Izolacje.com.pl

Zaawansowane wyszukiwanie

Ściany zewnętrzne w budynkach o obniżonym zapotrzebowaniu na energię

External walls in buildings with low power demand

Ściany zewnętrzne w budynkach o obniżonym zapotrzebowaniu na energię

Ściany zewnętrzne w budynkach o obniżonym zapotrzebowaniu na energię

Poziom zapotrzebowania budynku na ciepło do ogrzewania w dużym stopniu zależy od izolacyjności cieplnej obudowy, a więc od wartości wspłczynnika przenikania ciepła U przegród zewnętrznych. Wartość U można obniżyć dzięki zastosowaniu powszechnie dostępnych materiałów i metod ociepleń. Warto jednak pamiętać, że nie wszystkie konstrukcje ścian zewnętrznych polecane są do budynków o obniżonym zapotrzebowaniu na energię.

Zobacz także

fischer Polska sp. z o.o. Zalecenia dotyczące renowacji istniejącego systemu ETICS

Zalecenia dotyczące renowacji istniejącego systemu ETICS Zalecenia dotyczące renowacji istniejącego systemu ETICS

Przed podjęciem decyzji o wykonaniu dodatkowego docieplenia konieczna jest szczegółowa inwentaryzacja istniejącego układu/systemu ocieplenia oraz podłoża. Ocenę taką należy wykonać etapowo.

Przed podjęciem decyzji o wykonaniu dodatkowego docieplenia konieczna jest szczegółowa inwentaryzacja istniejącego układu/systemu ocieplenia oraz podłoża. Ocenę taką należy wykonać etapowo.

RAXY Sp. z o.o. Nowoczesne technologie w ciepłych i zdrowych budynkach

Nowoczesne technologie w ciepłych i zdrowych budynkach Nowoczesne technologie w ciepłych i zdrowych budynkach

Poznaj innowacyjne, specjalistyczne produkty nadające przegrodom budowlanym odpowiednią trwałość, izolacyjność cieplną i szczelność. Jakie rozwiązania pozwolą nowe oraz remontowane chronić budynki i konstrukcje?

Poznaj innowacyjne, specjalistyczne produkty nadające przegrodom budowlanym odpowiednią trwałość, izolacyjność cieplną i szczelność. Jakie rozwiązania pozwolą nowe oraz remontowane chronić budynki i konstrukcje?

Purinova Sp. z o.o. Turkusowa drużyna Purios ciepło wita pomarańczowego bohatera

Turkusowa drużyna Purios ciepło wita pomarańczowego bohatera Turkusowa drużyna Purios ciepło wita pomarańczowego bohatera

Wy mówicie, a my słuchamy. Wskazujecie na nudne reklamy, inżynierów w garniturach, patrzących z każdego bilbordu i na Mister Muscle Budowlanki w ogrodniczkach. To wszystko już było, a wciąż zapomina się...

Wy mówicie, a my słuchamy. Wskazujecie na nudne reklamy, inżynierów w garniturach, patrzących z każdego bilbordu i na Mister Muscle Budowlanki w ogrodniczkach. To wszystko już było, a wciąż zapomina się o kimś bardzo ważnym.

Zgodnie z Dyrektywą Parlamentu Europejskiego 2010/31/UE [1] do 31 grudnia 2020 r. wszystkie nowe budynki wznoszone w państwach członkowskich Unii Europejskiej mają być budynkami o niemal zerowym zużyciu energii. Trwają więc prace nad obiektami o obniżonym zapotrzebowaniu energetycznym w stosunku do typowych konstrukcji nowo powstających.

Klasyfikacja budynków pod kątem standardu energetycznego

Jest wiele sposobów klasyfikacji budynków w zależności od zapotrzebowania na ciepło w okresie eksploatacji. Zgodnie z ogólnym podziałem wyróżnia się budynki typowe, energooszczędne i pasywne (rys. 1).

Budynki typowe

Budynki te projektowane są zgodnie z zapisami rozporządzenia ministra infrastruktury zmieniającego rozporządzenie w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie (WT 2008) [3]. Charakteryzują się sezonowym wskaźnikiem zapotrzebowania na energię do ogrzewania na poziomie 110–130 kWh/(m²·rok). Wskaźnik ten uwzględnia straty ciepła przez obudowę budynku, straty ciepła na ogrzanie powietrza wentylacyjnego, zyski ciepła pochodzące od promieniowania słonecznego oraz wewnętrzne zyski ciepła od urządzeń elektrycznych i procesów bytowych (prania, gotowania itp.). W obliczeniach nie bierze się pod uwagę sprawności systemów grzewczych ani nakładów związanych z dostarczeniem energii do budynku.

Budynki energooszczędne

Terminem tym określa się najczęściej obiekty, których roczne zużycie energii na potrzeby ogrzewania jest co najmniej o połowę niższe niż typowych budynków nowo projektowanych. Nazwa pochodzi z angielskiego („low energy houses”) i powstała w latach 80. XX w. w Kanadzie i Szwecji. W odniesieniu do tamtejszych standardów wiązała się ze wskaźnikiem zapotrzebowania na ciepło nieprzekraczającym 70 kWh/m²·rok (w wypadku domów jednorodzinnych) lub 55 kWh/m²·rok (w wypadku budynków wielorodzinnych) [4]. Taki poziom energochłonności można uzyskać dzięki wykorzystaniu tradycyjnych technologii, odpowiedniej izolacyjności obudowy i przemyślanemu projektowaniu systemów instalacyjnych.

Termin „budownictwo energooszczędne” nie jest zbyt ścisły i budzi zastrzeżenia wielu specjalistów, jednak ze względu na intuicyjne rozumienie jest powszechnie stosowany.

