Pobierz pełny numer IZOLACJI

Pełny numer IZOLACJI 6/2018 [PDF]

możesz pobrać BEZPŁATNIE - po prostu ZAREJESTRUJ konto w portalu

Izolacyjność fasad podwójnych

Symulacje energetyczne wybranych przypadków
Jaki jest wpływ fasad podwójnych w warunkach klimatycznych Polski na poprawę izolacyjności termicznej?
Jaki jest wpływ fasad podwójnych w warunkach klimatycznych Polski na poprawę izolacyjności termicznej?
www.sxc.hu

Jednym z bardziej powszechnych rozwiązań obudowy zewnętrznej budynków reprezentacyjnych są systemy wykorzystujące ściany osłonowe pokryte szkłem. Poprawa charakterystyki energetycznej tego typu systemów na przestrzeni całego roku stanowi istotne wyzwanie, zarówno dla projektantów, jak i samych producentów systemów.

Tradycyjne podejście polega głównie na poprawie izolacyjności cieplnej zestawów szybowych przy jednoczesnym ograniczeniu przepuszczalności całkowitej energii promieniowania słonecznego. Tego typu rozwiązania w większości należą do grupy systemów statycznych, w których fizyczne parametry fasady są niezmienne w czasie.

Oznacza to, że nie ma możliwości regulowania temperatury przestrzeni fasady, czyli w przypadku niskich temperatur zewnętrznych - buforowania, natomiast w przypadku wysokich zysków od promieniowania słonecznego - dodatkowego przewietrzania. Informacje o efektywności energetycznej silnie przeszklonych budynków wyposażonych w fasady pojedyncze można znaleźć m.in. w pracach Twarowskiego [1], Laskowskiego [2], a także Narowskiego i Sowy [3].

Przeczytaj też: Konstrukcja fasady szklanej a komfort cieplny w pomieszczeniach

Alternatywą dla systemów fasad pojedynczych SSF (ang. Single Skin Facade) mogą być systemy fasad podwójnych DSF (ang. Double Skin Facade) należące do grupy systemów dynamicznych. Systemy podwójne stosowane są z powodzeniem od ok. 20 lat w krajach o klimacie zbliżonym do klimatu Polski. Od wielu lat prowadzone są też liczne prace badawcze nad analizą i optymalizacją tego typu rozwiązań [4-8].

W szczególnych przypadkach systemy te są z powodzeniem stosowane jako usprawnienie termomodernizacyjne stanowiące alternatywę dla metod tradycyjnych, docieplenia ścian lub wymiany okien. Tego typu przykłady wraz z podaniem spodziewanych efektów opisane zostały m.in. w pracach Heima [9] oraz Heima, Sprysch i Romanowskiej [10].

Artykuł ma na celu określenie potencjału energetycznego fasad podwójnych w warunkach klimatycznych Polski pod kątem poprawy izolacyjności termicznej w porównaniu z rozwiązaniami opartymi na fasadach pojedynczych. Praca ma charakter teoretyczny, a wyniki uzyskano na drodze dynamicznych symulacji energetycznych budynków. Przypadki ograniczono do kilku wybranych schematów i sposobów sterowania przepływem powietrza. Wyboru dokonano na podstawie wcześniejszych szczegółowych analiz opisanych m.in. w pracach Heima i Jabłońskiego [11] oraz Heima i Janickiego [12].

Rys historyczny

Pierwsze zastosowania rozwiązań wykorzystujących fasady podwójne datuje się na połowę XIX w., choć pokrewne sposoby buforowania budynków od środowiska zewnętrznego można znaleźć już w rozwiązaniach spotykanych w okresie starożytnym. W 1849 r. Jean-Baptiste Jobard, będący w owym czasie dyrektorem Muzeum Industrializmu w Brukseli, opisał pierwowzór mechanicznie wentylowanej fasady zbudowanej z wielu przekryć. Zwrócił on już wtedy uwagę na sensowność zastosowania rozwiązania, w którym w przestrzeni pomiędzy dwoma przeszkleniami zimą przepływa powietrze gorące, natomiast latem powietrze schłodzone.

