności ogniowej jest przyrost temperatury maksymalnej w dowolnym punkcie nienagrzewanej powierzchni elementu próbnego ograniczony do 180°C.

Klasy odporności ogniowej definiowane w normie PN-EN 13501­‑2 + A1:2010 [3] przedstawiono w tabeli 2.

Przy określeniu klasy odporności ogniowej uszczelnienia przejścia rur należy również wziąć pod uwagę konfigurację zakończenia rury z badania. Prawidłowy więc zapis klasy uszczelnienia przejścia rury to np. EI 120 U/C.

Porównanie przyrostów temperatury na nienagrzewanej powierzchni uszczelnień

Porównania dokonano w odniesieniu do 16 uszczelnień przejść rur z tworzyw sztucznych przechodzących przez strop żelbetowy. Zabezpieczane rury wykonane były z PE-HD (8 szt.) i PVC (8 szt.). Konfiguracja zakończenia każdej z rur była taka sama – U/C. Każda z rur zabezpieczona była w dwóch wariantach (za pomocą kołnierza lub opaski). Zestawienie wszystkich użytych do porównania uszczelnień przejść przedstawiono w tabeli 3.

W kołnierzach i opaskach zabezpieczających rury o tej samej średnicy i grubości ścianki użyto tyle samo tego samego materiału pęczniejącego. Kołnierze zamocowane były do spodniej powierzchni stropu, opaski natomiast umieszczone były centralnie w stropie. Przekroje przez uszczelnienia przejść, dla których sporządzone zostało porównanie, przedstawione zostały na rys. 5 i 6.

 

 

Na rys. 5 i 6 zaznaczono również miejsca pomiaru temperatury na nienagrzewanej powierzchni uszczelnień przejść o średnicach minimalnych. W przypadku rur o średnicach maksymalnych liczba termoelementów była podwojona.

Przeczytaj: Jak oszczędzić na ogrzewaniu?

Na rys. 7–10 porównano średni przyrost temperatury w przypadku uszczelnień przejść rur z PE-HD odpowiednio dla:

  • rury o maksymalnej średnicy i maksymalnej grubości ścianki (rys.  7),
  • rury o maksymalnej średnicy i minimalnej grubości ścianki (rys.  8),
  • rury o minimalnej średnicy i maksymalnej grubości ścianki (rys.  9),
  • rury o minimalnej średnicy i minimalnej grubości ścianki (rys.  10).

Na rys. 11–14 porównano średni przyrost temperatury w przypadku uszczelnień przejść rur z PVC odpowiednio dla:

  • rury o maksymalnej średnicy i maksymalnej grubości ścianki (rys. 11),
  • rury o maksymalnej średnicy i minimalnej grubości ścianki (rys. 12),
  • rury o minimalnej średnicy i maksymalnej grubości ścianki (rys. 13),
  • rury o minimalnej średnicy i minimalnej grubości ścianki (rys. 14).

Na rys. 15–18 przedstawiono różnice pomiędzy średnim przyrostem temperatury na nienagrzewanej powierzchni uszczelnień przejść w stropie zabezpieczonych przy użyciu kołnierza i średnim przyrostem temperatury na nienagrzewanej powierzchni uszczelnień przejść w stropie zabezpieczonych przy użyciu opaski, odpowiednio dla:

  • rur z PE-HD o maksymalnej średnicy; grubość ścianki rury maksymalna i minimalna (rys. 15),
  • rur z PE-HD o minimalnej średnicy; grubość ścianki rury maksymalna i minimalna (rys. 16),
  • rur z PVC o maksymalnej średnicy; grubość ścianki rury maksymalna i minimalna (rys. 17),
  • rur z PVC o minimalnej średnicy; grubość ścianki rury maksymalna i minimalna (rys. 18).

PODSUMOWANIE

Na podstawie przedstawionych wyników badań trudno w sposób jednoznaczny określić, które z porównywanych rozwiązań jest lepsze. Obydwa rozwiązania osiągnęły według kryteriów normy PN-EN 13501-2 + A1:2010 [3] klasę odporności ogniowej EI 120.

Zauważyć można jednak, że w początkowym okresie badania przyrost temperatury na rurach zabezpieczonych przy użyciu opaski jest zdecydowanie większy niż przyrost temperatury na rurach zabezpieczonych przy użyciu kołnierza. Dzieje się tak, ponieważ materiał pęczniejący umieszczony w kołnierzu poddany jest bezpośredniemu działaniu wysokiej temperatury od początku badania, dzięki czemu szybciej od opaski uzyskuje temperaturę niezbędną do rozpoczęcia procesu pęcznienia.

W momencie, gdy kołnierz zamyka rurę i tym samym spowalnia proces przewodzenia przez nią ciepła, temperatura materiału pęczniejącego opaski jest jeszcze zbyt niska, by rozpocząć proces pęcznienia. W późniejszej fazie badania można zauważyć, że wartość przyrostu temperatury na rurach zabezpieczonych opaskami zaczyna się zmniejszać. Oznacza to, że materiał ogniochronny w ­opasce spęczniał i zamknął rurę.

W końcowej fazie badania w większości przeanalizowanych przypadków przyrost temperatury na rurach zabezpieczonych przy użyciu kołnierza jest zdecydowanie większy niż na rurach zabezpieczonych opaską. Dzieje się tak, ponieważ materiał pęczniejący znajdujący się w kołnierzu, będący od początku badania narażony na bezpośrednie działanie ognia, zaczyna się wypalać, podczas gdy materiał pęczniejący opasek nie osiągnął jeszcze tak wysokiej temperatury.