Budynki pasywne

To pojęcie zostało sformułowane w trakcie realizacji programu badawczego CEPHEUS (Cost Efficient Passive Houses as European Standard) zapoczątkowanego w 1998 r. pod patronatem Passivhaus Institutu w Darmstadt. W ramach tego programu wykonano w Niemczech, Austrii, Szwajcarii, we Francji i w Szwecji 14 typów budynków o wysokim standardzie energetycznym z wykorzystaniem ogólnodostępnych materiałów budowlanych. Doświadczenia badawcze programu pozwoliły na zdefiniowanie domu pasywnego jako budynku, w którym zarówno zimą, jak i latem zapewniony jest komfortowy klimat wewnętrzny bez tradycyjnego systemu grzewczego. Jest to możliwe, jeżeli roczne zapotrzebowanie na ciepło do ogrzewania nie przekracza 15 kWh/(m²·rok) - w takiej sytuacji funkcje systemu grzewczego może przejąć system wentylacyjny z nagrzewnicą powietrza [5]. Aby ograniczyć zapotrzebowanie na ciepło w tak dużym stopniu, poza bardzo wysokim poziomem ochrony termicznej konieczne jest świadome wykorzystanie energii słonecznej i innych niekonwencjonalnych źródeł energii.

Zalecenia dotyczące przegród zewnętrznych w budynkach o różnym standardzie energetycznym

Wymagania dotyczące izolacyjności termicznej przegród zewnętrznych w odniesieniu do typowych budynków nowo powstających zawarte są w rozporządzeniu zmieniającym rozporządzenie w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie [3]. Wymogi odnośnie do projektowania obiektów o obniżonym zapotrzebowaniu na energię nie są natomiast w Polsce sformułowane w żadnych przepisach. Projektanci mogą się kierować jedynie zaleceniami zawartymi w kilku publikacjach [2, 6, 7], a sformułowanymi na podstawie doświadczeń w krajach wdrażających od dłuższego czasu systemy budownictwa energooszczędnego.

Wartość izolacyjności termicznej przegród zewnętrznych w budynkach typowych oraz obiektach o obniżonym zapotrzebowaniu na energię przedstawiono w tabeli 1.

W budynkach o obniżonym zapotrzebowaniu na energię dodatkowo ogranicza się wielkość liniowego współczynnika przenikania ciepła w miejscu mostków termicznych Ψ, która (obliczona względem wymiarów zewnętrznych przegrody) nie może przekraczać 0,01 W/(m·K) [6]. Oznacza to konieczność indywidualnego projektowania węzłów łączących główne elementy konstrukcyjne.

Przykładowe rozwiązania ścian zewnętrznych w budynkach o obniżonym zapotrzebowaniu na energię

Projektowanie budynków o obniżonym zapotrzebowaniu na energię nie wiąże się z koniecznością zastosowania określonej technologii – rodzaj przegród zewnętrznych w dużej mierze zależy od tradycji lokalnych i dostępnych materiałów. W budynkach pasywnych wzniesionych w ramach programu CEPHEUS ściany wykonywane były w bardzo zróżnicowany sposób (tabela 2). Stosowano zarówno tradycyjne przegrody z masywną warstwą wewnętrzną i ociepleniem mocowanym na zewnątrz, jak i lekkie drewniane konstrukcje szkieletowe z wewnętrznym wypełnieniem izolacją cieplną. Niektóre rozwiązania, np. metoda klejowego mocowania okładziny zewnętrznej bez naruszenia ciągłości izolacji cieplnej w budynku pasywnym w Egg, zostały opracowane specjalnie na potrzeby projektu i opatentowane jako oryginalny wzór ­użytkowy. Przegrody te charakteryzowały się wartościami współczynnika przenikania ciepła U wynoszącymi od 0,09 W/(m²·K) do 0,16 W/(m²·K), a poziom zapotrzebowania na energię pozwolił zaliczyć większość obiektów do budynków pasywnych.

Możliwości obniżenia wartości współczynnika przenikania ciepła

W Polsce przeważająca część budynków zbudowana jest z przegród warstwowych o masywnej części konstrukcyjnej (murowanej lub żelbetowej) ocieplonej od zewnątrz. Grubość izolacji termicznej, sposób jej mocowania oraz połączenie elementów konstrukcyjnych (ścian, stropów, okien) decydują o wypadkowej izolacyjności cieplnej.

Poniżej przedstawiono podstawowe technologie wykonywania ścian zewnętrznych o murowanej konstrukcji nośnej. Założono, że przegrody wykonane są z powszechnie dostępnych materiałów, które mają typowe parametry izolacyjności termicznej i ceny przystępne dla przeciętnego inwestora.

Ściany trójwarstwowe (szczelinowe)

Mury szczelinowe składają się z dwóch warstw murowanych – wewnętrznej konstrukcyjnej i zewnętrznej elewacyjnej (rys. 2). Warstwy te oddzielone są szczeliną wypełnianą w całości lub częściowo materiałem izolującym termicznie. Maksymalna szerokość szczeliny podana w aprobacie technicznej ITB 341/96 [8] wynosi 150 mm. Obie warstwy murowe połączone są kotwami ze stali zabezpieczonej antykorozyjnie w liczbie co najmniej 4 szt./m². Zadaniem kotew jest zapewnienie stateczności warstwy elewacyjnej podczas parcia lub ssania wiatru oddziałującego na elewację. Kotwy są elementem niezbędnym konstrukcyjnie, ale ze względu na wysoką wartość współczynnika przewodzenia ciepła stali tworzą w przegrodzie punktowe mostki termiczne.

Na rys. 3 przedstawiono izolacyjność cieplną przykładowych ścian trójwarstwowych w zależności od grubości ocieplenia. Materiał tworzący warstwę ­konstrukcyjną to cegła silikatowa, cegła kratówka lub gazobeton o wartości współczynnika l odpowiednio: 0,90, 0,56 i 0,25 W/(m·K). Warstwa elewacyjna wykonana jest z cegły kratówki. Jako izolację cieplną przyjęto materiał o wartości współczynnika przewodzenia ciepła λ = 0,043 W/(m·K) i o grubości nieprzekraczającej 150 mm. W obliczeniach uwzględniono punktowe mostki cieplne w miejscach kotew stalowych zgodnie z normą PN-EN ISO 6946:2008 [9].