Ana Maria Leon Crespo twierdzi, że pierwszy przypadek podjęcia tematu DSF pojawił się w 1903 r. w Steiff Factory w Giengen w Niemczech. Według niej pomysłodawcy chcieli zmaksymalizować zyski światła dziennego przy jednoczesnym uwzględnieniu wpływu warunków niskich temperatur zewnętrznych i silnych wiatrów występujących w tym regionie.

W wyniku rozwiązania zaprojektowano budynek, którego strukturę zamknięto w trzech kondygnacjach. Dwa górne piętra przeznaczono na pracownie i pomieszczenia pracownicze, a na parterze zlokalizowano magazyn. Budynek był na tyle udany, że doczekał się powielenia w postaci zbudowanych w 1904 r. i 1908 r. kopii z tym samym systemem DSF, ale ze względów ekonomicznych przy użyciu drewna zamiast stali, jako materiału konstrukcyjnego. Warto podkreślić, że wszystkie te budynki są nadal z powodzeniem eksploatowane.

W 1903 r. Otto Koloman Wagner, architekt i urbanista pochodzenia austriackiego, wygrał konkurs na zaprojektowanie budynku Pocztowej Kasy Oszczędnościowej w Wiedniu. Budynek wzniesiony w dwóch etapach, od roku 1904 do 1912, posiada system DSF wkomponowany w świetlik holu głównego.

Pod koniec lat 20. ubiegłego wieku opracowaniu fasad podwójnych zaczęły przyświecać inne priorytety. W Rosji Moisei Ginzburg przeprowadzał eksperymenty nad zastosowaniem elementów fasad podwójnych przy budowie komunalnego bloku mieszkalnego Narkomfin (1928). W projekcie Ginzburg rozważał zastosowanie rożnych rozwiązań systemów okien. Zaprojektował podwójne przeszklenie w postaci poziomych pasów osadzonych wzdłuż budynku na wspornikach pionowych. Pomysł ten jednak nie trafił w gusta użytkowników i okna wymieniono na standardowe.

Także Le Corbusieur, który brał udział w projektowaniu Centrosoyusu w Moskwie, postulował, aby budynki zaopatrzyć w wentylowaną kurtynę powietrzną utworzoną we wnętrzu szklanej fasady podwójnej. W 1929 r. przedstawił projekt La Cite de Refuge, w którym zastosował pomysł mur neutralisant, czyli DSF, dla której zyski i straty ciepła miały być zniwelowane dzięki obiegowi powietrza, o temperaturze wnętrza, w przestrzeni fasady. Oczywiście Le Corbusier nie wziął pod uwagę nakładów energetycznych niezbędnych do ogrzania/schłodzenia powietrza, dlatego po uwzględnieniu kosztów realizacji projekt został porzucony. Projektant nie poddał się jednak i przeprowadził w późniejszym czasie kilka eksperymentów w hucie szkła w Saint-Gobain.

Zobacz: Nowoczesne technologie elewacyjne - dobór i projektowanie

Pierwsze publikacje badań na temat przepływu powietrza w systemach okiennych pojawiły się w latach 50. XX w. w Skandynawii. Ich celem była poprawa efektywności energetycznej oraz komfortu cieplnego budynków mieszkalnych. W 1957 r. Szwedzi wprowadzili pierwszy patent związany z przepływem powietrza w oknach, natomiast w r. 1967 firma EKONO Company wybudowała pierwszy budynek biurowy wyposażony w system wentylowanych okien w Helsinkach w Finlandii.

Od tego czasu aż do początku lat 70. nie nastąpił praktycznie żaden znaczący postęp w dziedzinie DSF. Jednak lata 1973-79 przyniosły kryzys energetyczny, a wraz z nim odżył duch poszukiwań nowych technologii. Niemal z dnia na dzień pojęcia efektywności energetycznej oraz komfortu cieplnego przestały być zagadnieniami luksusowymi dotyczącymi jedynie krajów bogatych o niesprzyjającym klimacie.