LITERATURA

  1. PN-EN 1366-3:2010, „Badania odporności ogniowej instalacji użytkowych. Część 3: Uszczelnienia przejść instalacyjnych”.
  2. PN-EN 1363-1:2012, „Badania odporności ogniowej. Część 1: Wymagania ogólne”.
  3. PN-EN 13501-2 + A1:2010, „Klasyfikacja ogniowa wyrobów budowlanych i elementów budynków. Część 2: Klasyfikacja na podstawie wyników badań odporności ogniowej, z wyłączeniem instalacji wentylacyjnej”.
Artykuł pochodzi z: miesięcznika IZOLACJE 11/12/2013

Komentarze

(0)

Wybrane dla Ciebie


Najlepszy system stropowy?


Betonowe stropy można produkować na różne sposoby – z betonu przygotowanego na placu budowy lub w fabryce, gdzie panują kutemu optymalne warunki. ZOBACZ »



Odkryj nowy wymiar bezpieczeństwa dla Twojego domu »

Żaluzje ceramiczne, szklane, wentylowane. Co wybrać?

Każdemu z nas zależy na zapewnieniu odpowiedniego bezpieczeństwa swoim bliskim i miejscu, które jest dla nas najważniejsze. Wybór...
czytaj dalej »

Które rozwiązanie sprawdzi się w Twoim przypadku? Jak ochronić wnętrze przed słońcem, hałasem lub zimnem? czytaj dalej »

Czym skutecznie zaizolować fundament?

Zadaniem hydroizolacji jest zablokowanie dostępu wody i wilgoci do wnętrza obiektu budowlanego. Istnieje kilka rodzajów izolacji krystalizujących, a ich znajomość ułatwia zaprojektowanie i wykonanie szczelnej budowli. czytaj dalej »

 


Izolacja natryskowa - co warto wiedzieć?

Dobierz najlepszy materiał izolacyjny »

Produkty polimocznikowe można stosować wszędzie tam, gdzie wymagana jest... czytaj dalej » Niski poziom ochrony cieplnej generuje wysokie koszty utrzymania budynku, stanowiące duże obciążenie budżetu... czytaj dalej »

Uszczelnianie trudnych powierzchni! Zobacz, jak to zrobić skutecznie »


Doszczelniając przegrodę od strony wewnętrznej budynku ograniczamy przenikanie pary wodnej do warstwy izolacyjnej, natomiast... ZOBACZ »


Fakty i mity na temat szarego styropianu »

Jak zabezpieczyć rury przed stratami ciepła?

Od kilku lat rośnie popyt na styropiany szare. W Niemczech i Szwajcarii większość spr... czytaj dalej » Czym powinieneś kierować się przy wyborze odpowiedniej izolacji rur? czytaj dalej »

Jak wykonać trwałe posadzki?

Jakich technologii oraz materiałów użyć do wykonania podłóg przemysłowych, naprawy betonów lub przeprowadzenia renowacji posadzek?  czytaj dalej »


Dlaczego hydroizolacja budynków jest tak ważna?

Sprawdzony sposób na przyspieszenie ocieplenia »

W budynkach nowo wznoszonych barierę dla wody gruntowej stanowi hydroizolacja zewnętrzna ścian piwnic i izolacja pod płytą fundamentową... czytaj dalej » Jakiego produktu użyć, by aplikacja była łatwa, efektywność większa, a tempo pracy ekspresowe? czytaj dalej »

Czego użyć do izolacji podłóg, dachów i fasad?


Istotną różnicą pomiędzy styropianami białymi i grafitowymi jest ich odporność na ZOBACZ »


Najlepszy produkt na tynku termoizolacji? Sprawdź »

Jak dobrać posadzkę do obiektu?

Obniżona wartość λ pozwala zmniejszyć straty energetyczne oraz wydatki na eksploatacje budynków.
czytaj dalej »

Wybierz posadzkę, która będzie funkcjonalna i łatwa w czyszczeniu... czytaj dalej »

Dodaj komentarz
Nie jesteś zalogowany - zaloguj się lub załóż konto. Dzięki temu uzysksz możliwość obserwowania swoich komentarzy oraz dostęp do treści i możliwości dostępnych tylko dla zarejestrowanych użytkowników portalu Izolacje.com.pl... dowiedz się więcej »
Triflex Polska Triflex Polska
Triflex zyskał na rynku europejskim pozycję lidera w zakresie opracowywania, kompleksowego doradztwa oraz zastosowania uszczelnień i powłok...
9/2019

Aktualny numer:

Izolacje 9/2019
W miesięczniku m.in.:
  • - Nowoczesne rozwiązania elewacyjne
  • - Jakość wykonania izolacji z szarego styropianu
Zobacz szczegóły
Dom Wydawniczy MEDIUM Rzetelna Firma
Copyright @ 2004-2012 Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Spółka komandytowa, nr KRS: 0000537655. Wszelkie prawa w tym Autora, Wydawcy i Producenta bazy danych zastrzeżone. Jakiekolwiek dalsze rozpowszechnianie artykułów zabronione. Korzystanie z serwisu i zamieszczonych w nim utworów i danych wyłącznie na zasadach określonych w Zasadach korzystania z serwisu.
realizacja i CMS: omnia.pl

.