W ścianach szczelinowych materiał zastosowany w części konstrukcyjnej ma dość istotny wpływ na izolacyjność cieplną, a różnica między skrajnymi współczynnikami przenikania ciepła w odniesieniu do izolacji o maksymalnej grubości wynosi 15%. Wymaganą izolacyjność przegrody zgodną z rozporządzeniem zmieniającym rozporządzenie w sprawie warunków technicznych [3] można uzyskać dzięki ociepleniu o gr. 100, 120 lub 130 mm, jeżeli część konstrukcyjna wykonana jest odpowiednio z: gazobetonu, cegły kratówki lub cegły silikatowej.

Ściany trójwarstwowe należy więc uznać za konstrukcje niezalecane do budynków o obniżonym zapotrzebowaniu na energię – z wykorzystaniem tradycyjnych materiałów budowlanych trudno jest uzyskać współczynnik przenikania ciepła U niższy niż 0,20 W/(m²·K). Wynika to z ograniczonej szerokości szczeliny, która warunkuje stosunkowo niewielkie grubości izolacji cieplnej.

Ściany murowane ocieplone w systemie ETICS

W tym systemie wewnętrzną częścią przegrody jest murowana ściana jednowarstwowa o grubości określonej ze względu na nośność. Od strony zewnętrznej stosuje się ocieplenie mocowane za pomocą zaprawy i dodatkowo kotwione łącznikami mechanicznymi ze stali lub tworzyw sztucznych (co najmniej 4 szt./m² w wypadku styropianu i 6 szt./m² w wypadku wełny mineralnej) (rys. 4). Zadaniem łączników jest przenoszenie oddziaływań wiatru. Mocowanie wyłącznie za pomocą kleju można stosować jedynie na budynkach o wysokości do 12 m ocieplanych styropianem, które mają odpowiednio pewne podłoże. Dopuszczalne grubości izolacji w odniesieniu do większości systemów nie przekraczają 200 mm w wypadku dociepleń przy użyciu wełny mineralnej i 250 mm – dociepleń przy użyciu styropianu. Przegroda od strony zewnętrznej jest wykańczana cienkowarstwowym tynkiem zbrojonym siatką z włókna szklanego.Ogólne warunki wykonania ocieplenia zawarte są w instrukcjach ITB 418/2006 i 447/2009 [10, 11].

Na rys. 5 przedstawiono izolacyjność cieplną przykładowych ścian w zależności od grubości ocieplenia. Materiały tworzące warstwę konstrukcyjną i izolację termiczną przyjęto jak w poprzednim przykładzie, przy czym założono, że grubość ocieplenia nie przekracza 250 mm. Aby zminimalizować wpływ mostków termicznych, zastosowano łączniki stalowe z główką z tworzywa sztucznego, charakteryzujące się punktowym współczynnikiem przenikania ciepła Χ = 0,001 W/K.

Na podstawie prezentowanych wykresów można zauważyć, że w wypadku większych grubości ocieplenia maleje wpływ rodzaju materiału użytego do wykonania ściany konstrukcyjnej na izolacyjność cieplną przegrody – różnice między wynikami obliczeń w odniesieniu do maksymalnej grubości ocieplenia wynoszą 9%. Współczynniki przenikania zalecane dla budynków energooszczędnych uzyskano przy grubościach izolacji przekraczających 180 mm w wypadku ścian z gazobetonu. Dla pozostałych materiałów konieczna jest grubość ocieplenia wynosząca co najmniej 200 mm. Słabym punktem systemu są kotwy mocujące izolację termiczną – zastosowanie tradycyjnych łączników z trzpieniem metalowym zwiększyło współczynnik przenikania ciepła U w analizowanych przykładach o 7–9%.

Ściany murowane ocieplone metodą lekką-suchą

W metodzie lekkiej-suchej ocieplenie i warstwa elewacyjna mocowane są mechanicznie bez użycia procesów mokrych (rys. 6). Jako izolacja wykorzystywana jest przede wszystkim wełna mineralna, którą układa się między metalowym lub drewnianym rusztem służącym do zamocowania okładziny elewacyjnej. W systemie tym nie ma ograniczeń związanych z grubością ociepleń. Zaleca się jednak, aby podzielić je na mniejsze warstwy i ruszt układać naprzemiennie poziomo i pionowo. Takie rozwiązanie pozwala zminimalizować liniowe mostki termiczne powstające w miejscu listew lub kształtowników rusztu.

Na rys. 7 przedstawiono izolacyjność cieplną przykładowych ścian w zależności od grubości ocieplenia. Materiały tworzące warstwę konstrukcyjną i izolację cieplną przyjęto według schematu na rys. 6. W obliczeniach uwzględniono krzyżujący się ruszt drewniany pogarszający izolacyjność cieplną przegrody.

Wartości współczynnika przenikania ciepła U zalecane dla budynków energooszczędnych uzyskano w odniesieniu do grubości ocieplenia rzędu 200–220 mm, a w wypadku budynków pasywnych – powyżej 300 mm. W wypadku ociepleń przekraczających gr. 400 mm rodzaj materiału w części konstrukcyjnej ściany nie ma już istotnego wpływu na izolacyjność przegrody. Zaletą systemu jest brak ograniczeń grubości ocieplenia. Przy większych grubościach izolacji tradycyjny ruszt można zastąpić np. kompozytowymi belkami drewnianymi o kształcie dwuteowym lub skrzynkowym, co stosowano w przykładowych rozwiązaniach ścian budynków pasywnych przedstawionych w TABELI 2. Należy jednak pamiętać, że elementy rusztu drewnianego lub metalowego będą częścią konstrukcji o zwiększonym przepływie ciepła i będą negatywnie wpływać na wypadkową izolacyjność.