W późnych latach 70. oraz wczesnych 80. budynki z mechanicznie wentylowanymi fasadami zaczęły być powszechniej stosowane, zwłaszcza na terenie Europy. Przyświecała temu wymieniona już wcześniej idea zmniejszenia strat ciepła przez przenikanie zimą oraz minimalizacji zysków słonecznych latem. Jako przykład takiej realizacji wymienia się fasadę budynku Brytyjskiej Kampanii Cukrowej w Peterborough.

Wreszcie na początku lat 90. rosnąca świadomość energetyczna oraz dojrzewająca myśl polityczna zielonych domów doprowadziła do powstania dobrej koniunktury dla fasad podwójnych. Korporacje coraz chętniej, chcąc być postrzegane jako ekologiczne, zaczęły poszukiwać nowych rozwiązań architektonicznych dla swoich budynków. Nie bez znaczenia był także błyskawiczny rozwój dziedziny technologii komputerowych, które dostarczyły projektantom potężnych narzędzi ułatwiających projektowanie, obliczenia i modelowanie nowych systemów.

Spore nadzieje pokładano w fasadach podwójnych przy projektowaniu budynków wysokich, gdzie zaplecze finansowe pozwala na zastosowanie nowoczesnych, drogich technologii. Otworzyło to furtkę dla stosowania fasad podwójnych, które nie dość, że idealnie odpowiadają wymogom estetycznym korporacji i przedsiębiorstw, to zapewniają, nawet w przypadku drapaczy chmur, możliwość otwierania okien, co przy fasadach pojedynczych i bardzo silnych przepływach powietrza na dużych wysokościach jest praktycznie niemożliwe.

Przykładowe rozwiązanie

Na potrzeby analiz posłużono się systemem jednopłaszczyznowych (rys. 1), naturalnie wentylowanych fasad podwójnych, spełniających funkcje kurtyny powietrznej (latem) lub bufora termicznego (zimą). Zastosowany system kurtyny powietrznej sprawia, że w przypadku braku nasłonecznienia dodatkowe poszycie poprawia izolacyjność termiczną budynku.

Podczas występowania promieniowania słonecznego w przestrzeni fasady wywoływany jest ruch powietrza będący efektem zjawiska ciągu kominowego. Dodatkowo w obu przypadkach przepływ powietrza wspomagany jest oddziaływaniem wiatru. Ilość zysków jest regulowana przez zmianę wielkości otwarć, a tym samym służy doprowadzeniu chłodnego i odprowadzaniu na zewnątrz nagrzanego powietrza.

Wszystkie symulacje przeprowadzone zostały na podstawie danych pogodowych Typowego Roku Meteorologicznego pochodzących z Lotniskowej Stacji Meteorologicznej Łodź-Lublinek [13]. Symulacje obejmują pełen rok kalendarzowy. Wartości współczynnika redukcji dystrybucji ciśnienia przyjęto dla wlotów (przy podstawie fasady) o wartości jak dla ściany średnio wyeksponowanej, natomiast dla wylotów powietrza o wartości jak dla dachu o nachyleniu poniżej 10°, średnio wyeksponowanego na działanie wiatru [14].

Model termiczny budynku został oparty na metodzie bilansu cieplnego w przestrzeni dyskretyzowanej za pomocą objętości skończonych. Oddziaływanie promieniowania słonecznego uwzględniono, wykorzystując procesor śledzenia promieniowania bezpośredniego połączony z dystrybucją promieniowania rozproszonego [15]. Przepływ powietrza określony został przy użyciu metody bilansu sieciowego zgodnie z zasadą zachowania przepływu masy. Przestrzeń fasady została podzielona na wiele stref reprezentowanych za pośrednictwem węzłów połączonych ścieżkami przepływu.

Pojedyncze strefy biurowe zbudowano na podstawie założeń geometrycznych modelu BESTEST Case 600 [16]. Konstrukcję podstawowej komórki wyjściowej stworzono w oparciu o założenie równoważnej pojemności cieplnej wszystkich przegród pełnych. Zaproponowano, by transparentna kurtyna wewnętrzna była szklona podwójnie, zewnętrzna zaś szklona pojedynczo.

