Funkcję takiej warstwy pełni m.in. izolacja transparentna. Zastosowanie przegród z izolacją transparentną wymaga jednak wiedzy z zakresu technologii montażu i sposobu ich eksploatacji, a także z zakresu metodyki obliczania charakterystyki energetycznej tego typu przegród. Wiedza ta jest konieczna, aby móc w odpowiedni sposób uwzględnić właściwości przegrody w bilansie cieplnym budynku.
Obecnie praktycznie żaden program komputerowy służący do wspomagania pracy projektanta nie uwzględnia możliwości zastosowania w obliczeniach przegród pozyskujących energię słoneczną [1, 2].
Istota działania izolacji transparentnej
Izolacją transparentną (TI) nazywa się strukturę, której konstrukcja umożliwia przenikanie promieniowania krótkofalowego (słonecznego) przy jednoczesnym ograniczeniu strat ciepła do otoczenia na drodze konwekcji i radiacji w zakresie promieniowania długofalowego (cieplnego) oraz przewodzenia. Strukturę bilansu cieplnego ściany z izolacją transparentną przedstawiono na rys. 1.
Istotę działania izolacji transparentnej można opisać następująco [3]:
- promieniowanie słoneczne padające na powierzchnię TI częściowo wnika do przezroczystej płyty, a częściowo zostaje od niej odbite,
- promieniowanie dociera przez TI do warstwy absorbującej i zostaje przekształcone w ciepło,
- dzięki dobrej przewodności cieplnej materiału ściennego (warstwa masywna) ciepło zostaje odprowadzone do wnętrza pomieszczenia,
- materiał ścienny służy jednocześnie jako akumulator ciepła.
Charakterystyka przyjętej metodologii
O efektywności zastosowanego rozwiązania decydują nie tylko rozwiązania materiałowo-technologiczne, lecz także warunki klimatyczne związane z oddziaływaniem lokalnych wpływów środowiskowych.
WARTO ZOBACZYĆ! |
---|
Wszystko o energooszczędności – pobierz za darmo materiały |
Wartości natężenia promieniowania słonecznego docierającego do powierzchni ziemi w Polsce są silnie zróżnicowane. Ze względu na ilość energii możliwej do pozyskania z promieniowania słonecznego obszar Polski podzielono na jedenaście regionów helioenergetycznych [4].
Aby zaprezentować skuteczność obliczeniową pozyskania energii słonecznej przez izolację transparentną wbudowaną w ścianę zewnętrzną budynku, wytypowano po cztery regiony helioenergetyczne – korzystne oraz mało korzystne.
W zależności od powierzchni regionów wybrano maksymalnie trzy miejscowości. Dla każdego z regionów określono miejscowość z najmniejszą i największą roczną sumą całkowitego promieniowania słonecznego. Dodatkowo wytypowano miejscowości najbardziej zdaniem autorów reprezentatywne. Przyjęte do analiz regiony oraz miejscowości przedstawiono w tabeli 1.
Zgodnie z obowiązującą metodologią obliczania charakterystyki energetycznej budynku przyjęto, iż obliczenia związane ze stratą i pozyskaniem energii będą prowadzone metodą bilansów miesięcznych [5]. Wartości sum miesięcznych natężenia promieniowania słonecznego przyjęto na podstawie ogólno dostępnych danych wskazanych przez Ministerstwo Infrastruktury [6].
Analizowano pięć rodzajów izolacji transparentnej, wszystkie o grubości 10,0 cm, w odniesieniu do których przyjęto jednakowy współczynnik absorpcji (pochłaniania) promieniowania słonecznego α = 0,95. W tabeli 2 zestawiono charakterystykę radiacyjno-optyczną oraz cieplną transparentnych struktur termoizolacyjnych przyjętych na podstawie pracy L. Laskowskiego [7].
Obliczenia współczynnika przenikania ciepła U zostały wykonane z uwzględnieniem zróżnicowanego usytuowania przegrody budowlanej względem stron świata. Przyjęto, iż tego typu przegrody powinny być tak usytuowane, aby jak najlepiej pozyskiwały energię słoneczną, a jednocześnie minimalizowane było przegrzewanie.
Jako reprezentatywne wybrano następujące zorientowanie przegrody z izolacją transparentną względem stron świata: południe, południowy wschód oraz południowy zachód. Część konstrukcyjną ściany stanowi mur z cegły betonowej prasowanej o grubości 38,0 cm o współczynniku przewodzenia ciepła λ = 1,3 W/(m·K).
Zagadnienie obliczania współczynnika przenikania ciepła U nietypowych elementów ścian zewnętrznych zostało przedstawione m.in. w pracach [1, 7, 8] oraz w normie PN-EN 832:2001, Az: 2006 [5]. Rzeczywiste funkcjonowanie przegrody z izolacją transparentną próbowano opisywać (obliczać) z wykorzystaniem uproszczonej sieci cieplnej.
Takie podejście opisał Goetzberger w 1984 r. Zastosowanie typowego zawartego w literaturze sposobu obliczeń jest dość skomplikowane i nie zawsze nadaje się do zastosowania w metodach komputerowych. W obliczeniach uproszczonych dobrym przybliżeniem dla ekwiwalentnego współczynnika przenikania ciepła Ueq jest wzór Wossa [1]:
gdzie:
Ic – natężenie promieniowania słonecznego [W/m²],
Δt – różnica temperatur powietrza wewnętrznego i zewnętrznego [K].
Wzór ten uwzględnia własności izolacji transparentnej w sposób pośredni i nie nadaje się do obliczeń w metodzie bilansów miesięcznych. Wydaje się, iż najlepszą metodą obliczeń będzie zastosowanie metody sumowania strumieni energii pozyskanej i traconej przez przegrodę w okresie bilansowania. Strumień ten można obliczyć zgodnie ze wzorem [9]:
gdzie:
q – strumień ciepła przepływający przez przegrodę z izolacją transparentną [W/m²],
U – współczynnik przenikania ciepła całej przegrody (po przekształceniu wzoru (3)) [W/m²·K],
ti – temperatura powietrza wewnętrznego [ºC],
te – temperatura powietrza zewnętrznego [ºC],
ξTI – współczynnik transmisyjności (przepuszczalności) promieniowania słonecznego,
α – współczynnik absorpcji,
Ic – natężenie promieniowania słonecznego (suma miesięczna) [W/m²].