Podsumowanie

Uzyskanie wartości współczynnika przenikania ciepła U zalecanych w budynkach o obniżonym zapotrzebowaniu na energię w wypadku ścian murowanych wiąże się z koniecznością zastosowania izolacji termicznej o grubości przekraczającej 200 mm (w budynkach energooszczędnych) i 300 mm (w budynkach pasywnych). Tak duże grubości ociepleń mogą powodować pewne problemy z ich mocowaniem – np. brak odpowiednio długich kotew czy pogorszenie izolacyjności cieplnej związane z dużymi przekrojami rusztu nośnego. Budownictwo energooszczędne jest jednak przedmiotem zainteresowania nie tylko inwestorów, lecz także producentów, można więc oczekiwać, że wybór specjalistycznych wyrobów budowlanych przeznaczonych do tego typu obiektów na rynku będzie się zwiększał.

Należy pamiętać, że izolacyjność cieplna przegród zewnętrznych nie jest jedynym czynnikiem decydującym o energochłonności eksploatacyjnej.

Równie istotny jest kształt budynku, rozplanowanie pomieszczeń, rozwiązania węzłów konstrukcyjnych, systemy instalacyjne oraz możliwości wykorzystania niekonwencjonalnych źródeł energii. Ostatecznym kryterium pozwalającym zaliczyć obiekt do grupy energooszczędnych lub pasywnych jest zapotrzebowanie na energię, a nie stopień ochrony cieplnej. W związku z tym dokonane analizy dotyczące grubości izolacji należy traktować jako wstępne zalecenia, przydatne na początkowym etapie projektowania budynku.

Literatura

  1. Dyrektywa 2010/31/UE Parlamentu Europejskiego i Rady z dnia 19 maja 2010 r. w sprawie charakterystyki energetycznej budynków (DzUrz L 153 z 18.6.2010, s. 13–35).
  2. W. Feist, S. Peper, M. Görg, „CEPHEUS – Final Technical Report”, Hanower 2001.
  3. Rozporządzenie Ministra Infrastruktury z dnia 6 listopada 2008 r. zmieniające rozporządzenie w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie (DzU z 2008 r. nr 201, poz. 1238).
  4. W. Dubas, „Podstawy budownictwa energooszczędnego”, „Przegląd Budowlany”, nr 5/2006, s. 19–24.
  5. R. Wnuk, „Budowa Domu Pasywnego w praktyce”, Przewodnik Budowlany, Warszawa 2006.
  6. I. Strom, L. Joosten, Ch. Boonstra, „Passive Houses Solutions”, Intelligent Energy Europe, 2006.
  7. Strona internetowa: www.cepheus.de
  8. Instrukcja ITB 341/96, „Projektowanie i wykonywanie murowanych ścian szczelinowych”.
  9. PN-EN ISO 6946:2008, „Komponenty budowlane i elementy budynku. Opór cieplny i współczynnik przenikania ciepła. Metoda obliczania”.Instrukcja ITB 418/2006, „Warunki techniczne wykonania i odbioru robót budowlanych. Część C. Zeszyt 8: Bezspoinowy system ocieplania ścian zewnętrznych budynków”.
  10. Instrukcja ITB 447/2009, „Złożone systemy izolacji cieplnej ścian zewnętrznych budynków ETICS. Zasady projektowania i wykonania”.

Chcesz być na bieżąco? Zapisz się do naszego newslettera!

Galeria zdjęć

Tytuł
przejdź do galerii

Komentarze

Powiązane

dr inż. Krzysztof Pawłowski prof. PBŚ Podstawowe zagadnienia fizyki cieplnej budowli w aspekcie wymagań prawnych (cz. 1)

Podstawowe zagadnienia fizyki cieplnej budowli w aspekcie wymagań prawnych (cz. 1) Podstawowe zagadnienia fizyki cieplnej budowli w aspekcie wymagań prawnych (cz. 1)

Od wielu lat przepisy prawne związane z procesami projektowania, wznoszenia i eksploatacji budynków wymuszają takie rozwiązania technologiczne i organizacyjne, w wyniku których nowo wznoszone budynki zużywają...

Od wielu lat przepisy prawne związane z procesami projektowania, wznoszenia i eksploatacji budynków wymuszają takie rozwiązania technologiczne i organizacyjne, w wyniku których nowo wznoszone budynki zużywają w trakcie eksploatacji coraz mniej energii na ogrzewanie, wentylację i przygotowanie ciepłej wody użytkowej. Zmiany maksymalnej wartości współczynnika przenikania ciepła Umax. (dawniej kmax.) wpływają na wielkość zużycia energii w trakcie eksploatacji budynków.

mgr inż. Ireneusz Stachura Jak eliminować mostki cieplne w budynku?

Jak eliminować mostki cieplne w budynku? Jak eliminować mostki cieplne w budynku?

Planując budynek, czy to mieszkalny, czy o innej funkcji (np. biurowiec, hotel, szpital), projektant tworzy konkretną bryłę, która ma spełnić szereg funkcji – wizualną, funkcjonalną, ekonomiczną w fazie...

Planując budynek, czy to mieszkalny, czy o innej funkcji (np. biurowiec, hotel, szpital), projektant tworzy konkretną bryłę, która ma spełnić szereg funkcji – wizualną, funkcjonalną, ekonomiczną w fazie realizacji i eksploatacji – i zapewnić właściwe warunki do przebywania w tym budynku ludzi.

dr inż. Krzysztof Pawłowski prof. PBŚ Kształtowanie układu warstw materiałowych podłóg na stropach w budynkach

Kształtowanie układu warstw materiałowych podłóg na stropach w budynkach Kształtowanie układu warstw materiałowych podłóg na stropach w budynkach

Dobór układu warstw materiałowych podłóg na stropach w budynkach nie powinien być przypadkowy, ale oparty na szczegółowych obliczeniach i analizach w zakresie nośności i wytrzymałości, wymagań cieplno-wilgotnościowych,...