W celu precyzyjnej oceny rozkładu temperatury powietrza oraz natężenia jego przepływu w funkcji wysokości przestrzeń fasady została podzielona na kilka mniejszych stref termicznych. Warunki brzegowe pomiędzy strefami, dla których możliwy jest przepływ powietrza, określono jako swobodne.

Rozpatrywany przypadek fasady obejmował wycinek budynku biurowego wielostrefowego, na którego całkowitą kompozycję składa się 5×5 pomieszczeń przypadających na każdą z elewacji, skierowanych idealnie na północ, południe, wschód i zachód. Ograniczony zakres analizy obejmował przypadek przedstawiony na (rys. 2) z tym jednak założeniem, że wpływ zjawiska konwekcji w przypadku fasady podwójnej wymagał objęcia zasięgiem całej wysokości elewacji. Sposób przewietrzania fasady i miejsca usytuowania wlotów powietrza zamieszczono na (rys. 3).

Przepływ powietrza został obliczony w oparciu o model sieciowy [15]. Wyróżniono dwa węzły zewnętrzne (dolny oraz górny) oraz pięć węzłów wewnętrznych, po jednym przypisanym do każdej ze stref fasady (rys. 4). Węzły zostały połączone za pośrednictwem odpowiednich komponentów. Wloty oraz wyloty powietrza zaproponowano jako szczeliny o szerokości 50 mm i długościach odpowiadających procentowi otwarcia, elementy oddzielające kolejne kondygnacje zdefiniowano jako otwarcia o powierzchni przelotowej 6,4 m2, co odpowiada 80% maksymalnej przepustowości przekroju poziomego fasady.

Przewiduje się, że poprawnie dobrany w zależności do pory roku poziom otwarć wlotów i wylotów oraz ich położenie zoptymalizowane w zależności od kierunku wiatru będą miały wpływ na redukcję zapotrzebowania na energię do ogrzewania lub chłodzenia [12]. Podobnie przewiduje się, że zastosowanie zoptymalizowanego pod opisanym kątem systemu fasad podwójnych pozwoli zredukować zapotrzebowanie na energię w odniesieniu do budynku wyposażonego w pojedynczą, całkowicie przeszkloną fasadę.

DOŁĄCZ DO NEWSLETTERA – kliknij tutaj »

Głównym sposobem sprawdzenia efektu zastosowania fasad podwójnych oraz wpływu sterowania przepływem powietrza w fasadzie na efektywność energetyczną było stworzenie serii zorientowanych względem czterech stron świata modeli fasad DSF oraz SSF (podwójnych oraz pojedynczych), uwzględniając w przypadku podwójnych rożne wielkości, 0% lub 80% otwarcia powierzchni napływu powietrza [12].

Symulacji dokonano przy założeniu braku wewnętrznych zysków ciepła oraz według ujednoliconego modelu sterowania temperaturą powietrza wewnątrz stref biurowych. Ponieważ poszczególne lata różnią się między sobą liczbą dni wolnych od pracy, czynnik ten wyeliminowano dzięki wykorzystaniu płaskiego schematu kontroli temperatury. W każdym z 365 dni roku przyjęto 3 okresy grzewcze.

Artykuł pochodzi z: miesięcznika IZOLACJE 7/8/2010

Komentarze

(0)

Wybrane dla Ciebie


Uszczelnianie trudnych powierzchni! Zobacz, jak to zrobić skutecznie »


Doszczelniając przegrodę od strony wewnętrznej budynku ograniczamy przenikanie pary wodnej do warstwy izolacyjnej, natomiast... ZOBACZ »



Tych fachowców najczęściej poszukują Polacy »

Ogromna skuteczność tłumienia hałasu! Sprawdź »

3/4 Polaków deklaruje, że potrzebuje fachowca do wykonania pracy w domu lub mieszkaniu. Najczęściej poszukiwanym jest...
czytaj dalej »

Jak skutecznie wytłumić dźwięki w pomieszczeniach? Czym zaizolować podłogi, ściany i sufity? czytaj dalej »

Czym skutecznie zaizolować fundament?