Dobór układu warstw materiałowych podłóg na stropach w budynkach nie powinien być przypadkowy, ale oparty na szczegółowych obliczeniach i analizach w zakresie nośności i wytrzymałości, wymagań cieplno-wilgotnościowych, izolacyjności akustycznej oraz ochrony przeciwpożarowej.

dr inż. Andrzej Konarzewski Panele architektoniczne do budownictwa komercyjnego

Panele architektoniczne do budownictwa komercyjnego Panele architektoniczne do budownictwa komercyjnego

W Europie do opisywania konstrukcji ścian osłonowych z płyt warstwowych w obustronnej okładzinie stalowej z rdzeniem izolacyjnym można wykorzystywać zapisy podane w normie PN-EN 13830.

W Europie do opisywania konstrukcji ścian osłonowych z płyt warstwowych w obustronnej okładzinie stalowej z rdzeniem izolacyjnym można wykorzystywać zapisy podane w normie PN-EN 13830.

mgr inż. Julia Blazy, prof. dr hab. inż. Łukasz Drobiec, dr hab. inż. arch. Rafał Blazy prof. PK Zastosowanie fibrobetonu z włóknami polipropylenowymi w przestrzeniach publicznych

Zastosowanie fibrobetonu z włóknami polipropylenowymi w przestrzeniach publicznych Zastosowanie fibrobetonu z włóknami polipropylenowymi w przestrzeniach publicznych

Beton to materiał o dużej wytrzymałości na ściskanie, ale około dziesięciokrotnie mniejszej wytrzymałości na rozciąganie. Ponadto charakteryzuje się kruchym pękaniem i nie pozwala na przenoszenie naprężeń...

Beton to materiał o dużej wytrzymałości na ściskanie, ale około dziesięciokrotnie mniejszej wytrzymałości na rozciąganie. Ponadto charakteryzuje się kruchym pękaniem i nie pozwala na przenoszenie naprężeń po zarysowaniu.

Redakcja miesięcznika IZOLACJE Tynki gipsowe w pomieszczeniach mokrych i łazienkach

Tynki gipsowe w pomieszczeniach mokrych i łazienkach Tynki gipsowe w pomieszczeniach mokrych i łazienkach

Dobór tynku wewnętrznego do pomieszczeń mokrych lub narażonych na wilgoć nie jest prosty. Takie pomieszczenia mają specjalne wymagania, a rodzaj pokrycia ścian wewnętrznych powinien uwzględniać trudne...

Dobór tynku wewnętrznego do pomieszczeń mokrych lub narażonych na wilgoć nie jest prosty. Takie pomieszczenia mają specjalne wymagania, a rodzaj pokrycia ścian wewnętrznych powinien uwzględniać trudne warunki panujące wewnątrz kuchni czy łazienki. Na szczęście technologia wychodzi inwestorom naprzeciw i efektywne położenie tynku gipsowego w mokrych i wilgotnych pomieszczeniach jest możliwe.

mgr inż. Maciej Rokiel System ETICS – skutki braku analizy dokumentacji projektowej (cz. 4)

System ETICS – skutki braku analizy dokumentacji projektowej (cz. 4) System ETICS – skutki braku analizy dokumentacji projektowej (cz. 4)

Artykuł jest kontynuacją publikacji zamieszczonych kolejno w numerach 3/2022, 4/2022 i 6/2022 miesięcznika IZOLACJE. W tej części skupimy się na tym, jak skutki braku analizy czy wręcz nieprzeczytania...

Artykuł jest kontynuacją publikacji zamieszczonych kolejno w numerach 3/2022, 4/2022 i 6/2022 miesięcznika IZOLACJE. W tej części skupimy się na tym, jak skutki braku analizy czy wręcz nieprzeczytania dokumentacji projektowej mogą wpłynąć na uszkodzenia systemu. Przez „przeczytanie” należy tu także rozumieć zapoznanie się z tekstem kart technicznych stosowanych materiałów.

dr inż. Pavel Zemene, przewodniczący Stowarzyszenia EPS w Republice Czeskiej Bezpieczeństwo pożarowe złożonych systemów izolacji cieplnej ETICS

Bezpieczeństwo pożarowe złożonych systemów izolacji cieplnej ETICS Bezpieczeństwo pożarowe złożonych systemów izolacji cieplnej ETICS

Do bezpieczeństwa pożarowego w budynkach przywiązuje się niezmiernie dużą wagę. Zagadnienie to jest ważne nie tylko ze względu na bezpieczeństwo użytkowników budynku, ale także ze względu na bezpieczną...

Do bezpieczeństwa pożarowego w budynkach przywiązuje się niezmiernie dużą wagę. Zagadnienie to jest ważne nie tylko ze względu na bezpieczeństwo użytkowników budynku, ale także ze względu na bezpieczną eksploatację budynków i ochronę mienia. W praktyce materiały i konstrukcje budowlane muszą spełniać szereg wymagań, związanych między innymi z podstawowymi wymaganiami dotyczącymi stabilności konstrukcji i jej trwałości, izolacyjności termicznej i akustycznej, a także higieny i zdrowia, czy wpływu...

mgr inż. Maciej Rokiel Jak układać płytki wielkoformatowe?

Jak układać płytki wielkoformatowe? Jak układać płytki wielkoformatowe?

Wraz ze wzrostem wielkości płytek (długości ich krawędzi) wzrastają wymogi dotyczące jakości materiałów, precyzji przygotowania podłoża oraz reżimu technologicznego wykonawstwa.

Wraz ze wzrostem wielkości płytek (długości ich krawędzi) wzrastają wymogi dotyczące jakości materiałów, precyzji przygotowania podłoża oraz reżimu technologicznego wykonawstwa.

dr inż. Krzysztof Pawłowski prof. PBŚ Właściwości cieplno-wilgotnościowe materiałów budowlanych (cz. 2)

Właściwości cieplno-wilgotnościowe materiałów budowlanych (cz. 2) Właściwości cieplno-wilgotnościowe materiałów budowlanych (cz. 2)

Proces wymiany ciepła przez przegrody budowlane jest nieustalony w czasie, co wynika ze zmienności warunków klimatycznych na zewnątrz budynku oraz m.in. nierównomierności pracy urządzeń grzewczych. Opis...