Zadaniem hydroizolacji jest zablokowanie dostępu wody i wilgoci do wnętrza obiektu budowlanego. Istnieje kilka rodzajów izolacji krystalizujących, a ich znajomość ułatwia zaprojektowanie i wykonanie szczelnej budowli. czytaj dalej »

 


Co warto wiedzieć o polimocznikach?

Doskonałe rozwiązanie do izolacji dachów płaskich »

Technologia polimoczników oparta jest na zastosowaniu dwuskładnikowych powłok nakładanych metodą natrysku... czytaj dalej » Hydroizolacja dachów odbywa się przy pomocy wałków lub natryskowo - najlepszą w danym przypadku metodę dobiera się... czytaj dalej »

Ochroń wnętrze domu przed silnym słońcem » »


Markizy, żaluzje, pergole, rolety - które rozwiązanie sprawdzi się w Twoim przypadku? ZOBACZ »


Fakty i mity na temat szarego styropianu »

Jak zabezpieczyć rury przed stratami ciepła?

Od kilku lat rośnie popyt na styropiany szare. W Niemczech i Szwajcarii większość spr... czytaj dalej » Czym powinieneś kierować się przy wyborze odpowiedniej izolacji rur? czytaj dalej »

Akustyczne płyty ścienne i sufitowe »

Energooszczędne płyty warstwowe z izolacją z wełny mineralnej o unikalnych właściwościach przeciwpożarowych i strukturalnych...  czytaj dalej »


Jak zabepieczyć ocieplenie przed rwącym wiatrem?

Wykańczasz dom i potrzebne Ci wysokiej jakości materiały?

Siły działające na wybrany system ociepleń przenoszone są zarówno przez zaprawę klejową, jak i łączniki fasadowe. Dzięki...
czytaj dalej »

Dopasuj rozwiązanie do Twoich potrzeb i rodzaju wykonywach prac... czytaj dalej »

Jak trwale zabezpieczyć budynki przed wodą?

Skutecznie zabezpiecz budowane konstrukcje przed pożarem »

Rozwijamy kreatywne rozwiązania dla osiągniecia pożądanego sukcesu nawet w przypadku specjalnych projektów czytaj dalej » Masywne elementy budowlane w starych obiektach często nie spełniają wymagań przeciwpożarowych określonych w obowiązujących przepisach. czytaj dalej »

Jak naprawić przeciekający dach lub balkon?


Nowoczesne technologie umożliwiają łatwą i szybką aplikację produktu, co pozwala zmniejszyć koszty i skrócić czas wykonania prac. ZOBACZ »



Dodaj komentarz
Nie jesteś zalogowany - zaloguj się lub załóż konto. Dzięki temu uzysksz możliwość obserwowania swoich komentarzy oraz dostęp do treści i możliwości dostępnych tylko dla zarejestrowanych użytkowników portalu Izolacje.com.pl... dowiedz się więcej »
Triflex Polska Triflex Polska
Triflex zyskał na rynku europejskim pozycję lidera w zakresie opracowywania, kompleksowego doradztwa oraz zastosowania uszczelnień i powłok...
7/8/2019

Aktualny numer:

Izolacje 7/8/2019
W miesięczniku m.in.:
  • - Wtórne hydroizolacje poziome
  • - Mocowanie elewacji wentylowanych
Zobacz szczegóły
Dom Wydawniczy MEDIUM Rzetelna Firma
Copyright @ 2004-2012 Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Spółka komandytowa, nr KRS: 0000537655. Wszelkie prawa w tym Autora, Wydawcy i Producenta bazy danych zastrzeżone. Jakiekolwiek dalsze rozpowszechnianie artykułów zabronione. Korzystanie z serwisu i zamieszczonych w nim utworów i danych wyłącznie na zasadach określonych w Zasadach korzystania z serwisu.
realizacja i CMS: omnia.pl

.