Proces wymiany ciepła przez przegrody budowlane jest nieustalony w czasie, co wynika ze zmienności warunków klimatycznych na zewnątrz budynku oraz m.in. nierównomierności pracy urządzeń grzewczych. Opis matematyczny tego procesu jest bardzo złożony, dlatego w większości rozwiązań inżynierskich stosuje się uproszczony model ustalonego przepływu ciepła.

mgr inż. Jarosław Stankiewicz Zastosowanie kruszyw lekkich w warstwach izolacyjnych

Zastosowanie kruszyw lekkich w warstwach izolacyjnych Zastosowanie kruszyw lekkich w warstwach izolacyjnych

Kruszywa lekkie są materiałem znanym od starożytności. Aktualnie wyrób ten ma liczną grupę odbiorców nie tylko we współczesnym budownictwie, ale i w innych dziedzinach gospodarki. Spowodowane to jest licznymi...

Kruszywa lekkie są materiałem znanym od starożytności. Aktualnie wyrób ten ma liczną grupę odbiorców nie tylko we współczesnym budownictwie, ale i w innych dziedzinach gospodarki. Spowodowane to jest licznymi zaletami tego wyrobu, takimi jak wysoka izolacyjność cieplna, niska gęstość, niepalność i wysoka mrozoodporność, co pozwala stosować go zarówno w budownictwie, ogrodnictwie, jak i innych branżach.

dr inż. Andrzej Konarzewski, mgr Marek Skowron, mgr inż. Mateusz Skowron Przegląd metod recyklingu i utylizacji odpadowej pianki poliuretanowo‑poliizocyjanurowej powstającej przy produkcji wyrobów budowlanych

Przegląd metod recyklingu i utylizacji odpadowej pianki poliuretanowo‑poliizocyjanurowej powstającej przy produkcji wyrobów budowlanych Przegląd metod recyklingu i utylizacji odpadowej pianki poliuretanowo‑poliizocyjanurowej powstającej przy produkcji wyrobów budowlanych

W trakcie szerokiej i różnorodnej produkcji wyrobów budowlanych ze sztywnej pianki poliuretanowo/poliizocyjanurowej powstaje stosunkowo duża ilość odpadów, które muszą zostać usunięte. Jak przeprowadzić...

W trakcie szerokiej i różnorodnej produkcji wyrobów budowlanych ze sztywnej pianki poliuretanowo/poliizocyjanurowej powstaje stosunkowo duża ilość odpadów, które muszą zostać usunięte. Jak przeprowadzić recykling odpadów z pianki?

Joanna Szot Rodzaje stropów w domach jednorodzinnych

Rodzaje stropów w domach jednorodzinnych Rodzaje stropów w domach jednorodzinnych

Strop dzieli budynek na kondygnacje. Jednak to nie jedyne jego zadanie. Ponadto ten poziomy element konstrukcyjny usztywnia konstrukcję domu i przenosi obciążenia. Musi także stanowić barierę dla dźwięków...

Strop dzieli budynek na kondygnacje. Jednak to nie jedyne jego zadanie. Ponadto ten poziomy element konstrukcyjny usztywnia konstrukcję domu i przenosi obciążenia. Musi także stanowić barierę dla dźwięków i ciepła.

P.P.H.U. EURO-MIX sp. z o.o. EURO-MIX – zaprawy klejące w systemach ociepleń

EURO-MIX – zaprawy klejące w systemach ociepleń EURO-MIX – zaprawy klejące w systemach ociepleń

EURO-MIX to producent chemii budowlanej. W asortymencie firmy znajduje się obecnie ponad 30 produktów, m.in. kleje, tynki, zaprawy, szpachlówki, gładzie, system ocieplania ścian na wełnie i na styropianie....

EURO-MIX to producent chemii budowlanej. W asortymencie firmy znajduje się obecnie ponad 30 produktów, m.in. kleje, tynki, zaprawy, szpachlówki, gładzie, system ocieplania ścian na wełnie i na styropianie. Zaprawy klejące EURO-MIX przeznaczone są do przyklejania wełny lub styropianu do podłoża z cegieł ceramicznych, betonu, tynków cementowych i cementowo­-wapiennych, gładzi cementowej, styropianu i wełny mineralnej w temperaturze od 5 do 25°C.

dr inż. Krzysztof Pawłowski prof. PBŚ Układy materiałowe wybranych przegród zewnętrznych w aspekcie wymagań cieplnych (cz. 3)

Układy materiałowe wybranych przegród zewnętrznych w aspekcie wymagań cieplnych (cz. 3) Układy materiałowe wybranych przegród zewnętrznych w aspekcie wymagań cieplnych (cz. 3)

Rozporządzenie w sprawie warunków technicznych [1] wprowadziło od 31 grudnia 2020 r. nowe wymagania dotyczące izolacyjności cieplnej poprzez zaostrzenie wymagań w zakresie wartości granicznych współczynnika...

Rozporządzenie w sprawie warunków technicznych [1] wprowadziło od 31 grudnia 2020 r. nowe wymagania dotyczące izolacyjności cieplnej poprzez zaostrzenie wymagań w zakresie wartości granicznych współczynnika przenikania ciepła Uc(max) [W/(m2·K)] dla przegród zewnętrznych oraz wartości granicznych wskaźnika zapotrzebowania na energię pierwotną EP [kWh/(m2·rok)] dla całego budynku. Jednak w rozporządzeniu nie sformułowano wymagań w zakresie ograniczenia strat ciepła przez złącza przegród zewnętrznych...

mgr inż. arch. Tomasz Rybarczyk Zastosowanie keramzytu w remontowanych stropach i podłogach na gruncie

Zastosowanie keramzytu w remontowanych stropach i podłogach na gruncie Zastosowanie keramzytu w remontowanych stropach i podłogach na gruncie

Są sytuacje i miejsca w budynku, w których nie da się zastosować termoizolacji w postaci wełny mineralnej lub styropianu. Wówczas w rozwiązaniach występują inne, alternatywne materiały, które nadają się...

Są sytuacje i miejsca w budynku, w których nie da się zastosować termoizolacji w postaci wełny mineralnej lub styropianu. Wówczas w rozwiązaniach występują inne, alternatywne materiały, które nadają się również do standardowych rozwiązań. Najczęściej ma to miejsce właśnie w przypadkach, w których zastosowanie styropianu i wełny się nie sprawdzi. Takim materiałem, który może w pewnych miejscach zastąpić wiodące materiały termoizolacyjne, jest keramzyt. Ten materiał ma wiele właściwości, które powodują,...

Sebastian Malinowski Kleje żelowe do płytek – właściwości i zastosowanie

Kleje żelowe do płytek – właściwości i zastosowanie Kleje żelowe do płytek – właściwości i zastosowanie

Kleje żelowe do płytek cieszą się coraz większą popularnością. Produkty te mają świetne parametry techniczne, umożliwiają szybki montaż wszelkiego rodzaju okładzin ceramicznych na powierzchni podłóg oraz...

Kleje żelowe do płytek cieszą się coraz większą popularnością. Produkty te mają świetne parametry techniczne, umożliwiają szybki montaż wszelkiego rodzaju okładzin ceramicznych na powierzchni podłóg oraz ścian.

dr inż. Krzysztof Pawłowski prof. PBŚ Projektowanie cieplne przegród stykających się z gruntem

Projektowanie cieplne przegród stykających się z gruntem Projektowanie cieplne przegród stykających się z gruntem

Dla przegród stykających się z gruntem straty ciepła przez przenikanie należą do trudniejszych w obliczeniu. Strumienie cieplne wypływające z ogrzewanego wnętrza mają swój udział w kształtowaniu rozkładu...

Dla przegród stykających się z gruntem straty ciepła przez przenikanie należą do trudniejszych w obliczeniu. Strumienie cieplne wypływające z ogrzewanego wnętrza mają swój udział w kształtowaniu rozkładu temperatur w gruncie pod budynkiem i jego otoczeniu.

Jacek Sawicki, konsultacja dr inż. Szczepan Marczyński – Clematis Źródło Dobrych Pnączy, prof. Jacek Borowski Roślinne izolacje elewacji

Roślinne izolacje elewacji Roślinne izolacje elewacji

Naturalna zieleń na elewacjach obecna jest od dawna. W formie pnączy pokrywa fasady wielu średniowiecznych budowli, wspina się po murach secesyjnych kamienic, nierzadko zdobi frontony XX-wiecznych budynków...

Naturalna zieleń na elewacjach obecna jest od dawna. W formie pnączy pokrywa fasady wielu średniowiecznych budowli, wspina się po murach secesyjnych kamienic, nierzadko zdobi frontony XX-wiecznych budynków jednorodzinnych czy współczesnych, nowoczesnych obiektów budowlanych, jej istnienie wnosi wyjątkowe zalety estetyczne i użytkowe.

mgr inż. Wojciech Rogala Projektowanie i wznoszenie ścian akustycznych w budownictwie wielorodzinnym na przykładzie przegród z wyrobów silikatowych

Projektowanie i wznoszenie ścian akustycznych w budownictwie wielorodzinnym na przykładzie przegród z wyrobów silikatowych Projektowanie i wznoszenie ścian akustycznych w budownictwie wielorodzinnym na przykładzie przegród z wyrobów silikatowych

Ściany z elementów silikatowych w ciągu ostatnich 20 lat znacznie zyskały na popularności [1]. Stanowią obecnie większość przegród akustycznych w budynkach wielorodzinnych, gdzie z uwagi na wiele źródeł...

Ściany z elementów silikatowych w ciągu ostatnich 20 lat znacznie zyskały na popularności [1]. Stanowią obecnie większość przegród akustycznych w budynkach wielorodzinnych, gdzie z uwagi na wiele źródeł hałasu izolacyjność akustyczna stanowi jeden z głównych czynników wpływających na komfort.

LERG SA Poliole poliestrowe Rigidol®

Poliole poliestrowe Rigidol® Poliole poliestrowe Rigidol®

Od lat obserwujemy dynamicznie rozwijający się trend eko, który stopniowo z mody konsumenckiej zaczął wsiąkać w coraz głębsze dziedziny życia społecznego, by w końcu dotrzeć do korzeni funkcjonowania wielu...

Od lat obserwujemy dynamicznie rozwijający się trend eko, który stopniowo z mody konsumenckiej zaczął wsiąkać w coraz głębsze dziedziny życia społecznego, by w końcu dotrzeć do korzeni funkcjonowania wielu biznesów. Obecnie marki, które chcą odnieść sukces, powinny oferować swoim odbiorcom zdecydowanie więcej niż tylko produkt czy usługę wysokiej jakości.

mgr inż. arch. Tomasz Rybarczyk Prefabrykacja w budownictwie

Prefabrykacja w budownictwie Prefabrykacja w budownictwie

Prefabrykacja w projektowaniu i realizacji budynków jest bardzo nośnym tematem, co przekłada się na duże zainteresowanie wśród projektantów i inwestorów tą tematyką. Obecnie wzrasta realizacja budynków...

Prefabrykacja w projektowaniu i realizacji budynków jest bardzo nośnym tematem, co przekłada się na duże zainteresowanie wśród projektantów i inwestorów tą tematyką. Obecnie wzrasta realizacja budynków z prefabrykatów. Można wśród nich wyróżnić realizacje realizowane przy zastosowaniu elementów prefabrykowanych stosowanych od lat oraz takich, które zostały wyprodukowane na specjalne zamówienie do zrealizowania jednego obiektu.

dr inż. Gerard Brzózka Płyty warstwowe o wysokich wskaźnikach izolacyjności akustycznej – studium przypadku

Płyty warstwowe o wysokich wskaźnikach izolacyjności akustycznej – studium przypadku Płyty warstwowe o wysokich wskaźnikach izolacyjności akustycznej – studium przypadku

Płyty warstwowe zastosowane jako przegrody akustyczne stanowią rozwiązanie charakteryzujące się dobrymi własnościami izolacyjnymi głównie w paśmie średnich, jak również wysokich częstotliwości, przy obciążeniu...

Płyty warstwowe zastosowane jako przegrody akustyczne stanowią rozwiązanie charakteryzujące się dobrymi własnościami izolacyjnymi głównie w paśmie średnich, jak również wysokich częstotliwości, przy obciążeniu niewielką masą powierzchniową. W wielu zastosowaniach wyparły typowe rozwiązania przegród masowych (np. z ceramiki, elementów wapienno­ piaskowych, betonu, żelbetu czy gipsu), które cechują się kilkukrotnie wyższymi masami powierzchniowymi.

dr hab. inż. Tomasz Tański, Roman Węglarz Prawidłowy dobór stalowych elementów konstrukcyjnych i materiałów lekkiej obudowy w środowiskach korozyjnych według wytycznych DAFA

Prawidłowy dobór stalowych elementów konstrukcyjnych i materiałów lekkiej obudowy w środowiskach korozyjnych według wytycznych DAFA Prawidłowy dobór stalowych elementów konstrukcyjnych i materiałów lekkiej obudowy w środowiskach korozyjnych według wytycznych DAFA

W świetle zawiłości norm, wymogów projektowych oraz tych istotnych z punktu widzenia inwestora okazuje się, że problem doboru właściwego materiału staje się bardzo złożony. Materiały odpowiadające zarówno...

W świetle zawiłości norm, wymogów projektowych oraz tych istotnych z punktu widzenia inwestora okazuje się, że problem doboru właściwego materiału staje się bardzo złożony. Materiały odpowiadające zarówno za estetykę, jak i przeznaczenie obiektu, m.in. w budownictwie przemysłowym, muszą sprostać wielu wymogom technicznym oraz wizualnym.

Wybrane dla Ciebie

Odkryj trendy projektowania elewacji »

Odkryj trendy projektowania elewacji » Odkryj trendy projektowania elewacji »

Jak estetycznie wykończyć ściany - wewnątrz i na zewnątrz? »

Jak estetycznie wykończyć ściany - wewnątrz i na zewnątrz? » Jak estetycznie wykończyć ściany - wewnątrz i na zewnątrz? »

Przeciekający dach? Jak temu zapobiec »

Przeciekający dach? Jak temu zapobiec » Przeciekający dach? Jak temu zapobiec »

Dach biosolarny - co to jest? »

Dach biosolarny - co to jest? » Dach biosolarny - co to jest? »

Zobacz, które płyty termoizolacyjne skutecznie ochronią dom przed zimnem »

Zobacz, które płyty termoizolacyjne skutecznie ochronią dom przed zimnem » Zobacz, które płyty termoizolacyjne skutecznie ochronią dom przed zimnem »

Jak poprawić izolacyjność akustyczną ścian murowanych »

Jak poprawić izolacyjność akustyczną ścian murowanych »  Jak poprawić izolacyjność akustyczną ścian murowanych »

Wszystko, co powinieneś wiedzieć o izolacjach natryskowych »

Wszystko, co powinieneś wiedzieć o izolacjach natryskowych » Wszystko, co powinieneś wiedzieć o izolacjach natryskowych »

Przekonaj się, jak inni izolują pianką poliuretanową »

Przekonaj się, jak inni izolują pianką poliuretanową » Przekonaj się, jak inni izolują pianką poliuretanową »

Na czym polega fenomen technologii białej wanny »

Na czym polega fenomen technologii białej wanny » Na czym polega fenomen technologii białej wanny »

Podpowiadamy, jak wybrać system ociepleń

Podpowiadamy, jak wybrać system ociepleń Podpowiadamy, jak wybrać system ociepleń

Podpowiadamy, jak skutecznie przeprowadzić renowacje piwnicy »

Podpowiadamy, jak skutecznie przeprowadzić renowacje piwnicy » Podpowiadamy, jak skutecznie przeprowadzić renowacje piwnicy »

300% rozciągliwości membrany - TAK! »

300% rozciągliwości membrany - TAK! » 300% rozciągliwości membrany - TAK! »

Copyright © 2004-2019 Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Spółka komandytowa, nr KRS: 0000537655. Wszelkie prawa, w tym Autora, Wydawcy i Producenta bazy danych zastrzeżone. Jakiekolwiek dalsze rozpowszechnianie artykułów zabronione. Korzystanie z serwisu i zamieszczonych w nim utworów i danych wyłącznie na zasadach określonych w Zasadach korzystania z serwisu.
Portal Budowlany - Izolacje.com.pl

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim urządzeniu końcowym. W każdym momencie możesz dokonać zmiany ustawień przeglądarki dotyczących cookies. Nim Państwo zaczną korzystać z naszego serwisu prosimy o zapoznanie się z naszą polityką prywatności oraz Informacją o Cookies. Więcej szczegółów w naszej Polityce Prywatności oraz Informacji o Cookies. Administratorem Państwa danych osobowych jest Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Sp.K., nr KRS: 0000537655, z siedzibą w 04-112 Warszawa, ul. Karczewska 18, tel. +48 22 810-21-24, właściciel strony www.izolacje.com.pl. Twoje Dane Osobowe będą chronione zgodnie z wytycznymi polityki prywatności www.izolacje.com.pl oraz zgodnie z Rozporządzeniem Parlamentu Europejskiego i Rady (UE) 2016/679 z dnia 27 kwietnia 2016r i z Ustawą o ochronie danych osobowych Dz.U. 2018 poz. 1000 z dnia 10 maja 2018r.